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Abstract

This paper is concerned with a set of parametrignasors that attempt to provide consistent
estimates of average medical care costs under tammaliof censoring. The main finding is that
incorporation of the inverse of the probabilityasf individual not being censored in the estimating
equations is instrumental in deriving unbiased @simates. The success of the approach is
dependent on the amount of available informatiorthencost history process. The value of this
information increases as the degree of censoricrgases.

Key words: Cost of medical care; Censoring; Survival analyRisgression analysis; Health care
economic evaluation.
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1. Introduction

The necessity of adopting economic evaluation énhealth care sector arises because the market
fails to fulfil the conditions required to ensura efficient allocation of resources. Economic
evaluation provides a method for determining thietpaf efficiency; that is, the point at which the
allocation of resources leads to maximisation afisdowelfare. In the process of achieving the
optimal resource allocation, alternative statesehty be evaluated, each one associated with
different individual welfare levels. Given that aajternative state of resource allocation will
normally result in an improvement in welfare formsoindividuals and a deterioration for others,
interpersonal comparisons of utility have to be enadorder to determine whether there is a net
gain in social welfare. The choice becomes themeeitto consider situations in which
unambiguous welfare improvements are possible arotwsider a wider range of situations by
making interpersonal comparisons. In the formerecasvaluation of alternative states is
undertaken based on the Pareto principle accorttinghich welfare improvement occurs if
resource allocation is such that an individual &dmbetter off without making another individual
worse off. In the latter case, value judgementstrbasmade to determine whether there are net
gains in welfare. In this context, cost-benefit lggia is implemented specifically as a means of
achieving Pareto welfare. In the health care segtbere the monetary valuation of outcomes is
complex, cost-effectiveness commonly replaces lbestfit analysis as a method of identifying
patterns of health care resource allocation. Htred valuations can be attached to health states,
then cost-effectiveness may encompass cost-udiliplysis. All these methods, cost-benefit, cost-
effectiveness and cost-utility analysis, have djgeproblems of implementation which have long
been discussed in the welfare economics literatdiest recently, three particular themes have
come to dominate the literature in health economics

First, there has been increasing consideratioheo§pecific technical conditions under which cost-
effectiveness and cost-utility analyses relatedst-benefit analysis, whose objective is to idgntif
Pareto optimal states consistent with the maxingsatf social welfare (Garber, 2000; Weinstein
and Stason, 1976; Weinstein and Zeckhauser, 19é8pndly, there has been growing criticism of
the traditional definition of welfare as based oard®o optimality and utility maximisation
(Williams and Cookson, 2000; Tsuchiya and Williar2901). It has been suggested that the
definition of welfare ought to take account of cepts that are not solely utility based. The
justification for this approach derives from Sealgument that welfare is not only defined by
means of utility but is also related to fundamera#iributes, which he refers to as ‘basic
capabilities’ (Sen, 1982). On this basis, proposieot the notion of extra-welfarism have
suggested that efficiency may be defined with régarthe maximisation of health and not utility
per se. As such, these capabilities may be related tdicar measurements of health benefit,
allowing the problems imposed by interpersonal camspns to be overcome. Within this context,
the role of economic evaluation is not to deternthreeoptimal allocation of health care resources
that will maximise utility-based welfare, but rathte supply the relevant decision makers with
information that assists their assessment of theogpiate allocation of health care resources.
Under this interpretation, cost-effectiveness apst-aitility analyses are not necessarily related to
cost-benefit analysis as there is no attempt téoviolParetian notions of efficiency. Cost-
effectiveness and cost-utility analyses becomeapijate allocative tools in their own right. The
third theme that has dominated the literature resdtdvith measurement issues given that any
economic evaluation involves measurement of thésdasurred by and the benefits derived from
a health care intervention. Particular emphasisbeas given to the measurement of the benefits
derived from a given health outcome. At the same tithere is a sizeable literature that considers
the measurement of the relative valuations of hestidites using non-monetary values (Dolan,
2000, 2001). A directly related literature consgdére relative strengths and weaknesses of the
various measures. Other measurement-related ighaéshave received some attention in the
literature include adjustments for missing datee theasurement of indirect costs and the
transferability of findings across different regoly environments.



This paper relates to the general aspect of measmteissues. Having focused on measurement
problems raised within the context of analysingltheautcome data, the literature has generally
given less attention to the issues that arise enatialysis of cost data. With respect to cost, the
matter most commonly addressed is the definitiosh measurement of indirect costs (Sculpher,
2001). The measurement of direct costs has recdagdattention. There is a relatively small
literature which considers the appropriate definitiof direct costs and their relationship to
opportunity costs and charges (Brouwer et al, 20Dtanove, 1996). There is limited
consideration, however, of the impact that difféeretata collection methods and different
methodological approaches employed in analysing dasa have on the estimates of cost
statistics. The limited information available witgard to direct cost measurement in general and
the lack of a well-established methodology in deglivith particular statistical issues arising ie th
analysis of treatment costs are themselves aigatdn for the subject matter that follows.

The study of medical care costs presents a nunflaratdytical difficulties. An issue of particular
concern arises when a specific form of incomplaferimation is present in the data, a condition
which is referred to as censoring. An individualosé behaviour with respect to the variable under
study is not observed for the full duration of net& is said to be censored. Thus patients who are
lost to follow-up, drop out of the study or are eb®&d until the termination of the study period
without having reached the event of interest wall ight censored Given the bias imparted by
this loss of information, estimators of statistiak interest must account for the presence of
censoring in the data. While both parametric ana-parametric approaches have been applied to
the analysis of time-to-event data, yielding estorewhich successfully account for censoring,
applications where the random variable of intelesbst-to-event have generally placed emphasis
on non-parametric estimation (Lin et al, 1997; Band Tsiatis, 2000).

The primary advantage of non-parametric modelbas they are free of assumptions concerning
the distribution of the variable of interest. Theme circumstances, however, where parametric
methods may be the preferred or necessary alteenafi parametric approach can provide
information on the pattern of cost accumulatiorabgessing individual covariate effects on cost or
by modelling the relationship between cumulativet@nd time. As such, parametric models can
provide an instrument for extrapolating estimatéscasts over the study period to different
populations or to points in time exceeding the tlonaof the study. Although the usefulness of
parametric modelling in analysing censored cost tias been acknowledged in the literature and
there have been a number of approaches introdecedtty, their validation has not been explored
adequately. This paper presents an attempt to s&ldinés issue by studying a set of alternative
parametric estimators of cost under conditionseasfsoring and by assessing their performance
empirically under conditions of heavy censoring.

As in the case of non-parametric models (e.g. Ferah 1995), the earliest attempts to account for
censoring in deriving estimates of mean cost uang@arametric approach involved direct
application of the classical survival techniquese¢asored cost data. The Cox proportional hazards
model and the Weibull and exponential models wemied, for example, by Dudley et al (1993)
and Fenn et al (199@) studying covariate effects on cumulative cost anproviding mean cost
estimates over the study period. These approabbesgver, generally lead to biased estimates for
the same reason as their non-parametric countsrphgt is, due to the presence of dependent
censoring between the variable of interest anddtsoring variable (Lin et al, 1997; Etzioni et al,
1999). As in the non-parametric approach to thdyaisaof time-to-event data, the central concept
in the semiparametric and parametric approachethdsconditional probability of an event
occurring at a given point in time, given thatasmot occurred until that point in time as moaklle
through the hazard functions. For all these modetiependent censoring requires that individuals
who are censored at tinhdafter allowing for covariates) are representatif@ll individuals who

! Another form of censoring, referred to as left agirg, is associated with incomplete informatioreda
individuals entering the study at different poinfgprogression to endpoint, but it is relativelycommon in
medical studies and is not considered in this paper



are still under observation atWhen applying these approaches to modelling westrent data,
individuals who are censored having attained aiquaatr cost level must be representative of all
individuals who are still under observation havaitained that cost level. This is not normally the
case, as patients who are in poorer health statasrate higher costs per unit of time and
consequently are expected to generate higher ctivauleosts at both the failure time and the
censoring time, thus implying positive correlatioetween cost at failure and cost at censoring.
Failure of these approaches to account for cergamithe cost estimates has led to two proposed
alternatives. The first adopts a regression appredere cost is modelled as a function of failure
time and adjustment for censoring in the cost eggsis achieved through adjusting failure time
for censoring. The second uses a linear regresgppmoach where cost is related to a set of
individual covariates and adjustment for censoimthe cost estimates is performed by using the
inverse of the probability of an individual not bgicensored in the estimating equations. These
estimators of cost together with their propertied anderlying assumptions are considered below.

Assessment of the estimators’ performance is aebi¢hrough direct comparison of the resultant
parametric estimates to their non-parametric copatés derived from the application of a set of
previously studied (non-parametric) estimatorsngithe same dataset as presented in Raikou and
McGuire (2004). This allows exploration of whethbe estimators’ asymptotic properties are
maintained in a practical setting. The paper prdseas follows. The general setting for the
analysis is outlined first and the set of pararnetstimators for cost together with the assumptions
underlying their validity are then presented. Thesuftant cost estimates derived from the
application of the alternative regression methogiel® to a medical dataset which exhibits heavy
censoring follow. Some concluding remarks and ssijges are then given.

2. Analytical framework
2.1. General setting

The basic aim of the approaches presented beldavdgrive an estimate of the mean total cost
L =E(M)and its variance over a specified period when thia @ right censored, where the

random variablé/l denotes the total cost for a patient during sopeeified timeT andE denotes
expectation. The distribution of the random vaabls assumed continuous ovéD, L], wherelL

denotes the upper bound BfandM is the total cost incurred by a patient up to aimam of L
units of time. To accommodate censoring, a potktitiee to censoring denoted hy is defined
and lettingT denote time to death, the observables from a studlye presence of censoring are
X =min(T,U), i.e. the last contact dat& =1 (T <U), where I () is the indicator function

taking the value of 1 when the argument is true. {f. the observation is uncensored) and zero
otherwise; the cost accrued up to tiend other intermediate cost history for each subjee.

M™ (1) ={M (u),u<t}, whereM " (t) denotes the cost history up to timpeM = M (T), with
M (u) being the known accumulated cost up to tinedu denoting points in time at which cost
information becomes available. Lettirg = (Z,,...,Z )" denote apx1 vector of the covariates

of interest, the observable data forindividuals are then the independent and iderical
distributed random vectors

{X; =min(T,U,), & =1(T <U,), M"(X,),Z}i=1...n, wherei identifies an individual.
2.2. Least squares regression analysis with randoyfight-censored data

Assuming the general setting as defined above afiding T~ = min(T,L), with Z being a

px1 vector of covariates whose effect on the cumugatiost atT "~ one wishes to study, the
methodology presented in this section introduced.iby(2000) attempts to adjust the estimates



derived by the linear model given &d = SZ + ¢, where [ is a px1 vector of unknown
regression parameters ar&l is a zero-mean error term with an unspecifiedritistion for
censoring. The first term o is set equal to 1 so that the first term Bf corresponds to the

intercept. In the absence of censorifyjs estimated by the least-squares normal equation

> (M, - B2z, =0

In the presence of censoring, estimation by ther@leguation will lead to biased estimates for the
regression parameters (Lancaster, 1990; Green).1897aive approach is to estimate the model
by including only the uncensored cases in the estimn process. The regression parameters are
again estimated by the least-squares normal equiatipnow only individuals with complete cost
observations contribute information to the estioratirocess. As is the case in any similar missing
data situation, such an analysis, referred to agplaie case analysis, which totally discards the
cases with missing values, leads to loss of inftionavhich could be a substantial problem if the
proportion of cases with missing values is high. tBis basis, the approach has been deemed
useful only for providing a baseline method for gamisons. In contrast, the approach proposed
by Lin (2000) accounts for the presence of cengoda follows. Under the assumption of a
continuous distribution for failure time ove®, L] and a continuous distribution of censoring time

with censoring arising in a completely random maintime to censoring has the survivor function
K(u) = pr(U >u), i.e. the survivor functionK (u) evaluated at a point in time gives the
probability of an individual not being censoreduatDefining JiD =1(U =T") under random
censoring conditions, the estimating equationfors modified as:

S _ _
;K(T.*)(Mi BZ)Z, =0

which implies that only individuals with completest observations over the duration of interest
contribute cost information to the estimation pssceThe unknown survivor functiok ([) is

estimated by the Kaplan-Meier estimator (Kaplan awdier, 1958) based on the data

{X, =min(T,,U,),1-3,,i =1,...n} as K(t) = ”{1—%} where N°(u) =iZ:,Nf(U)

counts the number of individuals censored over twith Nf(u)=1(X; <u,d =0) and

Y (u) :ZYi(u) counts the number of individuals at risk over timih Y, (u) =1(X, 2u).
i=1

Replacing the survivor functiofK ([) with its consistent Kaplan-Meier estimator restiftsthe

following estimating equation fof3 :

n 0
z Aa—i —(M, = BZ,)Z, =0 , whose solution is given as
= K(T)

KT ) EKT@)

R n 5D -1 n 5D
B=1>="—Z" Y ——MZ ,wherea™ =La™ =a,a” =aa’.
I

Thus the main idea underlying this approach is &ight the uncensored observations by the
inverse of the probability of an individual not bgi censored evaluated at the time of the
individual's failure. The idea underlying the udethis specific weight is that under conditions of



independent censoring, at tinfle, K(T,) = pr(U >T,) is the probability that individual has
survived to T, without being censored. Therefore any individuddows observed to die &k

represents on averagll K(T;) individuals who might have been observed if themes no

censoring. The same idea underlies the approa¢toblet al (1981 )within the context of failure
time regression analysis when the dependent varigiohe to event) is subject to censoring. Lin
(2000) studies the asymptotic properties of thtsregor and derives estimates for its covariance
matrix for large samples using the martingale wersif the central limit theorem. The mean cost
over (0,L] can then be estimated & = SZ , whereZ denotes the covariates vector evaluated
at the mean values of the covariates.

2.3. Least squares regression analysis with randoynlright-censored data: multiple time
intervals

The second approach presented by Lin (2000) extdmelsprevious idea in situations where
information on individual cost histories is avalalat various points in time over the duration of
interest. The main purpose of this method is taease efficiency by allowing use of cost
information not being used by the preceding estmaidopting the same framework as Liang et
al (1986), Lin (2000) models the marginal expeotatf cost at each point in time for which cost
information is available as a function of the cdatms as follows. The duration of analy$ L]

is partitioned intoK subintervals(t, ,t, ], (k =1,...,K), with t, =0 andt, =L, and for each
subintervak the following linear model is assumed:

My =BZ +& k=1...K i=1..,n
where for individuai, M, =M, (t,) — M, (t,_,) is the cost incurred over subinterv@}_, ,t,],
B (k=1,...,K) are px1 vectors of unknown regression parameters andrtbetermsé,; 'sare

assumed to be independent among different suldjectallowed to be correlated within the same
subject. By summing over dtlsubintervals, the linear model for the cost oherwhole duration

K K
of interest becomeM, = fZ, +¢&  i=1...n, where M, =Z|V|ki , IBZZﬂk , and
k=1 k=1

K
£ =Y & . Defining T, =min(T,,t,) and &, =1 (U, 2T,), i.e. &, = I{min(T,,t,) <U,},
k=1
O

the estimating equation fof, (k =1,...,K) is given asz %% (M, - B.Z)Z, =0, where

= K(Ty)

IZ(TK?) is the Kaplan-Meier estimator for the probabildf not being censored based on the

dataset{Xki , O =:L...,n}, where X,; =min(T;,U;) . The solution to the above estimating
equation is then given as:

n | 1 n |
ﬁk:{Zizim} Z Oy M,Z, with

i=1 K (Tml‘]) i=1 K (TkiD)

={ N =R ) = KT

'ézZ {iiziDz} i 5ki Mkizi

Comparing this estimator with its counterpart frahe previous approach, the gain in cost
information is due to the fact that here a subgritributes cost information to the estimating



equations over all time intervals for which theiindual is not censored, i.e. over & for which
U, >min(T,",t,). By contrast, in the previous estimator an indiallonly contributes cost

information to the estimates if the individual lrasched the event of interest or the individual's
censoring time exceeds the maximum observed timihenstudy. In studying the asymptotic
properties of this estimator, the same methodolxyjor the previous estimator is adopted and a
consistent estimator for the covariance matrix ésiviéd. The mean cost ove0,L] can be

estimated asVl = ,5"Z~ where Z denotes the covariates vector evaluated at the velaes of
the covariate$.

2.4. Two-stage regression

Carides et al (2000) proposed an estimator for noeest in which the total cumulative cost is
modelled as a function of failure time. Their mathveas introduced as an attempt to overcome the
limitation of the Lin et al (1997) non-parametrippaoach associated with the requirement of a
discrete censoring pattern to ensure the estinsabansistency. Their estimator is referred to as a
two-stage estimator because at the first stagdeofestimation process the expected cost at any
given point in time is estimated as a functionaifufre time and at the second stage the estimated
expected costs at given points in time are weigbhtethe Kaplan—Meier probability of death at
these points in time. The estimate of mean totat ¢ derived as the sum over time of these
weighted individual cost estimates. Under this nhdlde mean cost is therefore given by:

p= [ g)ds)|

where g(t) = E(M|T =t) is the expected cost of an individual with surVitene T and

S(t) = pr(T =t). The first stage involves deriving an estimaj¢) for g(t) = E(M|T =t)

using a regression approach. The authors suggaisthih regression be performed only on the
uncensored observations on the basis that themeaatcosts of censored individuals typically
differ from the treatment costs of uncensored iitdials at the same point in time and inclusion of
censored observations will therefore impart bias the estimate ofj(t) . The second stage of the

estimation process involves the weighting of thénested regression functiorgj(t) by the
Kaplan-Meier estimate of the probability of deathime t. The two-stage estimator of the mean

L
cost over (0, L] is then given agt, = j @(t)‘dS(t)‘

0
where (t) is an estimator fog(t) = E(M |T =t) and é(t) is the Kaplan-Meier estimator for
S(t) = pr(T =t), that is, é(t) = |_| {1—M}, where N(s) = z N, (s) counts the number

Y(s) i=1
of individuals dying over time withN,(s) = 1(X; £s,8 =1) and Y(S) counts the number of

s<t

2 Both approaches described above are generalisdtietacase of covariate-dependent censoring. To
accommodate covariate dependent censoring, Lin 0)2Qffoposes using the proportional hazards
specification (Cox, 1972) to model the effect ofvaoates on the censoring distribution allowing
formulation of the dependence of censoring botldisorete covariates, which might be used as statibn
variables, and on continuous covariates. The asytmpproperties for both these estimators and the
expressions for the limiting covariance matricegoréed by Lin (2000) are derived adopting the same
analytical framework as for the case of covariatiependent censoring and follow as a direct gesatan

of the results presented above for the covariatedandent censoring case. In addition, the methmesot
restricted by the censoring pattern or by the nurobeovariates.



individuals at risk over time as defined abbvEhe choice of the functional form fog(t)

depends mainly on the data under consideratiortr@nduthors suggest use of either a parametric
regression model or a non-parametric smoothehdrcase of a parametric regression, the authors
consider models which are, with or without somengfarmation of the data, linear in the
coefficients, thus allowing use of the ordinary skeaquares regression technique to derive
estimates for the regression parameters.

Due to the consistency of the Kaplan-Meier estimatonsistency of the two-stage estimator is
ensured if the parametric modej(t) is consistently estimated. Although under specific

parametric assumptions the two-stage estimatosyimptotically normal with variance estimator
directly following from the specific statistical afiibution, the authors recommend that for
practical purposes the bootstrap method be usddriee standard error estimates for the mean, as
they argue that the assumption of asymptotic natynalunlikely to be valid in most applications.
The authors conclude that such a regression bagedach, where the relationship between cost
and failure time is specified through a parametniedel, is advantageous compared to a non-
parametric approach due to efficiency gains resyilfrom the use of such a relationship. On the
other hand, this is only going to be the casedfghrameterisation reflects the true functionahfor

of cost and failure time. In the event of model spiscification, a non-parametric approach for
estimating the relationship between cost and faitume will be preferred.

% If the last observed time corresponds to censdringhich case the Kaplan-Meier estimator is urnkdi
(Kaplan and Meier, 1958), to ensure consistency thsetimator can be expressed as

L
flrs ='f@(t)‘dé(t)‘ + 'Wmé('-) where M, is an estimate of cost accumulated oy@i] for patients who
0

survive beyond..

* The models considered in this analysis followahthors’ suggestions and are specified as:
1. Linear relationship between total costs andifaitime asM, = B, + BT, +¢,, where the error terms are

normally distributed with zero mean and finite aage, so that the two-stage estimator for mean isost
M = ,5’0 +[3’1[1[, where ,@0 and B, are estimated from ordinary least squares regnesssing only the

uncensored cost observations aﬁd:j'é(u)du is the Kaplan-Meier estimator for mean survivaidiover
t
0

@1-
2. Linear relationship between costs transformedtln natural logarithm scale and failure time as
InM, = B, + BT, +¢,, where the error term has a lognormal distributibine mean cost i = e Ak

where ,éo and ,@1 are the estimates from the ordinary least squeggeession using the uncensored

observations only andy is the Kaplan-Meier estimate for mean survivaleinGiven that the error

distribution in the untransformed scale is unknof@nan (1983) suggested using a hon-parametric astim

for the untransformed scale expectation referreastthe smearing estimator. The estimate for trenmest

incorporating Duan’s smearing estimatong = gfo*Ak }Z”:ea , Wwhere IB’O and ,@1 are the estimates from
i=1

the ordinary least squares regression on the uacesh®bservations onlyj, is the Kaplan-Meier estimate

for mean survival time ang, are the ordinary least squares residuals.

3. Linear relationship between costs transformedhennatural logarithm scale once more and faitume

e[?o +Bul

asIn(InM,) = B, + B,InT. +&,. The mean cost without smearing s = e

N n o+ Baii ) o ~ A~ . 3 . .

M = lzeew‘) e where 8, and S, are the estimates from the ordinary least squagression using
Nz

the uncensored observations onjy, is the Kaplan-Meier estimate for mean survivaleiand £, are the

ordinary least squares residuals.

and with smearing is

10



3. Methods and results
3.1. Methods

The parametric estimators defined above were appliea medical dataset which exhibited
extreme levels of censoring. The data were takem fa randomised controlled clinical trial and
relate to a type 2 diabetic population of 3867 vidlials allocated either to conventional policy
(1138) or intensive policy (2729) with the aim afsassing the effectiveness of improved blood
glucose control over a median follow-up period éaith, the last date at which clinical status was
known, or to the end of the trial period of 10 yedfor each individual in the study, information
on both clinical effectiveness and resource useaslscted within the trial. Unit costs of resource
use were attached to the recorded volume of ressurx calculate the total cost per patient per
year directly from the trial data and these wemnthggregated to give a total cost per patient for
the whole trial period. The analysis in this papiens at deriving an estimate of average total cost
over the trial period adjusting for censoring whareobservation was defined as censored if the
patient was not observed for the full time to dedttus the failure event was all-cause mortality,
resulting in 925 censored patients [81.3% censpiamgl 213 failures in the conventional group
and 2240 censored patients [82% censoring] andal&@es in the intensive group by the end of
the trial. Average follow-up time was equal to 9éars reaching a maximum of 18.93 years for
the conventional group and 10.01 years reachinggaimum of 19.46 years for the intensive
group. Despite the long duration of the trial, Ib@gollow-up and drop-out rates were negligible.
The levels of censoring arising in the trial laggedflect the low mortality rates in both armstae t
termination of the study. The assumption of indelee censoring is valid in these data as
censoring was not related to any cost or medicalaes.

All estimators were applied to these trial datahimiteach randomisation group, where for each
individual the observables were time to death st ¢tantact, a variable taking the values of 0 or 1
indicating censoring or failure respectively, thaal costs and the total cost from the start of
follow-up to death or the last contact date andtaostime independent covariates that represented
measurements obtained on each individual at timecdtéhe study on age, body mass index (bmi),
fasting plasma glucose level (fpg), race and sexe Wescriptive statistics for each of the
covariates are shown in Table 1. As can be seen Trable 1, there are no differences in the
baseline covariate values between the two groupesd covariates were deemed clinically
meaningful given that fasting plasma glucose Igrelvides the means of defining diabetes and
body mass index gives an indication of obesity Whichighly positively correlated with the risk
of diabetes as is age. There is also evidencec@l mifferences in the incidence and prevalence of
diabetes with, for example, higher rates in theaAspopulation. The fact that these covariates
were deemed important explanatory variables fdoeaties progression and complications does not
imply that they will necessarily explain cost, esply as they were only measured at the start of
the study. However, this represents the most freigpattern of covariate measurements within a
clinical trial setting, where interest lies in reding disease-specific predictive factors at thaeti

of the individual’s entry to the study and in cérteases at various points in time over the follow-
up period.
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Table 1. Baseline covariate values in conventionahd intensive policy groups

Standard

Mean deviation Minimum Maximum
Conventional (n=1138)
Age (years) 53.40 8.69 25.62 72
Bmi (kg/nt) 27.80 5.46 17.57 55.68
Fpg (mmol/l) 8.48 2.03 5.5 17.5
Race 1.32 0.72 1 5
Sex 1.38 0.49 1 2
Intensive (n=2729)
Age (years) 53.21 8.62 24.69 72
Bmi (kg/nt) 27.49 5.07 16.59 60.61
Fpg (mmol/l) 8.61 2.14 54 19.9
Race 131 0.70 1 5
Sex 1.39 0.49 1 2

With respect to the methodology proposed by Carided (2000), the estimates of mean survival
time used in all parameterisations were 15.65 yésar<.21) for the conventional policy group
and 15.96 yearss$=0.18) for the intensive policy group. The analysiglertaken here derived
mean estimates with and without smearing. An indioaof the underlying relationship between
treatment cost and study time is given in Figusehich plots the observed costs against time for
the censored and uncensored populations for batratms.
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The regression methodology proposed by Lin (20089 applied to the data both when individual
costs were available at the last contact date athdgailure time) and when multiple observations
at different points in time were available for eantividual. In the second model, annual time
intervals were assumed for each individual becansemediate cost history was available for
each subject on an annual badibe classical linear regression model was estimasiog the
uncensored cases only as a baseline means for oeorp@o the alternative linear regression
methodologies. All regression models aside fronms¢hproposed by Carides et al, which used
failure time as the independent variable, were dbase the set of covariates described above.
Estimates of the variance associated with the neséimators resulting from the above models
were derived using the bootstrap approach with élstmates being obtained from 1000
replications. The reason for using the bootstrggaach is that the asymptotic variance estimators
for the mean cost have not been defined. For cobiligt purposes, estimates of the regression
parameter standard errors for the Lin regressiodefsoas well as for the naive ordinary least
squares regression were also derived using thetoaptapproach.

3.2. Results

The results derived from the parametric approaeinesshown in Table 3, while Table 2 reports
the best non-parametric estimates obtained frome@qus study by Raikou and McGuire (2004)
as a means of assessing the parametric estimatnfsrmance. Based on the conclusions drawn
in this earlier study, two non-parametric estimatof within study average cost, one proposed by
Lin et al (1997)and one proposed by Bang and Tsiatis (2000), bétiviich make use of
information on intermediate cost histories, wererded to perform adequately across a wide range
of censoring levels. Given that these two estinsat@mained stable even under the extreme
censoring conditions arising in the trial datasat be confidently asserted that the resultant cost
estimates reflect the true cost values.
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Table 2. Best non-parametric estimators of mean cbs

Conventional Intensive
Estimator Mean Standard error Mean Standard error
Linl (Lin et al 1997) @, ;) 14006.2 897.73 13172 340.55
Bang and Tsiatis Partitioneﬁé) 14639.48 1219.4 13839.67 445.6
Table 3. Parametric estimators of mean cost
Conventional Intensive

Estimator Mean Standard error Mean Standard error

Carides et al regression models

total cost on time 20353.71 2551.99 19548.07 12Zr8.0

In(total cost) on time without 18086.73 2599.06 21096 1927.38
smearing

In(total cost) on time with 16070.78 1914.10 17939.50 1368.74
smearing

In(In(total cost)) on time without 19080.38 3155.30 23132.24 2680.18
smearing

In(In(total cost) on time with 18959.67 3152.28 21626.47 2545.91
smearing

Lin regression methodology

Complete costs 14015.82 3588.94 17573.79 1961.70
Multiple intervals 14941.14 1274.07 13789.33 452.70
Naive OLS 11708.78 1268.10 10845.21 693.58
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With respect to the Carides et al two-stage estimdlie resultant mean cost estimates are high
relative to the non-parametric estimates for bathugs® Moreover, the difference in average cost
between the treatment arms is generally of the gvexpected direction given that the expected
direction of difference in the average cost betwibertwo trial arms is that the conventional group
has higher average treatment costs than the irgegsbup, largely due to a higher hospitalisation
rate. Although the approach is appealing as itgite to model the time pattern of cost and is not
restricted by assumptions concerning the censodigribution, the analysis reveals the
estimator’s inadequate performance under all tmampeterisations considered. This finding holds
even when smearing estimates were obtained follpaitogarithmic transformation to account for
positive skewness in the cost data. While modekpasification is liable to be a contributory
factor, the estimator's inadequate performance asenlikely attributed to the high degree of
censoring present in the data. As the regressicempers are estimated using information from
the uncensored cases alone, which in this case ramém a mere 18% of the total number of
observations and will reflect the bias impartedifra complete case analysis, it is to be expected
that the estimated coefficients will not reflece ttitue parameter values, even assuming that the
relationship between cost and failure time is adtyespecified.

This postulate is supported further by the resaliteined when the expected costs were estimated
by a non-parametric regression approach. Caridals(2000) recommend use of such a regression
when there is not enough confidence in a specificametric relationship between cost and
survival time. The method adopted provides smootsitnates of cost using locally weighted
scatterplot smoothing (lowess) according to whiwh $moothed values of the dependent variable
are derived by running a regression of the dependerable on the independent variable using for
each estimate the data at the estimation pointasrmdall amount of data near the point. In lowess
the regression is weighted so that the centraltga@ioh time receives the highest weight and points
farther away receive less. A separate weightecessgyn is estimated for each point in the data in
order to provide the smoothed estimates. Applyimg approach resulted in estimates of mean cost
of 5674.92 $=853.24) for the conventional group and 9407 &% (3230.63) for the intensive
group where the standard errors were obtained #@d0 bootstrap replications. Such an approach
for deriving expected cost estimates, being freasstimptions about the functional form between
cost and failure time, gives a strong indicatioattAn equally important, if not more important,
source of bias aside from model misspecificatiothan Carides et al estimator is the high level of
censoring. This was to be expected based on thdtgegbtained from the non-parametric
estimators which only used cost information frora tomplete cases as presented in Raikou and
McGuire (2004). Both the respective Lin et al (1paid Bang and Tsiatis (2000) non-parametric
estimators performed inadequately when only coreptaists were included in the estimation
process and both techniques showed dramatic imprewewhen information was increased by
incorporating individual cost histories into theimmting equations.

Before considering the set of parametric estimgbooposed by Lin (2000), the estimates derived
from the naive ordinary least squares regressierdmcussefi. The estimates derived from this
approach are known to be biased as they are basadtcomplete-case analysis which ignores all
censored observations, but as stated above, tlosidpra means for baseline comparisons to the
alternative linear regression methodologies angairiicular to Lin’s (2000) regression models,
which are a direct extension of this approach asel the same set of covariates. Although the
naive least squares regression resulted in thectgdirection of the difference between the two
arms of the trial, with the conventional group imawg higher costs on average than the intensive,
the estimates of mean cost are low for both grolipis was anticipated as the information from
censored observations is not used in the estimatiocess and it is known that the bias increases
as the level of censoring increases. Comparisaheobrdinary least squares cost estimates with
the non-parametric uncensored cases estimategedgorRaikou and McGuire (2004) — which
were 11901.01s£6=1061.36) and 10629.98e£510.00) for the conventional and intensive arms

® Estimated regression coefficients for the varimaslels available on request.
® Estimated regression coefficients available omiest
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respectively — reveals a close similarity which faoms that ordinary least squares regression
results in biased estimates when the outcome Varisisensored.

With respect to Lin's (2000) parametric approaddt tses information only on the complete total
costs, the resultant difference in mean cost betwbe trial arms is of the wrong expected
direction. In addition, the estimated mean cost tfeg intensive group is much higher than
expected. This pattern alters when the regressies imformation on multiple cost observations on
each patient obtained at a number of points in tiwer the study period. The latter approach
results in estimates that are very close to itspamametric counterparts, derived from the first Li
non-parametric method using information on indi@dcost histories, and even closer to the Bang
and Tsiatis partitioned estimator, which again usémmation on individual cost histories. Thus,
the regression model which uses cost history indtion from all individuals results in a
significant improvement compared to the parametriciel which discards cost information from
the censored cases. This was anticipated and wEnfiin’s argument that the multiple time
intervals approach improves efficiency by usinginfation that is ignored by the complete costs
approach. The estimates of the regression parasrfeteooth Lin regression models and the naive
ordinary least squares regression are reportedie™.

Table 4. Estimated regression parameters for the iige OLS and the Lin regression models

Conventional Intensive
Estimator Regression Standard error  Regression Standard
coefficients coefficients error
Naive OLS
Const -23980.37 13813.83 5647.46 8007.90
Age 262.47 161.68 57.55 100.61
Bmi 454.01 258.15 34.84 108.39
fpg 537.43 654.39 -176.55 231.98
Race 1783.51 1990.84 146.71 998.54
Sex 1545.94 2627.59 1802.75 1318.99
Lin complete costs
Const -21043.55 25522.02 32901.42 24882.84
Age 141.61 337.58 -211.60 315.09
Bmi 596.27 610.46 208.61 267.38
fpg 1099.66 1012.11 -979.99 753.35
Race 1424.06 4309.11 1740.02 2739.86
Sex -206.40 8907.59 -2619.76 4142.53
Lin multiple intervals
Const -217.49 8723.92 12170.94 4883.95
Age -16.99 141.88 1.86 41.83
Bmi 127.08 211.20 23.84 108.31
fpg 1493.37 634.84 148.15 187.03
Race -247.16 1711.94 -863.83 630.64
Sex 139.01 3271.34 517.88 806.28

*significant at the 5% level

The coefficient estimates resulting from all thesgressions indicate that the covariates have low
explanatory power, although it should be emphasibad high standard errors on individual
coefficients cannot be taken to mean that any qdati model in its entirety has lopredictive
power. With respect to the individual coefficiemtghe Lin regression models, all are insignificant
in the complete costs approach and significant @mlyasting plasma glucose in the conventional
group in the multiple time intervals approach. Thigling is not surprising given that the set of
available covariates has been determined by thieica rather than economic importance. Of
greater importance is the finding that the meart esmates derived from the multiple time
intervals regression model appear much improvethgbeery close to the comparative non-
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parametric estimates, relative to the respectiva estimates resulting from the complete costs
regression. As both regressions use the same epeabability weight in an attempt to account
for censoring, the most likely explanation for thésult is the increased cost information used in
conjunction with the particular weight by the mplé intervals regression. In an attempt to explore
the sensitivity of the mean cost estimates to gteokcovariates included in the models, both Lin
estimators were applied to the data incorporatisgig plasma glucose as the only covariate. The
results together with the naive ordinary least sepi@stimates are shown in Table 5 for the
regression parameters and in Table 6 for the mests.c

Table 5. Estimated regression parameters using fasg plasma glucose as the only covariate

Conventional Intensive

Estimator Regression Standard error  Regression Standard error

coefficients coefficients
Naive OLS
Const 7367.78 5391.06 12143.42 2171.18
fpg 602.40 624.86 -144.15 232.21
Lin complete costs
Const -466.98 9367.33 24497.55 8912.96
fpg 1690.44 968.63 -891.05 996.83
Lin multiple intervals
Const 4263.38 3963.33 13220.31 1948.28
fpg 1270.71 575.85 99.13 203.60

*significant at the 5% level

Table 6. Estimated mean costs from regression modeusing fasting plasma glucose as the
only covariate

Conventional Intensive
Estimator Mean Standard error Mean Standard error
Lin complete costs 13870.84 7060.85 16821.34 2419.
Lin multiple intervals 15041.21 1578.42 14074.33 4488
Naive OLS 12477.19 1212.05 10900.58 560.30

The mean cost estimates resulting from the regnessin which fasting plasma glucose was the
sole covariate are very similar to their respectivanterparts derived from the models using the
complete set of covariates. In this particular maypilon, therefore, the choice of the set of
covariates does not appear to have an impact orethidtant mean cost estimates. The inverse of
the probability of an individual not being censorattering the estimating equations seems to be
primarily responsible for the resultant predictedam estimateddowever, this particular weight
alone is incapable of adequately adjusting folldlse of information when the level of censoring is
too high as indicated by the poor performance efdbmplete costs regression. As was the case in
the non-parametric analysis (Raikou and McGuir®420the amount of available information on
the cost history process proves as important apribtgability weight, which adjusts the estimates
for the information loss due to censoring.

4. Concluding comments

Parametric approaches provide a necessary altnatideriving estimates of cost statistics in a
number of circumstances, such as when interestidigbe assessment of individual covariate
effects on cost or in the extrapolation of estimabeyond the observed study duration or to
different patient populations. Inherent in all pagric approaches is the specification of a
functional form for the relationship between thetcome variable and a set of independent
variables. Naturally, a first candidate in thisegairy would be the classical linear regression
model with cost forming the dependent variable, duth an approach is known to yield biased
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estimates when the outcome variable is drawn frararsored distribution. The naive solution of
estimating the regression parameters by complededgarding the censored cases from the
estimation process is also biased, with the degfé@das increasing as the proportion of censored
observations increases. This, together with tHarabf parametric and semiparametric regression
models traditionally used in the analysis of tirneevent data to account for censoring in the cost
estimates due to dependent censoring between tcegeiat and cost at censoring, has led to a set
of alternative regression methodologies withindbetext of parametric censored cost analysis.

The first of these methodologies, introduced byid&sr et al (2000), adopts a regression approach
where cost is modelled as a function of failureetiand adjustment for censoring in the cost
estimates is achieved through adjusting failureetfor censoring. Consistency of the estimator is
ensured if the regression model specifying theticglahip between cost and failure time is
consistently estimated. The second alternativepdoiced by Lin (2000), uses a linear regression
approach where cost is related to a set of indalidovariates and adjustment for censoring in the
cost estimates is performed through use of thergavef the probability of an individual not being
censored in the estimating equations. The methsed&an shown theoretically to derive consistent
estimates of the regression parameters while atiogufor the presence of censoring and is not
restricted by the censoring pattern. Two estimatessilt from this approach. The first uses the
individual total accumulated costs at the indivitkigoint of failure or end of study, while the
second makes use of multiple cost observationdgrdataon each subject at various points in time
over the study period. The main advantage of ttterlastimator is an increase in efficiency by
allowing use of cost information that is not usgdhe preceding estimator.

Although the estimators’ statistical properties éndoeen studied theoretically, their performance
under conditions of heavy censoring has not besaesasd empirically. This issue is addressed in
this study through applying the proposed estimatesclinical dataset that exhibits high levels of
censoring and comparing the resultant estimatds thi# respective estimates derived from the
best non-parametric estimators previously applethé same data (Raikou and McGuire, 2004).
The main findings are as follows. The Carides edstimator resulted in biased estimates for all
parameterisations considered for the relationst@pwéen cost and failure time. The results
suggested that the major source of bias was the degree of censoring rather than a potential
misspecification of the regression model as simisults were obtained under a number of
alternative parameterisations for the relationdiepween cost and failure time. Given that under
this approach bias in the cost estimates arisem fotas in the estimates of the regression
parameters, it is not surprising that the estimateeffficients do not reflect the true parameter
values when their derivation was based on only %e observed data which constituted the
uncensored subset. Therefore, although such awagprs appealing on the basis that it attempts
to model the time pattern of cost, it is of limitedlue at high levels of censoring. Given the
potential value of methods that allow extrapolatdrcost beyond the study period, development
of parametric models that successfully do so uedaditions of heavy censoring appears to be a
fruitful area for future research. Concentratingtba Lin regression methodology, the approach
using cost information solely from the completeesagielded biased estimates of cost as expected
given the limited amount of cost information emerihe estimation process, while the approach
using information on individual cost histories résd in estimates that were very close to the ones
derived from the best performing non-parametrichods, which also use information on the
individual cost history process.

These findings provide further insight into the geh issue of cost estimation in the presence of
censoring in the following manner. Aside from id8ihg a regression methodology which

performs well under extreme censoring conditiom® tesults of this analysis strengthen the
validity of the main conclusion reached in the esponding non-parametric analysis reported
previously. The general finding emerging from thislysis is that incorporation of the inverse of
the probability of an individual not being censoradhe estimating equations is instrumental in
deriving unbiased estimates of medical care caggmconditions of censoring. Nevertheless, the
success of the approach is dependent on the ambawgilable information on the cost history
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process, as this will in turn determine the degreeetrieval of cost information missing due to
censoring. In circumstances where the level of @@ng is high, knowledge of the history of the
process under study proves a determining factoth&n performance of the estimator. The
implication for the design of a clinical study whetata on medical resource use are collected is
that effort should be made to record informationcost generating events on each individual at
intermediate points in time over the study duratidhe findings derived from the preceding
analysis provide conclusive evidence in suppothisfrequirement, with the value of the available
information on the cost history process increasisighe degree of censoring increases.
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