
A Security-aware Approach to JXTA-Overlay Primitives

Joan Arnedo-Moreno
Estudis d’Informàtica, Multimèdia i Telecomunicació

Universitat Oberta de Catalunya (UOC)
Rambla de Poblenou, 156 08018 Barcelona, Spain

Email: jarnedo@uoc.edu

Keita Matsuo
Graduate School of Engineering

Fukuoka Institute of Technology (FIT)
3-30-1 Wajiro-Higashi, Higashi-Ku, 811-0295 Fukuoka, Japan

Email: bd07002@bene.fit.ac.jp

Leonard Barolli
Department of Information and Communication Engineering

Fukuoka Institute of Technology (FIT)
3-30-1 Wajiro-Higashi, Higashi-Ku, 811-0295 Fukuoka, Japan

Email: barolli@bene.fit.ac.jp

Fatos Xhafa
Department of Languages and Informatics Systems

Technical University of Catalonia (UPC)
Jordi Girona 1-3, 08034 Barcelona, Spain

Email: fatos@lsi.upc.edu

Abstract

The JXTA-Overlay project is an effort to use JXTA tech-
nology to provide a generic set of functionalities that can
be used by developers to deploy P2P applications. Since its
design mainly focuses on issues such as scalability or overall
performance, it does not take security into account. However,
as P2P applications have evolved to fulfill more complex
scenarios, security has become a very important aspect
to take into account when evaluating a P2P framework.
This work proposes a security extension specifically suited
to JXTA-Overlay’s idiosyncrasies, providing an acceptable
solution to some of its current shortcomings. 1

Keywords: peer-to-peer, security, XMLdsig, JXTA, JXTA-
Overlay.

1. Introduction

Peer-to-peer (P2P) applications have become highly pop-
ular in recent times due to its great potential to scale and
the lack of a central point of failure. Slowly, they have
evolved from simple file-sharing, such as Gnutella [1], to
new environments such as e-health or e-learning [2]. As a
result, the maturity of research in the field of P2P has pushed
through new problems such us those related with security,
becoming one of the key issues when evaluating such
systems. Even at the cost of some impact on performance,
a security baseline must be kept in any P2P system in order
to protect it against different network vulnerabilities.

JXTA [3] (or ”juxtapose”) is a set of open protocols
that enable the creation and deployment of P2P networks.
JXTA protocols enable P2P applications to discover and
observe peers, enable communication between them or offer

1. This work is partially supported by the Spanish Ministry of Science
and Innovation and the FEDER funds under the grants TSI2007-65406-
C03-03 E-AEGIS and CONSOLIDER CSD2007-00004 ARES.

and localize resources within the network. JXTA-Overlay
[4] extends such protocols in a framework which increases
the reliability of JXTA-based applications and supporting
group management and file sharing. Unfortunately, the de-
sign focus on JXTA-Overlay was completely concerned
with system performance, but not at all with security, a
situation which may become a great constraint under today’s
standards.

The contribution of this paper is a security extension to
JXTA-Overlay. The proposed extension fully realizes the
messaging capabilities and functions of both JXTA and
JXTA-Overlay and uses them in order to provide a security
baseline in a transparent manner. As a result, minimum
effort is necessary by application developers and end-users
to deploy a secure environment. Furthermore, because of the
framework’s modular approach, it may be easily ported to
different scenarios, according to the final application’s needs.

This paper is organized as follows. Section 2 provides a
general overview of JXTA and JXTA-Overlay’s architecture
and capabilities, as well as exposing some of the most
obvious vulnerabilities in JXTA-Overlay. Section 3 presents
the current related work on securing JXTA-based systems.
The proposal of a basic security extension is presented in
section 4. Section 5 provides a brief study on the cost
of implementing security. Concluding the paper, section 6
summarizes the paper contributions and further work.

2. JXTA-Overlay Overview

JXTA-Overlay is a middleware built on top of the JXTA
protocol specification. JXTA-Overlay extends JXTA proto-
cols with the goal of overcoming some of its limitations: the
need for the developer to manage the presence mechanism,
peer group publication and message exchange. To achieve
this end, JXTA-Overlay provides a set of basic function-
alities, named primitives and functions, intended to be as

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Oberta in open access

https://core.ac.uk/display/9628435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


complete as possible to satisfy the needs of most JXTA-
based applications.

2.1. The JXTA-Overlay network

In a JXTA-Overlay network, different entities interact.
End-users connect to the network using a client peer, a P2P
application deployed into the network using JXTA-Overlay’s
libraries. End-users join the network by authenticating using
a username and password. Once successfully authenticated,
they are organized into different overlapping groups, so
only members of the same group may interact. Brokers are
special peers which control access to the network, taking
care of end-user authentication, as well as helping client
peers interact between them by propagating their related
information. Brokers are very important since they exchange
information about all client peers, maintaining a global index
of available resources, thus allowing all peers to find network
services. Brokers also act as beacons which client peers
which have recently gone online use to join the network.
For that reason, they usually have well-known identifiers,
such as a DNS name or a static IP address.

All the information related to user configuration (user-
name, password and group membership) is stored in a
special single entity within the JXTA-Overlay network: a
central database. Only brokers may access the database
contents, in order to check end-user authentication attempts
and organize them into groups. It is assumed that some ad-
ministrator takes care of properly configuring the database,
registering new end-users.

2.2. General architecture

The architecture of the JXTA-Overlay middleware defines
three modules, which let the different entities described in
section 2.1 communicate: the Client Module, the Broker
Module and the Control Module. Altogether, they form an
abstraction layer on top of JXTA, which may be used to
develop any kind of client peer, as shown in Figure 1.

Figure 1. JXTA-Overlay architecture.

• The Client Module defines all necessary primitives
for client peer to join a JXTA-Overlay network and

interact with other peers and the broker. Applications
developed on top of JXTA-Overlay are always based
on the invocation of Client Module primitives and the
processing of events thrown by functions, executed as
a result of message reception from other peers (client
peers or brokers).

• The Broker Module defines all the functions that client
peers may call upon a broker in order to be granted
access to the the network, create and publish groups or
retrieve other client peers’ information. Broker func-
tions are always executed as a result of messages sent
via Client Module primitives.

• The Control Module acts as an intermediate layer
between the Broker and Client Modules, providing the
generic functionalities on regards to group management
and messaging.

The Control Module provides direct messaging between
JXTA-Overlay entities using JXTA pipes, a virtual commu-
nication channel between peers. Client peers have an input
pipe for each group it belongs to and other group members
may send messages using the input pipe associated to that
group. Brokers have a single input pipe which is shared for
all incoming messaging.

Peer information is propagated across group members by
brokers, which are able to distribute data beyond boundaries
such as broadcast range or NAT. such information is format-
ted as JXTA advertisements, metadata documents codified
using XML and transmitted using the JXTA core protocols.
JXTA-Overlay has a big reliance on both JXTA-defined and
custom-defined advertisements, and therefore, their data is
critical for the correct operation of the network. Each client
peer periodically broadcasts a set of different advertisements
for each group it belongs to, each one containing data related
to a specific purpose, such as available files, input pipe
location, statistics or presence notifications.

2.3. JXTA-Overlay and security

As previously exposed, JXTA-Overlay’s design is not
concerned with security, with the only exception of end-user
network access control via a username and password. As a
result, its is vulnerable to different security threats which
may jeopardize the network. Some of the greatest security
concerns in JXTA-Overlay are the following ones:

• Transmitted data may be easily eavesdropped, since no
data privacy is provided. In the case of the transmitted
username and password for end-user authentication, it
cannot even be argued that it is an optional feature. It
should be mandatory.

• Any legitimate user may forge advertisements with no
fear of reprisal. No integrity or source authenticity is
maintained. Such advertisements will be distributed and



accepted by all group members, unaware of the false
data.

• Client peers never check the broker legitimacy before
authenticating. There is no guarantee that a brokert
is a legitimate one even in the case of well-known
identifiers, since it may be that traffic is being redirected
to a fake one via methods such as DNS spoofing [5].

As it can be seen, some of the current JXTA-Overlay
vulnerabilities are quite obvious ones, such as transmitting
sensitive data with no real privacy. Therefore, it can be con-
cluded that JXTA-Overlay does not provide an acceptable
security baseline and needs serious improvement on this
regard.

3. Related Work on Securing JXTA-based
Frameworks

Before a security framework for JXTA-Overlay may be
proposed, it is useful to review which are the current security
mechanisms available to JXTA-based applications.

As far as network access control is concerned, a specific
trust model is proposed in [6]. Rendezvous peers provide
credentials to peers, that can be used to prove network
membership. Such credentials are issued only to those peers
which are authorized via an LDAP (Lightweight Directory
Access Protocol) directory [7]. Rendezvous peers use a
secure connection to the LDAP service check peer autho-
rization. This proposal is extended in [8], moving to a
centralized Public Key Infrastructure (PKI) approach and
providing a protocol to authenticate the group itself. More
elaborated proposals are presented in [9], [10], based on
joint authorization by multiple peers under voting schemes in
order to maximize decentralization. Credentials are issued by
a CA (Certification Authority), however access is based on
an agreement reached between several group members. The
main difference between both proposals is that [10] includes
a rank system, where peers may only rise to higher positions
by contributing to the group.

On regards to message security, JXTA has two available
mechanisms: TLS (Transport Layer Security) [11] and CBJX
(Crypto-Based JXTA Transfer) [12]. On one hand, JXTA
provides its own definition of standard TLS as a transport
protocol, providing private, mutually authenticated, reliable
streaming communications using symmetric cryptography
for data encryption and a keyed Message Authentication
Code (MAC) [13] for message integrity. On the other hand,
CBJX is a JXTA-specific security layer which pre-processes
messages to provide an additional secure encapsulation,
creating a new message that is then relayed to an underlying
transport protocol. The original message’s is signed, and an
additional information block, is also added to the secured
message.

JXTA also provides some degree of advertisement security
with signed advertisements. A signed advertisement encap-

sulates the original XML advertisement as plain text encoded
using the Base64 algorithm [14]. The original advertisement
type cannot be recognized without processing the signature.
An alternative method is proposed in [15], based on the
XMLdsig [16] standard. In contrast, in this proposal, the
resulting secure advertisement maintains its original type.

Unfortunately, in order to use all the secure mechanisms
provided by JXTA, it is mandatory to use a specific im-
plementation of the JXTA Memberhip Service, the Personal
Secure Environment (PSE). The membership service one of
JXTA’s core services which takes care of group membership
and identity management. Being limited to PSE is a great
constraint, since the choice of membership service has strong
implications on a system’s architecture, and thus it is difficult
to apply on an existing framework such as JXTA-Overlay.
Furthermore, PSE has a limited range of cryptographic
module support, solely supporting Java keystore files [17]
and X509 certificates [18] as credentials.

4. An Approach for JXTA-Overlay Security

In this section we present an extension to the original
JXTA-Overlay primitives, so end user data is protected
against the vulnerabilities exposed in section 2.3. In this
proposal, we combine several methods of those previously
described in section 3, adapting them to JXTA-Overlay’s
specific architecture and network setup. Client peers are
protected against impersonation by using broker-issued cre-
dentials in a similar way to the approach in [6]. However,
we further extend this approach to the broker, so a legitimate
one may be told apart from malicious ones. Advertisement
integrity and authenticity, as well as a transparent method for
authentic key transport is provided by adapting the method
defined in [15]. Finally, data privacy is used to protect
message exchanges against eavesdroppers.

The following notation will be used from now on to
describe the secure framework:

• SKi: Peer i’s secret key.
• PKi: Peer i’s public key.
• Credj

i : Peer i’s credential, issued by j. It is assumed
that the credential contains Pi’s public key.

• EPKi
(x): A string x encrypted using the public key of

peer i by means of a wrapped key encryption scheme
(such as the one defined in [19]).

• SSKi
(x): A string x signed using the private key of

peer i.
• i −→ j : {m1, · · · , mn}: A message sent from peer i

to peer j, with the content m1, · · · , mn.

4.1. System setup

An initial network setup is assumed at deployment and
peer boot time. During this setup, JXTA-Overlay entities are



provided with the necessary cryptographic data to properly
execute the secure extended primitives.

The JXTA-Overlay administrator, Adm, generates a key
pair PKAdm and SKAdm and a self-signed credential
CredAdm

Adm, thus acting as trusted party by all peers. This is a
sensible stance, since the system administrator is the entity
that grants access to the JXTA-Overlay network by creating
legitimate usernames and passwords into the database.

Each broker, Bri, generates a key pair PKBri
and

SKBri
. From PKBri

, the administrator will provide Bri

with a credential CredAdm
Bri

. Therefore, only a legitimate bro-
ker may be able to prove the ownership of such credential.

Each client peer, Cli, is provided with a copy of
CredAdm

Adm. At boot time, a key pair PKCli and SKCli are
created. Credential generation will be performed as part of
secure primitive execution, as will be shown in section 4.2.2.

Once each a client peer or a broker has established its
credential, it is distributed to other group members using
the approach in [16]. This grants an authentic credential
distribution mechanism based on Crypto Based IDentifiers
(CBIDs) [20], which is invisible to both JXTA-Overlay and
JXTA. In addition, pipe advertisement integrity and source
authenticity is also provided. However, it must be taken
into account that JXTA-Overlay only allows advertisement
exchanges once a peer has joined the network. This has some
implications on those secure primitives related to network
connection, as will be shown in section 4.2.

4.2. Secure broker connection

In order to join a JXTA-Overlay network, a client peer
must first locate a broker which will authenticate the end
user by checking a username and password. This process is
defined into the JXTA-Overlay set of discovery primitives.
As far as the discovery primitives are concerned, even
though they also encompass those related to network in-
formation, such as peer status retrieval, the proposed secure
extension exclusively on focuses the initial interactions with
the broker in order to join the JXTA-Overlay network.

Joining the network via the broker is divided into two
distinct parts, each one in the form of a particular primitive:

• connect: Locates a broker and waits for a connection
to open.

• login: Authenticates the current client peer end-user by
sending a username and password that will be checked
against the system database.

The secure extension maintains the separation in two
parts, also relating each one to a particular JXTA-Overlay
primitive: the secureConnection and secureLogin primitives.
In contrast with the original discovery primitives, additional
steps are taken in each one to ensure a secure message
exchange and issue s credential to client peers.

4.2.1. secureConnection. The secureConnection primitive
uses a challenge-response [21] approach to authenticate
the broker and check its legitimacy. The description of the
connection process, initiated by the primitive invocation,
follows:

1) The client Cl waits for a broker Br to become
available and initiates the connection attempt.

2) Cl chooses a byte array, chall, as a random challenge.
3) Cl −→ Br: {chall}
4) Br generates a sufficiently long random session iden-

tifier sid, and stores it.
5) Cl←− Br: {sid, SSKBr

(chall), CredAdm
Br }

6) Cl checks the authenticity of CredAdm
Br by verifying

its signature using PKAdm (contained in the admin-
istrator’s credential, CredAdm

Adm).
• If its is not authentic, it can be concluded that Br

is not a legitimate Broker.
7) Cl checks SSKBr

(chall) using PKBr (which is con-
tained within CredAdm

Br ).
• If signature validation fails, it can be concluded

that Br does not possess SKBr, and thus is an
impersonator.

8) If both checks succeed, it can be concluded that Br
is a legitimate Broker.

9) Cl stores sid and CredAdm
Br .

4.2.2. secureLogin. Once the Broker Br’s credential
has been retrieved, and its authenticity established, it is
possible to use the secureLogin primitive to actually join the
JXTA-Overlay network. Just as it is the case for the original
login primitive, a username and password are provided by
the client application’s end user. The session identifier, sid,
generated in the secureConnect primitive is used at this
stage to avoid replay attacks at the authentication attempt.
Otherwise, an attacker can reuse any authentication attempt
from other client peers to impersonate them. The attacker
need not know the content of the encrypted message to
perform this kind of attack, it is enough that it contains a
valid username and password that will be accepted by the
broker. The description of the underlying protocol follows:

1) Cl generates the login request req =
SSKCl

(username, password, PKCl)
2) Cl retrieves PKBr and sid, obtained during the

secureConnection primitive call.
3) Cl −→ Br: {EPKBr

(req, sid)}
4) Br decrypts the message using SKBr.
5) Br checks if sid is currently stored. If that is not the

case, login is aborted. Otherwise, Br no longer stores
sid and the login process continues.



6) Br checks username and password matching accord-
ing to JXTA-Overlay’s standard procedures (for exam-
ple, a secure backend database connection).
• If they do not match, it can be assumed that Cl’s

end user is an impersonator and login is aborted.
7) Br checks key authenticity against the claimed client

peer identifier according to the mechanism described
in [15].
• If the check fails, it can be concluded that the

request was not received from a client peer with
the claimed identifier. The login attempt is aborted
by Br.

8) If both checks were correct, Br generates a credential
cr = CredBr

Cl , containing PKCl and Cl’s current end
user’s username.

9) Cl←− Br: {cr}
10) From now on, Cl’s end user may use cr as proof of

identity, until cr’s expiration date.

4.3. Secure messaging

Messenger primitives define how to directly exchange
simple text messages between client peers, such as a chat
service, without requiring broker intervention. The two main
primitives are:

• sendMsgPeer: Sends a simple message to some other
client peer.

• sendMsgPeerGroup: Sends a simple message to all
members of a group. It is actually resolved by itera-
tively calling sendMsgPeer.

The secure versions for both primitives provide
lightweight privacy, data integrity and message source au-
thentication in a stateless, best effort manner. This is in
contrast, for example, with JXTA’s secure pipes, which rely
on TLS and require some previous negotiation between
endpoints, as explained in section 3.

4.3.1. secureMsgPeer and secureMsgPeerGroup. The
necessary steps for some user connected to client peer Cl1
to send a simple text message to another one connected to
Cl2 are:

1) Cl1 retrieves Cl2’s pipe advertisement.
2) Cl1 validates the advertisement signature in order to

ensure that it has not been compromised, using the
method described in [15].
• If the signature does not validate, the advertise-

ment has been tampered, and is deemed invalid. If
the message is sent, no guarantees exist on regards
to its security.

3) Cl1 retrieves PKCl2 from the signed advertisement’s
enclosed credential, CredBr

Cl2
.

4) Cl1 −→ Cl2: {EPKCl2
(m, SSKCl1

(m))}

5) Cl2 decrypts the message using SKCl2 .
6) Cl2 retrieves Cl1’s pipe advertisement and repeats

steps 2, 3.
7) Cl2 validates the message signature using PKCl1 ,

obtained via Cl1’s signed advertisement.
The need to locate a pipe advertisements in steps 1 and

6 puts no burden or constraint on the system, since such
advertisements are always necessary in order to exchange
messages between peers. In fact, both steps always occur,
regardless of which primitive is used (the original or the
secure one). Therefore, if the advertisement is not available
for some reason, it would be impossible to exchange any
kind of message nevertheless. This is an approach to secure
messaging which seamlessly integrates with JXTA-Overlay’s
messenger primitives by making use of the exactly the same
core mechanisms, instead of relying on additional protocols
for key distribution.

Just as it is the case for the standard primitives, the
secureMsgPeerGroup primitive just iteratively uses the se-
cureMsgPeer to send the same message to a group of peers.

5. Security Cost

Security always comes at a cost in protocol efficiency
by adding some overhead. In order to asses the impact on
performance, two different sets of scenarios have been taken
into account in order to run a set of experiments: time
overhead until a client peer joins the JXTA-Overlay network
and delay in simple message transmission. Such tests have
been run using a PC with a 1.20 GHz Intel Pentium M
processor and 1 Gb of RAM under Ubuntu 8.10 and SUN’s
Java Runtime Environment version 1.6.0.10 (which includes
the Java Cryptographic Extension, JCE) . We decided to
use a computer which is below today’s average standards to
assess the impact of using JXTA’s security mechanisms on
lower end machines.

The resulting overhead for joining the network via the
secureConnection and secureLogin primitives amounts to
about 81.76%. The overhead is high from an absolute
standpoint, however, we must take into account that it is
in comparison to a scenario where no security exists at all.

Overhead in secure messaging has also been tested for
different data lengths, as shown in Figure 2. Even though
overhead is high for the same reasons as the network join
process, it quickly falls as network latency becomes more
relevant.

6. Conclusions and Further work

In this paper, a secure extension to JXTA-Overlay primi-
tives has been presented. Borker issued credentials are used
to identify users and encapsulate cryptographic data. We also
take advantage of an approach based on XMLdsig signed



Figure 2. secureMsgPeer primitive overhead.

advertisements to distribute credentials to group members in
order to ensure secure data exchange. The main contribution
of this work is providing effective security to an existing
framework which has none at all using an approach which
takes into account which kind of entities interact and how
the network is set up.

In this proposal, only some of the most basic, but not
least important, primitives have been secured. The extension
of the JXTA-Overlay framework to secure every single
primitive is beyond the space limitations of this work (about
122 primitives and 84 events related to different functions).
However, once the building blocks for a secure system have
been established, an integral key distribution and authenticity
scheme, it is feasible to extend security to every single
primitive. Any message exchange can be secured using an
approach similar to that defined for messenger primitives.

Currently, the extended primitives have been implemented
and integrated into the latest version of JXTA-Overlay. They
correctly interact with the key distribution method, providing
secure messaging. Further work includes extending security
to other JXTA-Overlay primitives which are deemed sensi-
tive to attacks. Of special note are those of the executable
set of primitives, related to remote code execution.

References

[1] “Gnutella”, 2000, http://rfc-gnutella.sourceforge.net.

[2] K. Matsuo, L. Barolli, F. Xhafa, A. Koyama, and A. Durresi,
“Implementation of a jxta-based p2p e-learning system and
its performance evaluation”, International Journal of Web
Information Systems, vol. 4, no. 3, pp. 352–371, 2008.

[3] Sun Microsystems Inc., “Jxta v2.0 protocols specification”,
2007, https://jxta-spec.dev.java.net/nonav/JXTAProtocols.
html.

[4] F. Xhafa, R. Fernandez, T. Daradoumis, L. Barolli, and S. Ca-
balle, “Improvement of jxta protocols for supporting reliable
distributed applications in p2p systems”, in International
Conference on Network-Based Information Systems (NBiS),
2007, pp. 345–354.

[5] Sax D., “Dns spoofing (malicious cache poisoning)”, 2003,
http://www.sans.org/rr/firewall/DNS spoof.php.

[6] B. Yeager, “Enterprise strength security on a jxta p2p
network”, P2P’03: Proceedings of the 3rd International
Conference on Peer-to-Peer Computing, 2003.

[7] Kille S. Wahl M., Howes T., “Lightweight directory access
protocol (v3)”, 1997, http://www.ietf.org/rfc/rfc2251.txt.

[8] L. Kawulok, K. Zielinski, and M. Jaeschke, “Trusted group
membership service for jxta”, in Computational Science
- ICCS 2004, 2004, Lecture Notes in Computer Science
Volume 3038.

[9] Yunhao L. and Jinpeng H. et al, “Access control in peer-
to-peer collaborative systems”, First International Workshop
on Mobility in Peer-to-Peer Systems (MPPS), pp. 835–840,
2005.

[10] Amoretti M., Bisi M., Zanichelli F., and G. Conte, “Intro-
ducing secure peer groups in sp2a”, 2005, pp. 62–69.

[11] Allen C. Dierks T., “Ietf rfc 2246: The tls protocol version
1.0”, 1999, http://www.ietf.org/rfc/rfc2246.txt.

[12] D. Bailly, “Cbjx: Crypto-based jxta (an internship report)”,
July 2002.

[13] R. Canetti H. Krawczyk, M. Bellare, “Hmac: Keyed-hashing
for message authentication”, 1997, http://www.ietf.org/rfc/
rfc2104.txt.

[14] Ed. S. Josefsson, “Ietf rfc 3548 - the base16, base32,
and base64 data encodings”, 2003, http://www.ietf.org/rfc/
rfc3548.txt.

[15] J. Arnedo-Moreno and J. Herrera-Joancomartı́, “Persistent
interoperable security for jxta”, in Proceedings of the Second
International Workshop on P2P, Parallel, Grid and Internet
Computing (3PGIC) 2008. 2008, pp. 354–359, IEEEPress.

[16] W3C, “Xml-signature syntax and processing”, 2002.

[17] SUN Microsystems Inc., “Java cryptography architec-
ture (jca)”, 2008, http://java.sun.com/javase/6/docs/technotes/
guides/security/crypto/CryptoSpec.html.

[18] CCITT, “The directory authentication framework. recommen-
dation”, 1988.

[19] B. Kaliski and J. Staddon, “Pkcs1: Rsa cryptography speci-
fications. version 2.0”, 1998.

[20] G. Montenegro and C. Castelluccia, “Crypto-based identifiers
(cbids): Concepts and applications”, ACM Trans. Inf. Syst.
Secur., vol. 7, no. 1, pp. 97–127, 2004.

[21] W. Simpson, “Ppp challenge handshake authentication pro-
tocol (chap)”, 1996, http://tools.ietf.org/html/rfc1994.


