
JXTA security in basic peer operations
J. Arnedo-Moreno1 and J. Herrera-Joancomartı́2

Abstract—JXTA is an open-source initiative that allows to
specify a set of collaboration and communication protocols
which enable the creation and deployment of peer-to-peer (P2P)
applications. This paper provides a survey on its current state
regarding the topic of security. The study focuses on the security
evaluation of standard peer operations within the JXTA network,
highlighting which issues must be seriously taken into account
in those applications sensitive to security.

Index Terms—peer-to-peer, security, peer group, analysis, eval-
uation, distributed systems, JXTA, Java.

I. INTRODUCTION

Peer-to-peer environments provide a virtual network where
all involved parties collaborate in order to supply basic ser-
vices, such as content sharing, processing or messaging. It is
also assumed [1] that all peers have equivalent capabilities,
and a central server with more processing power is no longer
necessary, ensuring a high degree of decentralization and
autonomy of participants. Such environments have become
highly popular in recent times due to its great potential to
scale and the lack of a central point of failure.

Just as the popularity of peer-to-peer applications has risen,
so has concerns regarding their security, specially since it is no
longer possible to trust a central server which capitalizes all
security operations. As peer-to-peer applications move from
simple data sharing (such as Gnutella [2] or Bittorrent [3])
to a broader spectrum, they become more and more sensitive
to security threats and it becomes capital to take into account
which measures exist in current peer-to-peer platforms before
deploying them.

JXTA [4] (or ”juxtapose”) is a set of open protocols that
enable the creation and deployment of peer-to-peer networks.
JXTA protocols enable peer-to-peer applications to discover
and observe peers, enable communication between them or
offer and localize resources within the network. Such protocols
are generic enough so they are not bound to a narrow applica-
tion scope, but are adaptable to a large set of application types.
For that reason, they also keep implementation independence,
so they can be deployed under any programming language or
set of transport protocols.

In this paper, a survey of the current state of security in
JXTA for basic peer operations is provided. Such operations
are not analyzed in an isolated way, but the whole peer
life cycle is taken into account. The results of this study

(1) Estudis d’Informàtica, Multimèdia i Telecomunicacions, Univer-
sitat Oberta de Catalunya, Rb. Poble nou 156, 08018 Barcelona.
jarnedo@uoc.edu.

(2) Escola Tècnica Superior d’Enginyeria, Universitat Autònoma de
Barcelona, Campus de Bellaterra. jherrera@deic.uab.cat

This work was partially supported by the Spanish MCYT and the FEDER
funds under grant TSI2007-65406-C03-03 E-AEGIS and CONSOLIDER
CSD2007-00004 ”ARES”, funded by the Spanish Ministry of Science and
Education.

may benefit security-aware platform developers and designers
which want to create JXTA applications, by providing them
a detailed list of which issues must be taken into account.
JXTA users may also benefit by realizing which may be the
limitations of their applications on the scope of security, so
they may take additional measures in order to guarantee a
completely secure environment.

The paper is organized as follows. In section II, an overview
of the JXTA platform is provided in order to understand
its main characteristics and methods of operation. Following,
in section III, the basic evaluation model is described by
categorizing basic peer operations and threats under the JXTA
model. Section IV presents the security analysis. The final
conclusions are outlined in section V.

II. AN OVERVIEW OF JXTA

This section provides a general overview of the main JXTA
concepts and components in order to understand the peer
operations explained in section III and their security concerns.
A detailed explanation of JXTA can be found in [5], [6].

The fundamental JXTA architecture is divided in three
distinct layers, as shown in figure 1.

The Core layer contains the minimum and essential charac-
teristics, common to all peer-to-peer networks. This includes
peer discovery and communication (even when behind fire-
walls or NAT) and peer creation, as well as the basic security
services.

The Services layer includes all network services which are
not absolutely necessary, but provide desirable capabilities
such as resource search and indexing, as well as resource
storage and sharing.

The top layer is the Applications one, which includes the
applications deployed with the use of the JXTA framework,
such as instant messaging, file sharing or content management.

Notice that the distinction between services and final appli-
cations is not always clear, since what a client may consider an
application may be considered a service by another peer. For
that reason, the system is designed in a modular way, letting
developers chose the set of services and applications which
most satisfy their needs. All JXTA components are within
these three layers.

A. Peers

Each peer in the JXTA virtual network is identified by a
unique Peer ID, operating in an independent and asynchronous
manner regarding other peers. However, some dependencies
may exist depending on which roles they partake.

Usually, peers will act as edge peers, which could be
considered the standard peer type in any desktop application
on most devices. They implement the JXTA core and standard

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Oberta in open access

https://core.ac.uk/display/9628429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

Fig. 1. JXTA layered architecture

services layers as shown in figure 1 and may interact with any
JXTA protocol.

Edge peers may also partake two additional roles in order
to avoid some specific network constraints: minimal and
proxy. This decision will usually depend on its hardware or
bandwidth capabilities.

Devices with specific resource constraints (memory, CPU)
may act as minimal peers, which only implement the JXTA
core layer. They are usually simple devices such as sensors
or domotics. In order to use any necessary service to operate
within the network, they must rely on proxy peers. A proxy
peer summarizes and answers requests on their behalf. Any
edge peer may partake the role of a proxy peer.

A very important role is that of rendezvous peers, which
maintain a global index of available resources and help other
peers find network services. They are also used as beacons
which newly connected peers may use in order to join the
network. For that reason, rendezvous peers will usually be
well-known ones, with a DNS name or a static IP address.

Additionally, relay peers provide routing information and
are used in order to store and send messages between peers
separated by firewalls or NAT.

As we can see, a JXTA network may vary between a pure
and a hybrid peer-to-peer model (with rendezvous peers acting
as some kind of super-peers) depending on which role peers
finally partake.

B. Protocols
As explained, JXTA defines a set of protocols (six, specifi-

cally) which enable the deployment of peer-to-peer networks.
Using these protocols, peers may collaborate in a fully au-
tonomous manner by publishing and discovering available
resources within the network. Peers may also cooperate in
order to route messages, allowing full communication, without
the need for them to understand or manage different network
topologies.

All JXTA protocols are asynchronous and based on a re-
quest/response model, which means that for any given request,
zero, one or many responses may be received.

• The Peer Discovery Protocol (PDP) allows peers to
publish their own resources and make them available to

other peers. Any kind of peer may send PDP messages.
This protocol is the default discovery protocol, but it is
possible for applications to implement and deploy their
own protocols.

• In order to obtain information regarding to other peers,
the Peer Information Protocol (PIP) is used. Using this
protocol, it is possible to query peer capabilities or
monitor its behavior.

• Peers use the Peer Resolver Protocol (PRP) in order
to send requests to one or several peers and manage
responses. The PRP protocol uses an unique ID is associ-
ated to every request, which is included in each message.
Other core protocols, such as PDP, make use of PRP in
order to create its own requests.

• The Pipe Binding Protocol (PBP) establishes virtual
communication channels between peers, acting as abstract
endpoints above any physical network.

• Routes between peers are found with help of the Endpoint
Routing Protocol (ERP). Whenever a peers is a about to
send a message to a destination but does not know the
path, a ERP message is sent to other peers asking whether
they know a path.

• Finally, the Rendezvous Protocol (RVP) is responsible for
the efficient propagations of messages within a group of
peers, allowing peers to connect to services (exchange
messages). RVP is used in turn by PRP.

C. Resource publication

Any kind of resource available within the JXTA network,
including peers, peer groups, pipes or services, is described
by an advertisement. All advertisements are XML documents
containing an unique ID and all information regarding that
resource and how it may be accessed and exchanged between
peers using the JXTA protocols. Peers cannot access a resource
without previously retrieving its associated advertisement.
Every peer maintains a local cache where all received adver-
tisements are stored for a later use. The local cache directly
makes use of the file peer system in order to organize its
content (directories and files).

A sample advertisement is shown in XML listing 1.



3

XML Listing 1 - Peer Advertisement
<xs:element name="PA" type="jxta:PA"/>

<xs:complexType name="PA">
<xs:sequence>
<xs:element name="PID" type="jxta:JXTAID"/>
<xs:element name="GID" type="jxta:JXTAID"/>
<xs:element name="Name" type="xs:string" minOccurs="0"/>
<xs:element name="Desc" type="xs:anyType" minOccurs="0"/>
<xs:element name="Svc" type="jxta:serviceParams"

minOccurs="0" maxOccurs="unbounded"/>
<xs:sequence>

</xs:complexType>

Any peer may publish an advertisement in order to an-
nounce that some resource is available by using two different
methods: local and remote publication.

In local publication, the advertisement is indexed and stored
in the peers local cache. Following, the advertisement’s index
is pushed to a rendezvous peer and is then distributed and
replicated between all rendezvous in the global super-network
peers using the Shared-Resource Distributed Index (SRDI)
service [7], [8]. The rendezvous network acts as a remote index
cache.

By using this method, it is possible for peers outside the
local network (out of broadcast range) to retrieve group ad-
vertisements by asking a rendezvous peer. It also enables peers
which where off-line for some time to retrieve advertisements
published during its disconnection. Whenever a peer receives
the advertisement, it is indexed, stored in a local cache and
assigned an expiration date.

The advertisement retrieval mechanism is outlined in figure
2.

Fig. 2. Advertisement retrieval from Rendezvous peers

It must be remarked that during the publication process,
the original advertisement is always kept in the peers’ local
cache, only its index is distributed. This means that in case the
peer goes offline, the advertisement will become unavailable.
That makes sense, since also the resource the advertisement
publicizes will be unreachable.

In remote publication not only indexes are distributed,
but the full advertisement itself via the JXTA propagation
mechanism. This method is useful in case that the adver-
tisement must be reachable even when the publishing peer
is offline. However, under the remote publication method, no
assumptions can be made about which peers will really store
the advertisement and for how long.

In both methods, when the expiration date is reached,
the advertisement is considered stagnant and flushed from
the cache, unless the same advertisement is received again,
which renews its expiration date. Advertisements may be
periodically retransmitted in order to attain permanency or
update parameter changes.

As can be seen, advertisement publication and discovery are
very important steps in the JXTA peer operation.

D. Messaging

JXTA peers use pipes in order to exchange messages and
access available services. JXTA messages are XML documents
with ordered message elements which may contain any type of
payload. Messages are the basic data exchange unit in JXTA
and all protocols are defined as a set of messages exchanged
between peers.

Pipes provide an asynchronous, unidirectional and unre-
liable communication channel by default. However, bidirec-
tional reliable channels may be provided on top of them. They
offer two operation methods: unicast pipes, which allow one-
to-one communications, and propagation pipes, which allow
one-to-many.

JXTA pipes are an abstraction and are not bound to a
specific IP address or port. They have a unique ID and are
published just like any resource in the JXTA network, so
any peer may update them whenever its physical location
changes. Both input pipes (message reception) and output
pipes (message sending) are considered pipe endpoints, the
actual destination in the physical network. Endpoints are
dynamically bound to peers via the PBP.

E. Peer groups

JXTA [4] introduces the concept of peer group: a collection
of peers with a common set of interests. This concept is one of
the main foundations of the JXTA architecture and is prevalent
throughout all its specification [6]. Offering the possibility to
create different (but not necessarily disjoint) groups of peers
operating under the same overlay network allows to segment
the network and offers a context to peers for publishing and
accessing different services.

Peer group boundaries provide a secure framework in order
to grant or deny access to the offered services. Peer groups
form logical regions whose boundaries limit access to group
resources, in a way similar to a VPN [9], but operating at
the application layer. Other interesting uses are the ability to
provide a scoping or monitoring environment, where different
classes of traffic and advertisements are limited to peer group
members.

Peer groups are published, discovered and accessed just like
any other resource in the network, via advertisements.

In order to allow peer group management, JXTA defines the
basic primitives for group membership and access control: the
Membership and the Access Services. Both are core services
which make use of the base JXTA protocols specification in
order to achieve their ends. Just the primitives are defined,
specific applications may implement their own Membership
and Access services depending on their needs.



4

The Membership Service manages identities within a peer
group, providing each group member a credential. Peers may
include this credential in messages exchanged within a peer
group in order for each other member to know who is making
a request. With this information, the JXTA Access Service
may evaluate the credential when a service is accessed and
decides whether the request will be granted or denied.

A peer establishes its credential within a peer group by
successfully joining it. Before a peer may join a group, it
must be authenticated by providing a correct Authenticator to
the Membership Service. An Authenticator contains all the
required information in order for the Membership Service to
check that the requested identity can be granted. Each different
Membership Service specification provides its own definition
of an Authenticator, suited to its needs and inner workings.

The join process is divided in three distinct steps:

• In the setup step, the peer chooses which authentication
method will be used for the whole process. If all pa-
rameters are correct and the choice is feasible, the peer
receives an Authenticator from the Membership Service.

• Following, in the application step, the peer completes the
Authenticator with all necessary information and tests its
correctness. It will not be possible to join the group until
the Authenticator is correctly initialized.

• Finally, in the validation step, joining the group is pos-
sible if the Authenticator is correct. The Membership
Service checks whether the peer may assume the claimed
identity and creates a credential.

In case that a peer decides to give up membership to a
specific group, it is possible to resign. When this happens,
the credential is discarded. Group resignation is voluntary,
the Membership Service does not support active membership
revocation triggered by other members.

The credentials generated in the join process may be sent
to the whenever a group service is accessed, as part of
the protocol exchanges. The JXTA Access Service provides
mechanisms in order to check them, allowing services to
decide whether access should be granted or not.

The Access Service provides a single primitive in order
to check a credential for a privileged operation. The pos-
sible results are disallowed (access denied), permitted (ac-
cess granted), permitted but expired (the operation would be
permitted but the credential has expired) and undetermined
(unrecognized credential).

III. SECURITY EVALUATION MODEL

The first step in order to assess the security degree in JXTA
applications is to identify which is the standard peer lifecycle,
so that it becomes clear which are the most common operations
and, consequently, which deserve better attention on regards
to security.

Once such operations have been identified, a list of usual
security concerns in P2P environments is provided. Our secu-
rity evaluation model will be based in the cross-reference of
standard operations and such threats, in order to evaluate how
the system is protected against each one.

A. Standard peer operation cycle

In this section, the standard peer operations for a peer
participating in a JXTA network are described. The order in
which they are presented is a logical one for most scenarios.
However, it must be taken into account that such order may
vary depending on peer role (except, obviously, platform
startup).

1) Startup platform: This is the initial step in order to setup
the platform in the physical device which will hold a JXTA
peer. This process mainly consists in loading the required
libraries and creating the necessary data structures for network
connectivity.

At startup, all peers automatically join a default bootstrap
peer group named netPeerGroup. This peer group is well
known to all peers, since it’s ID is hard coded into the platform
distribution. Peers may stay in this group or decide to leave
once they are connected to the JXTA network. At this stage,
edge peers may also try to reach relay or rendezvous peers
depending on their local configuration.

2) Join a peer group: A peer will join those peer groups
formed by peers it wants to interact with. This step will
usually be the next, following startup, so all later operations
are only within the boundaries of those specific peer groups
and not the whole network. The peer will locate the peer
group advertisement and join it via its Membership Service.
In the case that such peer joins the group for first time, it must
locate the peer group advertisement via PDP. Otherwise, the
advertisement will be stored in its local cache.

A peer may join several groups, which means that this
operation may be performed several times.

3) Publish own resources: Any resource that the peer holds
and wants to make available to the rest of peer group members
will be announced by creating and publishing an advertisement
as described in section II-C. This step includes announcing its
own presence, by publishing a peer advertisement, or creating
a new group, by publishing a peer group advertisement.

4) Discover other resources: Available resources in peer
groups which it has joined are discovered by retrieving their
advertisements via PDP. This includes discovering other peers
and pipes in order to initiate message exchanges. Usually,
pipe advertisements, necessary in order to initiate message ex-
change, are embedded into other more generic advertisements
such as service advertisements.

5) Exchange messages: This would be the most frequent
operation during any peer operation cycle. Once the resource
to be accessed is located, an outbound pipe is opened and
messages are exchanged across it. In the case that it is the
peer the one who is offering the service, an inbound pipe is
opened in order to process incoming messages.

6) Disconnect: The peer resigns from all peer groups and
goes to offline state in a tidy manner.

This list of operations maintain some degree of abstraction,
but each one actually represents a set of more basic steps.
In Table I, a breakdown of each operation into such basic
steps is provided. A more detailed explanation can be found
in [6]. Nevertheless, from a security assessment standpoint,
the chosen degree of abstraction is enough to provide a clear



5

Startup platform

Load platform
Join netPeerGroup
Open network listeners
Open local cache

Join a peer group

Locate group advertisement
Instantiate group
Fill in Authenticator
Join

Publish own resources
Create advertisement
Local publication
Remote publication

Discover other resources
Locate peer advertisement
Locate pipe advertisement
Store advertisements in local cache

Exchange messages

Open pipe
Send messages
Receive messages
Check Access Service

Disconnect Close connections
Shutdown platform

TABLE I
BASIC OPERATION SUBSTEPS

idea of which are the possible scenarios during any peer’s full
operation cycle, from startup to disconnection.

B. Security threats in P2P networks

The standard security threats in the traditional client/server
environment still hold good in P2P environments. Furthermore,
the P2P paradigm shift introduces new concerns that must be
taken into consideration when designing P2P frameworks. The
move form a passive stance (client) to an active one (peer)
in the network easily propagates such concern across all its
members. Security attacks in P2P systems are classified into
two broad categories: passive and active [10].

Passive attacks are those in which the attacker just monitors
activity and maintains an inert state. The most significant
passive attacks are:

• Eavesdropping, which involves capturing and storing all
traffic between some set of peers in the serach for
some sensitive information (such as personal data or
passwords).

• Traffic analysis, where the attacker not only captures
data but tries to learn more by analyzing its behavior
and looking for patterns, even when its content remains
unknown.

In active attacks, communications are disrupted by the
deletion, modification or insertion of data. The most common
attacks of this kind are:

• Spoofing, in which one peer impersonates another, or
some outside attacker transforms communications data
in order to simulate such an outcome.

• Man-in-the-Middle (MitM), where the attacker intercepts
communications between two parties, relaying messages
in such a manner that both of them still believe they are
directly communicating. This category includes on route
data alteration.

• Playback or replay, in which some data exchange be-
tween two legitimate peers is intercepted by the attacker

in order to reuse the exact data to make it look like a
real exchange. Even if message content is encrypted, such
attacks can succeed so long as duplicate communications
are allowed and the attacker can deduce the effect of such
a repeat.

• Local data alteration, which goes beyond the assumption
that attacks may only come from the network and sup-
poses that the attacker has local access to the peer, where
he can try to modify the local data in order to subvert it
in some malicious way.

Apart from security threats that take into account a mali-
cious attacker, it is also very important to take into account
software security flaws in a security survey. Specifically,
which steps are taken by the developers in order to minimize
the probability that a bug or an optimistic assumption in
the development process may later jeopardize the system at
deployment.

IV. SECURITY EVALUATION

From the standpoint of basic security requirements which
are desirable in JXTA, they are very similar to those of any
computer system: confidentiality, integrity and availability. In
order to achieve them, these requirements should translate into
an architecture that includes authentication, access control,
audit, encryption, secure communication and non-repudiation.

JXTA remains neutral to cryptographic providers or secu-
rity schemes. In its initial conception it does not mandate
any specific security solution, providing a generic framework
where different approaches can be plugged in. Enough hooks
and place holders are provided in order for each specific
application to implement its own security solution. Never-
theless, in a present day peer-to-peer framework, relying in
the fact that each application will build from scratch its own
security solution is not enough, since it will usually mean
that security will be overlooked, as its is often the case.
It is very important that the basic tools and functionalities
are already there, providing a default degree of security but
allowing further modularization if necessary. As such, basic
security services (encryption, integrity and authenticity) should
be provided at the core layer, even though some applications
may chose not to use them.

In this section we will analyze whether the current iteration
of JXTA (version 2.5) is up to this desiderata for each peer
basic operation and is ready for the standard threats to peer-
to-peer networks.

A. Startup platform

Since during the framework startup the networking capa-
bilities are not operative yet, no threat related to a networked
environment applies. However, at this precise moment JXTA
libraries are loaded into the system, then it does make sense to
take into consideration software flaws and local data alteration
on such libraries from a local attacker. This part of the
analysis will also take into account those aspects related with
application deployment.

JXTA is an open source software (OSS) project, which is
a good indicator when specifically analyzing security [11].



6

As its is well known, security through obscurity does not
work, and any software design which depends upon secrecy
is guaranteed to fail, since secrets have a way of getting out.
Since JXTA code is public [4], it has been audited by a large
number of individuals all across the Internet. The use of an
OSS approach not only ensures current security, but allows
direct improvement from the JXTA developer community,
maximizing the networking effect.

Nevertheless, it is worth mentioning that opening the source
code creates the opportunity for individuals to review security,
but it cannot guarantee that such reviews will occur. There is
also the fact that no guarantee can be made that a review will
find any particular security flaw in a system, but that problem
is common to closed source projects. In any case, OSS allows
developers with security concerns to directly assess whether
the JXTA framework is up to their needs.

On the other hand, because of its OSS nature, JXTA
distributions can be easily modified (since complete build
instructions are readily accessible), which means that it is
trivial for an attacker with some coding expertise to create a
malicious version of the libraries. In order to avoid malicious
distributions, the official JXTA project page protects builds
with SHA1 digests [12]. A local attack is necessary to actually
deploy a malicious distribution. However, current distributions
offer no mechanisms in order to detect that library integrity
has been compromised, with a relatively easy solution such as
code signing [13]. External tools would be necessary in order
to ensure this kind of control, which is out of the scope of
this survey.

B. Join a peer group

A necessary step in order to join any peer group lies in
retrieving its peer group advertisement. As the implications
of this specific substep will be explained in subsection IV-C,
here we will focus on the actual group instantiation and join
operation.

As described in subsection II-E, the membership Service is
the key security measure in the group join operation. Through
this service, peers claim identities by proving its ownership.
Even though this service is defined as generic in the specifica-
tion, in order for each application to implement it according to
its own needs, the JXTA reference implementation, as far as
version 2.5 [5], provides three available Membership Services
which are ready to use.

The None Membership Service is intended for peer groups
which need no authentication. Since any peer may claim any
identity, it is recommended that credentials should only be
used within the group for purely informational purposes. This
service is widely used in applications with no nearly security
concerns.

The Passwd Membership Service relies on a Unix-like
username and password pair for peer authentication. In order to
claim an identity, the correct password must be provided. The
list of pairs (username and password) is distributed to all group
members, which means that the password file equivalent roams
freely through the overlay network. This group membership
service was created as a sample and a means of testing, since

it is completely insecure. For that reason, it is advised in
the JXTA documentation that it should never be used in any
serious application.

The default Membership Service is PSE, which stands for
Personal Security Environment and is the only model which
the developers consider secure. As such, it is the only one we
will consider for the security analysis.

The PSE service provides credentials based on PKIX [14]
certificates, as described in XML listing 2.

XML Listing 2 - PSE Credential XML schema
<xs:complexType name="jxta:PSECred">
<xs:sequence>
<xs:element name="PeerGroupID" type="jxta:JXTAID"/>
<xs:element name="PeerID" type="jxta:JXTAID"/>
<xs:element name="Certificate" type="base64binary"

minOccurs="1" maxOccurs="unbounded"/>
<xs:element name="Signature" type="base64binary"/>

</xs:sequence>
</xs:complexType>

The authentication procedure in order to join a PSE peer
group can be summarized as follows:

1) User introduces its personal password.
2) Peer initializes Peer Group Authenticator with that pass-

word, Peer ID.
3) With that information, an encrypted keystore in the local

cache is located and opened.
4) User’s certificate chain is retrieved.
5) That certificate chain becomes the group credential for

that Peer.
6) User may interact with other ones in the same Peer

Group.
7) Private key in keystore is used at leisure by Peer when

needed in secure protocols.

All the enumerated steps in the join process for the the PSE
Membership Service are completed via local calls to JXTA
libraries. For that reason, peer group joining is not concerned
with network-based attacks (eavesdropping, traffic analysis,
MitM or replay), since there is no real network operation.
it also means that any threat on the join process must be
exploited by a local attacker.

As we can see, three actors interact in this process: the
final User (the human being in front of the computer screen,
or some agent), the Peer (the application) and the Peer Group
(JXTA libraries which control group access). That means that
two methods of spoofing must be taken into consideration:

• Impersonating the User: Unauthorized access to keystore
content. This is equivalent to taking control of another
user’s peer.

• Impersonating the Peer: Unauthorized identity claim and
credential generation. This is equivalent to being able to
claim any identity within a peer group.

In the first case, all security relies on the strength of keystore
encryption and its password. Unfortunately, the keystore is
stored as a simple file, which may be easily copied and
distributed, and no mechanisms exist in order to plug in more



7

advanced methods of key management (such as hardware
cryptographic tokens).

As far as Peer impersonation is concerned, then it is very
interesting to point out the implications of the fact that peers
under a PSE Membership Service are authenticated only by
being able to access a local keystore. During the process,
the Membership Service is not concerned with the validity of
certificate chains (signed by a proper Certification Authority or
not expired), and the certificate content is never checked. As a
result, anybody with access to a private key and a certificate (a
self-signed one is sufficient) will be able to correctly join any
group using PSE and claim any identity. For that reason, the
default join scenario is easily threatened by spoofing attacks
on the Peer, since anybody may create a valid keystore using
public domain tools [15]. There is no real security on peer
identity claims.

As presented, PSE is more of a kind of toolbox that allows
the implementation of different models based on securing iden-
tities via digital certificates, since it provides no clear structure
of how trust is managed in a peer group (whose signatures are
trusted and which peers are allowed to sign certificates). In
order for PSE to properly function, the application must agree
on which are the real trust anchors (PGP-like trust chains,
a centralized CA) and some method in order to guarantee
key authenticity must exist (solving this is left up to each
application). When each peer may generate certificates, PSE
may not work, since it is not possible to easily guarantee key
authenticity. This is a weakness the developers of JXTA agree
it should be adressed [16]. Even under this assumption, it must
be remarked that correctly setting a trust anchor in a pure peer-
to-peer environment is no easy feat, since in-band certificate
generation procedures are easy prey to MitM attacks.

Nevertheless, because of the way the join operation works,
any peer will still be able to claim any identity and get some
group credentials. It will be during the message exchange
operation, as credentials are actually checked, when the false
identity will be detected. Those peers which hold the necessary
information in order to generate a correct PSE Peer Group
Authenticator, but are not really group members because their
certificate is not properly signed are named interlopers. In this
scenario, they can become an annoyance, but are easily spotted
and dealt with.

Finally, we should mention that the choice of a trust anchor
is not an easy task when dealing with a peer-to-peer network
if peer equality must be preserved.

C. Discover and publish resources

Resources provided by peers in the JXTA network are
represented by XML documents named advertisements, as ex-
plained in subsection II-C. In order to discover such resources,
its advertisement must somehow be retrieved. Advertisement
discovery and retrieval is achieved via message exchange using
the PDP and PRP core services (see subsection II-B). Since it
is a network-borne operation, we can focus on all threat types.
We will discuss both resource discovery and publication in this
section, since both share the same security mechanisms (only
data flow direction changes between both operations)

In the current reference implementation, advertisements
may be secured by digitally signing them at application level,
using a special type of advertisement named Signed Advertise-
ment. By using digital signature directly on the advertisement,
it is possible to support both local and remote publication (via
propagation to multiple peers).

In order to use this special type of advertisement, it is
mandatory to previously join a group that use the PSE Mem-
bership Service, since the necessary cryptographic keys in
order to generate and validate the signature are obtained from
its associated keystore and credential. Signed advertisements
will only be sent to members of that group. In the case of that
peer joining peer groups which do not use this membership
service, signed advertisements will not be exchanged between
group members. As a result of this, any concern related to
PSE is inherited by signed advertisements, such as the lack of
real authenticity without setting a trust anchor at application
level.

The XML schema definition for a Signed Advertisement
is shown in Listing 3. It contains the signer’s credential
(the PSECred element, a credential for a PSE Membership
Service), the signature and the original advertisement.

XML Listing 3 - Signed Advertisement XML schema
<xs:element name="SA" type="jxta:SA"/>
<xs:complexType name="jxta:SA">
<xs:sequence>
<xs:element name="PSECred" type="jxta:PSECred"/>
<xs:element name="jxta:Signature" type="base64binary"/>
<xs:element name="jxta:Advertisement" type="base64binary"/>

</xs:sequence>
</xs:complexType>

The Advertisement element encapsulates the original XML
advertisement as plain text encoded via the Base64 algorithm
[17]. The content of the Signature element is generated
by applying the RSAwithSHA1 algorithm to the original
advertisement, XML formatted (not its Base64 encoded form).
In order to feed the algorithm, the XML data is processed as
plain text. The result is henceforth Base64 encoded in order
to be represented as plain text into the XML document. Once
a signed advertisement is received by a peer, it’s signature
is validated, the actual advertisement desencapsulated and the
stores in the local cache.

Currently, as far as advertisements is concerned, JXTA
does not seem concerned with passive attacks, since it offers
no advertisement protection against them. They are freely
exchanged between peers in plain text. In fact, since they are
structured using XML, it is very easy for an eavesdropper to
read search for specific content (no need to process binary
structured data). A human being can directly interpret adver-
tisements with a text editor.

No effort is made either in order to masquerade advertise-
ment traffic, so it is feasible that an attacker may obtain some
interesting information by just analyzing traffic, specifically
detecting which peers offer more resources (since they are the
ones which publish more advertisements). Using this method,
it is possible to search for interesting peers when looking for
potential victims to attack.



8

In fact, since anybody may instantiate any group acting as
an interloper, as remarked in the previous subsection, and then
discover advertisements bound to it, this kind of attacks are
easy to perform. It is not even necessary to tap the network.
How easily advertisements are exchanges is both a bonus for
open services and a bane for for tight security environments.

If we assume that applications which use PSE correctly set a
trust anchor in order to guarantee certificate authenticity, then
active attacks such as spoofing, MitM and replay attacks may
be correctly countered by digitally signed advertisements when
discovering resources. Using this method, false advertisements
may still occur within the peer group, but because of non-
repudiation, it will be easy to pinpoint offenders.

However, as far as resource publication is concerned, since
every peer is completely reliant on its rendezvous peer in order
to properly distribute the advertisement index to the rest of the
network, and no control is made about which peer may become
a rendezvous one, it is possible to pull off MitM attacks by
masquerading as a one. No control mechanisms exists in order
to automatically detect a misbehaving rendezvous. For that
reason, each application should always deploy some method
in orders for peers to be able to identify real rendezvous peers.

Finally, since secure advertisements lose the signature when
stored into the local cache, the threat of a local attacker still
exists, since it is possible to modify the local cache content,
inserting or modifying false advertisements which redirect
service access peer to malicious nodes.

D. Exchange Messages
Since core service level messaging was already explained

in the previous section, only message exchange related to
application services is analyzed here: end-to-end transport
using JXTA pipes.

The JXTA specification guarantees end-to-end transport
security via two different protocols: TLS (Transport Layer
Security [18]) and CBJX (Crypto-Based JXTA Transfer [19]).
Both protocols provide different flavors of security: TLS
provides private, mutually authenticated, reliable streaming
communications, whereas CBJX provides lightweight secure
message source verification (but not privacy).

TLS relies on PSE credentials in order to properly process
the authentication handshake, which means that it can only
be used within a PSE peer group. XML messaging is directly
sent over TLS sockets.

CBJX is a JXTA-specific protocol which uses digital signa-
ture in order to provide integrity and authentication. It adds an
additional information block to the secured message, as shown
in XML listing 4: a PeerCert element, which contains
the source peer certificate, both the source and destination
addresses, and the source peer ID. Both the message body
and the cryptographic information block are digitally signed,
generating two separate signatures. The certificate inside the
cryptographic information block is used to validate both sig-
natures.

In order to generate both signatures, XML data is serialized,
processed as plain text, and fed to the signature algorithm.

Apart from digital signature, CBJX provides lightweight au-
thenticity by using Crypto-Based Identifiers [20] (CBIDs). The

XML Listing 4 - CBJX crypto-information XML schema
<xs:complexType name="cbjx:CbJxMessageInfo">
<xs:sequence>
<xs:element name="PeerCert" type="base64binary"/>
<xs:element name="DestinationAddress" type="string"/>
<xs:element name="SourceAddress" type="string"/>
<xs:element name="SourceID" type="jxta:JXTAID"/>

</xs:sequence>
</xs:complexType>

concept of CBIDs, or statistically unique and cryptographically
verifiable IDs (SUCV IDs), was initially conceived for IPv6
addressing in order to solve the issue of address ownership,
avoid router supplantation attacks and binding update packet
spoofing [21], [22]. Using this mechanism, each address is
automatically bound to a specific node. It is important to notice
that by using this method authentic messaging is provided
without the need of certificates issued by a trust anchor under
a PSE membership service, in contrast to nearly all security
mechanisms previously described.

By combining both CBJX and TLS, it is possible to trump
both passive and active attackers by achieving data privacy,
integrity and authenticity. Application developers may decide
which protocol to use depending on their constraints (such as
a non-PSE peer group).

However, in both cases (TLS and CBJX), information
security is only provided during transit by protecting the
JXTA transport protocol at a lower layer. Once the transport
encapsulation is removed and information is stored into the
local peer, it is no longer secured. It also must be taken into
account that both types of transport methods do not support
full advertisement propagation, they only support end-to-end
communications. That means that applications which are based
on multicast are still prone to security threats.

An additional step to be considered during message ex-
change when accessing a service is checking peer credentials
in order to decide whether some peer has real access to that
service. This is necessary since, as we could see in subsection
IV-B, actually anybody may instantiate a peer group and try
to access resources. This may be achieved in JXTA by using
the peer group Access Service.

As far as the Access Service is concerned, the current
JXTA reference implementation offers three kinds of access
control, each one bound to each different membership service
credential type:

The Always Access Service, which does not really check
for access control and allow any operation. It is the default
Access Service for peer groups.

The simpleACL Access Service uses Access Control Lists
in order to establish which identities may perform the different
group operations. The access lists are distributed as parameters
within the peer group advertisement.

The PSE Access Service provides an interface to PKIX cer-
tificate path validation. A trust anchor is set for the validation
process and all credentials are validated against this anchor in
order to decide whether the the operation is permitted or not.

It must be pointed out that the current approaches to the
Access Service are strictly tied to ensuring that some identity



9

may access some service. Whether that identity really belongs
to the peer group is never checked, it is always assumed
correct. Since the membership service is not up to the task
of checking group membership either (any peer may claim
any identity), as exposed in section IV-B, this is something
JXTA developers should take into account.

In addition, the access service provides a single primitive
which just checks credential content, but does use on any
kind of authentication protocol. This is not sufficient to guar-
antee protection against spoofing, since credentials are freely
exchanges across the network (they are public). Some other
method must exist which tests credential authenticity (such as
TLS or CBJX) in order to guarantee authenticity.

E. Disconnect

No real vulnerabilities threaten the disconnect operation,
apart from those which force an unintended shutdown due to
unauthorized local access to the application. However, there is
little the application could do, since we move to issues with
the operating system, so it can be considered outside the scope
of this study. The disconnect operation was mainly included
for the sake of completeness in formalizing the peer’s full
lifecycle.

V. CONCLUSIONS AND FURTHER WORK

As an OSS project, JXTA has been intensely reviewed, and
as a result, its security features have improved over time.
It can be summarized that the current implementation of
JXTA has evolved to include an acceptable level of security,
fulfilling minimum requirements for present day applications.
However, this is at the cost of being bound to a very specific
group membership model (PSE). In the case that a custom
model is used in some application, we will find out that most
of its security capabilities may no be directly used (only
CBJX). This is not always desirable in a framework that
was conceptualized to be open and easily adaptable to any
environment. It would be useful that any custom application
security model could make use of as many as possible JXTA
secure mechanisms such as TLS or advertisement signature.

An additional feature that could be interesting, constrained
by the assumption that PSE will always be used, would be the
capability to use different types of keystores, apart from that
stored in the local cache. Specially, being able to go beyond
using the file system as cryptographic storage.

It is also important to take into account when design-
ing JXTA applications that, even though PSE provides a
certificate-based secure environment, it is still necessary to
chose some method in order to guarantee key authenticity.
PSE assumes no trust model, just provides the necessary tools
in order to deploy it.

Finally, JXTA still has some gaps pending to be filled even
then all its security capabilities are used at their best. First of
all, no current mechanism exist in order to secure messaging
for propagation mechanisms (specially one that provides a
some degree of privacy). In addition, no security exists for the
local cache, even though very important data is stored inside.

At least some degree of integrity would be desirable (such as
maintaining advertisement signatures).

Further research includes providing basic security services
at core level without the need of PSE. Our main efforts will be
twofold. First of all, creating a peer group environment where
membership is really checked. Then, providing advertisement
security, such as authenticity and confidentiality, in cache
storage as well as transport.

REFERENCES

[1] Andrew Oram, Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001.

[2] “Gnutella”, http://rfc-gnutella.sourceforge.net.
[3] B. Cohen, “Incentives build robustness in bittorrent”, 1st Workshop on

the Economics of Peer-2-Peer Systems, 2003.
[4] Sun Microsystems, “Project JXTA”, http://www.jxta.org.
[5] “Jxta 2.5 rc1”, June 2007, http://download.java.net/jxta/build.
[6] Sun Microsystems Inc., “Jxta v2.0 protocols specification”, 2007, https:

//jxta-spec.dev.java.net/nonav/JXTAProtocols.html.
[7] M.Abdelaziz M.Duigou C.Haywood J.C.Hugly E.Pouyoul B.Yeager

B.Traversat, A.Arora, “Project jxta 2.0 super-peer virtual network”,
Tech. Rep., SunMicrosystems,Inc, May 2003.

[8] Abdelaziz M. Traversat, B. and E. Pouyou, “Project jxta: A loosely-
consistent dht rendezvous walker”, Tech. Rep., SunMicrosystems,Inc,
March 2003.

[9] Huston G. Ferguson, P., “What is a vpn?”, Tech. Rep., Cisco Systems,
1998.

[10] Brookshier D. Krishnan N. Govoni D., Soto J.C., “Jxta and security”,
JXTA: Java P2P Programming, pp. 251–282, 2002.

[11] Landwehr C. Caloyannides M, Written B., “Does open source improve
system security?”, Software IEEE, vol. 18, no. 5, pp. 57–61, 2001.

[12] NIST, “Fips pub 180-1: Secure hash standard”, 1995, http://www.itl.
nist.gov/fipspubs/fip180-1.htm.

[13] SUN Microsystems Inc., “Jarsigner”, http://java.sun.com/j2se/5.0/docs/
tooldocs/windows/jarsigner.html.

[14] CCITT, “The directory authentication framework. recommendation”,
1988.

[15] SUN Microsystems Inc., “Keytool”, http://java.sun.com/j2se/5.0/docs/
tooldocs/windows/keytool.html.

[16] Yeager B., “Enterprise strength security on a jxta p2p network”,
P2P’03: Proceedings of the 3rd Interantional Conference on Peer-to-
Peer Computing, p. 7, 2003.

[17] Ed. S. Josefsson, “Ietf rfc 3548 - the base16, base32, and base64 data
encodings”, 2003, http://www.ietf.org/rfc/rfc3548.txt.

[18] Allen C. Dierks, T., “Ietf rfc 2246: The tls protocol version 1.0”, 1999,
http://www.ietf.org/rfc/rfc2246.txt.

[19] D. Bailly, “Cbjx: Crypto-based jxta (an internship report)”, pp. 108–109,
July 2002.

[20] Castelluccia C. Montenegro, G., “Crypto-based identifiers (cbids):
Concepts and applications”, ACM Trans. Inf. Syst. Secur., vol. 7, no.
1, pp. 97–127, 2004.

[21] T. Aura, “Cryptographically generated adresses (cga)”, http://www.ietf.
org/rfc/rfc3972.txt.

[22] Luciano Bononi and Carlo Tacconi, “Intrusion detection for secure
clustering and routing in mobile multi-hop wireless networks”, Int. J.
Inf. Secur., vol. 6, no. 6, pp. 379–392, 2007.


