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Abstract

A a new version of the Q test, based on generalized residual correlations (i.e.
auto-correlations and cross-correlations), is developed in this paper. The Q test
fixes two main shortcomings of the Mcleod and Li Q (MLQ) test often used in the
literature: (i) the test is capable to capture some interesting non-linear models, for
which the original MLQ test completely fails (e.g. a non-linear moving average
model). Additionally, the Q test also significantly improves the power for some
other non-linear models (e.g. a threshold moving average model), for which the
original MLQ test does not work very well; (ii) the new Q test can be used for
discrimination between simple and more complicated (non-linear/asymmetric)
GARCH models as well.

1 Introduction

There are many different non-linear time series models and non-linearity tests in the

literature, see Tong (1990, Chapter 3 and 5) for a comprehensive summary. The most
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WC1E 7HX, London, UK. E-mail: marian.vavra@gmail.com
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the paper. I would also like to thank Professor Olivier Linton and Professor Howell Tong from the
London School of Economics since some ideas implemented in the paper follow from the Advanced
Econometrics course, which I attended during M.Phil. studies. All remaining errors are solely mine.
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popular test for non-linearity is probably the portmanteau Q test developed by McLeod

and Li (1983), denoted as the MLQ test. The test is based on inspecting the correlation

structure of squared residuals. Its popularity comes from the fact that the test is very

intuitive and easy to calculate compared to some other non-linearity tests, which require

“deep” knowledge for a correct application. 1 Moreover, no estimation of complicated

non-linear models is required in the case of the Q test. Another advantage of the MLQ

test is that it is routinely available in many statistical packages. However, Vavra (2012)

finds two shortcomings of the MLQ test. First, the MLQ test cannot detect some

interesting non-linear models (e.g. an exponential autoregressive (EXPAR) model or

non-linear moving average (NLMA) model). Moreover, the test exhibits a relatively

low power for some commonly applied non-linear time series models (e.g. a threshold

autoregressive (TAR) model). Second, the MLQ test lacks significant improvements

made in volatility modelling. For example, the test has no discrimination power against

more advanced GARCH models (e.g. non-linear and/or asymmetric GARCH models,

or GARCH models with asymmetric innovations) developed recently in the literature.

The main task of this paper is to show that a new version of the Q test, based on gen-

eralized residual correlations (i.e. auto-correlations and cross-correlations), can easily

fix both of the aforementioned shortcomings. The idea of using generalized correla-

tions is not entirely new in the literature. For instance, Lawrance and Lewis (1985,

1987) analytically demonstrated the possible usefulness of cross-correlations for detect-

ing non-linearity in time series analysis. However, they only use very specific models

(e.g. a random coefficient model), for which derivation of a cross-correlation structure

is analytically tractable. What is more, they focused only on inspecting individual

cross-correlations, whereas this paper focuses on the portmanteau form of the test. A

more efficient variance-stabilizing transformation for the Q test is implemented as well,

which improves its properties.

Our results reveal that the proposed Q tests, based on generalized residual correla-

tions, significantly increase the power of the Q tests against several interesting non-

linear time series models. It is also shown that the Q tests can be used for preliminary

discrimination between some classes of non-linear time series models (e.g. linear and

non-linear/asymmetric GARCH models).

1A nice example of such a test is the neural network (NN) test developed by White (1989), where
the user needs to specify the following test parameters: (a) the number of squashing functions; (b)
the functional form of squashing functions; (c) a particular distribution for parameters of squashing
functions; (d) the number of eliminated principal components. Even if the user sets all the parameters
correctly, the power results of the NN test are affected by randomization of parameters of squashing
functions. Loosely speaking, the different application of the NN test, the different results even though
the same time series is used.
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This paper is organized as follows. Three Q tests are discussed in Section 2. A descrip-

tion of non-linear models and Monte Carlo setup are presented in Section 4. Finally,

the results of an extensive Monte Carlo analysis are presented in Section 5. Section 6

is devoted to an empirical application of the proposed Q tests.

2 Portmanteau tests

The idea of inspecting the auto-correlation structure as a tool for detecting non-linearity

in time series analysis dates back to the influential work of ?. They show that, provided

that {Xt : t ∈ Z} is a sequence of a linear Gaussian stationary process, it holds that

ρk(X
2
t ) = ρ2

k(Xt), for k ∈ Z,

where ρk denotes the k-th theoretical auto-correlation. A simple proof of this relation-

ship can be found in Maravall (1983, p. 69). A departure from the above result might

indicate some form of non-linearity and/or non-normality.

Before we proceed to a testing procedure, we state an important assumption about a

stochastic process under consideration. The assumption is of the crucial importance

for setting the null hypothesis of linearity and for derivation of a limiting distribution

of the test statistic.

Assumption 1 Let us assume {Xt : t ∈ Z} is a zero-mean real-valued finite-order

ARMA(p,q) model given by

Xt = ξ1Xt−1 + · · ·+ ξpXt−p + ζ1at−1 + · · ·+ ζqat−q + at, (1)

where {at : t ∈ Z} is a sequence of IID(0,σ2) model innovations such that E(|at|8) <∞.

Let β = (ξ1, . . . , ξp, ζ1, . . . , ζq, σ)′ be a (p+q+1×1) parameter vector, which is assumed

to be in the interior of the parameter space

B = {β ∈ Rp+q × R++ : ξ(z) = 1−
p∑

i=1

ξiz
i 6= 0 for all |z| ≤ 1,

ζ(z) = 1−
q∑

i=1

ζiz
i 6= 0 for all |z| ≤ 1,

ξ(z) and ζ(z) have no root in common}

�
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Provided that all conditions of Assumption 1 are satisfied, then a given stochastic

process {X} is stationary, an appropriate model is identified and the true parameter

vector β does not lie on the boundary of the parameter space B. All these conditions

are important for obtaining consistent estimates of unknown parameters and to ensure

the validity of asymptotic properties of unknown parameters. Note that some authors,

for example, Box and Pierce (1970), Li (1992), and Li and Mak (1994), follow a con-

ventional assumption about Gaussian innovations in model (1). The advantage of this

approach is that all the moment requirements are implicitly satisfied. Another advan-

tage is that uncorrelated Gaussian innovations immediately imply their independence,

which is a very convenient property for testing the null hypothesis about linearity using

a portmanteau Q test. On the other hand, this assumption might be to restrictive in

practice. Therefore, we follow McLeod and Li (1983) and assume IID model innovations

with a particular moment restriction.2

A theoretical generalized correlation function is defined as

ρrs(k) =
γrs(k)

γrs(0)
=

E [gr(at)gs(at−k)]√
E [gr(at)2] E [gs(at)2]

, (2)

where gr(·) and gs(·) are assumed to be real-valued zero-mean continuous functions

given by

gr(a) = ar − E(ar), gs(a) = as − E(as), for r, s ∈ {1, 2}. (3)

The functional form of gr(·) and gs(·) is used to simplify expressions about covariances

and variances discussed later in this paper.

The theoretical generalized covariance term γrs(k) is estimated as follows

γ̂rs(k) =
1

T

T∑
t=k+1

gr(ât)gs(ât−k), for k ∈ {1, . . . ,m}, (4)

2Alternatively, the null hypothesis about linearity can be specified for innovations being a martingale
difference sequence. That means innovations are assumed to be uncorrelated, but not necessarily
independent. There are, however, at least two difficulties with testing the null in this form. First,
it rules out some important non-linear processes, such as conditional volatility models often used in
finance. Second, the limiting distribution of the Q test can differ substantially from a χ2 distribution
since the variance-covariance matrix of the sample auto-correlations depends on parameters of a given
data generating process. As a result, the variance-covariance matrix is no longer a diagonal matrix.
In these cases, two possible solutions are available. Romano and Thombs (1996) and Horowitz et al.
(2006) recommend to apply a bootstrap procedure for calculating critical values of the Q test, whereas
Lobato (2001) and Lobato et al. (2002) develop the Q test with a corrected variance-covariance matrix.
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where ât is the estimated residual after applying a linear ARMA filter to the observed

time series. Consistent sample analogue of the gr(·) and gs(·) functions is given by

gr(ât) = âr
t −

1

T

T∑
t=1

âr
t , gs(ât) = âs

t −
1

T

T∑
t=1

âs
t , for r, s ∈ {1, 2}. (5)

Recall that γ̂rs(k) is slightly downward biased in small samples.3 The sample analog of

γrs(0) takes the following form

γ̂rs(0) =

√√√√[ 1

T

T∑
t=1

g2
r(ât)

][
1

T

T∑
t=1

g2
s(ât)

]
, (6)

where functions gr(ât) and gs(ât) are defined in (5).

The Q test is then given by

Qrs(m) =
m∑

k=1

(T − k)ẑrs(k)
2, (7)

where ẑrs(k) is a transformed sample generalized correlation coefficient of the form

ẑrs(k) = 0.5 log

(
1 + ρ̂rs(k)

1− ρ̂rs(k)

)
, (8)

where ρ̂rs(k) = γ̂rs(k)/γ̂rs(0) is the k-th sample correlation coefficient calculated by

combining (4) and (6). For analytical reasons, slightly modified versions of the above

defined quantities are also used in this paper: γ̇rs(k) denotes sample generalized covari-

ance based on observed sequence of innovations {at}. Other quantities, such as γ̇rs(0),

ρ̇rs(k) or żrs(k), are defined analogically. It can be shown that, under the null hypothe-

sis, E(żrs(k)) = O(T−1) and var(żrs(k)) = (T −k)−1 +O(T−2), see Johnson et al. (1994,

Vol. 2, p. 571). This fact justifies the scaling factor (T − k) used in (7). As mentioned

by Anderson (2003, p. 134), an interesting property of the logarithmic transformation

is that the quantity ż converges to the limiting normal distribution faster than ρ̇ in

general.4 This fact implies that, under the null hypothesis and provided that we di-

rectly observe the sequence {at}, var(Qrs(m)) = 2
∑m

k=1(T−k)2[E(ż2
rs(k))]

2 ≈ 2m, since

3See also Kendall and Ord (1973, p. 79) for a textbook example. The bias, however, disappears
quite quickly, see Wei (1990, p. 19).

4Under the null hypothesis that z = 0, Konishi (1978)’s approximation of the distribution of the
standard correlation coefficient ż takes the following form

P
(√

N(ż − z) ≤ x
)

= Φ(x)− 0.5
(

x3

6N

)
φ(x) + O(N−3/2),

where N = T − 3/2 and T denotes the sample size. It is easy to see that the effect of the second term
disappears relatively quickly with increasing N . Recall that the above approximation is valid even if
innovations are not Gaussian as well.
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E(ż2
rs(k)) = (T−k)−1+O(T−2) and cov(ż2

rs(i), ż
2
rs(j)) ≈ 0 for integers i, j ∈ {1, . . . ,m},

such that i 6= j. Therefore, a more complicated variance-stabilizing transformation of

the Q test, as in Ljung and Box (1978), does not have to be considered. The efficiency

of the log-transformation was also confirmed in Kwan and Sim (1996a,b) by means of

Monte Carlo experiments.

Test specification captures two very well known Q tests: (i) r = s = 1 leads to a

test proposed by Box and Pierce (1970) and modified by Ljung and Box (1978); (ii)

r = s = 2 leads to a test proposed by McLeod and Li (1983). The only difference

between our specification of the Q tests and those proposed by other authors is that we

use directly a more efficient variance-stabilizing transformation. The main focus of this

paper is on the following two specifications: (i) r = 1 and s = 2; (ii) r = 2 and s = 1.

Note that the Q test can be theoretically defined for any r, s ∈ N, but for high values,

extremely high moment conditions must be satisfied. For instance, for r = s = 2, the

Q22 test, an analogy to the MLQ test, requires the existence of the first eight mo-

ments to have a valid limiting distribution. Yet, this is in sharp contrast with empirical

findings about macroeconomic and/or financial time series, for which the maximum

exponent, κ = supk>0 E(|Xt|k) <∞, usually lies between 2 and 4, see Jansen and Vries

(1991), Loretan and Phillips (1994), or Runde (1997). Anderson and Walker (1964) and

Anderson (1991) show that, for linear time series models, the moment condition can be

further relaxed provided that one imposes a stronger restriction on the parameters of

a data generating process. Generally, similar moment restrictions might be difficult to

obtain for non-linear time series models. For this reason, some authors recommend the

use of the Q test with correlations based on absolute residuals rather than squared ones.

It can be shown that the limiting distribution is unchanged with the solely requirement

of the existence of the first four moments, which is a relatively reasonable assumption,

see Pérez and Ruiz (2003) for a discussion. Moreover, Ding et al. (1993) argue that for

short-memory models, auto-correlation functions of absolute and squared returns are

quite similar.

Finally, we state two theorems about the limiting properties of the above discussed

quantities.

Theorem 1 Under Assumption 1, the limiting distribution of a vector of sample cor-

relations ẑrs = (ẑrs(1), . . . , ẑrs(m))′ is given by

√
T (ẑrs − zrs)

d−→ N(0, I),

for integers (r, s) ∈ {(1, 2), (2, 1), (2, 2)} and some integer m > 0. �
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Proof. See Appendix A for a proof. �

Theorem 2 Under Assumption 1, the limiting distribution of the Q tests is given by

Qrs(m)
d−→ χ2(m),

for integers (r, s) ∈ {(1, 2), (2, 1), (2, 2)} and some integer m > 0. �

Proof. See Appendix A for a proof. �

3 Motivation for a new Q test

We demonstrate that not only can the proposed Q test be used for testing non-linearity

itself, but it also captures recently developed non-linear and/or asymmetric GARCH

models, or GARCH models with asymmetric innovations. Under some conditions, this

property can be used for preliminary discrimination among GARCH models.

Let us assume {εt : t ∈ Z} is an observed martingale difference sequence given by

εt = at

√
ht,

ht = ω + αε2t−1,

where ω > 0, 0 < α < 1, and {at : t ∈ Z} is a sequence of IID(0,1) innovations. Then,

a generalized covariance structure, for k = 1, is given by

γ12(1) = E
[
εt(ε

2
t−1 − σ2)

]
= E(at)E(a2

t−1

√
htht−1) = 0,

γ21(1) = E
[
(ε2t − σ2)εt−1

]
= αE(a3

t−1)E(h
3/2
t−1) 6= 0, if E(a3

t−1) 6= 0,

γ22(1) = E
[
(ε2t − σ2)(ε2t−1 − σ2)

]
= αE[(ε2t−1 − σ2)2] 6= 0.

Now, let us assume {εt : t ∈ Z} is another martingale difference sequence given by

εt = at

√
ht,

ht = ω + αε2t−1 + ξεt−1,

where ω > 0, 0 < α < 1, |ξ| < 1, and {at : t ∈ Z} is a sequence of IID(0,1) innovations.

This gives a generalized covariance structure, for k = 1, as follows

γ12(1) = E
[
εt(ε

2
t−1 − σ2)

]
= E(at)E(a2

t−1

√
htht−1) = 0,

γ21(1) = E
[
(ε2t − σ2)εt−1

]
= E(a2

t )E(htεt−1) = ξE(ε2t−1) + αE(ε3t−1) 6= 0,

γ22(1) = E
[
(ε2t − σ2)(ε2t−1 − σ2)

]
= E(a2

t )E(htεt−1) = αE(ε2t−1 − σ2)2 + δE(ε3t−1) 6= 0.

7



The derived covariances of ARCH and quadratic ARCH models used above immedi-

ately show that inspecting auto-correlations and cross-correlations might be very useful

not only for non-linearity testing, but also for some preliminary discrimination. For ex-

ample, the results of an ARCH model prove that ρ12(1) = γ12(1)/γ12(0) = 0 regardless

of the distribution of innovations, while ρ21(1) 6= 0, provided that model innovations

are asymmetric (i.e. E(a3
t ) 6= 0). Similar findings can be obtained for a quadratic

ARCH model. In this case, however, the ρ21(1) term depends both on asymmetry of

innovations (i.e. E(a3
t )) and on the non-linear component of the model (i.e. ξE(ε2t )).

Therefore, it can theoretically happen, at least theoretically, that both components

off-set or trigger the effect. For this reason, results from the new Q tests should be in-

terpreted with caution. The analytical results reveal that cross-correlations, especially

the ρ12(k) terms, can be very useful for discriminating between: (i) simple (G)ARCH

models and (G)ARCH models with asymmetric innovations; or (ii) under some condi-

tions, simple (G)ARCH models and asymmetric and/or non-linear (G)ARCH models.

Since similar analytical results are rather difficult to obtain for other non-linear time

series models, the usefulness of auto-correlations and cross-correlations is inspected by

means of extensive Monte Carlo experiments.

4 Time series models and Monte Carlo setup

4.1 Time series models

Statistical properties of the proposed Q test are examined using: (i) simple linear time

series models: an autoregressive (AR) model and a moving average (MA) model; (ii)

nine non-linear time series models: a threshold (TAR) model, an exponential autore-

gressive (EXPAR) model, a mixture autoregressive (MAR) model, a Markov switching

autoregressive (MSAR) model, generalized autoregressive conditional heteroscedastic-

ity (GARCH) model, a non-linear autoregressive conditional heteroscedasticity (NL-

GARCH) model, a bilinear (BL) model, a non-linear moving average (NLMA) model,

and ,finally, a threshold moving average (TMA) model. Although the list of non-linear

time series models is not definitely exhaustive, we are strongly convinced that all the

main classes of non-linear models are included. The models are summarized in Table

2. A complete set of model parameters can be found in Table 3.

The robustness of the proposed Q tests is examined against various distributions of

innovations as well. In particular, apart form a Gaussian distribution, which serves

as a benchmark for comparison, various model innovations coming from a generalized

lambda distributions (GLD) are considered in this paper, see Randles et al. (1980).
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Figure 1: Density functions
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This family provides a wide range of distributions that are easily generated since

they are defined in terms of the inverses of the cumulative distribution functions:

F−1(u) = λ1+[uλ3−(1−u)λ4 ]/λ2, for u ∈ [0, 1]. This paper considers the following par-

ticular distributions: 3 distributions are symmetric, but leptokurtic, and 3 distributions

are asymmetric, see Table 1 and Figure 1 for details. All generated innovations are nor-

malized to have zero mean and unit variance. Note that parameters of all non-linearity

models are designed in such a way to satisfy strict stationarity, 4th-moment stationar-

ity and/or invertibility conditions, if necessary. The only exception is S3 specification

of model innovations, see Table 1, for which the 4th-moment stationarity cannot be

reached, at least for some non-linear time series models.

4.2 Monte Carlo setup

Originally, T+100 observations are generated in each experiment, but the first 100 of

them are discarded in order to eliminate the effect of the initial observations. The

number of repetitions of all experiments is set to R = 1000. In all experiments, the

generated series is filtered by an AR(p) model, where the lag order p is selected by

the Bayesian information criterion (BIC) developed by Schwarz (1978). Following the

arguments in Ng and Perron (2005), a modified version of the information criterion is

used. Ng and Perron (2005) show, based on extensive Monte Carlo experiments, that

the best method to give the correct lag order is that with a fixed efficient sample size.
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Figure 2: Stationarity regions of non-linear models
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(f) BL(1,0,1,1)
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(g) TMA(2;1)
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(h) NLMA(1)

∗ Strict stationarity regions are calculated based on the assumption that a ∼ N(0, 1), whereas Monte
Carlo regions are calculated based on the intersection of 4-th moment stationarity and/or invertibil-
ity conditions for S1, S2, A1, A2, A3 specifications of distributions of model innovations. Only S3
specification leads to very restrictive parameter regions, and therefore, is not considered.
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Table 1: Parameters of a generalized lambda distribution

λ1 λ2 λ3 λ4 skewness kurtosis moment

S1 0.00000 -1.00000 -0.08000 -0.08000 0.0 6.0 12

S2 0.00000 -0.39791 -0.16000 -0.16000 0.0 11.6 6

S3 0.00000 -1.00000 -0.24000 -0.24000 0.0 126.0 4

A1 0.00000 -0.04306 0.02521 0.09403 -0.9 4.2 10

A2 0.00000 1.00000 -0.00750 -0.03000 -1.5 7.5 33

A3 0.00000 1.00000 -0.10090 -0.18020 -2.0 21.1 5

* Note that a standard normal distribution can be also approximated by a generalized
lambda distribution with the following parameters: λ1 = 0, λ2 = 0.1975, λ3 = λ4 =
0.1349.

a The maximum exponent of a given distribution.

Therefore, the selection criterion is defined as follows

BICl = log(σ̂2
l ) +

l log(N)

N
,

σ̂2
l =

1

N

T∑
t=L+1

â2
lt,

where l ∈ {1, . . . , L}, N = T − L, T is the sample size and the maximum lag order is

constraint according to L = [8(T/100)0.25]. The maximum lag order is L ∈ {10, 14} for

samples T ∈ {200, 1000}.5 Finally, the lag order for an AR(p) model is estimated by

the following simple rule p̂ = minl∈{1,...,L}(BICl).

We also report the Q tests with automatically selected lag order based on Escanciano

and Lobato (2009).6 The estimated lag order is selected by maximizing the following

objective function

Q∗
l = Ql − πl,

πl =


p log(N) if maxj∈{1,...,L} |ρ̂22(j)| ≤

√
c log(N)/N,

2p if maxj∈{1,...,L} |ρ̂22(j)| >
√
c log(N)/N,

5The sample size T = 200 is the common sample size in macro-econometrics, whereas T = 1000
is the standard sample in financial-econometrics. The results for T = 500 are available upon request
from the author.

6Recall that a given procedure is proposed for the realizations of stochastic processes and not the
filtered ones. The additional simulations show, however, that the procedure may be adopted for filtered
processes as well.
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Table 2: List of non-linear models

M1: ARMA models:

Yt = c+ φYt−1 + σat,

Yt = c+ θat−1 + σat,

M2: A TAR model:

Yt = (c1 + φ1Yt−1 + σ1at)I(Yt−1 ≤ 0) + (c2 + φ2Yt−1 + σ2at)I(Yt−1 > 0),

M3: An EXPAR model:

Yt = c+ (φ1 + (φ2 − φ1) exp(−Y 2
t−1))Yt−1 + σat,

M4: A MAR model:

Yt = (c1 + φ1Yt−1 + σ1at)I(St = 1) + (c2 + φ2Yt−1 + σ2at)I(St = 2),

M5: A MSAR model:

Yt = (c1 + φ1Yt−1 + σ1at)I(St = 1) + (c2 + φ2Yt−1 + σ2at)I(St = 2),

M6: A GARCH model:

Yt = c+ φYt−1 + εt, εt = at

√
ht,

ht = ω + αε2t−1 + βht−1,

M7: A NLGARCH model:

Yt = c+ φYt−1 + εt, εt = at

√
ht,

ht = ω + α(|εt−1|+ ξεt−1)
2 + βht−1,

M8: A TMA model:

Yt = c+ φ1at−1I(Yt−1 ≤ 0) + φ2at−1I(Yt−1 > 0) + σat,

M9: A BL model:

Yt = c+ φYt−1 + ψYt−1at−1 + σat,

M10: A NLMA model:

Yt = c+ φat−1 + ψatat−1 + σat,
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Table 3: Model parameters

model parameters

AR, MA c = 1

σ2 = 1

φ ∈ {−0.8,−0.6,−0.4,−0.2, 0.2, 0.4, 0.6, 0.8}
θ ∈ {−0.8,−0.6,−0.4,−0.2, 0.2, 0.4, 0.6, 0.8}

TAR, TMA c1 = −0.25, c2 = 0.25

MAR, MSAR σ2
1 = 3, σ2

2 = 1

σ2 = 1 (for TMA only)

p11 = 0.9, p22 = 0.7 (for MSAR only)

p1 = 0.5 (for MAR only)

(φ1, φ2) ∈



(−0.8,−0.8) (−0.8,−0.5) (−0.8,−0.2) (−0.8, 0.2) (−0.8, 0.5)

(−0.8, 0.8) (−0.5,−0.8) (−0.5,−0.5) (−0.5, 0.5) (−0.5, 0.8)

(−0.2,−0.8) (−0.2, 0.8) (0.2,−0.8) (0.2, 0.8) (0.5,−0.8)

(0.5,−0.5) (0.5, 0.5) (0.5, 0.8) (0.8,−0.8) (0.8,−0.5)

(0.8,−0.2) (0.8, 0.2) (0.8, 0.5) (0.8, 0.8)


EXPAR c = 1

σ2 = 1

(φ1, φ2) ∈



(−0.8,−0.8) (−0.8,−0.5) (−0.8,−0.2) (−0.8, 0.2) (−0.8, 0.5)

(−0.8, 0.8) (−0.5,−0.8) (−0.5,−0.5) (−0.5, 0.5) (−0.5, 0.8)

(−0.2,−0.8) (−0.2, 0.8) (0.2,−0.8) (0.2, 0.8) (0.5,−0.8)

(0.5,−0.5) (0.5, 0.5) (0.5, 0.8) (0.8,−0.8) (0.8,−0.5)

(0.8,−0.2) (0.8, 0.2) (0.8, 0.5) (0.8, 0.8)


GARCH c = 1

φ = 0.5

σ2 = 1

ξ = −0.5 (for NLGARCH only)

(α, β) ∈


(0.05, 0.3) (0.05, 0.4) (0.05, 0.5) (0.05, 0.6) (0.05, 0.7)

(0.05, 0.8) (0.10, 0.3) (0.10, 0.4) (0.10, 0.5) (0.10, 0.6)

(0.10, 0.7) (0.10, 0.8) (0.15, 0.3) (0.15, 0.4) (0.15, 0.5)

(0.15, 0.6) (0.15, 0.7)


BL c = 1

σ2 = 1

(φ, ψ) ∈


(−0.8,−0.2) (−0.6,−0.2) (−0.4,−0.2) (−0.2,−0.2) (−0.2, 0.2)

(−0.4, 0.2) (−0.6, 0.2) (−0.6, 0.4) (−0.8, 0.2) (0.2,−0.2)

(0.2, 0.2) (0.4,−0.2) (0.4, 0.2) (0.6,−0.2) (0.6,−0.4)

(0.6, 0.2) (0.8,−0.2) (0.8, 0.2)


NLMA c = 1

σ2 = 4

(φ, ψ) ∈


(−0.2, 0.2) (−0.2, 0.4) (−0.4, 0.2) (−0.4, 0.4) (−0.6, 0.2)

(−0.6, 0.4) (0.2, 0.2) (0.2, 0.4) (0.4, 0.2) (0.4, 0.4)

(0.6, 0.2) (0.6, 0.4)


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where the constant c = 2.4 is recommended by Escanciano and Lobato (2009). Finally,

the lag order of the Q tests is determined by the simple rule m̂ = maxl∈{1,...,L}(Q
∗
l ).

The determined lag order m̂ is used for all three versions of the Q test. The reason for

that lies in the fact that some parameters (e.g. constant c = 2.4) of the loss function

Q∗ are fine-tuned based on extensive Monte Carlo experiments. Provided we use the

estimated cross-correlations (i.e. ρ̂12(j) or ρ̂21(j)) in the above defined loss function,

there is no guarantee that the fine-tuned parameters remain still “optimal”. Therefore,

we leave this issue for further research.7

5 Monte Carlo results

5.1 Size and statistical properties

The average rejection frequency is calculated for each Q test as follows

Pi =
1

R

R∑
j=1

I(α̂j ≤ α),

where i ∈ {1, . . . , K} denotes the i-th particular parameter configuration of a given time

series model; R is the number of repetitions set to R = 1000; I(·) is a standard indicator

function taking 1 if α̂j ≤ α and 0 otherwise; α represents the statistical significance

level set to 0.05, and α̂ is the estimated p-value of a given Q test. Subsequently, three

quantities for each Q test are presented in the following tables: “avg” stands for the

average rejection frequency of a given Q test over all parameter configurations of a given

model, “min” and “max” indicate the minimum and maximum of the average rejection

frequencies of the test over all parameter configurations of a given model. Formally,

the statistics are defined as follows

avg =
1

K

K∑
i=1

Pi,

min = min
i∈{1,...,K}

(Pi),

max = max
i∈{1,...,K}

(Pi),

where K is the number of parameter configurations for a given time series model in-

spected by Monte Carlo experiments: K = 8 for AR and MA models, K = 24 for

a TAR, MAR, MSAR, EXPAR, TMA models, K = 17 for GARCH and NLGARCH

7However, it is interesting to point out that comparison of the Qrs(5), Qrs(10), Qrs(15), and
Qrs(m̂) tests indicates that the effect of the lag order selection plays a minor role for the size and
power properties, see Section 5 for MC results and a discussion.
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models, K = 18 for a BL model, and K = 12 for a NLMA model.

Since the Q tests proposed above are new versions of a standard Q test, it is impor-

tant to check how good approximation the limiting χ2 distribution is for the tests.

Provided that a χ2 distribution is a valid limiting distribution, then E(Q(m)) ≈ m,

var(Q(m)) ≈ 2m, and the variance-mean ratio var(Q(m))/E(Q(m)) ≈ 2 as the sample

T → ∞ and m/T → 0. Monte Carlo results of the proposed Q tests for AR(1) and

MA(1) processes and fixed lag order m ∈ {5, 10, 15} can be found in Table 5. The

table shows that the finite sample properties of the Q tests are in line with the limit-

ing distribution, even for relatively small samples and different lag orders: the average

value of the Q tests is very close to m and the variance to 2m. Figure 4 depicts the χ2

density function accompanied by the lower and upper bound of the smoothed empiri-

cal densities of the Q tests.8 The figure clearly confirms that the χ2 distribution is a

valid distribution for all the Q tests even in relatively small samples. Additionally, the

figure also clearly shows that the χ2 distribution is much better approximation for the

Q tests based on cross-correlations (i.e. Q12 and Q21) compared to the Q test based on

auto-correlations (i.e. Q22).

Table 6 illustrates that the Q tests have good size properties for both AR and MA

processes. Even for a relatively small sample T = 200, the empirical size of the Q tests

is close to the nominal level 0.05. In addition, other descriptive statistics (min and

max) indicate that the behaviour of the Q tests is good regardless of the specification

of the lag order m or the sample size: for instance, the minimum value of the individual

average rejection frequencies for both AR and MA models, denoted as min, is not

smaller than 0.03 and the maximum value, denoted as max, does not exceed 0.08. The

size properties of the Q tests for leptokurtic and asymmetric distributions of innovations

lead to very similar results.9

5.2 Power results

Regime switching models: From Tables 7 and 8, it is clear that Q12 and Q21 tests

significantly outperform the results of the normally used Q22 test for a TAR model.

From detailed records, it can be concluded that all the Q tests have very good power

provided that parameters of a TAR model lie in a specific range, |φ2 − φ1| ≥ 1, with

rather opposite signs and a probability of a (lower) regime π ∈ (0.3, 0.7). The second

result is not very surprising since if π → 0 or π → 1, one regime dominates the other

and the process can be relatively well approximated by a simple AR(p) model, which

8A simple reference bandwidth is used for smoothing the empirical density functions of the Q tests.
9Results are available upon request.
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negatively affects the power of the Q tests. Surprising results are obtained for an EX-

PAR model, where none of the proposed Q tests exhibit any reasonable power even in

large samples.

Surprisingly, rather different results are obtained for a MAR model. For this class of

models, a switching mechanism is independent of any DGP parameter, and therefore

fully under control. We set a probability of a lower regime to π = 0.5 only for simplicity

of Monte Carlo experiments. MAR models are detected very efficiently by the Q22 tests

but only if |φ2 − φ1| ≥ 1. The Q12 test is not informative for any parameter configu-

ration under consideration, and the Q21 only for just a few parameter configurations.

Very similar results are obtained for a MSAR model as well.

It is also interesting to point out the sensitivity of the power results on the regime-

variances. In the case of a TAR model, the Q21 and Q22 tests lose the power if σ2
1 = σ2

2.

On the contrary, the power of the Q21 improves substantially for a MAR model if

σ2
1 = σ2

2. For completeness, the sensitivity of the Q tests against the specification of a

probability of switching of a MAR model is inspected as well. Two other probability

specifications of a lower regime of a MAR model π ∈ {0.15, 0.85} are considered. In both

cases, the power of the Q tests decreases compared to the benchmark setup π = 0.5.

Conditional volatility models: It can be clearly concluded from Tables 7 and 8 that

the Q22 test is very useful in detecting conditional volatility. In the case of a simple

GARCH model, the Q12 and Q21 tests are not informative if model innovations are

drawn from a Gaussian (symmetric) distribution. In the case of a NLGARCH model,

both the Q21 and Q22 tests exhibit a very good power. Again, the Q12 is not at all

informative, which is in line with theoretical results presented in Section 3. However,

note that the power results of the Q21 test depend on a combination of asymmetry

of innovations and a non-linear component, see Section 3 for theoretical justification.

Provided that model innovations are negatively skewed and a non-linear component

exhibits negative asymmetry as well (as in the Monte Carlo setup in this paper), then

the power of the Q21 and Q22 tests is around 0.9 in the sample T = 1000, see Table 10.

Other models: In the case of a NLMA model, Tables 7 and 8 show that both the Q12

and Q22 tests have no power, whereas the Q21 exhibits a very good power regardless of

the parameter specification of a NLMA model. Completely opposite results come from

a BL model, where the only non-informative test is the Q21 test. The Q12 and Q22 tests

have a very good power regardless the model parameters, see Tables 7 and 8. Very

similar results are obtained for a TMA model, where the only informative test is the

Q12 test. However, it is worth noting that the above results for NLMA and BL models
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are, to some extent, model dependent since these two classes are extremely flexible.

5.3 Sensitivity analysis

Parameters: Although Monte Carlo results confirm that the proposed Q tests can be

useful in testing non-linearity in practice, it is important to point out very high variabil-

ity of the power results: the minimum average rejection frequency over all parameter

configurations, denoted as min, is close to the nominal level 0.05 for a vast majority of

time series models, whereas the maximum average rejection frequency, denoted as max,

is close to 1.0 for many time series models in large samples (T = 1000). For this reason,

a special attention is paid to the sensitivity of the parameters of the data generating

process. For better understanding, the individual Monte Carlo results are presented in

the form of graphical images. Each point depicted in a given graphical image repre-

sents the estimated p-value of a given Q test for a given parameter configuration of a

given time series model (x-axis) and a particular Monte Carlo replication (y-axis). For

example, in the case of a TAR model, each graphical image summarizes the results over

24000 replications (K = 24 parameter configurations of a TAR model and R = 1000

replications). A color range (from black to white) is used to explicitly indicate the

different magnitude of the statistical significance of the Q tests. The results, based on

Gaussian innovations, can be found in Figure 3.

For example, from the results given by a NLMA model it can be seen that all the

p-values of the Q21 test are less then the significance level 0.05 and the results are not

sensitive to a parameter configuration of a NLMA model at all, whereas the results of

the Q12 and Q22 tests are statistically insignificant, but not sensitive to a parameter

configuration of a NLMA model as well. Another relevant example, illustrating the

benefit of using the graphical images, is related to a GARCH model. The p-values

of the Q12 and Q21 tests are statistically very insignificant, whereas the p-values of

the standard Q22 test are statistically significant, but merely for the second half of

parameter configuration (i.e. α ≥ 0.1 and β ≥ 0.3). From the figure it can be also

concluded that the power of the Q tests is quite sensitive for regime switching models

such as TAR, MAR, and MSAR models, whereas for models such as BL and NLMA,

the stability of the power properties of the Q test is excellent. All in all, the proposed

Q tests provide the robust power results (i.e. rejecting and/or not rejecting linearity

regradless of the parameter configuration) for almost 70 % cases, which is significantly

more than

Innovations: The power properties of the proposed Q tests are examined against the

following classes of distributions of innovations: a Gaussian distribution (N), symmetric
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but leptokurtic (S), and asymmetric (A) innovations. The results are summarized in

a coherent way in Table 4. The notation is as follows: “�” indicates that a given Q

test exhibits a good power for a given non-linear process (i.e. avg ≥ 0.5), whereas “�”

indicates only a reasonable power of the Q test (i.e. 0.2 < avg < 0.5,) and “no-square”

indicates almost no power of a given Q test (i.e. avg ≤ 0.2). The table is reproduced

from Monte Carlo results based on T = 1000 observations.

Table 4: Power properties of the Q tests: T = 1000, R = 1000

TAR TMA MAR MSAR

test N S A N S A N S A N S A

Q12 � � � � � � � � �
Q21 � � � � � � � � �
Q22 � � � � � � � � � � � �

GARCH NLGARCH BL NLMA

test N S A N S A N S A N S A

Q12 � � �
Q21 � � � � � � � � � �
Q22 � � � � � � � � � �

The table concludes the following. First, inspecting the cross-correlation structure can

be useful tool supplementing the results from the auto-correlation structure. Second,

the correlation structure of many non-linear models is rather different, which enables us

to use the proposed Q tests for some preliminary discrimination among various classes

of non-linear time series models. For example, it is easy to see a discrimination power

for TAR and GARCH models, or BL and NLMA models.

6 Empirical application

In this section, the proposed Q tests are applied to a set of 22 financial time series:

5 exchange rate time series; 5 interest rate time series; 6 commodity time series; and

finally 6 equity indices. We use average weakly returns from 1980 to 2010 consisting

of 1620 observations.10 For a complete description of time series, see Table 11 in Ap-

pendix B.

10Weakly time series seem to serve as a good compromise between daily returns, which are too noisy
and contaminated by jumps, and monthly returns, which are too aggregated.
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Figure 3: Power images of the Q tests: T = 1000, R = 1000, a ∼ N(0, 1)
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∗ Each point depicted in the graphical image represents the estimated p-value of a given Q test for a
given parameter configuration of a given time series model (x-axis) and a given Monte Carlo replication
(y-axis). The results of the Q tests are based on the automatically selected lag order m.
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In this exercise, we are particularly interested in the following three questions: (i) “Is it

worth inspecting cross-correlations of asset returns from the non-linearity testing point

of view? Or is it fully sufficient to rely only on the Q22 test (an analogy of the MLQ

test)?”; (ii) “Is the generalized correlation structure of various asset classes similar or

rather different?”; (iii) “Is a simple GARCH model an adequate model for asset returns

in general?”.

The results are presented in Table 12. It can be concluded from the table that the

Q22 test rejects linearity for all 22 series of asset returns regardless of the lag order

specification m of the Q tests. This finding clearly implies that an application of the

standardQ22, or analogically the MLQ test, seems to be fully sufficient from the linearity

testing standpoint. The results clearly confirm previous studies that standard linear

homoscedastic ARMA models are not adequate for modelling selected asset returns at

all. Individual results suggest that the behaviour of the correlation structure of equity

returns differ significantly from the correlation structure of other asset classes: the Q21

and Q22 tests are statistically significant for all equity returns regardless of the lag

order m. However, this is not the case for other asset classes. On the other hand, when

considering all three Q tests, the correlation structure of asset returns seems to be series

dependent rather than asset class dependent. For example, values of the Q12 and Q21

tests are statistically significant in 11 and 8 cases out of 22. This means that, although

cross-correlations seem not to give us additional information from the linearity testing

point of view, they might be very useful for some preliminary discrimination. All in all,

the results of the Q tests suggest the following: (a) due to the statistical significance of

the Q22 test, but insignificance of the Q12 and also Q21, a simple GARCH model seems

to be appropriate for only 7 out of 22 asset returns - USDCHF, USDCAD, USIR3M,

AUIR3M, CHIR3M, WHEAT, GOLD; (b) due to the statistical significance of the Q12,

Q21 and Q22 tests, a TARMA-GARCH model seems to be appropriate for 5 out of

22 asset returns - USDJPY, DJIA, FTSE, TOPIX, SOYBEANS; and (c) due to the

statistical significance of only Q21 and Q22 tests, some non-linear and/or asymmetric

GARCH model seems to be appropriate for 6 out of 22 asset returns - USDGBP,

USDAUD, AUSE, TSE, CHSE, COFFEE. Note that the above classification of asset

returns is just an example of the above described discrimination power of the Q tests.

7 Conclusion

It is demonstrated, both analytically and by means of Monte Carlo experiments, that

inspecting residual auto-correlations and cross-correlations can be an useful, yet very

simple, tool both for testing linearity and for some preliminary model discrimination.
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Our results suggest that the proposed Q tests, using a more efficient variance-stabilizing

transformation, have good size and power properties for all non-linear models but an

EXPAR model. It is also shown that the power properties of the Q tests are sensitive to

the parameter configuration for some non-linear models (e.g. regime-switching models).

Therefore, the results should be interpreted with caution. In addition, the results reveal

that the correlation structure of 9 considered non-linear models is rather different, This

finding can be easily used for preliminary discrimination between some rival non-linear

models such as TAR and GARCH models, or BL and NLMA models.
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A Proofs

A.1 Useful Theorems

Theorem 3 Let Assumption 1 be satisfied, then the LS estimate β̂ has the following

properties: (i) β̂
p−→ β; (ii)

√
T (β̂ − β)

d−→ N(0,V). �

Proof. See a proof to Theorem 8.4.1 in ?, p. 432. �

Remark 1 Note that Yao and Brockwell (2006) obtained the same results for the ML

estimator of ARMA parameters. �

Theorem 4 Let {Zt : t ∈ Z} be a sequence of IID(0,σ2) innovations such that E(|Zt|4) <
∞, then for some integer m > 0 we have that

√
T (ρ̇ − ρ)

d−→ N(0, I), where ρ =

(ρ(1), . . . , ρ(m))′ denotes a vector of auto-correlations and ρ̇ = (ρ̇(1), . . . , ρ̇(m))′ de-

notes a vector of sample auto-correlations. �

Proof. See a proof to Theorem 7.2.1 in ?, p. 221 with a restriction Xt = Zt. �

Theorem 5 Let {Xt, Yt : t ∈ Z} be a sequence of pairs of variables. If |Xt − Yt|
p−→ 0

and Yt
d−→ Y , then Xt

d−→ Y as well. That is, the limiting distribution of Xt exists

and is the same as that of Y. �

Proof. See a proof to 2c.4(ix) result in ?, p. 122. �

Proposition 1 Let {Xt : t ∈ Z} be a sequence of random variables such that Xt =

a + Op(rt) where a ∈ R and 0 < rt → 0 as t → ∞. If g is a function with the first s

derivatives, then

g(Xt) =
s∑

j=0

g(j)(a)

j!
(Xt − a)j + op(rt),

where g(j) denotes the j-th derivative of g and g0 = g. �

Proof. See a proof to Proposition 6.1.5 in ?, p. 201. �
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Proposition 2 Let Assumption 1 be satisfied. Let us define γ̇rs(k) as follows

γ̇rs(k) =
1

T

T∑
t=k+1

gr(at)gs(at−k),

for the lag order k ∈ {1, . . . ,m} and some integers m > 0, r > 0, s > 0, and gr(·) and

gs(·) functions are defined as follows

gr(at) = ar
t −

1

T

T∑
t=1

ar
t , gs(at) = as

t −
1

T

T∑
t=1

as
t .

Then it holds that

∂γ̇rs(k)

∂βi

= Op(T
−1/2),

for all βi ∈ β. �

Proof.

∂γ̇rs(k)

∂βi

=
1

T

T∑
t=k+1

(
∂gr(at)

∂βi

)
gs(at−k) +

1

T

T∑
t=k+1

gr(at)

(
∂gs(at−k)

∂βi

)
,

= Op(T
−1/2) +Op(T

−1/2),

= Op(T
−1/2),

since gr(·) and gs(·) are continuous functions in β and a sample average of (stationary)

random variables is Op(T
−1/2), see ?, Ch. 3. �

Theorem 6 Let Xt
d−→ X and Yt

p−→ c, where c is a finite constant different from 0.

Then it holds that Xt/Yt
d−→ X/c. �

Proof. See a proof to Slutsky Theorem in ?, p. 19. �

Theorem 7 Let {Xt : t ∈ Z} and X be random variables defined on a probability space

and let g be a Borel-measurable function defined on R. Suppose that g is continuous

with probability 1. Then Xt
p−→ X implies that g(Xt)

p−→ g(X). �

Proof. See a proof to Continuous Mapping Theorem in ?, p. 24. �
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Proposition 3 Let Assumption 1 with γ̂rs(0) given by

γ̂rs(0) =

√√√√[ 1

T

T∑
t=1

g2
r(ât)

][
1

T

T∑
t=1

g2
s(ât)

]
, (11)

where ât is the estimated residual from model in (1), and functions gr(ât) and gs(ât)

are defined in (5). Then it holds that γ̂rs(0)
p−→ γrs(0). �

Proof. Theorem 7 implies that γ̂rs(0)
p−→ γrs(0), provided that

1

T

T∑
t=1

g2
r(ât)

p−→ E
(
g2

r(at)
)
.

Note that the same applies to the g2
s(·) function as well since both gr(·) and gs(·) func-

tions are equivalent for r = s. Therefore, it is fully sufficient to base the proof on one

of these two functions. In order to simplify the proof, the following notation is used

1

T

T∑
t=1

g2
r(at) =

1

T

T∑
t=1

a2r
t −

(
1

T

T∑
t=1

ar
t

)2

,

= M2 −M2
1 .

Following arguments in a proof of Theorem 8.4.1 in ?, p. 432, the proof consists of the

following two steps:

(i) It directly follows from Strong Law of Large Numbers (SLLN), see Theorem B in

?, p. 24, that

M1
as−→ E(ar

t ),

M2
as−→ E(a2r

t ),

which implies that

1

T

T∑
t=1

g2
r(at)

as−→ E
(
g2

r(at)
)
,

for any integer r > 0.

(ii) It follows from Theorem 3 that β̂
p−→ β, which implies that at(β̂) ≡ ât

p−→ at.

Then, since gr(·) is a continuous function in β, it holds that gr(ât)
p−→ gr(at) for

any integer r > 0.
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Combining the results from (i) and (ii), it follows that

1

T

T∑
t=1

g2
r(ât)

p−→ E
(
g2

r(at)
)
,

for any integer r > 0. This completes the proof. �

Theorem 8 Let z ∼ N(0, I) and C a symmetric matrix with rk(C) = r, then z′Cz ∼
χ2(r). �

Proof. See a proof for Theorem 9.8 in ?, p. 378. �

A.2 Proof of Theorem 1

Let β = (ξ1, . . . , ξp, ζ1, . . . , ζq, σ)′ denote a vector of true model parameters and let β̂

denote the LS and/or ML estimates. Expanding a sample generalized covariance γ̂rs(k)

by a first-order Taylor expansion gives

γ̂rs(k) = γrs(k) +
∑

i

(β̂i − β)
∂γ̇rs(k)

∂βi

+Op(T
−1),

for the lag order k ∈ {1, . . . ,m} and (r, s) = {(1, 2), (2, 1), (2, 2)}. It concludes from

Theorem 3 and Proposition 2 that (β̂i − β) = Op(T
−1/2) and ∂γ̇rs(k)/∂βi = Op(T

−1/2),

which immediately implies that the product of these two stochastic components is

Op(T
−1). Then it holds that

γ̂rs(k) = γrs(k) +Op(T
−1).

Moreover, it concludes from Proposition 3 that γ̂rs(0)
p−→ γrs(0) for given integers r, s.

Then Theorem 6 implies that γrs(0) can be considered as a normalizing constant having

no effect on the limiting distribution of ρ̂rs(k). Then it holds that

ρ̂rs(k) =
γ̂rs(k)

γrs(0)
+Op(T

−1).

See also McLeod and Li (1983, p. 271) or Li and Mak (1994, p. 629–631) for a discus-

sion.

Under Assumption 1 and using a slightly modified Theorem 4, it can be shown that a

vector of sample correlations is given by
√
T (ρ̇rs − ρrs)

d−→ N(0, I).
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Note that the modification of Theorem 4 lies in the requirement of the existence of

the first eighth moments of the random variable a to ensure the validity of the above

limiting result. This condition is a part of Assumption 1. Combining results from

Theorem 4 and Theorem 5, it easy to show that the limiting distribution of a vector of

the estimated correlations is given by

√
T (ρ̂rs − ρrs)

d−→ N(0, I),

since |ρ̂rs − ρ̇rs|
p−→ 0 due to the fact that estimated residuals/parameters are consis-

tent, which directly follows from Theorem 3.

Under Assumption 1, Proposition 1 concludes that a first-order Taylor expansion of

ẑrs(k) around ρrs(k) gives us the following expression

ẑrs(k) = ρ̂rs(k) + op(T
−1/2),

for the lag order k ∈ {1, . . . ,m} and integer m > 0. It is now easy to see that

vectors ẑrs = (zrs(1), . . . , zrs(m))′ and ρ̂rs = (ρ̂rs(1), . . . , ρ̂rs(m))′ have the same limiting

distribution given by

√
T (ẑrs − zrs)

d−→ N(0, I).

�

A.3 Proof of Theorem 2

Note that the proposed Q tests can be written into the form of a quadratic function

given by

Qrs(m) =
m∑

k=1

(T − k)ẑ2
rs(k) = ẑ′rsCẑrs,

where ẑrs = (ẑrs(1), . . . , ẑrs(m))′ is an (m× 1) vector of the estimated correlations and

C is an appropriate (m×m) symmetric matrix. The limiting χ2 distribution of the Qrs

tests, for (r, s) ∈ {(1, 2), (2, 1), (2, 2)}, follows directly from Theorem 1 and Theorem 8,

and the degrees of freedom follow from the fact that rk(C) = m. �
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B Tables

Table 5: Statistical properties of the Q tests

AR (#8) MA (#8)

sample test lag m mean var var/mean mean var var/mean

T=200 Q12 5 5.0 9.8 1.96 5.0 10.1 2.02

10 9.9 19.6 1.97 10.0 19.9 2.00

15 14.9 29.4 1.97 14.9 29.8 2.00

Q21 5 5.0 9.7 1.96 5.1 10.3 2.03

10 9.9 19.3 1.94 10.0 20.1 2.00

15 14.9 28.2 1.90 15.0 30.4 2.02

Q22 5 5.0 9.9 1.99 5.0 10.5 2.12

10 9.9 21.0 2.12 9.9 21.3 2.15

15 14.9 32.8 2.20 14.9 32.9 2.21

T=1000 Q12 5 5.0 10.1 2.02 5.0 10.0 2.00

10 9.9 20.4 2.06 10.0 20.3 2.02

15 15.0 30.9 2.07 15.1 30.4 2.01

Q21 5 5.0 10.2 2.03 5.0 9.9 1.97

10 10.0 19.5 1.95 10.0 19.9 1.99

15 15.0 29.6 1.98 15.0 30.1 2.01

Q22 5 5.0 10.2 2.06 5.0 10.0 1.98

10 10.0 21.0 2.10 10.0 19.9 1.99

15 14.9 31.6 2.11 15.0 30.4 2.03

a “AR (#8)” indicates that 8 different parameter configurations of an AR model are
evaluated.

b “mean” stands for a sample mean of the Q test over all replications and parameter
configurations, “var” stands for a sample variance value of the Q test over all replica-
tions and parameter configurations, “var/mean” denotes a variance-mean ratio. The
significance level is set to α = 0.05.
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Table 6: Size of the Q tests

AR (#8) MA (#8)

sample test lag m avg min max avg min max

T=200 Q12 5 0.050 0.037 0.063 0.049 0.043 0.054

10 0.046 0.035 0.056 0.054 0.045 0.057

15 0.045 0.038 0.052 0.049 0.043 0.054

m 0.050 0.037 0.058 0.049 0.044 0.063

Q21 5 0.049 0.036 0.056 0.049 0.040 0.063

10 0.051 0.044 0.057 0.044 0.034 0.057

15 0.048 0.044 0.055 0.049 0.038 0.059

m 0.049 0.035 0.062 0.047 0.039 0.055

Q22 5 0.049 0.037 0.057 0.054 0.040 0.063

10 0.054 0.040 0.063 0.058 0.046 0.064

15 0.056 0.039 0.062 0.058 0.053 0.071

m 0.057 0.042 0.079 0.055 0.041 0.069

T=1000 Q12 5 0.049 0.044 0.056 0.050 0.045 0.053

10 0.048 0.037 0.056 0.050 0.033 0.062

15 0.051 0.043 0.058 0.050 0.044 0.060

m 0.053 0.039 0.073 0.054 0.044 0.073

Q21 5 0.049 0.036 0.060 0.050 0.039 0.063

10 0.050 0.043 0.056 0.050 0.040 0.066

15 0.048 0.038 0.055 0.051 0.042 0.061

m 0.052 0.044 0.066 0.048 0.037 0.056

Q22 5 0.052 0.038 0.064 0.050 0.032 0.059

10 0.051 0.040 0.068 0.051 0.042 0.066

15 0.049 0.040 0.055 0.054 0.045 0.064

m 0.054 0.041 0.067 0.057 0.050 0.068

a m denotes the automatically selected lag order based on Escanciano and Lobato
(2009).

b “AR (#8)” indicates that 8 different parameter configurations of an AR model
are evaluated.

c “avg” stands for the average rejection frequency of the Q tests over all param-
eter configurations of a given time series model, “min” and “max” denote a
minimum and maximum of the average rejection frequencies over all parameter
configurations. The significance level is set to α = 0.05.
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Table 7: Power properties of the Q tests: N(0,1), T = 200

TAR (#24) EXPAR (#24) MAR (#24) MSAR (#24) GARCH (#17) NLGARCH (#17) TMA (#24) BL (#18) NLMA (#12)

test lag avg min max avg min max avg min max avg min max avg min max avg min max avg min max avg min max avg min max

Q12 5 0.31 0.04 0.80 0.05 0.03 0.06 0.09 0.04 0.23 0.13 0.06 0.22 0.08 0.05 0.11 0.09 0.05 0.17 0.51 0.03 0.98 0.78 0.62 1.00 0.05 0.04 0.06

10 0.25 0.05 0.69 0.05 0.03 0.07 0.08 0.03 0.21 0.11 0.04 0.18 0.07 0.04 0.12 0.08 0.04 0.18 0.44 0.04 0.94 0.66 0.49 0.99 0.05 0.03 0.07

15 0.21 0.04 0.61 0.05 0.03 0.06 0.07 0.03 0.20 0.09 0.05 0.16 0.07 0.05 0.12 0.08 0.04 0.17 0.39 0.04 0.90 0.58 0.41 0.97 0.05 0.04 0.06

m 0.36 0.04 0.93 0.05 0.04 0.10 0.10 0.03 0.22 0.15 0.06 0.27 0.08 0.06 0.12 0.10 0.05 0.18 0.59 0.04 1.00 0.85 0.54 1.00 0.05 0.04 0.07

Q21 5 0.59 0.05 0.90 0.05 0.04 0.07 0.18 0.04 0.45 0.20 0.07 0.57 0.08 0.05 0.11 0.25 0.08 0.54 0.05 0.04 0.07 0.09 0.04 0.36 0.26 0.11 0.42

10 0.50 0.05 0.80 0.05 0.03 0.06 0.15 0.03 0.39 0.17 0.06 0.52 0.07 0.05 0.11 0.21 0.06 0.50 0.05 0.04 0.06 0.08 0.04 0.32 0.19 0.08 0.32

15 0.43 0.04 0.73 0.05 0.04 0.07 0.13 0.04 0.36 0.16 0.06 0.47 0.07 0.05 0.11 0.19 0.06 0.45 0.05 0.04 0.06 0.08 0.04 0.28 0.16 0.07 0.25

m 0.63 0.06 0.98 0.05 0.03 0.07 0.21 0.05 0.49 0.22 0.08 0.59 0.09 0.06 0.14 0.26 0.10 0.48 0.06 0.04 0.09 0.09 0.04 0.38 0.43 0.20 0.68

Q22 5 0.19 0.04 0.66 0.05 0.04 0.07 0.45 0.04 1.00 0.48 0.10 0.98 0.21 0.06 0.52 0.31 0.08 0.75 0.07 0.04 0.13 0.22 0.11 0.71 0.05 0.04 0.06

10 0.15 0.04 0.53 0.05 0.04 0.07 0.42 0.05 1.00 0.43 0.09 0.97 0.19 0.07 0.47 0.28 0.07 0.70 0.06 0.04 0.12 0.19 0.09 0.65 0.05 0.04 0.06

15 0.14 0.05 0.46 0.06 0.04 0.07 0.40 0.05 1.00 0.40 0.09 0.95 0.17 0.07 0.44 0.26 0.07 0.67 0.06 0.04 0.10 0.17 0.09 0.59 0.06 0.04 0.07

m 0.22 0.05 0.82 0.05 0.04 0.08 0.51 0.04 1.00 0.53 0.11 0.98 0.24 0.07 0.52 0.33 0.09 0.72 0.09 0.05 0.19 0.27 0.16 0.81 0.07 0.06 0.09

a m denotes the automatically selected lag order based on Escanciano and Lobato (2009).
b “TAR (#24)” indicates that 24 different parameter configurations of a TAR model are evaluated.
c “avg” stands for the average rejection frequency of the Q tests over all parameter configurations of a given time series model, “min” and “max” denote a minimum and maximum of the average rejection frequencies over

all parameter configurations. The significance level is set to α = 0.05.



Table 8: Power properties of the Q tests: T = 1000

TAR (#24) EXPAR (#24) MAR (#24) MSAR (#24) GARCH (#17) NLGARCH (#17) TMA (#24) BL (#18) NLMA (#12)

test lag avg min max avg min max avg min max avg min max avg min max avg min max avg min max avg min max avg min max

Q12 5 0.65 0.04 1.00 0.05 0.04 0.08 0.10 0.04 0.25 0.26 0.10 0.49 0.08 0.05 0.16 0.11 0.05 0.29 0.78 0.04 1.00 1.00 1.00 1.00 0.05 0.04 0.06

10 0.61 0.04 1.00 0.05 0.04 0.07 0.09 0.05 0.24 0.21 0.08 0.40 0.08 0.04 0.17 0.11 0.05 0.34 0.76 0.04 1.00 1.00 1.00 1.00 0.05 0.04 0.06

15 0.59 0.03 1.00 0.05 0.04 0.06 0.09 0.04 0.23 0.19 0.07 0.36 0.08 0.04 0.16 0.11 0.05 0.32 0.74 0.04 1.00 1.00 1.00 1.00 0.05 0.04 0.06

m 0.64 0.04 1.00 0.06 0.04 0.09 0.11 0.04 0.24 0.27 0.09 0.50 0.09 0.06 0.17 0.13 0.06 0.35 0.79 0.04 1.00 1.00 1.00 1.00 0.06 0.04 0.07

Q21 5 0.89 0.07 1.00 0.05 0.04 0.07 0.46 0.03 0.88 0.41 0.09 0.89 0.09 0.05 0.17 0.68 0.20 0.99 0.08 0.04 0.16 0.19 0.05 0.90 0.77 0.49 1.00

10 0.87 0.07 1.00 0.05 0.04 0.06 0.39 0.05 0.85 0.36 0.08 0.87 0.08 0.06 0.17 0.63 0.15 0.99 0.07 0.04 0.12 0.18 0.05 0.85 0.69 0.36 0.99

15 0.86 0.07 1.00 0.05 0.04 0.06 0.36 0.04 0.81 0.33 0.08 0.84 0.08 0.05 0.17 0.58 0.14 0.99 0.07 0.04 0.11 0.17 0.04 0.83 0.65 0.30 0.97

m 0.89 0.07 1.00 0.05 0.04 0.07 0.49 0.04 0.89 0.41 0.09 0.88 0.09 0.06 0.17 0.69 0.25 0.99 0.13 0.05 0.28 0.19 0.05 0.90 0.89 0.77 1.00

Q22 5 0.44 0.05 1.00 0.05 0.03 0.06 0.63 0.04 1.00 0.84 0.44 1.00 0.63 0.18 1.00 0.75 0.24 1.00 0.19 0.04 0.59 0.69 0.52 1.00 0.05 0.04 0.06

10 0.42 0.06 1.00 0.05 0.04 0.07 0.61 0.04 1.00 0.80 0.36 1.00 0.58 0.14 1.00 0.70 0.19 1.00 0.15 0.05 0.47 0.60 0.41 1.00 0.05 0.04 0.07

15 0.40 0.05 1.00 0.05 0.04 0.06 0.60 0.04 1.00 0.78 0.29 1.00 0.54 0.13 1.00 0.67 0.17 1.00 0.13 0.04 0.40 0.55 0.34 1.00 0.05 0.04 0.07

m 0.45 0.06 1.00 0.06 0.04 0.11 0.65 0.05 1.00 0.84 0.41 1.00 0.66 0.24 1.00 0.77 0.30 1.00 0.28 0.06 0.76 0.77 0.63 1.00 0.06 0.05 0.09

a m denotes the automatically selected lag order based on Escanciano and Lobato (2009).
b ‘TAR (#24)” indicates that 24 different parameter configurations of a TAR model are evaluated.
c “avg” stands for the average rejection frequency of the Q tests over all parameter configurations of a given time series model, “min” and “max” denote a minimum and maximum of the average rejection frequencies over

all parameter configurations. The significance level is set to α = 0.05.



Table 9: Power properties of the Q tests: T = 200

TAR (#24) EXPAR (#24) MAR (#24) MSAR (#24) GARCH (#17) NLGARCH (#17) TMA (#24) BL (#18) NLMA (#12)

test distr. skew. kurt. avg min max avg min max avg min max avg min max avg min max avg min max avg min max avg min max avg min max

Q12 N 0.0 3.0 0.36 0.04 0.93 0.05 0.04 0.10 0.10 0.03 0.22 0.15 0.06 0.27 0.08 0.06 0.12 0.10 0.05 0.18 0.59 0.04 1.00 0.85 0.54 1.00 0.05 0.04 0.07

S1 0.0 6.0 0.42 0.04 0.95 0.06 0.04 0.08 0.13 0.03 0.29 0.16 0.07 0.28 0.11 0.06 0.20 0.13 0.07 0.27 0.63 0.04 1.00 0.94 0.69 0.98 0.06 0.04 0.07

S2 0.0 11.6 0.44 0.05 0.95 0.06 0.04 0.10 0.15 0.05 0.28 0.17 0.06 0.33 0.13 0.08 0.20 0.15 0.07 0.27 0.64 0.04 1.00 0.95 0.70 0.99 0.06 0.05 0.08

S3 0.0 126.0 0.46 0.06 0.94 0.06 0.03 0.10 0.18 0.04 0.34 0.19 0.05 0.32 0.15 0.09 0.24 0.17 0.10 0.28 0.65 0.06 1.00 0.95 0.76 0.99 0.06 0.04 0.07

A1 -0.9 4.2 0.35 0.03 0.94 0.07 0.03 0.24 0.10 0.04 0.21 0.16 0.07 0.30 0.07 0.04 0.12 0.11 0.04 0.28 0.57 0.03 1.00 0.83 0.45 0.97 0.03 0.03 0.04

A2 -1.5 7.5 0.35 0.03 0.96 0.09 0.03 0.37 0.12 0.04 0.28 0.18 0.07 0.33 0.07 0.04 0.11 0.13 0.04 0.32 0.56 0.03 0.99 0.83 0.44 0.96 0.03 0.02 0.03

A3 -2.0 21.2 0.40 0.03 0.98 0.07 0.03 0.22 0.15 0.04 0.33 0.19 0.06 0.35 0.10 0.06 0.20 0.16 0.06 0.36 0.61 0.04 1.00 0.91 0.66 0.98 0.04 0.03 0.05

Q21 N 0.0 3.0 0.63 0.06 0.98 0.05 0.03 0.07 0.21 0.05 0.49 0.22 0.08 0.59 0.09 0.06 0.14 0.26 0.10 0.48 0.06 0.04 0.09 0.09 0.04 0.38 0.43 0.20 0.68

S1 0.0 6.0 0.48 0.07 0.93 0.05 0.04 0.07 0.21 0.04 0.48 0.21 0.07 0.56 0.10 0.06 0.16 0.23 0.11 0.40 0.08 0.05 0.13 0.15 0.08 0.45 0.30 0.13 0.48

S2 0.0 11.6 0.42 0.07 0.87 0.05 0.04 0.07 0.22 0.04 0.49 0.22 0.07 0.59 0.13 0.07 0.21 0.23 0.10 0.38 0.09 0.05 0.15 0.21 0.11 0.43 0.26 0.11 0.41

S3 0.0 126.0 0.36 0.07 0.80 0.05 0.04 0.08 0.23 0.05 0.51 0.22 0.07 0.58 0.14 0.08 0.21 0.22 0.11 0.37 0.11 0.05 0.17 0.27 0.19 0.44 0.21 0.10 0.32

A1 -0.9 4.2 0.56 0.08 0.96 0.06 0.04 0.08 0.28 0.05 0.76 0.21 0.07 0.51 0.14 0.08 0.23 0.41 0.18 0.67 0.09 0.06 0.20 0.19 0.09 0.85 0.42 0.21 0.64

A2 -1.5 7.5 0.47 0.08 0.89 0.07 0.06 0.10 0.32 0.05 0.89 0.23 0.08 0.50 0.18 0.09 0.31 0.44 0.22 0.67 0.12 0.06 0.24 0.34 0.15 0.95 0.38 0.18 0.58

A3 -2.0 21.2 0.39 0.09 0.81 0.06 0.05 0.09 0.28 0.05 0.74 0.22 0.07 0.51 0.16 0.08 0.26 0.37 0.17 0.60 0.11 0.06 0.23 0.35 0.16 0.89 0.27 0.13 0.42

Q22 N 0.0 3.0 0.22 0.05 0.82 0.05 0.04 0.08 0.51 0.04 1.00 0.53 0.11 0.98 0.24 0.07 0.52 0.33 0.09 0.72 0.09 0.05 0.19 0.27 0.16 0.81 0.07 0.06 0.09

S1 0.0 6.0 0.25 0.05 0.82 0.06 0.04 0.09 0.55 0.04 1.00 0.54 0.08 0.98 0.27 0.11 0.54 0.34 0.11 0.69 0.23 0.05 0.64 0.66 0.54 0.97 0.07 0.04 0.08

S2 0.0 11.6 0.27 0.05 0.83 0.06 0.04 0.09 0.56 0.04 1.00 0.55 0.09 0.98 0.28 0.11 0.54 0.34 0.12 0.65 0.32 0.07 0.80 0.79 0.68 0.99 0.07 0.05 0.08

S3 0.0 126.0 0.30 0.07 0.85 0.06 0.04 0.10 0.58 0.05 1.00 0.54 0.07 0.98 0.28 0.13 0.52 0.33 0.14 0.58 0.40 0.08 0.91 0.89 0.82 1.00 0.07 0.05 0.09

A1 -0.9 4.2 0.11 0.03 0.30 0.06 0.04 0.07 0.52 0.04 1.00 0.55 0.11 0.98 0.26 0.09 0.57 0.51 0.20 0.90 0.14 0.05 0.45 0.38 0.19 0.95 0.11 0.08 0.14

A2 -1.5 7.5 0.12 0.02 0.46 0.07 0.04 0.10 0.55 0.04 1.00 0.56 0.10 0.98 0.28 0.12 0.54 0.54 0.24 0.88 0.19 0.06 0.64 0.56 0.37 0.98 0.11 0.08 0.14

A3 -2.0 21.2 0.20 0.04 0.60 0.06 0.04 0.11 0.56 0.04 1.00 0.55 0.08 0.99 0.27 0.11 0.56 0.48 0.19 0.83 0.27 0.07 0.81 0.76 0.60 0.99 0.07 0.06 0.08

a m denotes the automatically selected lag order based on Escanciano and Lobato (2009).
b ‘TAR (#24)” indicates that 24 different parameter configurations of a TAR model are evaluated.
c “avg” stands for the average rejection frequency of the Q tests over all parameter configurations of a given time series model, “min” and “max” denote a minimum and maximum of the average rejection frequencies over all parameter

configurations. The significance level is set to α = 0.05.



Table 10: Power properties of the Q tests: T = 1000

TAR (#24) EXPAR (#24) MAR (#24) MSAR (#24) GARCH (#17) NLGARCH (#17) TMA (#24) BL (#18) NLMA (#12)

test distr. skew. kurt. avg min max avg min max avg min max avg min max avg min max avg min max avg min max avg min max avg min max

Q12 N 0.0 3.0 0.64 0.04 1.00 0.06 0.04 0.09 0.11 0.04 0.24 0.27 0.09 0.50 0.09 0.06 0.17 0.13 0.06 0.35 0.79 0.04 1.00 1.00 1.00 1.00 0.06 0.04 0.07

S1 0.0 6.0 0.69 0.04 1.00 0.06 0.04 0.08 0.15 0.04 0.32 0.26 0.10 0.47 0.16 0.07 0.30 0.20 0.08 0.48 0.80 0.05 1.00 1.00 1.00 1.00 0.06 0.05 0.07

S2 0.0 11.6 0.72 0.06 1.00 0.06 0.05 0.10 0.20 0.04 0.40 0.28 0.12 0.49 0.21 0.10 0.41 0.27 0.12 0.57 0.81 0.05 1.00 1.00 0.99 1.00 0.06 0.04 0.08

S3 0.0 126.0 0.74 0.04 1.00 0.07 0.05 0.12 0.27 0.06 0.47 0.32 0.09 0.54 0.28 0.15 0.50 0.33 0.16 0.60 0.82 0.06 1.00 0.99 0.97 1.00 0.07 0.05 0.10

A1 -0.9 4.2 0.64 0.04 1.00 0.19 0.03 0.77 0.11 0.04 0.28 0.31 0.15 0.60 0.09 0.05 0.20 0.21 0.05 0.61 0.78 0.03 1.00 1.00 0.99 1.00 0.03 0.03 0.04

A2 -1.5 7.5 0.63 0.04 1.00 0.27 0.03 0.96 0.14 0.04 0.34 0.33 0.14 0.64 0.12 0.05 0.29 0.28 0.08 0.72 0.79 0.03 1.00 1.00 0.95 1.00 0.02 0.02 0.03

A3 -2.0 21.2 0.69 0.05 1.00 0.19 0.04 0.70 0.21 0.05 0.42 0.35 0.11 0.63 0.20 0.09 0.43 0.36 0.12 0.73 0.81 0.06 1.00 0.99 0.89 1.00 0.04 0.03 0.05

Q21 N 0.0 3.0 0.89 0.07 1.00 0.05 0.04 0.07 0.49 0.04 0.89 0.41 0.09 0.88 0.09 0.06 0.17 0.69 0.25 0.99 0.13 0.05 0.28 0.19 0.05 0.90 0.89 0.77 1.00

S1 0.0 6.0 0.80 0.12 1.00 0.05 0.03 0.07 0.48 0.04 0.87 0.41 0.09 0.88 0.15 0.08 0.28 0.65 0.27 0.96 0.17 0.05 0.43 0.30 0.13 0.89 0.81 0.59 1.00

S2 0.0 11.6 0.77 0.13 1.00 0.06 0.04 0.08 0.47 0.04 0.84 0.42 0.10 0.87 0.19 0.09 0.36 0.62 0.24 0.93 0.20 0.05 0.49 0.41 0.25 0.87 0.75 0.50 0.98

S3 0.0 126.0 0.73 0.13 1.00 0.06 0.05 0.10 0.46 0.06 0.79 0.43 0.09 0.85 0.25 0.12 0.51 0.60 0.27 0.90 0.25 0.07 0.56 0.51 0.38 0.86 0.66 0.39 0.92

A1 -0.9 4.2 0.84 0.13 1.00 0.07 0.05 0.10 0.51 0.05 1.00 0.44 0.09 0.76 0.34 0.13 0.68 0.87 0.57 1.00 0.17 0.07 0.59 0.50 0.18 1.00 0.87 0.71 1.00

A2 -1.5 7.5 0.80 0.10 1.00 0.09 0.05 0.19 0.48 0.06 1.00 0.47 0.09 0.95 0.49 0.21 0.81 0.90 0.66 1.00 0.23 0.10 0.75 0.78 0.52 1.00 0.82 0.60 1.00

A3 -2.0 21.2 0.77 0.13 1.00 0.09 0.06 0.20 0.49 0.06 1.00 0.46 0.09 0.89 0.42 0.19 0.70 0.86 0.57 1.00 0.27 0.10 0.77 0.78 0.47 1.00 0.75 0.48 0.97

Q22 N 0.0 3.0 0.45 0.06 1.00 0.06 0.04 0.11 0.65 0.05 1.00 0.84 0.41 1.00 0.66 0.24 1.00 0.77 0.30 1.00 0.28 0.06 0.76 0.77 0.63 1.00 0.06 0.05 0.09

S1 0.0 6.0 0.55 0.07 1.00 0.07 0.04 0.17 0.69 0.04 1.00 0.80 0.22 1.00 0.70 0.25 1.00 0.79 0.36 1.00 0.56 0.08 1.00 1.00 1.00 1.00 0.07 0.05 0.08

S2 0.0 11.6 0.62 0.07 1.00 0.09 0.04 0.19 0.71 0.05 1.00 0.79 0.19 1.00 0.72 0.31 1.00 0.78 0.35 1.00 0.63 0.08 1.00 1.00 1.00 1.00 0.08 0.06 0.10

S3 0.0 126.0 0.67 0.07 1.00 0.10 0.04 0.26 0.72 0.06 1.00 0.78 0.16 1.00 0.72 0.33 1.00 0.78 0.40 0.99 0.70 0.09 1.00 1.00 1.00 1.00 0.09 0.06 0.12

A1 -0.9 4.2 0.37 0.05 0.92 0.07 0.04 0.15 0.66 0.05 1.00 0.87 0.46 1.00 0.70 0.26 1.00 0.92 0.64 1.00 0.34 0.07 0.99 0.87 0.68 1.00 0.33 0.15 0.52

A2 -1.5 7.5 0.38 0.04 1.00 0.08 0.05 0.21 0.69 0.04 1.00 0.86 0.38 1.00 0.74 0.32 1.00 0.94 0.73 1.00 0.42 0.08 1.00 0.99 0.96 1.00 0.45 0.20 0.71

A3 -2.0 21.2 0.50 0.04 1.00 0.09 0.04 0.28 0.71 0.06 1.00 0.82 0.24 1.00 0.74 0.33 0.99 0.93 0.68 1.00 0.56 0.08 1.00 1.00 1.00 1.00 0.22 0.10 0.35

a m denotes the automatically selected lag order based on Escanciano and Lobato (2009).
b ‘TAR (#24)” indicates that 24 different parameter configurations of a TAR model are evaluated.
c “avg” stands for the average rejection frequency of the Q tests over all parameter configurations of a given time series model, “min” and “max” denote a minimum and maximum of the average rejection frequencies over all parameter

configurations. The significance level is set to α = 0.05.



Table 11: Description of weakly time series: sample 07/01/1980 – 31/12/2010

variable description transformation

Exchange rates

USDGBP US dollar to British pound exchange rate ∆ log

USDJPY US dollar to Japanese yen exchange rate ∆ log

USDCAD US dollar to Canadian dollar exchange rate ∆ log

USDAUD US dollar to Australian dollar exchange rate ∆ log

USDCHF US dollar to Swiss frank exchange rate ∆ log

Interest rates

USIR3M US interbank interest rates, 3M ∆

UKIR3M UK interbank interest rates, 3M ∆

CAIR3M Canadian interbank interest rates, 3M ∆

AUIR3M Australian interbank interest rates, 3M ∆

CHFIR3M Swiss interbank interest rates, 3M ∆

Equity indices

DJIA US Dow Jones Industrials Share Index ∆ log

FTSE UK FT All Shares Index ∆ log

TOPIX Tokyo Stock Exchange Index ∆ log

TSE Toronto Stock Exchange Index ∆ log

AUSE Australian Stock Exchange Index ∆ log

CHSE Swiss Stock Exchange Index ∆ log

Commodities

WHEAT Kansas wheat, hard, cents/bushel ∆ log

SOYBEAN soybeans, yellow, cents/bushel ∆ log

COFFEE Brazilian coffee beans, cents/pound ∆ log

COTTON cotton, cents/pound ∆ log

FUEL fuel oil, cents/gallon ∆ log

GOLD gold bullion, USD/troy ounce ∆ log

* Source: Thomson Reuters.
a “∆” denotes a first difference of a given series,“∆ log” is an approximation to the growth rate

of a given time series.
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Table 12: Application of the Q tests

Q12 Q21 Q22

variable/lag 5 10 15 m 5 10 15 m 5 10 15 m

Exchange rates

USDGBP 0.37 0.46 0.43 0.12 0.08 0.11 0.03 0.03 0.00 0.00 0.00 0.00

USDJPY 0.97 0.94 0.66 0.00 0.10 0.03 0.07 0.21 0.00 0.00 0.00 0.00

USDCAD 0.37 0.66 0.80 0.31 0.89 0.92 0.96 0.96 0.00 0.00 0.00 0.00

USDAUD 0.88 0.70 0.81 0.48 0.05 0.19 0.24 0.33 0.00 0.00 0.00 0.00

USDCHF 0.85 0.99 1.00 0.98 0.43 0.25 0.24 0.25 0.00 0.00 0.00 0.00

Interest rates

USIR3M 0.62 0.93 0.83 0.89 0.99 1.00 0.89 0.97 0.00 0.00 0.00 0.00

UKIR3M 0.11 0.08 0.02 0.01 0.62 0.53 0.80 0.86 0.00 0.00 0.00 0.00

AUIR3M 0.74 0.47 0.72 0.89 0.90 0.84 0.97 0.95 0.00 0.00 0.00 0.00

CAIR3M 0.13 0.01 0.01 0.05 0.83 0.34 0.35 0.48 0.00 0.00 0.00 0.00

CHIR3M 0.88 0.93 0.97 0.98 0.31 0.28 0.50 0.82 0.00 0.00 0.00 0.00

Equity indices

DJIA 0.53 0.50 0.12 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FTSE 0.10 0.24 0.13 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AUSE 0.49 0.16 0.13 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TSE 0.66 0.69 0.50 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TOPIX 0.17 0.02 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CHSE 0.59 0.70 0.59 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Commodities

WHEAT 0.61 0.26 0.19 0.31 0.87 0.98 1.00 0.93 0.00 0.00 0.00 0.00

SOYBEAN 0.55 0.01 0.02 0.10 0.23 0.63 0.50 0.02 0.00 0.00 0.00 0.00

COFFEE 0.45 0.32 0.23 0.31 0.01 0.01 0.01 0.09 0.00 0.00 0.00 0.00

COTTON 0.26 0.36 0.62 0.67 0.41 0.50 0.26 0.25 0.00 0.00 0.00 0.00

FUEL 0.14 0.05 0.03 0.07 0.31 0.68 0.88 0.98 0.00 0.00 0.00 0.00

GOLD 0.60 0.56 0.38 0.62 0.41 0.70 0.53 0.81 0.00 0.00 0.00 0.00

a m denotes the automatically selected lag order based on Escanciano and Lobato (2009).
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C Figures
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Figure 4: Accuracy of the smoothed empirical density functions of the Q(10) tests to

the limiting χ2(10): T = 200, R = 5000

(a) Q12(10)

(b) Q21(10)

(c) Q22(10)

∗ The empirical distributions are smoothed by a kernel smoothing procedure with a simple reference
bandwidth for all parameters of AR and MA models φ, θ ∈ {−0.8,−0.6,−0.4,−0.2, 0.2, 0.4, 0.6, 0.8}.
We present bands calculated from the highest and lowest smoothed empirical distribution functions in
order to explicitly show parameter uncertainty of the finite sample distributions.
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