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(PRELIMINARY AND INCOMPLETE)

Abstract

This paper studies the impact of a probabilistic risk-sharing network struc-

ture on the optimal portfolio composition. We show that, even assuming identi-

cal agents, we are able to di�erentiate their optimal risk-choice once we assume

the link-structure de�ning their relationship probabilistic. In particular, the

�nal agent's portfolio composition is function of his location in the network.

If we assume positive asset-correlation coe�cients, the relative location of a

player in the graph in�uences his risk-behavior as much as those of his direct

and undirect partners in a not-straightforward way. We analyze also two po-

tential �centrality measures� able to select the key-player in the risk-sharing

network. The �ndings may help to select the �central� agent in a risk-sharing

community and to forecast the risk-exposure of the players. Finally, this pa-

per may explain natural di�erences between identical rational agents'choices

emerging in a probabilistic network setup.

JEL classi�cation: D85, D81, O17.

Keywords: Informal insurance, Risk-sharing, Network.

1 Introduction

The literature on informal insurance schemes between agents is wide. Even if infor-

mal insurance networks exist in di�erent forms and environments, for many years

social scientists have tried to explain the existence and the sustainability of this

phenomenon. It is empirically proved that groups of individuals, under certain con-

ditions, spontaneously form social insurance schemes (see for instance Fafschamps
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1992). Moreover, we also observe that the agents do not risk-share their endown-

ments with all the individuals composing the main community1. Given these stylized

facts many authors have explained theoretically these �ndings. The main challenge

was to prove how mutual insurance relationships between peers could be �stable�

in time despite the intuitive risk-sharing norm enforcement problem and the not-

always perfect observability of individuals` endowments (monitoring problem). As

Bloch et al. (2004) shows, there can be precise strategical reasons explaining partial-

insurance schemes or the limited-size of the risk-sharing group given certain condi-

tions. Speci�cally, they suggest that if the links have double roles such as liquidity

and information channel, we can expect just speci�c network structures arising as

equilibrum of a strategical problem and guaranteeing the transfer-norm enforcement.

Moreover, as Bramoullé and Kranton (2007) notices, individual optimal choices re-

lated to the agent's link structure can lead to indirect negative externalities to the

rest of the risk-sharing group and di�erentiate the �nal outcomes observed by the

players. As Stack (1975), De Weerdt and University. United Nations (2002), Dercon

and De Weerdt (2002), and Fafchamps and Gubert (2007) have empirically shown,

the structure of the risk-sharing groups, in terms of connections between peers, seems

far from being randomly formed. A common feature of all the studies about the risk-

sharing problem that use a network analysis approach is to consider the transfers be-

tween individuals passing through bilateral relationships (represented geometrically

by a link between two nodes) so that, indirectly, the action of an agent can also in�u-

ence the one of another subject not directly connected with him. This intuitive and

simple concepts have suggested the social scientists to investigate more the impact

of the link-structure between risk-sharing individuals. Particular interest has been

focused on the �punishment schemes� enforced by the nodes (through link rewiring

strategies) to prevent deviations from the risk-sharing norm. In this paper we are

not directly interested on studying the norm-enforcement problem but we focus the

attention on the impact of a probabilistic link-structure on the agents` risk behavior,

i.e. agents computing their optimal risk-exposure and connected in a risk-sharing

structure through links consider the existance of the peers` connection not certain.

The intuition comes from the fact that once the risk-sharing structure between peers

is assumed probabilistic, the agents could �nd optimal to modify their risk-exposure

according to their location in the network. Facing a probabilistic link-structure,

the impact of this uncertainty can be di�erent between the agents whenever located

in �distinct� locations through the network. There are many reasons to assume a

probabilistic link-structure in a risk-sharing model using a network approach. The

1See for instance Townsend (1995), Udry (1995), Fafchamps and Lund (2003), Murgai et al.
(2002), Fafchamps and Gubert (2007).
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existence of an agreement between two agents is usually explained by social or geo-

graphic factors (family membership, friendship and geographical proximity between

many)2. However, these exogenous factors could change on time, being strongly de-

pendent on the exogenous agents`environment (the existance of a peer itself can be

considered not perfectly certain in many cases). Moreover, if we reasonably assume

that a link between two peers is a bilateral and strategical choice, changes on the ex-

ogenous scenarios could let the peers reconsider their previous link-structure. In the

interbank market for example we observe a �nite number of institutions exchanging

liquidity through short-period lending-contracts. This is a particular form of risk-

sharing between institutions, foundamental for the di�usion of liquidity in the bank-

system. Each bank can bilaterally choose to open one or more liquidity channels as

much as the relative partner-institutions. The pro�tability of these connections can

change with the arrival of a new information on the partners` risk or more generally

with a change on the �nancial environment. Being enforced by o�cial contracts, the

deviation from the risk-sharing norm is rarely observed in this case. However, the

individual risk taken by the peers is not easily monitorable by the relative partners.

This fact can lead to a classic �moral hazard� problem, in terms of risk-exposure or

risk-strategies chosen by the institutions, not solvable by mechanisms of punishment

studied using a network analysis approach (the perfect monitoring is a necessary

condition to enforce a norm). On the other hand, the choice of a partner-institution

seems to be strategical, function of speci�c market conditions (see for instance An-

gelini et al. (1996), Angelini et al. (2009),Soramaki et al. (2007), Gabrieli (2011)).

Given these facts, each agent may not consider the present bilateral relationships as

�xed but dynamic and function of di�erent exogenous factors. In our model we argue

that adding uncertainty at level of the link-structure can help to explain di�erence

on optimal risk-choices of identical agents belonging to a risk-sharing community

and choosing their optimal portfolio composition. Thus, the probabilistic feature of

the graph could help to underline the importance of an agent`s location analysis to

understand relative advantages/disadvantages due to a player`s position.

As we will extesively describe in the �nal section, this paper can improve the

literature on risk-sharing schemes in di�erent ways. Firstly, the model gives the

opportunity and the methods to forecast di�erent agents risk-exposures looking to

their locations in the structure and involving two main parameters: The probability

to observe in the future the present and existing links, and the correlation of the

risks taken by each agent. Secondly, it can help to demonstrate how we can observe

di�erent risk-behaviors even assuming identical agents once we add uncertainty on

the network structure de�ning the relationships between the peers. This feature

2See for instance Rosenzweig and Stark (1989).
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in particular can also re�ne the literature on network analysis opened by Galeotti

and Goyal (2010) and Bramoullé et al. (2010) between many. Finally, this paper can

enrich the literature studying the impact of the network structure on the community`s

risk-sharing degree (see for instance Ambrus et al. (2010), Battiston et al. (2009),

and Stiglitz (2010)).

The paper is organized as follows. In the �rst Section we present the main

model where risk-sharing agents decide individually and optimally the composition

of their portfolio between two assets, a �risk-free� and a �risky� one, assuming zero

asset-correlation. In the second part of this section we study the impact on the

optimal portfolio choices of a positive asset-correlation. We present in particular two

examples of di�erent network structures with speci�c structural features, underlining

the importance of the relative nodes` location to explain the di�erent risk-behaviors.

In the last part of Section 2 we relax the perfect network observability assumption,

assuming myopic nodes. Finally we discuss and test some node �centrality measures�

and the implication of the model in terms of the minimizing-risk structure.

2 The model

In this section we introduce the model and the network notation. The model is

composed by two main parts. In the �rst one we study the �nal equilibria assuming

zero-correlation between the risky-assets, while in the second part we relax this

assumption and produce two cases of study.

2.1 The network setup

We consider N agents linked each other according the adjacency matrix Gn×n = [gij]

, where gij = 1 whenever the nodes i and j are connected by an undirected link

while gij = 0 otherwise. We assume also that gii = 0. We de�ne the degree of node

i, di =
∑
gij∀j ∈ N . For simplicity we will consider just connected components,

i.e. gij 6= 0 for at least one j ∈ N . Payo�s are described by Ui(x, δ,G) where

δ ∈ (0, 1) ≡ probability that if gij = 1 for some j at time t, gij = 0 at t + 1. The

link lij between the nodes i and j describes the liquidity �ow channel between these

two nodes. In particular without direct connection, two nodes can transfer liquidity

each other just through a di�erent path. We thus keep a generic de�nition for the

link lij since it has not a precise �physical� meaning. Clearly lij exists if and only

if gij = 1. Finally, we de�ne a path as a non-empty graph P = (V, L) of the form

V = {x0, x1, ..., xN} and L = {x0x1, x1x2, ..., xN−1xN}, where with xi∈N we de�ne

the node i and with xixj the link or edge between i and j. Now we present the
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de�nition of �structural symmetry� using the notion of automorphism to describe

two or more nodes symmetrically located in a graph. Formally an automorphism is

a one-to-one mapping, τ , from N to N of a graph G(N,L) such that < i , j > ∈ L if

and only if <τ(i) , τ(j) > ∈ L. We can de�ne automorphism equivalence between i

and j , i ≡AE j, if there exists some mapping τ such that τ(i) = j , and the mapping

τ is an automorphism. Thus, if we �nd such automorphism and we are interested

on studying the impact of the link-structure on the agents, we can analyze selected

nodes of the graph representing the equivalence classes.

2.2 The zero-correlation case

There are n nodes/players, deciding how much invest of their unit capital on risky

asset, xi , and on risk-free asset, (1− xi) at time t. In particular, the risk-free asset

has variance σRF = 0, while the risky asset, σR > 0. Investing at t on the risk-free

asset yelds exactly the amount invested on it at t+1, while the expected return from

the risky asset is positive and equal to pxih, where p is the probability of positive

return h. The identical agents are risk-averse and maximize their expected pro�t

choosing the optimal portfolio structure. At this stage the assets are identical for all

the players but independent each other. The nodes are connected through a network

structure describing the liquidity �ow-path between the peers. We assume in fact

that the agents transfer at each time t liquidity to each other following an equal-

sharing rule. Roughly speaking, at each t the agents agree to exchange liquidity

such that the �nal income post-transfer is the same for all the agents belonging to

the component. We assume also that the network structure is common knowledge

and the players do not deviate from the sharing-rule. This means that the link lij

between two nodes i and j guarantees the respect of the risk-sharing norm, i.e., no

strategical deviation from the rule are allowed. As we will see formally, this setting

and overall the common knowledge of the whole network structure guarantees the

neutrality of the link-structure on the agents` optimal choices.

In absence of any connection (situation that we can de�ne as the �autarky� case),

the expected income Y at time t for a generic agent i is

E[Yit] = xithp+ (1− xit)

for all i at time t . Consequently, the variance observed by player i will be

V ar[Yit] = σ2
Rx

2
it

Moreover, we assume that the agents are homogeneous in risk-aversion. This
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assumption in particular gives us the possibility to exclude any other potential reason

to observe heterogeneous choices between the players. The agents` instantaneous

preferences are described by

uit(Cit) = E[Cit]− aV ar[Cit]

where a is the coe�cient of absolute risk-aversion and Cit is the consumption at

time t. Notice that if an agent i is not belonging to the risk-sharing group, Cit = Yit

. However, since we are considering just connected components (it does not exist

a node such that the degree is equal to zero in our setting), each agent takes into

account at each t the transfers to/from the rest of the players. Formally, the expected

income post-transfer is

Eit[Iit] = (xitph+ (1− xit))/n+ (ph
∑
j 6=i

xjt + (1− xjt))/n (2.1)

and since we assume identical agents and no uncertainty on the network structure

we expect xit = xjt for all i and j belonging to G. Thus, we can rewrite (2.1) as

Eit[Iit] = xitph+ (1− xit) (2.2)

or the expected income post-transfer is not changed. However, the variance ob-

served by each identical agent at time t is

V ar[Iit] = (x2itσ
2
R)/n2 + (σ2

R/n
2)
∑
j 6=i

x2j = (x2itσ
2
R)/n (2.3)

so as expected the variance is function of the component size n. Thus, given the

expressions above, maximizing the utility function we can �nd the optimal capital

share x∗it invested on risky assets for all i ,

x∗it = n(ph− 1)/2aσ2
R

The result is in line with the �modern portfolio theory�: The optimal capital-share

invested on risky-assets is function of the returns of these assets, of their variance,

of the risk-aversion coe�cient, and �nally of the size of the risk-sharing group n.

To simplify the notation, from now on we de�ne the rate (ph − 1)/2aσ2
R with k.

As expected, given our assumptions, belonging to a risk-sharing group of identical

agents helps these to increase their capital share invested on risky-assets from k to

nk.
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As anticipated in the introduction, next step will be to add uncertainty on the

network structure assuming �not certain� the existence of each link at t+ 1 between

two generic nodes i and j such that gij = 1 at t. Formally, Prob[gij,t+1 = 1 | gij,t =

1] = (1− δ) ∈ (0, 1)∀i, j ∈ G. Notice that we do not allow the �creation� of new links

between the agents at this stage. As anticipated, this new model feature gives us the

opportunity to describe the case where each agent cannot completely rely on the links

he observes at time t. If this is the case, the location of each peer assumes a central

role for the optimal individual decision, i.e. we di�erentiate the nodes` �nal optimal

choices. To give an example anticipating the formal results, let`s think about a star-

shaped network structure. A �central� node is connected with many (symmetrically

located) peripheral nodes so we can distinguish just two �types� of nodes. It is quite

clear in this case that once we assume a probabilistic structure the position of the

central node is more �advantageous� than that of the peripheral one. Firstly because

the central node observes more direct partners (he can obtain liquidity at t+ 1 with

higher probability) and also because of the link`s �channel feature� he has got, i.e.

a peripheral node can receive liquidity from another peripheral node if and only if

the liquidity �ow pass through the central node. As we will see formally, given the

probabilistic feature of the graph, the most �central� node(s) will expect to risk-share

with more agents than the peripheral ones. This �advantage� will di�erentiate the

players` �nal choices.

Formally and for a generic network structure, the expected income post-transfer

of a generic node i now is

Eit[Iit] = (xitph+ (1− xit))/nit + (ph)/nit
∑
j 6=i

θij,txjt +
∑
j 6=i

θij,t(1− xjt)/nit (2.4)

where nit ≡ 1/Eit[
1
n
]3 and θij,t is the probability to observe the realization of the

partner j. At this stage, we assume zero-correlation between the risky assets, so the

variance observed by each node at time t is

V ar[Iit] = (x2itσ
2
R)/n2

it + (σ2
R/n

2
it)

∑
θij,tx

2
jt (2.5)

Maximizing the utility function we �nd the optimal x∗i at time t

x∗it = nit(ph− 1)/2ασ2
R (2.6)

We notice that the result is �similar� to the previous one except for the fact

3To compute nit we use the formula discussed in the 2.4 Section.
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that now the expected component size di�erentiates the optimal �nal agent`s choice.

Intuitively a node i will observe the highest nit at time t than the rest of the nodes

j if and only if his average distance with the rest of the agents (number of links to

reach j) is the smallest one. In the example of the star-shaped network structure, the

�central� node of the star will observe the highest nit and consequently he will be able

to choose the highest xit between all the nodes belonging to the component. However,

anticipating the further analysis, we can say that once we assume agents` sight bigger

than one (a node i observes js distant more than one link from him), a �simple�

analysis of the nodes` degree is no more su�cient to de�ne their �centrality degree�.

In fact, even if in a star-network the �centrality� of the nodes is intuitively related to

their degree, for a generic structure this is not always the case. In particular, at this

stage, we can use our measure nit to characterize the agents/nodes` centrality scores.

The nodes` centrality scores are proportional to nit ∀i ∈ G, i.e. the agents` centrality
is function of the expected number of partners with whom they will share their risk.

Finally, notice that the individual peers` choices do not a�ect the single agent i`

decision at this stage. Without assuming di�erent from zero-correlation between the

risky-assets, the key feature di�erentiating the agents is just nit . In the next section

we will relax this assumption and discuss the relative implications.

2.3 The positive-correlation case

In this section we assume positive correlation between the risky-assets. The correla-

tion parameter is de�ned by ϕ ∈ (0, 1) . We still mantain the previous assumptions

and in particular the one de�ning the graph as probabilistic. Notice that the positive

asset-correlation does not in�uence the post-transfer expected income 2.4, but only

the variance observed by the agents at each t. Formally,

V ar[Iit] = (x2itσ
2
R)/n2

it + (σ2
R/n

2
it)

∑
j 6=i

θij,tx
2
jt + (2ϕσ2

Rxit/n
2
it)

∑
j 6=i

θij,txjt (2.7)

Solving the optimization problem we can derive the best reply functions for each

node i ∈ G. In particular, we see that the optimal choice now is function also of the

partners` optimal ones,

x∗it = nit(ph− 1)/2ασ2
R − ϕ

∑
θij,tx

∗
jt (2.8)

We notice that two main features a�ect now the �nal optimal choice of i. Firstly,

as we have seen in the previous section, the measures nit increases the optimal risk-

exposure of the agent (this is seen in the �rst term of the expression above). Secondly,
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the increasing optimal x∗jt of the peers negatively a�ects the agent i`s optimal risk-

exposure. Intuitively, higher is the risk taken by the peers, higher is the risk observed

by each node, given the positive asset-correlation. However, the j partners`optimal

choices are discounted by their distance with the node i: The i`s location a�ects

again his optimal choice but in a reverse way. This is possible since the risk taken by

the i‘s peers, given ϕ ∈ (0, 1), is assumed partially �substitute� of the risk taken by

i himself. However, similarly to the discount coe�cient used by Bonacich (1987) in

his centrality measure, the choices of the i‘s partners are discounted by θij , function

of the distance from i to j nodes. Summarizing, the �nal optimal choice is function

of nit , that depends on the relative location of i at time t in the network and on

link probability δ, of the correlation coe�cient ϕ, and �nally of the peers` optimal

choices, function themselves of their relative locations.

To underline the importance of a �structural� analysis to forecast the optimal

agents` behaviors, we present below two examples considering di�erent starting net-

work structures. As anticipated we have chosen two speci�c graphs such that we can

easily observe the impact of di�erent locations on the �nal nodes` choices. The �rst

example considers three nodes connected through a line-shaped link-structure (see

Figure 2.1). The second one describes a seven-nodes network in which two symmet-

ric nodes have the highest degree and are respectively connected to two symmetric

pairs of peripheral nodes, and �nally one node, located as a bridge between the two

automorphic subgraphs.

Figure 2.1: 3 nodes Star

In this �rst example we start with a 3 nodes line-shaped network structure, where

the node labelled 2 connects 1 and 3. We can just study the nodes` choices of 1 and

2 since 3 belongs to the same equivalence class of 1. Assuming k = 0.2 and for the

moment ϕ = 0 we �nd the following optimal x∗it (vertical axis) for δ between 0 and

1 (horizontal axis),
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Figure 2.2: 3 nodes Star with zero asset-correlation. We notice the advantage of the
node 2 over 1 and 3 for all the δ ∈ (0, 1).

As we can see, the node 2 mantains an �advantage� over 1 and 3 for all the

values of δ between 0 and 1. Before analyzing the second structure, we study the

e�ect of di�erent positive values of ϕ on the optimal risky choice. To do this, we �x

arbitrary values of δ, (0.3,0.5,0.7,0.8), and compute the optimal x∗it for di�erent ϕ

values (horizontal axis).

Figure 2.3: 3 nodes Star with positive asset-correlation and δ = 0.3. The node 2
chooses optimal x higher than 1 and 3 nodes for all ϕ ∈ (0, 1).

In the Fig.2.3 above the link probability is setted to δ = 0.3 and related expected

component-size vector n̄ = (2.19, 2.4, 2.19) . We observe that the node 2 still has an

advantage respect to 1 and 3. The probabilistic graph feature simply decreases the

optimal agents` choices without reverting the node 2`s advantage over 1 and 3. This

is possible since, given this speci�c structure, the node 2 has both an advantage in

terms of higher nit and relative location of his partners. As we will see in the next

pictures, increasing the probability δ, we observe smaller di�erences on the optimal

x∗it of the nodes, overall for high asset-correlation levels. In the next picture we
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present the optimal choices for δ = 0.5 ,

Figure 2.4: 3 nodes Star with positive asset-correlation and δ = 0.5.

As we can see the results do not change qualitatively from the previous one.

The node 2 mantains an higher advantage over 1 and 3 than in the previous case.

Following, we present other two for δ = 0.7 and 0.8 respectively.

Figure 2.5: 3 nodes Star with positive
asset-correlation and δ = 0.7.

Figure 2.6: 3 nodes Star with positive
asset-correlation and δ = 0.8. For ϕ >
0.7 we start to see the previous node
2`s advantage reverted in favour of the
peripheral nodes.

Summarizing, increasing the probability δ, given this star-shaped structure, we

observe a general decreasing of the nodes` optimal risk-exposure but also a decreasing

(in favour of the peripheral nodes after certain values of δ) of the relative di�erences

on x∗it between the players.

As anticipated above, now we propose the same analysis for a more complex

structure composed by seven nodes. As we can see from the Figure 2.7 below, the

nodes 1 and 3 are the ones with highest degree, {4,5,6,7} the ones with the low-

est (we will de�ne them again as peripheral nodes), and �nally the node 2 with a

relatively intermediate degree but a particular �bridge position� between two auto-

morphic subcomponents. This classi�cation describes as well the three equivalence
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classes composing the graph, thus we will analyze just the optimal choices of the

representative nodes 1, 2 and 4 of their respective equivalence classes.

Figure 2.7: 7 nodes structure

We start again analyzing the zero-correlation case. The optimal x∗it for δ between

0 and 1 are described below,

Figure 2.8: 7 nodes structure with zero asset-correlation. Until around ϕ = 0.1 the
node 2 has the highest optimal x. The peripheral nodes choose the lowest optimal x
for all ϕ ∈ (0, 1).

It is interesting to notice that until a particular level of δ, the most central node

is the node 2 (and consequently we expect 2 to choose the highest capital-share on

risky assets), but after that, the nodes 1 and 3 appears to have the highest nit scores.

This �rst picture helps us to underline the impact of nit, function of the i`s location,

and of δ, on the �nal optimal choice. As we have done previously, let`s assume now

positive asset-correlation for �xed probability δ levels.
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Figure 2.9: 7 nodes structure with
positive asset-correlation. The node 1
chooses the highest x. The peripheral
nodes choose the lowest optimal x for
all ϕ ∈ (0, 1).

Figure 2.10: 7 nodes structure with
positive asset-correlation. We can no-
tice the decreasing di�erences between
the optimal x of the nodes 2 and 4,
once we increase the asset-correlation.

It is interesting to observe in the Figure 2.9 that the di�erences on the optimal

choices of the nodes 2 and the peripheral ones become smaller increasing the asset-

correlation. This is due to the smaller degree di�erence between them and also to

the �negative� e�ect given by the relatively advantageous location of the nodes 1 and

3. The nodes 1 and 3 observe with higher probability the peripheral nodes (with

low nit scores) while the node 2 observes 1 and 3 as direct partners. This di�erence

explains in part their relative advantage. In the Figure 2.10 we can observe more

clearly the impact of the asset-correlation on the nodes` location. For δ ≥ 0.7 we

notice the advantage of the peripheral node 4 over 2 for ϕ > 0.5 . The intuition

behind is that when the structure is particularly uncertain and the asset-correlation

relatively high being more connected or at a shortest distance with other peers is not

more advantageous.

Following we present the optimal x∗it for δ = 0.7 and 0.8 respectively,

Figure 2.11: 7 nodes structure with
positive asset-correlation and δ = 0.7.

Figure 2.12: 7 nodes structure with
positive asset-correlation and δ = 0.8.

In the next section and before discussing about potential structural measures, we

discuss in more details the �centrality� measure nit. As anticipated in the introduc-

tion, nit relies on the probabilistic feature of the graph.
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2.4 The centrality measure nit

We have seen from (8) how the agents` �nal optimal choices are dependent of their

relative location in the network. Moreover, the link between two peers a�ects in

opposite ways the risk taken by them. As we have previously remarked, the positive

impact is described by the nit score, while the negative one is catched by the node`s

partners choices and the positive asset-correlation coe�cient. To compute nit we

calculate the expected number of peers with whom the agent i is expecting to share

his risk. This centrality measure in particular is function of the average distance

between the nodes: More links a node i needs to walk through to reach their partners

js, lower probability he faces to reach them, assuming δ i.i.d.. Formally,

nit =
1∑n

m=1 pm(Hm) 1
m

(2.9)

where m is the number of peers risk-sharing including i, δ is the probability

de�ned between 0 and 1 that an existing link at t will exist at t + 1, and pm(Hm)

de�nes the probability to observe the subgraph Hm generated by a speci�c set of

ties (connecting the node i to other m − 1 nodes) containing m nodes including

i. Notice that we can have more than one combination of paths containing i and

m − 1 other nodes. The nit measure, di�erently from the Bonacich one, takes into

account all the paths including i and not only the ones emanated from this. The

�density� of the graph and consequently the average distance between the nodes

a�ects directly the measure nit. A more dense graph in fact leads to higher number

of subgraphs Hm (increasing the number of combinations of m nodes including i

). However, nit is also function of the link-probability δ, so as we have seen from

the examples presented above, it is not always the case that for all the values of

δ ∈ (0, 1) the node with lower average distance from the rest of the agents has the

highest nit score. Summarizing, the nit centrality measure takes into account all

the possible paths passing through the node i at time t, it allows for �owing by

parallel duplication, and �nally it works on connected graphs (the distance between

two nodes belonging to two di�erent unconnected component is assumed in�nite).

In this model we assume also independent probability over the existance of each

distinct path. Finally we want to stress out the fact that this measure counts the

expected number of peers a node i is attached to at time t. This means that di�erently

from the mainstream of the network centrality measures, nit is �node-founded� even

if the paths to reach each peer directly in�uence the measure. We can observe a

clear example of this �ambiguity� in the second network structure presented above.

In that case, the node with highest closeness and betweeness scores is the node 2,

given his speci�c �bridge� location. However, measuring his centrality through nit
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we �nd that just for particularly low link-probability δ the node 2 has the highest

score. Intuitively, even if the node can reach in less steps the rest of the peers,

with higher probability than 1 and 3 he can �nd himself in isolation. Following

the Sabidussi (1966) criteria qualifying a centrality measure, we can notice that nit

fully satisfying them. In particular, adding a tie to a node i increases his nit score,

and adding a tie anywhere in the network never decreases his centrality. However,

as Borgatti and Everett (2006) underlines, these criteria do not fully explain the

centrality of a node. This feature can be also observed in our model: The �total-

centrality� of an agent is the result of two centrality measures as we can see from

the agent's best reply function. Thus, the nit measure in our model describes the

geodesic relative advantage/diadvantage of a node without giving us any information

about the relative advantage/disadvantage of the �in�uence� of a node. We have to

remark that the nit measure is directly connected to the Katz (1953) measure and

consequently to theBonacich (1987)'s one. Their measures are weighted counts of the

number of walks originating (or terminating) at a given node. This means roughly

speaking that long walks count less than short ones. However, the nit measure, as

previously said, counts the expected number of nodes reached by weighted paths (not

necessarely edge or vertex-independent).

We show below, as example, how we can compute the nit measure for the speci�c

case of a star-shaped network structure with one central star-node and n peripheral

nodes,

nit =
1∑n

c=1
1
c

(n−1)!
(c−1)![(n−1)−(c−1)]!(1− δ)c−1δn−c

njt =
1

δ +
∑n

c=2
1
c

(n−2)!
(c−1)![(n−2)−(c−1)]!(1− δ)c−1δn−c

with i labeling the star node and j the peripheral one.

2.5 Myopic nodes and positive asset-correlation

In this section we relax the perfect knowledge of the network structure assumption,

assuming that the agents can observe just their direct neighbors (nodes 1-link distant)

and neighbors 2-link distant. We mantain the rest of the previous assumptions as

much as the positive asset-correlation one. We start presenting the 7-nodes structure

previously studied, assuming 1-link nodes` sight and following, the case for 2-links

nodes` sight. Notice that for the particular1-link nodes` sight assumption, nit varies

between 1 and dit , the degree of node i. Assuming δ = 0.3 we obtain the following

results,
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Figure 2.13: 7 nodes structure, positive asset-correlation, myopic nodes (1 link sight)
and δ = 0.3.

We can clearly see the �negative� e�ect of being connected to the nodes {1,3} faced

by the rest of the nodes, for low correlation values (ϕ < 0.7 ). However, we observe

the reverse situation for correlation values above 0.7: The nodes {2,4,5,6,7}choose

higher x∗ than 1 and 3, and in particular the node 2 has highest x∗. Notice that

assuming 1-link sight the nodes 1 and 3 observe highest number of partners for all

the values of δ between 0 and 1. However, the �peer e�ect� is particularly clear for

the node 2 choosing lower x∗it than the peripheral nodes for some asset-correlation

level (the same is true for values ϕ > 0.7 comparing the nodes {1,3} with {4,5,6,7}).

For δ = 0.5 we obtain,

Figure 2.14: 7 nodes structure, positive asset-correlation, myopic nodes (1 link sight)
and δ = 0.5.

We notice immediately that for δ ≥ 0.5 we don`t have the particular result ob-

tained in the previous picture for ϕ > 0.7. However, even in this case we observe the

�peer e�ect� reverting the relative advantage of the node 2 on {4,5,6,7} for ϕ > 0.9.

Following the Figures for δ = 0.7 and 0.8,
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Figure 2.15: 7 nodes structure, posi-
tive asset-correlation, myopic nodes (1
link sight) and δ = 0.7.

Figure 2.16: 7 nodes structure, posi-
tive asset-correlation, myopic nodes (1
link sight) and δ = 0.8.

At this high δ levels, we observe the reverting advantage noticed before for lower

asset-correlation coe�cients.

Now, as anticipated, we generate the results assuming 2-links distance sight. This

case appears to be more interesting than the previous one since the node 2 is the

only player able to see the whole structure, i.e. the strategical location of this agent

has a strong impact on the �nal optimal agents`choices. For δ = 0.3 we obtain

Figure 2.17: 7 nodes structure, positive asset-correlation, myopic nodes (2 link sight)
and δ = 0.3.

At this probability level the node 2 observes highest nit than the rest of the nodes.

The node 2 mantains an advantage for all the ϕ values. Even in this case the peer

e�ect is not strong enough to revert the impact of nit. Below the results for higher

δ,
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Figure 2.18: 7 nodes structure, posi-
tive asset-correlation, myopic nodes (2
link sight) and δ = 0.5.

Figure 2.19: 7 nodes structure, posi-
tive asset-correlation, myopic nodes (2
link sight) and δ = 0.7.

Figure 2.20: 7 nodes structure, positive asset-correlation, myopic nodes (2 link sight)
and δ = 0.8.

The results are qualitatively di�erent for δ > 0.3: The peer-e�ect becomes central

to understand the choices` di�erences. In this case, the nodes 1 and 3 have a slightly

higher nit score than the node 2 but, for the fact that they are attached to relatively

disadvataged located nodes, the di�erence with node 2'optimal choice is ampli�ed.

Notice that if we were studying the centrality �a la Bonacich� it would be not su�cient

to understand the results obtained above. This is due to two main features of the

model. Firstly, the fact that the results depend mainly on the two parameters δ

and ϕ. Secondly, the fact that the link in our model is channel of two di�erent

things. It represents both the liquidity channel between the agents and also a canal

through which the peers` risk is spread through the network. The models using

the β centrality measure or generally the �eigenvectors centralities� assume that the

peers`choices impact on an individual decision is either positive or negative. In this

model, both positive and negative e�ects are present at the same time, as we can

see from the 2.6. Having higher nit means for a generic node i to face higher risk-

pooling opportunities, while higher Bonacich centrality scores of the direct partners

increase the risk observed by i for positive correlation coe�cients ϕ. We can also

argue that a simple analysis of the nodes`degree is not su�cient to understand the

optimal agents`choices. As we argue in the next section to pick up the most central

node(s) of the component, we need di�erent �centrality� measures.
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2.6 Structural analysis

In this section we try to underline the impact of the starting network structure on the

�nal optimal agents` choices. Before starting the proper analysis it is necessary to

clarify the meaning of the �link� between the agents as much as the results obtained

so far. What we can understand from 2.6 is that the connection between two nodes

is both a channel of liquidity and a way to �receive� the peers` correlated risk. This

double feature represents the central key of the model. Analyzing the literature on

risk-sharing using a network analysis approach we see that the negative impact of the

peers was usually represented by their risk of default and its related consequences.

This implies that with this setting the link between two agents could exist if and

only if there has been a previous liquidity �ow between the interested parts. In this

model is not necessarely the case. The connection represents the existance of a risk-

sharing norm between two agents and no previous liquidity exchange is necessary to

observe a connection between two nodes. This di�erence becomes central to explain

the agents` behaviours observed in our model, overall if we recall the assumption of

no-deviation from the risk-sharing norm on the agents` strategies. In addition, the

double link`s feature prevents us to use only the Bonacich centrality measures to

understand the agent` choices. In fact, as underlined before, the Bonacich centrality

scores, a �volume measure� using the Borgatti 2006 terminology, could just explain

the negative\positive impact of the peer risk-choices but fails to take into account

at the same time the two opposite directions. Speci�cally, the Bonacich measures

can help us if and only if we assume one speci�c �direction� of the peers` impact on

the agent`s �nal decision; In particular, the in�uence of a node's choice on the peers'

ones. Looking to the following picture we notice this feature,

Figure 2.21: Bonacich centrality for the 7 nodes structure.

According to the Bonacich centrality scores, for δ values between 0 and | 0.5 |
the nodes 1 and 3 are the most central. 4.What we can observe in the picture is the

4For the fact that δ is between 0 and 1 we know that the Bonacich centrality scores converges
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relative advantage given by the location of the nodes 1 and 3, but we miss the negative

e�ect given by the same location once we assume in the model the �ow of a positive

correlated risk. We notice that the node 2 for example is particularly negatively

a�ected by the close connections with the nodes 1 and 3, respectively linked to two

peripheral nodes (located in the �worst� geodesic position). However, as we can see

from the b.r.f. above, for particularly high correlation coe�cients, and uncertainty

on the ties' future existance, the peripheral nodes are those in advantageous location.

Given the �dual-feature� of the link we suggest two di�erent tools, focusing each

on one of the two link mentioned characteristics: The F̄ - and the Intercentrality-

measure. The �rst one measures the fragmentation of the network due to the elim-

ination of a node i. In particular, the proposed F̄ -measure is a modi�ed version of

the F -measure explained by Everett and Borgatti (2010) and takes into account the

expected size of the components created after the elimination of i from the main

connected component. This measure in particular can help us to understand the

impact of the elimination of a speci�c agent on the nit centrality measure. Formally,

F̄it = 1−
∑

j 6=i njt(njt − 1)

n2(n− 1)

bounded above at 1. This measure catches an important feature of network

structure. Intuitively, F̄ explains the impact of a node i on the risk-sharing group

in terms of his �structural centrality�. As example consider a star-shaped structure

with the node i as central agent connecting the rest of n− 1 js nodes through single

links with them. The elimination of the node i from the component fragments the

whole structure and creates n − 1 single-node components. In terms of F̄it score,

we will obtain F̄it = 1, its maximum level. Moreover, F̄it = 1 means that x∗jt = k,

their optimal x when they do not risk-share with other peers (autarky case). On the

other hand, suppose the case of a starting graph where the elimination of a node i

leaves a component of n− 1 nodes �perfectly� connected (the resulting component is

a connected network where all the j nodes can reach each other with a direct link).

In this case, the impact of i-elimination will be relatively the smallest (the exact

F̄it score depends also on the δ chosen) since the rest of the j nodes can still enjoy

the risk-pooling e�ect in the most e�ective way. The F̄ scores for the 3-nodes and

7-nodes structures presented above for δ ∈ (0, 1) are the following,

for δ 6= 0.5 since the inverse of the norm of the largest eigenvalue of the adjacency matrix G is 0.5.
Moreover, we added the negative sign in front of δ since we want to analyze the centrality in the
case where the j peers` choices are substitute to xi and consequently have a negative impact on it.
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Figure 2.22: F̄ centrality for the 3
nodes Star.

Figure 2.23: F̄ centrality for the 7
nodes structure.

We can see that for the 3-nodes structure the node with the highest F̄ score is

the node 2 for all the δ ∈ (0, 1) and equal to 1: Taking out this node leads to the

maximal �damage� to the structure, leaving the nodes 1 and 3 isolated. For the 7-

nodes structure, again the node 2 has the highest F̄ score, but as we can see from the

picture above his F̄ centrality, for δ higher than 0.5, starts to be closer to the node 1

and 4`s ones. We will produce now the results for the F̄ scores of the �myopic� nodes

(observing just their direct neighbors or 1-link distant neighbors and 2-link distant

neighbors) composing the 7-nodes structure,

Figure 2.24: F̄ centrality for the 7
nodes structure with myopic nodes (1
link sight).

Figure 2.25: F̄ centrality for the 7
nodes structure with myopic nodes (2
links sight).

In the �rst case we notice that the node 1 (and symmetrically the node 3) has

the highest F̄ score, i.e. the elimination of this node damages more the risk-sharing

structure. It is interesting to notice the higher impact of the peripheral node than the

node 2. Observe also that at this stage we have analyzed the impact of a single-node
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elimination and not multiple-nodes one. Assuming 2-links distant sight, the nodes 1

and 3 remain the most �central� according to the F̄ measure.

The second measure is a particular centrality tool developed by Ballester et al.

(2006) that helps us to understand the impact of a node i on the Bonacich centrality

scores of his peers. In particular this measure can tell us the negative impact of the

relative peer location. Formally,

cit(g, β) = b(g, β)− b(g−i, β) + 1

or alternatively,

cit(g, β) = bit(g, β) +
∑
j 6=i

[bjt(g, β)− bjt(g−i, β)]

with bit(g, δ) de�ning the Bonacich score of the node i belonging to the component

g at time t. Computing the intercentrality scores for our 7-nodes structure, we �nd

the following results for | δ |∈ (0, 1),

Figure 2.26: Intercentrality scores for the 7 nodes structure.

As we can see from the table, when we assume relatively small β coe�cients, the

higher impact is given by the elimination of the nodes 1 and 3. Once we assume

higher β, the �central� node is the agent 2.

Summarizing, the parallel analysis of these two measures could explain the impact

of each node i in terms of the i`s �role� in the network. High F̄i values tell us that the

cohesion of the network strongly depends on the node i, while ci(g, β) scores show

the i‘s peer e�ect on the other nodes. The net impact on the �nal agents` choices

will depend on the parameters δ and ϕ assumed.

[................]

Talking about the structure impact on the agents` choices we focus the attention

now on the average agent`s distance from the rest of the group. The average distance

measure dit for a node i at time t gives us the �geographical� information about an

agent`s location in the network. Formally,

dit =

∑
j 6=i dij

n− 1
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Again, smaller dit does not necessarely mean to choose higher x∗it, as we have seen

in the previous examples. However, we argue that, under certain conditions, there

exists just a unique structure minimizing the risk taken by the agents, and this is

the �line� structure.

We start proving that starting from a line-shaped network structure, any rewiring

leads to higher average distance between the nodes.

Claim 1. Any structure di�erent from the line-shaped one leads to

higher average distance between the nodes.

Proof. Assume a starting line-shaped network structure of n ≥ 4 nodes as in the

Figure (2.27). Let`s label the nodes as j1, j2, ..., jn , where with the node indexed with

1 we label one of the two peripheral nodes (the other one consequently is indexed

with n ). For simplicity (but without a�ecting the �nal conclusion) we modify the

structure, cutting the link between the �rst node of the line, j1, with the second one,

j2 , and we activate a new link between j1 and a generic node jm , with m ∈ [3, n−1]

as in the Figure (2.28). In this way, the structure now is not more a line but a generic

tree with the same number of links between the nodes. Firstly, notice that for the

node 1, linking with another node di�erent from j2 can only be bene�cial in terms

of average distance with the rest of the nodes, i.e. the net-impact for this node will

be positive. The same we can say about the nodes jm+a with a ∈ [0, n−m]. In fact,

for all of them it is changed the distance (now shorter) from the node j1 without

a�ecting the distance with the rest of the nodes. Thus, until now we can say that

j1 and jm+a will have a positive net-impact from the new link-rewiring. Now, let`s

divide the rest of the nodes, indexed as jh, with h ∈ [2,m − 1], in two sets: One

composed by nodes such that m − h ≤ h − 2 , or h ≥ m+2
2

, and one such that

h < m+2
2

. Notice that doing this we are dividing the jh nodes between those nodes

such that the distance between them and jm node is smaller/equal than the previous

distance (before the rewiring) with j1 ,with the ones where the converse is true. The

intuition behind that comes from the fact that for the nodes such that h ≥ m+2
2

, we

expect a positive net impact from the rewiring since they will be linked to the node

j1 in shorter distance, while for the other ones, the new structure will connect them

to j1 with a longer path than before the rewiring. Finally, we need to show that the

number of nodes belonging to the latter group is always lower than the number of

the rest of the nodes belonging to the network, for any line-shaped structure of n

nodes. In particular, it must be true that m+2
2
− 1 ≤ 1 + n− m+2

2
or m+ 2 ≤ n+ 2 .

This is always true with strict inequality, given our initial assumptions on m and n.

Thus, we can conclude that any structural modi�cation to the line-shaped network

leads to a graph where the average distance between the nodes is lower.
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Figure 2.27: Seven nodes Line. Figure 2.28: Seven nodes Line
�rewired�.

Given this result we can show that, under certain conditions, the line-shaped

network structure is the one minimizing the total risk taken by the agents belonging

to the component.

Claim 2. Given our assumptions and ϕ such that ∂xi
∂dit

< 0, the net-

work structure minimizing the total risk taken by the agents is unique and

it is the line-structure.

Let`s underline the fact that the total risk (variance) observed at each t, is function

of the capital shares invested by the agents on the risky-assets. We have previously

showed that the optimal x∗it chosen by a generic agent i is a function f(nit) and that

nit is a function g(δ) of the probability δ ∈ (0, 1). Moreover, nit depends on the

relative location of the node i at time t. In fact, as we can see from the formula used

to compute nit, shorter average distance dit implies higher probability (in average) to

observe the partner nodes and consequently higher nit score. In particular, let`s de�ne

with lG = 1
n(n−1)

∑
dit the total average distance between the nodes of the component

G. As we have said, ∂ni

∂di
< 0 since more a node i is distant from the rest of the nodes

(more links between i and any j ∈ G) lower is the expected number of agents observed

at t + 1 (lower nit). Thus, by chain rule we have
∂x∗it
∂dit

= ∂f(.)
∂nit

∂g(.)
∂dit
− ϕ

∑
j 6=i

∂θij
∂dit

∂x∗jt
∂dit

,

with
∂θij
∂dit

< 0 for the same reason explained for nit, and not clear sign of
∂x∗jt
∂dit

since

it depends on the impact of the change of average distance of i, dit , on the average

distance djt, i.e.
∂x∗jt
∂dit

=
∂x∗jt
∂djt

∂djt
∂dit

. Thus, the net impact of an increasing of dit on the

optimal i`s choice depends also on ϕ and on
∂x∗jt
∂dit

. Underlined this fact and given the

previous claim on the structure maximizing the distance between the nodes, we can

say that, given a speci�c value of ϕ small enough or such that
∑

j 6=i
∂x∗jt
∂dit

< 0, the

network structure with highest average distance between the nodes is �the line�, and

this will be also the structure with lowest individual risk taken by the agents.

We generate an example that shows precisely what we have claimed. In the

pictures below we present two graphs composed by 4 nodes: A star-shaped and a

line-shaped one. As we can see from the b.r.f. below, given δ we are able to compute

the ϕ such that the line (higher average distance) guarantees to a speci�c node higher

capital shares on risky assets.
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Figure 2.29: 4 nodes Star. Figure 2.30: 4 nodes Line.

Notice that the previous claim is only valid for ϕ and δ such that ∂xit
∂dit

< 0. This

restriction is necessary since for ϕ and δ such that ∂xit
∂dit

> 0 the correlation coe�cient

is high enough to revert the positive e�ect on the optimal xit of an higher nit score to

a negative one. Intuitively, for high enough asset-correlation levels, being connected

with more nodes (in expected value) and overall linked with nodes in �advantageous�

locations could become not-bene�cial for some agent (see the Figures below).

Figure 2.31: 3 node`s best reply for
ϕ ∈ (0, 1) belonging to the �Star� or
the �Line� (as peripheral node) for δ =
0.3.

Figure 2.32: 3 node`s best reply for
ϕ ∈ (0, 1) belonging to the �Star� or
the �Line� (as peripheral node) for δ =
0.5.

Figure 2.33: 3 node`s best reply for
ϕ ∈ (0, 1) belonging to the �Star� or
the �Line� (as peripheral node) for δ =
0.7.

Figure 2.34: 3 node`s best reply for
ϕ ∈ (0, 1) belonging to the �Star� or
the �Line� (as peripheral node) for δ =
0.8.

Without reporting the plots, we remark that for the nodes 1 and 2, we �nd that

the star-shaped network is more bene�cial than the line for all the δ ∈ (0, 1). This
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is possible since intuitively these nodes bene�t from the star structure in terms of

both shorter average distance and peer e�ect.

Notice that the model does not take into account the leverage between the agents

and the default of a peer is not allowed in this model. Even if we assume that the

link-structure is probabilistic, the consequence of an exit from the risk-sharing group

of a node does not a�ect directly the income of the other peers. This is possible since

we are considering a two-periods game with no �repayment-problem�. For the same

reason, we do not study in this model �contagion e�ects� or related problematics

usually underlined in the literature.

[ADD THE CASE FOR THE 3 NODES NET]

3 Conclusions

In this paper we show that, assuming a probabilistic network structure between risk-

sharing agents, deciding their optimal capital share to invest on risky assets, we are

able to di�erentiate the agents`optimal choices, without assuming any di�erence on

agents'degree of risk aversion. In particular, the �nal optimal choices will be function

of their relative location through the network. We analyxe also two measures able

to characterize the most �central� agents in our model: One is a modi�ed version of

the F measures proposed byEverett and Borgatti (2010), F̄ , and the other one, the

Intercentrality measure discussed in Ballester et al. (2006). In particular, we �nd

that the F̄ measure can be useful to pick up the �key-player �, or the most in�uencial

node in terms of risk-sharing impact on the expected number of partners to risk-

share with. Conversely, the Intercentrality measure can help to forecast the most

central node(s) in terms of �risk-in�uence� on the other peers. The key feature of our

model is given by the �double-role� of the links between the agents. If a bilateral link

can guarantees liquidity �ow between the agents for some exogenous probability, it

is also a risk-channel for the peers once we assume positive asset-correlation coe�-

cients. The results obtained underline the importance of a �structural analysis� to

understand and forecast potential risk-behaviors of agents belonging to a risk-sharing

group. Even if we do not consider �norm-enforcement strategies� in this paper, we are

able to explain the optimality of di�erent risk-exposures chosen by identical agents.

Assuming a probabilistic link-structure we want to describe a speci�c scenario where

the agents do not consider their present relationships as �certain�. There are many ex-

amples catching this feature. One of this could be the interbank market: The present

liquidity channels between institutions (in our model represented by links between

peers) seem to be dynamic on time and sensible to exogenous changes on the �-

nancial market scenarios. Even at �community level�, the link between individuals,
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representing the existance of a risk-sharing norm between peers, is often explained by

previous social-relationships between the partners. However, monitoring constraints

and exogenous changes on the social-connections can undermine the existance of the

liquidity channels between the parts, i.e. precautionary risk-behaviors could be the

optimal startegy in such environment.

The aim of this paper is to improve the risk-sharing literature using a network

analysis approach. The previous works studying the structure of the bilateral rela-

tionships between agents have focused the attention mainly on the dynamic of the

network and in particular on the potential norm-enforcement using links-rewiring

as deviation punishment strategy. This paper underlines more the importance of

the structure on the optimal risk-choice taken by the connected agents. Further

extesions could re�ne the probabilistic setting, linking the link-probability to the

risk-exposures of the agents for example. Doing this way one of the central factors

that in this model was assumed exogenous could be endogenized through the players`

optimization problem. Moreover, adding the dynamic on the link structure can com-

plete the model opening new questions in terms of expected equilibrium structures

and thus explain the dynamic of the network structure observed in the interbank

market between many. Given the probabilistic feature of the risk-sharing network

and given speci�c asset-correlation coe�cients for example, it could be interesting to

study optimal link-rewiring strategies and related equilibrium structures.
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