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Abstract: 

 

The purpose of this paper is to investigate the dynamics and statistics of style rotation 

based on the Barberis-Shleifer model of style switching. Investors in stocks regard the 

forecasting of style-relative performance, especially style rotation, as highly desirable 

but difficult to achieve in practice. Whilst we do not claim to be able to do this in an 

empirical sense, we do provide a framework for addressing these issues. We develop 

some new results from the Barberis-Shleifer model which allows us to understand some 

of the time series properties of style relative price performance and determine the 

statistical properties of the time until a switch between styles. We apply our results to a 

set of empirical data to get estimates of some of the model parameters including the 

level of risk aversion of market participants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 4 

1. Introduction. 

 

Dynamic style rotation or “style switching” is one of those themes that is often 

addressed in conferences and sell-side papers but is, to our knowledge, fairly rarely 

implemented by practitioners. This reflects the difficulty involved in forecasting when 

value, growth, momentum, or indeed, some other style, may do well or badly. The idea 

one would want to implement is to determine when you would want to tilt your 

portfolio towards or away from a particular style before the market moved, that is to 

anticipate when one style starts or stops outperforming the other. Attempts to 

understand this using macro-economic conditioning variables, have been published, see, 

for example Black et al(2009), Zhang et al (2009), and these show some links between 

style returns and macro-economic variables, but these links usually lack clear 

theoretical motivation and do not provide accurate enough predictive power to 

encourage investment.  

 

It is well understood that various styles have differing levels of autocorrelation over 

different time horizons; for example, momentum has a pattern which, broadly, seems to 

be negatively correlated over very short periods (short-term reversal), followed by 

positive correlation over medium periods of about a year, followed by negative 

autocorrelation over longer periods. The task we have set ourselves in this paper is not 

to explain the autocorrelation of individual stocks or factors but that of individual styles 

as well as their relative returns. More interestingly, we look for a model which is capable 

of providing a structure for not just when styles switch, but when they might also switch 

back or re-switch. From a theoretical perspective, the Barberis-Shleifer model (“BS 

Model”), based on market equilibrium between style switchers (or “momentum” 

traders) and rational agents and with a strong behavioral basis, provides a much more 

appealing framework in providing “micro-foundations” for this problem. We analyse 

this model, especially its time-series properties to develop some predictions about the 

expected time until a style switch as well as the autocorrelation structure of style 

relative returns. We then apply our finding to a set of empirical data, namely the returns 

on two popular styles: developed equities vs emerging equities, in order to derive 

estimates of some of the model parameters, including the level of risk aversion of 

fundamental traders. 

 

In section 2, we briefly discuss the model and the dynamic equation that determines 

style relative returns in equilibrium. In section 3 we compute and examine the 
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autocorrelation function of relative returns and the dynamic equation determining 

expected relative returns and solve these to determine when, and how many times, the 

autocorrelation function, as well as the relative return, changes sign and when we can 

expect the style relative returns to reverse sign. The later times are examined and its 

comparative statics reveal their dependence on model parameters. In section 4 we 

extend the model to understand the dynamic of prices, as opposed to returns, and 

demonstrate that, with one additional assumption, the prices in the BS Model follow a 

process similar to the process for relative returns. In section 5, we apply our results to 

returns f two popular “competing” styles: investment in developed vs emerging markets 

in the period from 1993 till 2011 and derive estimates of a number of model parameters 

including estimates of risk aversion of the fundamental traders, which in he model 

perform the market-making (or “clearing”) function. The empirical data demonstrates 

that the times of increased levels of risk aversion broadly coincide with the times of 

negative returns of one or both styles, thus confirming the common intuition. Section 6 

concludes the paper, with the references provided in section 7 and the proof of the most 

important analytical results provided in the Appendix. 

 

2. The Model. 

 

The BS Model considers two kinds of investors: “switchers”, who allocate their resources 

to a particular style based on that style’s past performance relative to other styles, and 

“fundamental traders”, who act as arbitrageurs and try to prevent the price of an asset 

from deviating too far from what is expected on the basis of available information.  

 

For simplicity, the model has only two styles although a multi-style generalisation can 

be easily accommodated. The model has 2n risky assets in fixed supply, and a risk-free 

asset – cash, in perfectly elastic supply with zero net return. All risky assets belong to 

one of the two styles, the first n risky assets are in style X and the other n risky assets 

belong to style Y. Each risky asset i is modeled as a claim on a single liquidating dividend 

     to be paid at some later time T, with the eventual dividend being  

 

                                        (1) 

 

where      represents news about the final cashflow released at time t. 
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The first group, “switchers”, invest in a style based on an Exponentially-weighted 

Moving Average (or “EWMA”) calculation of past relative returns of the two styles, the 

type of averaging widely used in technical analysis (refer e.g. to Achelis (2001)). In 

particular, the demand from “switchers” for shares of an asset i in style X is 

 

    
  

 

 
(   ∑     (

                

 
)

   

   
)       (2) 

 

where    and  are constants, with 0 < < 1. This parameter constraint is standard in 

EWMA and is uncontroversial. Here 

 

                   and                         (3) 

 

is the return on style X between time t– 1 and time t, and      is defined as the average 

price of a share across all assets in style X: 

 

     
 

 
∑             and         

 

 
∑                                                       (4) 

 

Symmetrically, the demand from “switchers” for shares of an asset j in style Y is 

 

    
  

 

 
(   ∑     (

                

 
)

   

   
)       (5) 

 

In their December 2000 version of the paper “Style investing” (refer to Barberis and 

Shleifer (2000)), the authors demonstrate formally how adaptive expectations 

combined with a constraint on overall equity holdings lead to an exponentially decaying 

demand feature like the one provided in (2) and (5).  

 

The second group of investors, rational or “fundamental” investors, maximize expected 

utility of a usual kind 2

2
pp 


  , in particular they solve for 

     
  

 (    [  (     
 (        ))]),      (6) 

 

Where 

 

   (              )
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   (              )
 
,  

 

and where     is the number of shares allocated to risky asset i, γ governs the degree of 

risk aversion of the fundamental traders,   
  denotes fundamental traders’ expectations 

at time t, and    is time t wealth. 

 

If fundamental traders assume a Normal distribution for conditional price changes, 

optimal holding   
  are given by 

 

  
   

(  
 )

  

 
(  

 (    )     ),         (7) 

where 

 

  
      

 (        )          (8) 

 

with the F superscript denoting a forecast made by fundamental traders. 

 

The fundamental traders serve as market makers and treat the demand from switchers 

as a supply shock. If the total supply of the 2n assets is given by the vector Q, equation 

(7) implies  

 

      
 (    )      

 (     
 )        (9) 

 

As shown in the Barberis-Shleifer article, for a particular form of V conjectured by 

fundamental traders, which is 

 

     {

      

                                     

                             

     (10) 

 

this simplifies even further. Up to a constant, the price of an asset i in style X is 

 

               (          (        ))
    

 

 
     (11) 
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∑     (

                

 
)

   

   
,      (12) 

 

where 

 

  
 

   (        (       ))  
        (13) 

 

which is positive and likely to be larger than 1 for large n. The price of an asset j in style 

Y is 

 

            
 

 
∑     (

                

 
)

   

   
.     (14) 

 

Furthermore, equations (12) and (14) can be aggregated over all stocks in each style 

using equations (4). These equations are fundamental to the BS Model. They show that 

the equilibrium prices of assets in the model deviate from     and     , which are the 

prices based purely on “fundamentals”, by the amount based on demand from the 

“switchers”, the traders who follow momentum investing. The degree of such deviation 

is driven by two parameters: θ, “persistence” or the degree of decay of the demand from 

“switchers”, and ϕ, a parameter relating to the characteristics of demand from the 

“fundamental” traders. As it can be seen from (13), this parameter in turn is determined 

largely by γ, the degree of risk aversion of the “fundamental” traders. It is clear from 

equations (12) and (14) that the deviation of prices from their fundamental values is 

smaller if  

 

(i) θ is smaller, i.e. the demand from “switchers” decays faster with time, or 

 

(ii) γ is smaller, i.e. the “fundamental” traders are less risk averse and are willing 

to commit more of their private wealth to eliminating the arbitrage 

opportunity caused by the demand from “switchers”. 

 

It follows from equations (12) and (14), after aggregating these equations over all stocks 

in their respective styles, that the excess return of style X over style Y in period t +1, 

which we denote as     , can be expressed as  
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                       (              )  
            

 
 

 
(   )

 
∑     (

   

   
                )      (15) 

 

which in turn implies the following times-series model for excess return between styles: 

 

 

    (   
 

 
)      

 

 
                    (16) 

 

 

As it is clear from (16), when the market is cleared, the resulting prices turn out to 

follow an ARMA(2,1) model with restrictions on coefficients. According to the standard 

time-series theory,    is a stable process as long as the roots of the auxiliary equation  

 

     (   
 

 
)   

 

 
         (17) 

 

are all less than one in absolute magnitude. As pointed out in the Barberis-Shleifer 

article, within the range          this will be true as long as 

 

                   (17*) 

 

Here the white noise innovation in equation (16),   , is defined as  

 

          ,          (18) 

 

with      
 

 
∑         and      

 

 
∑        , and is assumed to be distributed as 

N(0,var(  )), with var(  ) to be easily found based on the definition in (4) and the 

following cash-flow covariance structure assumed in the BS Model: 

 

 

  
  

  {

     

  
     

                                 

  
                          

    (19) 
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Here constants   and    simply control the relative importance of the market-wide 

cash flow variance factor over the style-specific cash flow variance factor, with the 

asset’s idiosyncratic variance factor having a weight of √(    
     

 ) , as all assets 

are assumed to have the total cash flow news variance of precisely one. It should be 

noted that the covariance structure (19) is similar in form to the asset covariance 

structure (10) assumed by the “fundamental” traders. According to (17), the parameter 

φ is greater than 1 and θ lies between 0 and 1. These conditions, which follow from the 

economics of the model, imply that the resulting process is stationary.  

 

3. Results. 

 

3.1 Autocovariance Structure. 

 

In this section we derive the autocorrelation function of the model given by (16). Using 

the following notation, 

 

      (       )     (                             )   (20) 

 

 ̂     (             )   
 

 
   ,      (21) 

 

  (   
 

 
) ,   

 

 
        (22) 

 

The following results are proven in the Barberis-Shleifer article for the autocovariances 

at first three lags: 

 

             (   (   ))(   
     )      (23) 

 

  (   )       (   )(   
     ),     (24) 

 

           ,        (25) 

 

    
(   

     )(     )

(
 

 
   )(     )

 ,       (26) 
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where    
 

 
(    

     
 ). 

 

The article also shows that the autocovariance does turn negative at some unknown 

time lag but does not go into further details. We are interested in exploring the 

autocovariance structure of excess returns of one style over the other and, through the 

relationship (21), the autocovariance structure of returns on a single style. In particular, 

we would like to derive the general formula for the autocovariance structure at lag k as 

well as determining the lag    at which the autocovariance changes sign. 

 

By computing the covariance of equation (16) with     where    , we have the 

following difference equation for   , autocovariance at lag k: 

 

               ,        (27) 

 

As we will see from the analysis below, the time-series dependence of the type provide 

by equation (27) is the key dependence in this model: it governs not only  the dynamics 

of autocovariance but also dynamics of forecasted returns as well as the coefficients in 

the infinite moving average (MA) representation of the time series (16) for excess 

returns. The corresponding auxiliary equation is  

 

          ,        (28) 

 

which is the same as equation (17) but now rewritten using definitions for a and b, and 

it’s general solution is a sum of power functions of the two roots of equation (28): 

 

   
  √      

 
, and                                          (28*) 

 

   
  √      

 
.                                                 (28**) 

 

Depending on the relationship between a and b, which in turn are determined entirely 

by model parameters θ and φ, we have the case of either real (two distinct ones or a 

single one) or complex roots, depending on whether the discriminant of equation (28), 

        , is positive, zero or negative. Remembering the definition of a and b, the 
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case of real roots corresponds to the case   
 

√ 
 

 

 
 and the case of complex roots to 

the case   
 

√ 
 

 

 
. We start with the autocovariance function. 

 

Proposition 1: The autocovariance function of the relative return process given by 

equation (16) has the following properties: 

 

1.     
(   

     )(  
 

 
 (   )(

 

 
   ))

(
 

 
   )(     )

      (29) 

 

2. The autocovariance at lag k, where     ,is determined as: 

 

(a) If          ,  

 

      (
  √      

 
)
 

    (
   √      

 
)
 

,    (30) 

 

where     
  

 
  

(    
   

 
)

√      
,     

  

 
  

(    
   

 
)

√      
    (31) 

 

(b) If         , 

 

    (√ )
 
(       ) (30*) 

 

where      ,    
 

√ 
           (31*) 

 

(c) If         , 

 

    (√ )
 
(     (  )       (  )),     (32) 

 

where      ,    
(        )

√      
      (32*) 

 

and         (√
  

     )       (33) 
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It is clear from Proposition 1 that depending on whether the discriminant of (28) is 

positive, zero or negative, the solution for the autocovariance function at lag k is either a 

sum of two power functions in (a) or (b) or an oscillating solution in (c) with period 

       with γ determined in (33).  

 

In all cases the magnitude of the autocovariance (i.e. its absolute value) falls 

exponentially as      . Each of the cases (a), (b) and (c) is also rich with different 

dynamics depending on the relative magnitude of a and b. Given the conditions of 

stationarity in (17*),we will always have 

 

                    (34) 

 

which means         in this model given by formulas (29) and (26) are always greater 

than zero. Autocovariances for further lags given by formulas (30) – (33) can be either 

positive or negative.  

 

3.2 Analysis: time to first “switch” in autocovariance. 

 

Looking at the case (a) in Proposition 1 of both real roots, we see that at all times 

    ,      and       . It is also clear from the definitions in (30) that   is always 

negative while    is always positive. Therefore, as the lag k increases, the 

autocovariance changes sign from positive to negative, and that switch happens just 

once. The typical autocovariance behavior with lag is presented at the diagram below. 
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If we look for the lag at which the autocovariance turns from positive to negative, it can 

be found as follows. Defining k*   as the last lag at which the autocovariance is still 

positive, it can be found, defining trunc(x) as the greatest integer function, as 

 

        (
  ( 

  
  

)

  (
  
  

)
),         (35) 

 

Correspondingly, k* + 1 is the first lag at which the autocovariance turns negative. The 

required   defined by (35) is well defined given that   is always negative while    is 

always positive as mentioned above. 

 

Turning now to the case (c) of Proposition 1, it is clear that the solution is an oscillating 

function of k with the magnitude, or the absolute value, falling exponentially with k as 

     .(It is interesting to note that the rate of the exponential decay is determined 

entirely by   
 

 
, i.e. it does not depend on θ, the rate of the decay of “switchers’” 

demand). As before,     and   , determined by (29) and (26) respectively, are always 

positive and further autocovariances can be either positive or negative depending on a 

and b. The period of oscillation is   
  

 
 where γ is determined by equation (33). The 

typical autocovariance behavior with lags is presented at the diagram below, with the 

main difference from the real root case being that the change in sign happens an infinite 

number of times. 
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Here we can again ask for the first lag at which autocovariance changes sign from 

positive to negative. Again, defininingk*as the last lag at which the auto-covariance is 

still positive, we can find it as: 

 

        (
 

 
      (

  √      

(        )
)),      (36) 

 

where   is determined by equation (33), with k* + 1 being the first lag at which the 

autocovariance turns negative. 

 

The formula (32) corresponding to the case of complex roots provides for the possibility 

of “re-switching” i.e. the case where, having changed its sign ones, the autocovariance 

change the sign back again. The time until such “re-switching” can be easily found using 

formulas (32) and (33) above. 

 

3.3Model for excess return. 

 

The fact that the autocovariance changes sign from positive to negative is not surprising 

and was demonstrated in the BS article, albeit without deriving the exact formula for 

autocovariance or the lag at which it changes sign. What is less well-known and 

understood is that the expected excess return in the model, based on today’s 

information, also follows similar dynamics with time lags.  

 

Since the excess return follows an ARMA (2,1) model defined by equation (16) or, using 

the definitions of a and b in equation (22), then  

 

                      (   )    ,                                                         (37) 

 

We define an h-step ahead forecast as: 

 

  ( )   [    |   ,                                                                                            (38) 

 

where    stands for all information accumulated up to time T. Having defined 
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 ̂ ( )                                                                                                                 (39) 

 

We substitute (37) into (38), and we have the following equations for  ̂ ( ): 

 

         ̂ ( )               (   )  ,                                                  (40) 

 

          ̂ ( )     ̂ (   )     ̂ (   )                     (41) 

 

As equation (41) produces the same dependence of   ̂ ( ) on h as    on k in equation 

(27), the general solution has the same form: 

 

 ̂ ( )    (
  √      

 
)
 

    (
   √      

 
)
 

                   (42) 

 

with equations (39) and (40) serving as boundary conditions. Although    in (40) is not 

known, it can be expressed through the past values of  ̂   ̂   ̂     ̂     etc using the 

following lemma: 

 

Lemma 1: 

 

For the ARMA (2,1) process defined by equation (37), 

 

               (     )∑ (   )       
 
   .   (43) 

 

Using this lemma, we can now prove the following proposition: 

 

Proposition 2 (the h-step ahead forecast for the excess return process  ): 

 

The h-step ahead forecast  ̂ ( )can be determined as 

 

(a) If           , 

 

 ̂ ( )    (
  √      

 
)
 

    (
   √      

 
)
 

,    (44) 
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where 

 

   
 

 
(   

    

√      
)   

 (     )

√      
∑ (   )       

 
   ,   (45) 

 

   
 

 
(   

    

√      
)   

 (     )

√      
∑ (   )       

 
   ,   (46) 

 

(b) If         , 

 

 ̂ ( )   (√ )
 
(       ),                          (47) 

 

where 

 

               (48) 

 

    (
  

 
  )    

  

 
(     )∑ (   )         (

 

 
  )    

   

 
 

 
(  

 

 
)
 
∑ ( (  

 

 
))

   

    
 
   ,     (49) 

 

and   
  

 
,  

 

(c) If          , 

 

 ̂ ( )  (√ )
 
(     (  )       (  )),          (50) 

 

where 

 

      ,         (51) 

 

    
 

√      
[(  

 

 
)     (     )∑ (   )       

 
      (52) 

 

where        (√
  

     )        (53) 
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As we now have a formula for the h-step ahead forecast of the excess return   , we may 

ask ourselves about the mean square error of the forecast or the forecast error variance, 

 ( ). In order to find it, we need the infinite moving average representation for the 

process   , which as we know, is an ARMA(2,1) process defined by equation (37). Thus, 

we need to find coefficients   in the representation 

 

   ∑   
 
               (54) 

 

The following lemma provides the result: 

 

Lemma 2 (the infinite moving average representation of the excess return 

process  ) : 

 

     (
  √      

 
)
 

    (
   √      

 
)
 

,     (55) 

 

where 

 

    
 

 
  

(     )

 √      
,     

 

 
  

(     )

 √      
.      (56) 

 

Using this result, we can now prove the following proposition. 

 

Proposition 3 (the mean square error of the forecast ̂ ( )): 

 

The mean square error (or the forecast error variance)  ( ) of the forecast  ̂ ( ) is 

 

 ( )  ∑   
    (  

   
   ),        (57) 

 

where   are given by Lemma 2. 

 

3.4 Analysis: time to first switch in excess return 

 

As was the case for autocovariances, having at our disposal an explicit time series model 

for the forecast of the excess return between the two styles, we are naturally interested 

in finding the expected time to the first “switch” i.e., the time lag at which the forecast of 

the excess return changes sign. Having looked at formulae (44) to (53) for the forecast of 
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the excess return, we immediately observe that they are more complicated than 

formulas (30) to (33) for autocovariances. The reason is that our forecast for the excess 

returns takes into account information about all prior returns (from the “dawn of time”), 

not just the last few, although the last observed excess return    does appear more 

prominently. We also observe that the weights of prior returns follow the familiar 

EWMA decay with the same degree of decay      , which is coming from the 

formula for the demand from “switchers”. This has an obvious resonance with 

prevalence of moving average and EWMA rules in the use of market practitioners. 

 

We also notice that the formulae for the forecast of excess return produce a greater 

variety of different cases than that for autocovariances. Given the conditions of 

stationarity,          in this model are given by formulas (29) and (26) and are always 

positive while the autocovariances for further lags given by formulas (30) – (33) can be 

either positive or negative depending on the relative magnitude of the model 

parameters   and  . In particular, in cases (a) and (c) for autocovariances at least one 

switch of the sign is always guaranteed. In the case of the forecast of the excess return, 

this is no longer the case and depends on the relative values of the excess return 

realized to the present time T.As before, let’s consider the three cases corresponding to 

cases (a), (b) and (c) in the Proposition 2. 

 

Looking at case (a) in Proposition 2 of two real roots set as before by formulas (28*) and 

(28**), we again notice that     ,      and      . Yet, unlike the case of 

autocovariances, the relative magnitudes of    and    are uncertain as they are 

dependent on all prior realized values of the excess return. The following lemma 

imposes  sufficient conditions of having at least one “switch” in the sign of the forecast of 

the excess return at a future time lag      (where as before    is defined as the last 

time lag at which the forecast of the excess return  ̂ (  ) has the same sign as    with 

 ̂ (    ) having the opposite sign): 

 

Lemma 3 (Sufficient Conditions of a switch in the case of real roots): 

 

If the forecast of the excess return is determined by formula (44) where both roots    and 

   defined by formulas (28*) and (28**) are real and satisfy the following conditions: 

    ,      and      . Then for any    there will be      such that     (  )  

    ( ̂ ( )) where  ̂ ( ) is set by formulas (44) – (46) if and only if 
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(i)     (  )      (  ),      (58) 

 

(ii) |  |  |  |, and       (59) 

 

(iii)   ( 
  

  
⁄ )    (

  
  

⁄ ).      (60) 

In that case   will be determined as         (
  ( 

  
  

)

  (
  
  

)
),    (61) 

    

While the case (a) of both real roots of the auxiliary equation (28) (i.e. the case 

           ) does not guarantee the existence of a switch in the sign of the 

forecast for the excess return, the case (c) of complex roots produces an oscillating 

solution with guaranteed switches occurring with period   
  

 
. As it is clear from 

formulas (50) – (52), the first switch is expected to occur at lag  

 

        (
 

 
       ( 

  
  

⁄     )),     (62) 

 

where    and    are determined by equations (51) and (52) and m is defined as the 

minimum      such that the expression ( 
  

  
⁄     )    . 

 

3.5 Dependencies on the model parameters 

 

In this paragraph we would like explore the sensitivities of the expected time to first 

switch found in paragraph 3.4, in particular the sensitivity of    corresponding to the 

case of two real roots (i.e.            ) to the model parameters     as well as the 

last known value of the excess return   . Looking at formula (61)  

 

        (
  ( 

  
  

)

  (
  
  

)
), we immediately notice that if we use the following new notations: 

 

  
 (     )

√      
∑ (   )       

 
   ,       (63) 

 

  
    

√      
,          (64) 
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the coefficients   and   from formulas (45) and (46) can be presented as 

 

     
 

 
(    )    ,        (65) 

    
 

 
(    )    ,         (66) 

 

and    can be written as         [
 

  (
  
  

)
  (    

 
 

 
(   )  

 

  

) ,  (67) 

 

For the purposes of calculating the sensitivities to various parameters we will ignore the 

truncation in the formula for   . Taking the derivative by    we have 

 

   

   
 

 

  (
  
  

)
 ( 

  

  
)   (

 
 

 
(   )  

 

  

)

 

  (
 

  
)
 

,     (68) 

 

which based on Lemma 3 and definitions of    and    is always positive. Thus we notice 

that  

(i) the time to the first switch depends only on the relative size of    (relative 

compared to     ,     etc), and  

(ii) the time to the first switch always increases with an increase in   . 

(iii) Formally, our solution for the time is homogeneous of degree  zero in 

   ,     ,     …..This means we can apply Euler’s theorem to find 

relationships between partial derivatives. 

 

4. Price Dynamics 

 

So far, we have focused our investigation on the relative changes in prices of the two 

styles, as they can serve as proxies for relative returns. Equations (15) and (16) describe 

the time series dynamics of the difference between the price changes of the two styles. 

Yet it is logical to ask if we can derive any conclusions directly regarding the dynamics of 

price levels, as opposed to their changes. Practitioners may find conclusions about price 

levels more useful: after all, the price levels can be observed directly. Besides, as further 

discussion shows, applying our modeling to the levels of prices will let us test our results 

empirically with a greater degree of accuracy. 
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Lemma 4: the demand from “switchers” set by formula (2) and (5) can be re-written 

respectively as  
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The interpretation of the result of this lemma is simple: if the “switchers” form demand 

for equities in the two styles as described by formulas (2) and (5), their demand at time 

t in fact is proportionate to the difference between (i) the current difference between 

the price levels of the two styles,        and       , and (ii) an EWMA of their prior 

differences. In particular, assuming for simplicity that the constants     and    are set to 

nil (the assumption made in Barberis and Shleifer (2003)), a positive difference between 

the latest price levels and their  EWMA creates a positive demand for one style at the 

expense of the other style, while the opposite case reverses the situation. This lemma 

allows us to prove the following proposition:  

 

Proposition 4: The difference between the price levels of the two styles evolves over 

time according to the following process:  
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(              ).     (71) 

 

It is clear from the above proposition that the difference between price levels evolves 

according to a process which is very similar to the process defined by (16) for the 

difference between in price changes of the two styles. The only difference is that the role 

of random innovation    here is played by the difference between the two dividend 

streams ∑               and  ∑              . If these two dividend streams can be 

treated as cointegrated, i.e. their difference is stationary, the framework and solutions 
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developed for the difference in the changes of price levels can be applied verbatim to the 

difference in price levels.  

 

Let’s pause for a second and consider what additional assumptions can be made in 

respect of the difference            . 

1) First, in accordance with the assumptions made of the BS model, the first 

moment of such difference is zero i.e.  [          ]      

2) Second, the variance of the difference is constant, it does not depend on t . This 

assumption can be accepted from equilibrium considerations: if the two styles 

are truly two competing equity styles, then even if one style might happen to 

dominate the other one fundamentally over a considerate period of time, we 

would not expect such domination to continue happening indefinitely, as such 

domination of one group of equities over another group of equities would 

present a certain misbalance in the economy. Instead, we would reasonably 

expect that the two dividend streams, albeit deviating from each other over time, 

from the two styles would return to an equilibrium from time to time, as the 

economy progresses through different stages of its cycle (would be great to add 

some references to support our logic here) so that any such imbalance would 

eventually be rectified. 

 

Therefore, we model           as a random innovation    distributed as N(0,var(  )), 

and the difference between the price levels of the two styles at time t can be expressed 

as 
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(              )           . 

          (72) 

 

As a result, the price difference follows the restricted ARMA(2,1) process of the kind set 

by equation (16). 

 

 

5. Empirical Results 
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In order to test whether the theoretical results above conform to the behavior of prices 

observable in the market, we applied the model to two very popular “competing” equity 

styles: “developed equities” vs. “emerging equities”. In order to satisfy various 

assumptions underlying the model, we have selected two broad indices representing 

each of these two styles from the same family of indices calculated and published by 

FTSE International Limited(“FTSE”): 

- Developed equity markets were represented by FTSE Developed Index, a total return 

index of circa 2000 large and midsize companies located in major developed countries.  

- Emerging equity markets are represented by FTSE Emerging Index, a total return 

index of close to 2000 large and midsize companies located in major emerging markets.  

 

According to FTSE, the stocks included in both indices are free-float adjusted and 

screened for liquidity to make sure only the investible opportunity is included in the 

index. Daily levels for both indices are available since 31 December 1993 thus giving us 

more than 17.5 years of daily data. The following properties of the indices rendered 

them suitable for fitting the model: 

- The number of components in each index is large and approximately the same 

(circa 2000). 

- Both indices are calculated and rebalanced by the same index provider 

according to the same methodology. 

- Both indices are “free-float” adjusted and their composition is screened for 

liquidity in order to make sure that only the investible opportunity is included in 

the indices. 

- For both indices a long history (17.5 years) of daily returns is available. 

 

Below is the summary of performance for both indices over the entire period, 31-Dec-

1993 to 19-Jul-2011: 

 

 Annualise

d Return, 

1993-

2011 

Annualis

ed 

Volatility, 

1993-

2011 

Annualis

ed 

Return, 

1993-

2001 

Annualis

ed 

Volatility, 

1993-

2001 

Annualis

ed 

Return, 

2001-

2011 

Annualis

ed 

Volatility, 

2001-

2011 

FTSE Developed 

Markets 

4.67% 15.54% 6.67% 12.62% 3.00% 17.62% 
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FTSE Emerging 

Markets 

4.65% 19.67% -6.03% 17.65% 13.61% 21.20% 

 

It may come as a surprise but both indices generated roughly the same performance 

over the whole 17.5-year period, although that performance was much more unevenly 

distributed for the emerging market index, which is also evidenced by its higher 

volatility. 

 

Although the model is rich with scenarios of price behavior, it only has only two internal 

parameters which cannot be observed directly, the coefficients    and    defined in 

formulas (2) and (13) respectively, and therefore would have to be estimated 

empirically. In order to do so, we fit the price data for both FTSE indices into the 

restricted ARMA (2,1) of either equation (16) or (72) which will give us estimates of   

and   in a particular period. Coefficient   is interesting in its own right, as it measures 

the rate at which the switchers’ demand for shares decays over time. As it can be seen 

from formula (13), all parameters in the formula for coefficient   can be estimated 

independently except for the coefficient of risk aversion of fundamental traders (or 

“arbitragers”)  . Thus, estimating   empirically would give as an opportunity to 

estimate risk aversion  , which is not directly observable otherwise. As the number of 

index constituents is large, circa 2000, the formula for   can be simplified as follows: 

 

  
 

   (        (       ))  
   

 

   (       )
      (73) 

 

For the purposes of obtaining  , we have made the following assumptions, which in 

general were consistent with the data at hand: 

-   , the correlation between prices of two stocks in the same style, equals 0.4, 

-   , the correlation between prices of two stocks in different styles is 0.28. 

 

As far as the other important parameter, the volatility of a single stock  , is concerned, 

we have applied two different treatments: (i) first, where we estimated average 

volatility of a single stock over the entire 17-year period and used this value for 

estimating risk aversion   in every calendar year, and (ii) second, where the volatility 

was estimated each year and applied to estimating risk aversion in that year only. The 

reason is that, in addition to risk aversion, volatility is another parameter associated 

with the level of risk aversion of market participants. Hence, we “controlled” for 
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volatility by running estimates of   with and without volatility kept constant: if the 

changes in the volatility level fully reflect the changes in the level of risk aversion, we 

would expect the estimates of   in two treatments to behave very differently and vice 

versa. 

 

First, we did not find any empirical evidence that the difference between price changes 

of the two indices follows ARMA (2,1) process of equation (16) in the time period we 

considered. We do not provide the outcome of the fitting procedure here but the results 

can be made available upon request.  

 

Below is the table summarizing the results of fitting the restricted ARMA(2,1) model set 

by equation (72) in each one-year period from 1994 to 2011. The results include the 

performance of the two indices, coefficient   estimated from the model, the coefficient 

of risk aversion γ obtained using formula (73), as well as the ratio of γ in the current 

period to the γ obtained from fitting the model to the whole 17.5 year period (with γ 

(1994-2011) = 1.08). 

i) Table A: Volatility estimate based on the whole period 

 

Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 

FTSE 

Developed 

3.97% 17.57% 11.54% 14.71% 21.86% 23.50% 11.54% -

16.22% 

-

20.78% 

FTSE 

Emerging 

-

7.37% 

-2.46% 4.26% -

21.98% 

-

24.60% 

65.69% 4.26% 0.98% -7.95% 

Θ 0.998 1.000 0.924 1.000 1.000 0.991 0.968 1.000 0.999 

ϕ 2.39 9.31 26.83 2.76 2.65 18.72 646.41 15.83 3.48 

γ 2.796 0.719 0.249 2.423 2.529 0.358 0.010 0.423 1.923 

γ /γ 

(1994-

2011) 

3.23 0.83 0.29 2.80 2.92 0.41 0.01 0.49 2.22 

 

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 

(H1) 

FTSE 

Developed 

30.54% 13.18% 7.84% 18.64% 7.64% -43.18% 27.56% 9.54% 2.01% 
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FTSE 

Emerging 

49.83% 23.63% 31.05% 29.90% 36.70% -54.89% 78.24% 16.86% -3.85% 

Θ 0.999 0.953 1.000 0.929 1.000 1.000 1.000 0.996 0.989 

ϕ 125.00 1000.00 3.65 418.83 8.03 1.54 29.99 38.51 11.20 

γ 0.054 0.007 1.832 0.016 0.834 2.168 0.223 0.174 0.896 

γ /γ 

(1994-

2011) 

0.06 0.01 2.12 0.02 0.96 2.50 0.26 0.20 1.03 

 

 

ii) Table B: Volatility re-estimated every calendar year 

 

Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 

FTSE 

Developed 

3.97% 17.57% 11.54% 14.71% 21.86% 23.50% 11.54% -

16.22% 

-

20.78% 

FTSE 

Emerging 

-

7.37% 

-2.46% 4.26% -

21.98% 

-

24.60% 

65.69% 4.26% 0.98% -7.95% 

Θ 0.998 1.000 0.924 1.000 1.000 0.991 0.968 1.000 0.999 

ϕ 2.39 9.31 26.83 2.76 2.65 18.72 646.41 15.83 3.48 

γ 5.315 1.604 0.750 2.532 1.721 0.310 0.011 0.432 1.614 

γ /γ 

(1994-

2011) 

6.14 1.85 0.87 2.92 1.99 0.36 0.01 0.50 1.86 

 

 

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 

(H1) 

FTSE 

Developed 

30.54% 13.18% 7.84% 18.64% 7.64% -43.18% 27.56% 9.54% 2.01% 

FTSE 

Emerging 

49.83% 23.63% 31.05% 29.90% 36.70% -54.89% 78.24% 16.86% -3.85% 

Θ 0.999 0.953 1.000 0.929 1.000 1.000 1.000 0.996 0.989 

ϕ 125.00 1000.0 3.65 418.83 8.03 1.54 29.99 38.51 11.20 
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γ 0.062 0.010 4.073 0.017 0.563 2.640 0.070 0.155 2.172 

γ /γ 

(1994-

2011) 

0.07 0.01 4.70 0.02 0.65 3.05 0.08 0.18 2.51 

 

By looking at the tables, we can make a number of observations.  

 

First, as one would expect, the spikes of the empirically obtained coefficient of risk 

aversion γ largely correspond to the periods of negative performance of one or both 

indices. Yet, perhaps what is less expected is that the risk aversion may remain elevated 

in subsequent periods too, even if the markets experience positive performance. For 

example, the risk aversion went up at the time of Mexican crisis in 1994-95 yet it 

remained high in 1996 even though both indices had positive returns in that year. 

Equally, after the market sold off in 2008 causing a spike in risk aversion, both indices 

had large positive performance in both 2009, 2010, and the first half of 2011, yet, as the 

table indicates, the risk aversion in these periods remained high. One explanation of this 

could be that the risk aversion tends to be “sticky” i.e. not only does it rise during the 

periods of negative returns but it also tends to remain high in the periods that 

immediately follow notwithstanding the fact that the markets perform well during these 

periods. 

 

Second, many estimates of   are either 1 or very close to 1, the border of the stationarity 

region for the price process (see equation (17*)). From the econometrics point of view, 

it indicates that the process is likely to have a unit root and therefore is non-stationary, 

which of course is no surprise as we fit an ARMA model to a process created by the 

difference in price levels. From the economics point of view,   close to 1 in the equations 

(2) and (5) for the demand from “switchers” indicates that in those periods, the 

“switchers” do not “discount” past returns in forming their demand but instead focus on 

the difference between cumulative long-term returns on two styles. The latter can be 

seen from the considering the following limit: 
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  (74) 
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During these times, in making their allocation decisions, the “switchers” as a group look 

at the long term cumulative outperformance of one style over the other style, as 

opposed to being driven by short term gains and losses. 

 

Third, as expected, regardless whether we used the same estimate of the volatility of a 

single stock for every annual period (Table A) or we re-estimated volatility for each year 

as the realized volatility in that year, the picture of changes in the coefficient of risk 

aversion broadly remains the same with spikes and troughs as described above. What is 

also apparent from comparing the tables is that Table A produced estimates of the 

coefficient of risk aversion which appear more consistent with what one would expected 

based on the return realised in each year. That may indicate that traders, when making 

their investment decisions, do not instantaneously adjust their volatility assumption   

and instead the level of their risk aversion can be better assessed through the coefficient 

of risk aversion γ. 

 

6. Conclusions. 

 

This paper made the following contribution to the literature on the Barberis-Shleifer 

model. First, we have explored in greater detail the autocovariance structure generated 

by the model and classified different regimes in which the changes in prices of the styles 

can evolve in the model. In particular, we confirmed the statement from the original 

paper (Barberis and Shleifer (2003)) that the autocovariance structure within the model 

is capable of changing sign ( i.e. “switching”), which we have done by deriving the exact 

analytical expression for the aucovariance function at arbitrary lags. Using that formula, 

we have derived estimates for the expected “time to first switch” under different 

regimes. The same analysis was repeated for the model of excess returns and we also 

provided a sufficient condition for a switch in case of a real roots  - the case where the 

occurrence of a switch is not guaranteed. We subsequently explored the dependencies of 

the “time to first switch” on model parameters, confirming the intuitive conclusions 

based on intuition. 

 

We subsequently developed the model further by exploring the behavior of the prices 

(as opposed to their changes) in the model. Having made an additional assumption 

about the dividend process, we have concluded that the prices follow a stochastic 

process of the same kind as their changes, therefore the conclusions of the model can be 

applied directly to prices. We subsequently applied the model for prices to 17.5 years of 
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historical data for prices of two popular equity styles: emerging vs. developed equities 

and derived yearly estimates of the coefficient of risk aversion of the “fundamental” 

traders or market makers. Such estimates broadly confirmed the intuition that risk 

aversion is negatively correlated with market returns.  
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8. Appendix. 

 

Proof of Proposition 1. 

 

1. Proving part 1 of the proposition is an easy exercise as equations (23) to (25) 

are a system of three linear equations over the first three autocovariances  ,   , and   , 

which can be easily resolved to confirm formula (26) and derive formula (29). 

 

2. (a) If        given the auxiliary equation (28), the general solution of equation 

(27) is given by formula (30), by fitting the boundary conditions on    and   , we have a 

system of equations 

 

http://post.economics.harvard.edu/hier/2000papers/2000list.html
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                  (A.1) 

      (
  √      

 
)     (

   √      

 
) ,      (A.2) 

 

which, when resolved, produces formula (30) for coefficients   and   . 

 

(b) If      , the auxiliary equation (28) has only one real root and the general solution 

of equation (27) is given by 
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,        (A.3) 

or remembering that     √  and fitting the boundary conditions on    and   , we 

have a system  

 

               (A.4) 

      √      √ ,         (A.5) 

 

which, when resolved, produces formula (30*) for coefficients    and   . 

(d) If      , the auxiliary equation (28) has two complex conjugate roots and the 

general solution is given by 
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,      (A.6) 

 

where  and   are complex conjugates too (see e.g. chapter 1.2 of J.D.Hamilton “Time 

Series Analysis”, 1994), and 
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     ),         (A.8) 

Substituting       ,        , we have the general solution to have the form 
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(     (  )       (  )),     (A.9) 
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which after remembering the boundary conditions on    and   , produces solution of the 

form given in equation (32). 

 

Proof of Lemma 1: 

 

Starting with equation (37) and using the lag operator L, we have 

 

(        )   (  (   ) )  ,       (A.10) 

 

which can be rewritten as     
(        )

(  (   ) )
   (        )∑ 
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i.e.               (     )∑ (   )       
 
   , which proves the lemma.  

  

Proof of Proposition 2: 

 

The proof is similar to the proof of Proposition 1, in that we have the same general 

equation (41) for the forecast of excess return as we had in equation (27) for the 

autocovariance, which means that the solutions to the three cases (a), (b) and (c) which 

correspond to three different levels of discriminant          (positive, nill or 

negative) will have the same general form. The difference in solutions comes from 

different boundary (or initial) conditions and is demonstrated below. 

 

(a) If        the general solution is given by formula (42), with the boundary 

conditions provided in (39) and (40).We have a system of equations 

 

 ̂ ( )                    (A.12) 
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 ̂ ( )     (
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where  is set by Lemma 1. Therefore we have a system of equations for   and   : 

 

         ,         (A.14)  

 

  (
  √      

 
)     (

   √      

 
)              (   )  ,          (A.15) 

 

which, when solved, produces formulas (45) and (46) for coefficients    and   . 

 

(b) If      , the auxiliary equation (28) has only one real root and the general solution 

of equation (41) is given by 
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,        (A.16) 

or remembering that     √  and fitting the boundary conditions on  ̂ ( ) and  ̂ ( ), 

we have a system  
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which, when resolved, produces formula (48) and (49) for coefficients    and   . 

 

(c) If      ,  the auxiliary equation (28) has two complex conjugate roots and the 

general solution is given by 
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where  and   are complex conjugates too (see e.g. chapter 1.2 of J.D.Hamilton “Time 

Series Analysis”, 1994), and 

 

   √          (A.7) 
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        (√
  

     ),         (A.8) 

Substituting        ,        , we have the general solution to have the form 

 

    (√ )
 
(     (  )       (  )),     (A.9) 

 

which after remembering the boundary conditions on    and   , produces solution of the 

form given in equation (32). 

 

Proof of Lemma 2:  

We are looking for a moving average representation of the kind 

 

    ∑   
 
                (54) 

 

for the process defined by equation (37).  Putting formula (54) into equation (37) we 

obtain  

 

∑   
 
         ∑   

 
           ∑   

 
              (   )      (A.19) 

 

After equating coefficients of       , we find that the coefficients have to satisfy the 

following conditions: 

 

      , for             (A.20) 
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              , for      ,       (A.22) 

 

Assuming a solution of the kind  
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we immediately derive that the solution has the form 
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with equations (A.20) and (A.21) serving as the boundary conditions, which we use to 

find the constants    and   .  Resolving this system of two equations with two unknowns 

we derive that   

    
 

 
  

(     )

 √      
,       

 

 
  

(     )

 √      
,      (56) 

 

as required. 

 

Proof of Lemma 3: 

 

This lemma simply summarises the conditions under which the formula (61) for the lag 

at which the first switch occurs is well-defined and therefore, such lag can be computed. 

 

Proof of Proposition 3: 

 

The proof of this proposition immediately follows from the infinite moving average 

representation (54),  the definition of the h-step ahead forecast: 

 

  ( )   [    |     ∑   
 
               (A.25) 

 

and the i.i.d. assumption in relation to all    . 

 

Proof of Lemma 4: 

 

The proof of this lemma simply follows from starting with equations (2) and (5), 

inserting the definitions of       and       of (3), and collecting all components with 

       and        together. 

 

Proof of Proposition 4: 

 

We start from equations (11) and (14), where we use formula (13) which is the 

definition of ϕ : 

 

                 
 ,        (11*) 

 

                 
 .        (14*) 
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We then aggregate across all equities in each style using formulas (4) and insert 

formulas (69) and (70) for the aggregate demand for equities in each two styles 

obtained in Lemma 4, which then leads us to formulas (71). 
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