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Abstract 
 
 
 

 
 

Parkinson disease (PD) is the second most common neurodegenerative disorder 

affecting 4 million people worldwide. It is characterized by the loss of dopaminergic 

neurons in the Substantia Nigra pars compacta (SNpc) and by the presence of 

cytoplasmic inclusion bodies (Lewy bodies, LB). Cell death leads to a profound 

depletion of dopamine neurotransmitter involved mainly in the control of the 

movement. Mutations in LRRK2 (leucine-rich repeat kinase 2) gene (PARK8; OMIM 

#609007) are responsible for one of the autosomal-dominant forms of Parkinson’s 

disease. LRRK2 is a protein of 2527 amino acids composed by different functional 

domains: ankyrin, leucine-rich repeat (LRR), Roc (Ras in complex proteins), COR 

domain (C-terminal of Roc), protein kinase catalytic domain and a WD40 domain. 

LRRK2 mutations associated with PD have been identified in different protein domains. 

These observations, along with the lack of deletion or truncation mutants with 

dominant inheritance, suggest a gain of function mechanism. Up to date, the LRRK2 

biological function is largely unknown. LRRK2 appears to be localized in different 

intracellular districts that play a critical role in the control of vesicular trafficking: ER, 

Golgi apparatus and associated vesicles, cytoskeleton, lipid raft and lysosomes. 

Although, some discrepancies between different experimental approaches, the 

involvement of LRRK2 in the regulation of vesicle trafficking appears quite consistent 

both in animal and cellular models. In neurons, vesicle trafficking is a complex process 

regulating multiple different cellular functions, in addition to the neurotransmitter 

release or re-uptake, such as the localization and levels of membrane receptors, 

changes in plasma membrane composition at the cell surface and, not least, organelle 

biogenesis. 
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This research focuses on LRRK2 role in the regulation of D1 and D2 dopamine 

receptors trafficking. Considering the relevance of dopamine receptor trafficking in DA 

neuronal physiology, this research may have a strong implication in the discovery of 

the pathological mechanisms underlying the PD onset and development. This work 

indicates that PD-associated mutant G2019S LRRK2 impairs dopamine receptor D1 

internalization, leading to an alteration in signal transduction. Moreover, the mutant 

forms of LRRK2 affect dopamine receptor D2 turnover by decreasing the rate of the 

receptor trafficking from the Golgi complex to the cell membrane. Collectively, these 

findings are consistent with the conclusion that LRRK2 influences the motility of 

neuronal vesicles and the neuronal receptor trafficking. These findings have important 

implications to clarify the complex role that LRRK2 plays in neuronal physiology and 

the possible pathological mechanisms that may lead to neuronal death in PD. 
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Chapter 1 
 
 
 

Introduction 
 

1.1    Parkinson’s disease 

Parkinson’s disease (PD) is a chronic, neurodegenerative, progressive disease, 

described for the first time in 1817 in the Essay on the Shaking Palsy by the English 

medical doctor James Parkinson. PD is the second most common neurodegenerative 

disorder after Alzheimer disease and affect approximately 20/100000 cases per year in 

the population over 50 years, up to 120/100000 new cases per year among the over 70 

years old1. In about 95% of PD cases, no an apparent genetic cause (sporadic PD) in the 

pathogenesis of PD can be detected, but in the remaining 5% it seems hereditary. 

Stronger differences in incidence are observed among different ethnic groups, 

probably due to the disease etiology linked to environmental risk factors or genetic 

susceptibility. The average age onset is around 60 years, even if the 4% of the patients 

show an early disease development (before 50 years).  Unfortunately, since the clinical 

symptoms appear only when more than 50-60% of the neurons of the Substantia Nigra 

pars compacta (SNpc) are damaged and the striatal levels of dopamine are strongly 

reduced1, it is currently possible that the disease arises before the symptomatology 

therefore there is a high percentage of people, apparently healthy, that are developing 

PD.   

 

The cardinal motor features that describe PD are resting tremor, bradykinesia, postural 

instability and muscle rigidity. 
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The PD clinical symptoms are due by a progressive and profound loss of dopaminergic 

neurons in the Substantia Nigra pars compacta (SNpc). These neurons project mainly 

to the striatum (i.e., putamen and caudate nucleus). The loss of the nigrostriatal 

dopaminergic neurons causes a profound depletion of dopamine in the striatum that is 

responsible of the trigger and control of movement (figure 1). 

 

Figura 1. Schematic representation of the Nigrostriatal pathway. In red the Nigrostriatal pathway. It is composed 
of dopaminergic neurons whose cell bodies are located in the SNpc. These neurons projections to striatum (A) in 
physiological conditions and (B) in PD conditions; Down is shown the (A) SNpc in normal conditions and (B) the 
depigmentation of SNpc caused by the loss of dopaminergic neurons in PD patients1. 

 

PD is the most common form of Parkinsonism. In some cases the differential diagnosis 

among PD and other Parkinsonism forms is easy, in other cases more difficult. The 

main forms of Parkinsonism syndromes are described in table 1. 

Up to date, the 80% of patients have a PD diagnosis “possible or probable”. The final 

diagnosis need the post mortem analysis to highlight the loss of dopaminergic 

neurons, the depigmentation of SNpc and presence of Lewy Body (spherical 

eosinophilic cytoplasmic protein aggregates composed of numerous proteins, including 

α-synuclein, parkin, ubiquitin, and neurofilaments2, 3) in the surviving neurons. LBs are 

not specific for PD, they are also found in Alzheimer disease, in a condition called 

“dementia with LB disease” and as an incidental pathologic finding in people of 
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advanced age at a greater frequency than the prevalence of PD4. In life, the diagnosis 

of PD is made through the analysis of the clinical features, but definite diagnosis 

requires the identification of both LB and SNpc dopaminergic neuron loss. This permit 

to distinguish PD to others parkinsonism forms1, 5.  

Parkinsonism syndromes 
 

Primary Parkinsonism 
Parkinson disease (sporadic, familial) 

Secondary Parkinsonism 
Drug-induced: dopamine antagonists and depletors 
Hemiatrophy-hemiparkinsonism 
Hydrocephalus: normal pressure hydrocephalus 
Hypoxia 
Infectious: postencephalitic 
Metabolic: parathyroid dysfunction 
Toxin: Mn, CO, MPTP, cyanide 
Trauma 
Tumor 
Vascular: multiinfarct state 

Parkinson-plus Syndromes 
Cortical-basal ganglionic degeneration 
Dementia syndromes: Alzheimer disease, diffuse Lewy body disease, 
frontotemporal dementia 
Lytico-Bodig (Guamanian Parkinsonism-dementia-ALS) 
Multiple system atrophy syndromes: striatonigral degeneration, Shy-Drager 
syndrome, sporadic olivopontocerebellar degeneration (OPCA), motor neuron 
disease-parkinsonism 
Progressive pallidal atrophy Progressive supranuclear palsy 

Familial Neurodegenerative Diseases  
Hallervorden-Spatz disease 
Huntington disease  
Lubag (X-linked dystonia-parkinsonism) 
Mitochondrial cytopathies with striatal necrosis 
Neuroacanthocytosis 
Wilson disease  

 

MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; ALS, amytrophic lateral sclerosis. 

Table 1. The main forms of Parkinsonism syndromes1. 
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1.2    Dopamine and dopamine receptors 

Dopamine synthesis and metabolism 

Dopamine (DA) with adrenaline and noradrenaline, are the catecholamine 

neurotransmitter class. Even though DA is an important brain neurotransmitter, a 

significant part of the DA is not produced in the brain but by the mesenteric organs6.  

Dates back 60 years ago the discovery of the physiological functions of 3-

hydroxytyramine (DA)7. The two-step of DA synthesis begin in the cytosol of 

catecholaminergic neurons. The first step is the hydroxylation of L-tyrosine at the 

phenol ring by tyrosine hydroxylase (TH) to generate DOPA. DOPA is subsequently 

decarboxylated to DA by aromatic amino acid decarboxylase (AADC, also known as 

DOPA decarboxylase). Moreover, a cytochrome P450-mediated pathway has been 

shown to exist in rat in vivo8, 9. In this pathway decarboxylation forerun hydroxylation; 

tyrosine is decarboxylated to tyramine and then is hydroxylated by Cyp2D proteins 

(figure 2)9. Another pathway of DA synthesis is operated by tyrosinase via 

hydroxylation. Eumelanins and phaeomelanins are normally synthetize by tyrosinase, 

but it has been shown that  tyrosinase have a central role in TH-negative mice for 

catecholamine synthesis10. After synthesis, in catecholaminergic neurons, the vesicular 

monoamine transporter 2 (VMAT2), by secondary active transport, operates the DA 

accumulation into synaptic vesicles11 (figure 2). In vesicles, the oxidation of DA is 

stabilized by the acidic pH12 and this prevents oxidative stress in the cytosol13. 

Upon excitation of dopaminergic neurons, the membrane of the synaptic vesicles 

melts with the presynaptic element cell membrane.  In this way dopamine is released 

into the synaptic cleft to bind the postsynaptic DA receptors or the regulatory 

presynaptic DA autoreceptors14, 15.  Successively, extracellular DA has to be removed 

from the synaptic cleft to stop the signaling pathway. DA can be recycled after 

reuptake by dopaminergic neurons or be degraded after uptake by glial cells. The 

neuronal reuptake is operated by the dopamine transporter (DAT) at level of the 

presynaptic element and accumulates into synaptic vesicles by VMAT216. The DA that 

remains in the cytosol is quickly depredated by monoamine oxidase (MAO) to prevent 
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ROS formation. MAO enzyme catalyzes the oxidative deamination of DA to produce 

hydrogen peroxide and 3,4 -dihydroxyphenylacetaldehyde (DOPAL). DOPAL can be 

inactivated in two major pathways, by reduction to the alcohol 3,4-

dihydroxyphenylethanol (DOPET) via alcohol dehydrogenase (ADH) or by oxidation to 

the carboxylic acid 3,4-dihydroxyphenylacetic acid (DOPAC) via aldehyde 

dehydrogenase (ALDH). Under normal conditions, the majority of DOPAL is oxidized to 

the carboxylic acid DOPAC17. 

In the synaptic cleft DA can be recovered by glial cells. Glial cells quickly degrade DA by 

MAO and also by catechol-O methyl transferase (COMT). COMT catalyze the 

metalation reaction by the transfer of the methyl groups from S-adenosylmethionine 

(SAM) to hydroxyl groups of various catecholic compounds. MAO reaction produces 

DOPAC that in subsequently converted in homovanilic acid (HVA), one of the most 

important products of the degradation of DA (figure 2). It has been shown that there is 

COMT activity in glial cells but no COMT activity in the dopaminergic nigro-striatal 

neurons18, 19. 

 

 

Figure 2. Neuronal DA metabolism. See text for details19.  
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Dopaminergic system and dopamine receptors in the brain 

Three major dopaminergic pathways have been identified in the mammalian brain; the 

nigrostriatal (originating in the A9 area), mesolimbic-mesocortical (originating in the 

A10 area) and tuberoinfundibular (originating in the A8 area)20, 21. These different 

pathways are known to be important for various vital functions regulated by the 

central nervous system. The nigrostriatal pathway is primary involved in the control of 

the motor functions. The mesolimbic-mesocortical pathway is mainly involved in the 

control of the behavior. The tuberoinfundibular is mainly involved in the control of the 

endocrine system22-25. 

Based on their structural, pharmacological, and biochemical properties, dopamine 

receptors have been classified as D1-like dopamine receptors D1 and D5 or D2-like 

dopamine receptors D2, D3, and D426-28. It is know that the D1-like dopamine 

receptors (D1 and D5) activate the Gαs/olf family of G proteins to produce cAMP by 

stimulation of the adenylate cyclase. D1-like dopamine receptor are located exclusively 

on the plasma membrane of the postsynaptic neurons in the dopaminergic 

transmission. The D2-like dopamine receptors (D2, D3, and D4) interact with the Gαi/o 

family of G proteins to induce inhibition of adenylate cyclase. In contrast to the D1-like 

dopamine receptors, D2 and D3 dopamine receptors are postsynaptic and presynaptic 

in the dopaminergic synaptic transmission29-31. The D1- and D2-like dopamine 

receptors are also different at the level of genetic structure, presence of splice 

variants, G protein coupling agonists, selective agonists and antagonists and their brain 

distribution (table2). 
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 D1-like D2-like 
Dopamine 
receptor 
subtype 

D1 D5 D2 D3 D4 

 
Gene symbol 

 
DRD1 DRD5 DRD2 DRD3 DRD4 

 
Chromosome 

gene 
map locus 

 

 
5q35.1 

 
4p16.1 11q23.1 3q13.3 11p15.5 

 
Numbers of 

introns in the 
coding region 

 

None None 6 5 3 

 
Pseudogenes 

 
None 

DRD5P1, 
DRD5P2 

None None None 

 
Presence of 

splice variants 
 

None None D2S, D2L Yes Yes 

 
Number of 
aminoacids 

 

446 477 
D2S, 414; D2L, 

443 
400 387 

 
Molecular 

weight 
 

49,300 52,951 
D2S, 47,347; D2L, 

50,619 
44,225 41,487 

 
G protein 
coupling 
agonists 

 

Gαs, Gαolf Gαs, Gαq Gαi, Gαo Gαi, Gαo Gαi, Gαo 

Effector 
pathway 

↑cAMP ↑cAMP 
↓cAMP, ↑K+ 

channel, ↓Ca2+ 
channel 

↓cAMP ↓cAMP 

Selective 
agonists 

Fenoldopam, 
SKF-38393, 
SKF-81297 

None 

Bromocriptine, 
pergolide, 

cabergoline, 
ropinirole 

 

7-OH-DPAT, 
pramipexole, 

rotigotine, 
(+)-PD-128907 

A-412997, ABT-
670, 

PD-168,077 

Selective 
antagonist 

SCH-23390, SCH-
39166, 

SKF-83566 
None 

 
Haloperidol, 
spiperone, 
raclopride, 
sulpiride, 

risperidone 
 

Nafadotride, GR 
103,691, 

GR 218,231, 
SB-277011A 

A-381393, 
FAUC 

213, L-745,870, 
L-750,667 

mRNA 
distribution 
in the brain 

Caudate-
putamen, 
nucleus 

accumbens, 
olfactory 
tubercle 

Hippocampus, 
hypothalamus 

Caudate-
putamen, 
nucleus 

accumbens, 
olfactory tubercle 

Olfactory 
tubercle, 

hypothalamus, 
nucleus 

accumbens 

Frontal cortex, 
medulla, 
midbrain 

Table 2.  Basic genetic, structural and pharmacological properties of dopamine receptor subtypes 25, 32. 
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Dopamine receptors have different expression patterns in the brain. D1 dopamine 

receptors have been found at a high level of density in the nigrostriatal, mesolimbic, 

and mesocortical areas, as well as the striatum, nucleus accumbens, substantia nigra, 

olfactory bulb, amygdala, and frontal cortex. On the contrary dopamine receptor D1 is 

expressed at lower levels in the hippocampus, cerebellum, thalamic areas and 

hypothalamic areas. D5 dopamine receptors have been found at low levels of density 

in different brain regions, such as pyramidal neurons of the prefrontal cortex, the 

premotor cortex, the cingulated cortex, the entorhinal cortex, substantia nigra, 

hypothalamus and the hippocampus. A very low level of expression has also been 

observed in the MSNs of the caudate nucleus and nucleus accumbens23, 29, 33, 34. At the 

cellular level, the large spiny neurons of neostriatum in primates, that are typically 

cholinergic interneurons, only express D5 receptors35. Highest levels of dopamine 

receptors D2 have been detected in the striatum, nucleus accumbens and in the 

olfactory tubercle D2 receptors are also expressed at detectable levels in the 

substantia nigra, ventral tegmental area, hypothalamus, cortical areas, septum, 

amygdala, and hippocampus23, 28, 36, 37. The dopamine receptors D3 are more limited in 

distribution, the highest level of expression have been found in the limbic areas, such 

as in the shell of the nucleus accumbens, the olfactory tubercle, and the islands of 

Calleja23, 38. At lower levels, the dopamine receptors D3 have been found in the 

striatum, the substantia nigra pars compacta, the ventral tegmental area, the 

hippocampus, the septal area, and in various cortical areas. Dopamine receptors D4 

have been found a lower level of density in the frontal cortex, amygdala, hippocampus, 

hypothalamus, globus pallidus, substantia nigra pars reticulata, and thalamus23, 31.  

Dopamine receptors and locomotor activity 

Different experimental evidence shows that the dopaminergic system is involved in the 

control of locomotor activity across species39. Locomotor activity is at least regulated 

by dopamine receptors D1, D2 and D323, 40. The activation of dopamine receptors D1 

has a moderate stimulatory effect on locomotor activity. The roles of the dopamine 

receptors D2 and D3 are much more complex than D1 dopamine receptors due to their 

presynaptic and postsynaptic localization23, 40. Presynaptic autoreceptors are important 
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for the negative feedback mechanism involved in neuronal synthesis and release of the 

neurotransmitter in response to synaptic cleft neurotransmitter levels23, 40, 41. 

Presynaptic D2-like autoreceptors stimulation gives rise to a decrease in dopamine 

release and consequently a decrease in locomotor activity. On the contrary, an 

activation of postsynaptic receptors stimulates locomotor activity. Since D2-like 

autoreceptors are more sensitive to dopamine than D2-like postsynaptic receptors, 

dopamine can induce a biphasic effect that is resumed in a decrease in locomotor 

activity at low dopamine doses and locomotor activation at high dopamine doses. 

Moreover, dopamine receptor D2 has two splice variants D2L and D2S, with different 

synaptic distributions. D2S is mainly presynaptic and D2L is mainly postsynaptic. 

Consequently, the effects of the postsynaptic and presynaptic D2 dopamine receptors 

are probably determined by the different contributions of these isoforms42, 43. 

Different pharmacological44, 45 and genetic studies in dopamine receptor D3 knockout 

mice40, 46 show that D3 autoreceptors can also play a role in the regulation of tonically 

released dopamine, in a synergic manner with D2S autoreceptor in regulating the 

neuronal firing rate, synthesis and release of dopamine43. Dopamine receptor D3 

probably has a moderate inhibitory function on locomotor activity due to 

autoreceptors and postsynaptic receptors activity40, 46. The roles played by dopamine 

receptors D4 and D5, that are expressed  at  lower level in the primary motor regions 

of the brain, appear to be not very important in the control of locomotor activity23, 31, 

40. It is obvious that both the postsynaptic D1- and D2-like dopamine receptors are 

essential for the completely manifestation of locomotor activity47. 

Dopamine receptors signaling and trafficking  

G protein-coupled receptors (GPCRs) are seven transmembrane (TM) proteins 

representing the largest and most expressed cell surface receptors. They play 

important roles in a broad array of cellular functions and in diseases and represent the 

targets for a large fraction of existing drugs48-50. GPCRs, upon ligand binding, induce 

dissociation of G proteins into their Gα and Gβγ components and ultimately modulate 

the activity of enzyme or ion channel effectors51-53. In the canonical view of G protein-

coupled receptor (GPCR) signaling, the agonist binds the receptor in its binding site in 
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the extracellular or transmembrane regions of the receptor. Subsequently the 

conformation of the GPCR receptor changes and operates as a guanine nucleotide 

exchange factor, catalyzing the exchange of the GDP in GTP on the Gα subunit. Than 

the Gα and Gβγ subunits dissociate from each other and from the GPCR receptor54. 

Subsequently, signal transduction cascades are activated directly or by generating 

second messengers (such as cyclic AMP, diacylglycerol (DAG) and inositol-1,4,5-

trisphosphate (Ins(1,4,5)P3) that modulate downstream effectors, such as protein 

kinase A (PKA) and protein kinase C (PKC). The Gβγ subunits, after their release from 

the heterotrimeric G protein complex, can bind and regulate other downstream 

effectors, such as ion channels and PLCβ. G protein-mediated signaling can be 

terminated by GPCR phosphorylation by GPCR kinases (GRKs) and concomitant 

association with arrestins. Subsequently, close to the GPCR-arrestin complex is 

assembled an AP2-clathrin complex to drive GPCR internalization into endosomes and 

receptor desensitization. The mitogen-activated protein kinase extracellular signal-

regulated kinase (ERK) pathway can also be activated not only via the main signal 

transduction cascades but also through the interaction of the GPCR-arrestin complex. 

Following internalization, the endosomes containing GPCR receptors can melt with 

lysosome to be ultimately degraded, or can be recycled in the recycling endosomes 

pool and go back to the cell surface in the functional process of resensitization53, 55, 56. 

This general model can be applied to dopamine receptors (table 2 and figure 3).  

Dopaminergic modulation of ATP in cAMP and cAMP in AMP conversion, operated by 

the adenylyl cyclase and phosphodiesterase respectively, results in the regulation of 

protein kinase A (PKA) and potentially other exchange proteins activated by cAMP25, 57. 

PKA substrates such as Protein phosphatase 1 regulatory subunit 1B (DARPP-

32/PPP1R1B) have been extensively studied over the last 30 years. When 

phosphorylated on Thr34 by PKA, DARPP-32 is a negative regulator of protein 

phosphatase 1 (PP1). In contraposition, phosphorylation of DARPP-32 on Thr75 by 

cyclin-dependent kinase 5 (CDK5), in response to dopamine receptor D1 activation, 

results in PKA inhibition55, 58. 
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Figura 3. Canonical mechanisms for GPRC’s signaling and trafficking53.  

 

Furthermore, other important dopamine signaling pathways have also been 

discovered, including the modulation of the Akt-GSK3 signaling pathway59 and the 

activation of the PAR4 signaling pathway60.  

Receptor–Receptor Interactions: Homomeric and heteromeric dopamine 

receptors 

Dopamine receptors can physically interacts with its own type or other receptors in the 

plasma membrane of neurons, to form homomers or heteromers respectively, or high-

order receptor oligomers61-64. In a receptor mosaic model view, each receptor 

represents a single tile inside the mosaic; furthermore, receptors in the mosaic have 

different features and properties compared to each single receptor that compose the 

mosaic64-66. 

In the brain, the dopamine receptors D1 and D2 are the most abundant dopamine 

receptor expressed. For reason of brevity in this paragraph it will be explained only the 

interaction D1-D2, and D1-D3 heteromers for their implication in movement disorders. 

See table 3 for more information about dopamine receptors heteromer interactions. 

The physiological relevance of dopamine receptor D1–D2 heterodimers is supported 

by the co-expression of D1 and D2 receptors in small populations of medium spiny 

neurons (MSNs) of the nucleus accumbens (NAc) in the mouse67 and in other regions 
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of the basal ganglia68. Dopamine receptors D1 and D2 can form heteromeric receptor 

complexes through electrostatic interactions among a specific glutamic acid residues in 

the carboxyl-tail of the dopamine receptor D1 and an arginine residues in the third 

intracellular loop of the dopamine receptor D269. The expression of dopamine 

receptors D1-D2 heteromers has been reported to exist at presynaptic but not at 

postsynaptic terminals of MSNs. Up to now, different data suggest that neurons 

expressing dopamine receptors D1-D2 heteromers may have a unique physiological 

function compared to the neurons expressing dopamine receptor monomers  at local 

level and distal level70, 71. Dopamine receptors D1-D2 heteromers can stimulate 

calcium signaling, by Gq/11 and phospholipase C (PLC) activation, resulting in the 

activation of calcium calmodulin kinase IIa (CaMKII)72-74 and increased expression of 

brain-derived neurotrophic factor (BDNF) in NAc and ventral tegmental area (VTA)70, 73, 

75. Evidence suggests an implication of dopamine receptors D1-D2 heteromers in drugs 

addiction and schizophrenia70, 76.  

Dopamine receptors D1-D3 heteromers have been found by different techniques in 

the striatonigral pathway of rat striatum77, 78. Data show that upon DA denervation and 

intermittent L-Dopa therapy, dopamine receptor D3 is overexpressed in the dopamine 

receptor D1-GABA pathway. The dopamine receptor D3 overexpression can 

consequently contribute to the dopamine receptor D1 sensitization and development 

of L-Dopa-induced dyskinesias79, 80. The dopamine receptor D1-D3 interaction has been 

reported to determine a receptor D3 stimulation and an increase of dopamine 

receptor D1 response77, 78. It was proposed that dopamine receptor D1-D3 heteromer 

can operate a reinforcing of the dopamine receptor D1  signaling in turning affecting 

motor functions and can contribute to dyskinesia in PD patients78, 81. 
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Heteromer Physicial interaction Functional evidence 

In vitro In vivo 

D1-D2 Co-IP, NLS 
FRET rat striatal 
neurons 
radioligand binding 

Co-IP rat STR, PFC 
FRET in situ rat CP, 
NAc, GP 

Novel Gq-coupling resulting in intracellular calcium 
release and BDNF expression, signaling blocked by 
D1R and D2R antagonists, GSK-3b inactivation. 

D2-D4 BRET D2R and D4.4, 
no heteromer 
between D2R and 
D4.7 variant 

Colocalization in 
mouse STR 

Potentiation of ERK activation when D2R and D4R 
coexpressed but not with D4.7 variant, knock-in 
mice expressing D4.7 variant show no synergistic 
increase in striatal ERK activation. 

D1-D3 BRET, FRET Co-IP rat STR Agonist-induced D1R cytoplasmic sequestration 
abolished by D3R coexpression, D3R stimulation 
enhanced D1R agonist affinity and potentiated D1R-
mediated behaviors. 

D2-D3 Co-IP Colocalization STR In the presence of excess D3R, the properties of 
partial D2R agonists transformed to antagonists. 

D2-D5 FRET, NLS Colocalization, rat 
cortex, VP, CP 

Gq-coupling resulting in intracellular calcium release 
followed by extracellular calcium influx. 

A1-D1 Co-IP Co-IP rat NAc A1R promoted D1R G protein uncoupling and 
dampened receptor signaling. 

A2-D2 Co-IP, FRET, BRET Colocalization inSTR A2R promoted D2R G protein uncoupling and 
dampened receptor signaling. 

D1-NMDA BRET Co-IP rat HIP, STR 
PSD, PFC, pulldown 
assay rat HIP 

Uncoupling the heteromer with a disrupting peptide 
upregulated NMDA-mediated LTP in rat HIP and 
promoted working memory. 

D2-NMDA  Co-IP rat STR PSD, 
pull-down assay 
STR 

Heteromer formation induced by cocaine disrupted 
the CaMKII/NR2B interation and reduced NMDA 
receptor-mediated currents. 

D2-5HT2A Co-IP, FRET, BRET Colocalization in 
STR 

5HT2AR-mediated PLC activation was synergistically 
enhanced by D2R activation, D2R-mediated AC 
inhibition was attenuated by 5HT2AR activation. 

D1-H3 BRET Co-IP rat STR D1R mandatory for H3R-induced ERK activation, 
D1R- and H3R-induced ERK activation blocked by 
antagonists for either receptor. 

D2-H3 BRET Co-IP rat STR H3R agonists dampened D2R receptor function and 
D2R-induced locomotor activity 

Table 3. Physical and Functional Evidence for Dopamine Receptor Heteromers. Abbreviations: 5HT2AR, 5HT2A 
receptor; A1R, adenosine A1 receptor; A2R, adenosine A2 receptor; AC, adenylyl cyclase; ADHD, attention-deficit 
hyperactivity disorder; BDNF, brain-derived neurotrophic factor; BRET, bioluminescent resonance energy transfer; 
CaMKII, calcium calmodulin kinase II; Co-IP, coimmunoprecipitation; CP, caudate putamen; D1R, dopamine D1 
receptor; D2R, dopamine D2 receptor; D3R, dopamine D3 receptor; D4R, dopamine D4 receptor; ERK, extracellular 
signal-related kinase; FRET, fluorescent resonance energy transfer; GP, globus pallidus; GSK-3b, glycogen synthase 
kinase 3b; H3R, histamine H3 receptor; HIP, hippocampus; LTP, long-term potentiation; mGlu5, metabotropic 
glutamate receptor 5; NAc, nucleus accumbens; NR2B, NMDA receptor subunit 2B; PLC, phospholipase C; PFC, 
prefrontal cortex; PSD, postsynaptic density; STR, striatum; VP, ventral pallidum70. 
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1.3    Current treatments of Parkinson disease 

In these last years, PD treatment has become articulated due to the presence of new 

drugs and treatments (figure 4). Treatments for PD include pharmacotherapy, 

functional stereotaxic neurosurgery (deep brain stimulation), and supportive therapy 

such as physiotherapy, speech therapy, and dietary measures. All treatments available 

until 2016 are of symptomatic nature. No therapy is currently available that slows 

down the progression of PD or even prevents its manifestation82. 

L-Dopa 

The first and the most efficient treatment established to recover the dopaminergic 

deficit was L-Dopa always in fixed combination with a decarboxylase inhibitor. L-Dopa 

is the physiological precursor of dopamine and unlike dopamine it is permeable at the 

blood brain barrier. According to present knowledge, L-Dopa does not influence the 

progression of the disease. The effects of L-Dopa are dose-dependent. L-Dopa adverse 

reactions depend mostly on its oxidative metabolism and its potential capability to 

produce reactive oxygen species. Treatment with L-Dopa is recommended in all stages 

of the disease. The uptake of L-Dopa starts from the duodenum into the blood and 

from the blood to the brain competing with the uptake mechanism for neutral amino 

acids. Once in the CNS, L-Dopa is converted in dopamine by a neuronal L-Dopa 

decarboxylase in the dopaminergic neurons. Therefore, dopamine is transported in the 

synaptic vesicles. When the impulse reach the dopaminergic neurons, vesicles fuse 

with plasma membrane and dopamine is released into synaptic cleft leading to its 

physiological effect83-86.  

Dopamine agonists 

Ten dopamine agonists (five ergot- and five non-ergotderivates) are usable for the 

treatment of PD. Ergot dopamine agonists include bromocriptine, cabergoline, 

adihydroergocriptine, lisuride, and pergolide. The non-ergot derivates include piribedil, 

pramipexole, ropinirole, apomorphine and rotigotine. Usually, dopamine agonists are 

provided in the advanced PD stages since they may increase the risk of cognitive 
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impairment or dementia development. However the anti-Parkinson efficacy is limited 

and motor complications are not completely prevent87, 88. 

MAO and COMT inhibitors 

The duration of the effect of L-Dopa can be prolonged blocking degrading enzymes of 

L-Dopa and dopamine. Usually, COMT inhibition (entacapone, opicapone or tolcapone) 

is associated with an increased stability of levodopa plasma level, suppressing peaks of 

levodopa concentrations associated with motor complications82. MAO-B inhibitors 

(rasagiline, safinamide, selegiline) can amplify the effect of L-Dopa. However, clinical 

studies concerning the efficacy of this therapeutic drugs have produced controversial 

results.  

 

 

Figura 4. Pharmacology of dopaminergic transmission. Dopamine is released into the synaptic cleft, where it can 
bind to post-synaptic D1-like (D1 and D5) and D2-like (D2, D3, and D4) receptors. Dopamine can be metabolized in 
glia cells to 3-methoxytyramine (3MT) by the catechol-O-methyl transferase (COMT) or to 3,4-
dihydroxyphenylacetic acid (DOPAC) by monoamine oxidase B (MAO-B). Dopamine is also reuptaken into the pre-
synapse by dopamine transporters. Drugs are L-Dopa, D1-, and D2-like dopamine agonists, MAO-B- and COMT-

inhibitors82. 
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1.4   Etiology 

To date the etiology of PD is unknown. PD has a complex and multi-factorial etiology, 

involving genetic and environmental factors. However, the molecular details of the 

degeneration are unknown. Nevertheless, the discovery of PD related genes has lit a 

new light on the cellular mechanisms related to PD neurodegeneration. 

Environmental factors 

Epidemiological analyses show that pesticide exposition (Paraquat, Rotenone), lifestyle 

(diet, habit, occupation), metal exposure (Al, Cu, Fe, Hg, Mn, Pb, Zn), chemical and 

industrial products (MPTP, organic solvents), trauma and viral infections can increase 

the risk of PD development89.  

An example of how an exogenous toxin can mimic the clinical and pathological 

symptoms of PD is the MPTP (1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine or 

meperidine) intoxication90. In 1982 MPTP was discovered as dopaminergic neurotoxin 

when drug users developed a rapidly progressive parkinsonian syndrome as a result of 

intravenous self-administration of a street preparation of 1-methyl-4-phenyl-4-

propionoxypiperidine (MPPP), an analog of the narcotic Demerol contaminated by 

MPTP90. In humans and monkeys, MPTP produces a severe parkinsonian syndrome, L-

Dopa responsive, characterized by all the PD symptoms including the cardinal 

symptoms of PD.  

In the brain, by crossing the blood brain barrier, MPTP is converted in to 1-methyl-4-

fhenyl-2,3-didropiridine (MPTP+) by monoamine oxidase B (MAO-B) in glial cells, 

serotoninergic neurons and in each neuron that contain MAO-B enzyme. 

Subsequently, MPTP+ is converted in 1-metil-4-fenilpiridinio (MPP+), probably by 

spontaneous oxidation, and released in the extracellular space. MPP+ is transported in 

dopaminergic neurons through its high affinity for the dopamine transporter (DAT). 

Inside neurons MPP+ can follow at least three routes: (i) it can bind the vesicular 

monoamine transporter-2 (VMAT2 )91, which translocates MPP+ into synaptosomal 

vesicles; (ii) it can be concentrated within the mitochondria92 and (iii) it can remain in 

the cytosol to interact with the cytosolic enzymes93. In the mitochondria MPP+ exerts 
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is toxic mechanism binding and blocking the complex I, which interrupts the transfer of 

electrons to ubiquinone (figure 5). This perturbation enhances reactive oxygen species 

(ROS) production and decreases ATP synthesis leading to a neuronal dead via 

apoptosis1, 90. The MPTP related Parkinsonism supports the environmental hypothesis 

of PD etiology and the MPTP-treated animals can be an interesting models for PD 

studies. Other substances like rotenone, 6-hydroxydopamine (6-OHDA) and paraquat 

were identified PD causative and currently used in toxin-based animal models of PD94.  

In addition to toxins, other environmental factors, which can be considered as risk 

factors rather than causative elements, are lifestyle and habits. Repetitive or simple 

violent traumas can provoke a Parkinson-like progressive syndrome as the one 

frequently observed among boxers that take the name of “Pugilistic Parkinson 

Syndrome”.  Another two risk factors are age and sex, males are more affected than 

women (in a 1,5:1 ratio). In humans, neuronal and SNpc neuromelanin loss increases 

around 60 years, coinciding with the average age of PD onset. Since neuromelanin has 

a protective effect in neurons against free radicals and toxins, the decrease in this 

pigment may predispose the brain of aged people to Parkinson95.  

Finally, an infective etiology has been hypothesized; clinical manifestations of PD-like 

syndromes have been observed in patients affected by a viral encephalitis propagated 

in 192096, 97. 

 



Chapter 1 | Introduction 

 

20 
Mauro Rassu: “LRRK2 effect on dopamine receptor trafficking – implication in Parkinson’s disease”.  

Ph.D. Course in Life Sciences and Biotechnologies – University of Sassari. 

 

Figure 5. Schematic representation of MPP+ intracellular pathway1.   
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Genetic factors 

Until the end of the 19th century, PD has been considered a sporadic disease, even 

though the 10-30% of PD patients presented a first line relative affected by the 

disease. Leroux in 1880 identified recurring PD cases in the same family, corroborating 

the hypothesis that hereditary factors could be related to pathology98, 99. However, in 

the last 20 years, the identification of gene mutations related to PD and risk factors, 

has proved the importance of genetic factors in the pathogenesis of the disease, even 

if less than 10% of the cases are familiar. Until now, 19 mendelian transmission forms 

and several risk factors have been related to PD (table 4)100. 

Locus Chromosome Gene Inheritance Probable Function 

PARK1/PARK4 4q21 SNCA Dominant 
Presynaptic protein, Lewy body, lipid 

and vesicle dynamics 

PARK2 6q25.2-q27 PARK Recessive Ubiquitin E3 ligase, mitophagy 

PARK3 2p13 - Dominant Unknown 

PARK5 4p14 UCH-L1 Dominant Ubiquitin C-terminal hydrolase 

PARK6 1p35-36 PINK1 Recessive Mitochondrial kinase 

PARK7 1p36 DJ1 Recessive Oxidative stress 

PARK8 12q12 LRRK2 Dominant 
Kinase signaling, cytoskeletal 
dynamics, protein translation 

PARK9 1p36 ATP13A2 Recessive Unknown 

PARK10 1p32 - - Unknown 

PARK11 2q36-37 GIGYF2 Dominant IGF-I signaling 

PARK12 Xq21-q25 - X-linked Unknown 

PARK13 2p12 HTRA2 Dominant Mitochondrial serine protease 

PARK14 22q13.1 PLA2G6 Recessive Phospholipase enzyme 

PARK15 22q11.2-qter FBXO7 Recessive Ubiquitin E3 ligase 

PARK16 1q32 Unknown Unknown Unknown 

PARK17 16q11.2  VPS35 Dominant Exocyst complex member 

PARK18 3q27.1 EIF4G1 Dominant 
Translation factor activity,  

RNA binding 

PARK19 1p31.3 DNAJC16 Recessive Unknown 

Table 4. Loci involved in monogenic forms of Parkinson’s disease (PD). 
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Alpha synuclein (PARK1/PARK4) 

Using traditional linkage mapping, the point mutation A53T in the SNCA gene was 

discovered in the large Italian-American family Contursi and subsequently identified in 

three Greek families with familial PD101. A decade later, the same mutation was 

discovered in two Korean and one Swedish family102, 103. Subsequently to the discovery 

that SNCA mutations are involved in a rare familial form of PD, Spillantini and 

colleagues demonstrated that α-synuclein is a major constituent of Lewy bodies104. 

Mutations in SNCA are rare. Until now, five point mutations are discovered (A30P, 

E46K, H50Q, G51D, A53T) and related to autosomal dominant inheritance forms of PD. 

Moreover, triplications of the complete gene were discovered105. Triplication of the 

SNCA gene was discovered in 2003 and reported in several PD families106-108. The gene 

SNCA is located  on the chromosome 4q21 consists of six exons109 and encodes a small 

140 amino acid protein110 organized in three distinct domains: an N-terminal 

amphipathic region (AA 1-60) consisting in six repeats of eleven amino acid with 

consensus sequence KTKEGV111. A central hydrophobic NAC domain (non-amiloid-β 

component of plaque, AA 60-95) necessary for homomeric interactions112. Finally an 

acidic unfolded C-terminal region (AA 96-140)113. Monomeric α-synuclein can form 

conformers, including oligomers, protofibrils and fibrils, and they have been found in 

Lewy bodies. All the five point mutations are located in the amphipathic domain and 

can modify the homomeric interaction kinetic114.  Until now the normal function of α-

synuclein remains poorly understood. The α-synuclein is mainly found in the cytosol 

where can bind the lipid rafts in an interaction that is required for its association with 

the synapse115. Data show that α-synuclein interacts with members of the Rab and 

SNARE families, suggesting a role in vesicular trafficking100, 116-118. 

 

Parkin (PARK2)  

The year following the discovery of the SNCA gene as PD causative, in a Japanese PD 

patient group was discovered a protein associated to an early-onset form of PD (AR-

JP). PARK gene is one of the largest genes in the human genome, mapping on the 

6q25.2-q27 chromosome, with a length of 1.38 Mb119. Numerous point mutations and 

exon rearrangements (to date 147) have been found in PARK gene in various ethnic 
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groups100, 120. Parkin protein is an E3 ubiquitin ligase of 465 amino acids organized in 

different domains: an N-terminal ubiquitin like domain, a central linker region and C-

terminal RING domain consisting of two RING finger motifs separated by a RING 

domain98, 121. The ubiquitin-like domain of E3 ubiquitin ligases can bind unfolded 

proteins to be degraded by the ubiquitin-proteasome system122. A serious neuronal 

loss in the substantia nigra is related to PARK2 PD form, with occasional tau pathology 

and rare Lewy Bodies in postmortem brains123-125 probably due to the young age of 

Parkin disease onset126. The loss of the ubiquitin ligases activity, due to mutations in 

the RING domain, can cause an accumulation of unubiquitinated proteins. It has been 

proposed that the overexpression of Parkin could protect from toxic forms of α-

synuclein by Lewy Body formations98. The E2 enzyme associated with Parkin is UbcH7 

and the mutation T240R in the first RING domain disrupt this interaction127. It has been 

demonstrated that when mitochondria are damaged, PINK1 (another gene associated 

with AR-JP), phosphorylates Parkin. Subsequently, Parkin translocates to the surface of 

demented mitochondria to ubiquitinate mitochondrial membrane proteins128, 129. The 

majority of Parkin mutations are linked to dysfunctions in the mitochondrial quality 

control, suggesting a role of the mitochondria in the pathogenesis of PD100. 

 

PTEN-induced kinase 1, PINK-1 (PARK6) 

After different studies, the locus PARK6 was mapped on the chromosome 1p35-p36 in 

a large Italian family presenting a mendelian form of PD with recessive inheritance130. 

In 2004, Valente and colleagues identified two mutations in the PTEN-induced putative 

kinase 1 (PINK1) gene: the G309D missense mutation and a W437X truncating 

mutation131. The PINK1 gene is assembled in height exons and encode for a 581 amino 

acid protein consisting of an N-terminal 34 amino acid mitochondrial targeting motif, a 

conserved serine–threonine kinase domain and a C-terminal auto regulatory domain. 

The majority of the mutations in the PINK1 gene are located in the region encoding for 

the kinase domain, suggesting the importance of PINK1 enzymatic activity in PD 

pathogenesis121. PINK1 related PD is a fast onset and slow progression Parkinsonism 

form responsive to L-Dopa treatment132. It has been demonstrated that PINK1 can co-

localize and phosphorylate the mitochondrial chaperone TRAP1 protein133. As 
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mentioned PINK1 phosphorylates Parkin to regulate mitophagy129, 134. In a general 

view, when mitochondria are damaged, mitochondrial membrane potential is reduced 

and PINK1 is recruited and binds the mitochondrial membrane. Parkin is then recruited 

to induce mitophagy via ubiquitination135-137. It is controversial the function of TRAP1 

in this pathway138. 

 

Dj-1 (PARK7) 

Mutations in the Dj-1 gene were first reported in two European family and associated 

with an autosomal recessive form of PD139. Dj-1 gene is composed of height exons and 

encodes for a 189 amino acid ubiquitary protein first identified as oncogene140. DJ-1-

linked PDs are rare, L-Dopa responsive, and indistinguishable from Parkin or PINK1 

linked PD 141. However, about 10 different point mutations and exonic deletions have 

been described142. Dj-1 has been reported against oxidative stress like a chaperone 

oxidative stress sensor143, 144. The DJ-1 protein forms dimeric structures145, and it 

appears that most of Dj-1 PD linked mutants (L166P, E64D, M26I, and D149A) 

heterodimerize with wild-type DJ-1146. However, the mutated proteins are not 

correctly folded and unstable, affecting Dj-1 neuroprotective function and antioxidant 

activity147, 148. DJ-1 also can function as redox-dependent chaperone to inhibit α-

synuclein aggregation and subsequent Lewy Body formation. Recently, DJ-1 has been 

linked to the Parkin/PINK1 pathway by the transcriptional regulation of PINK1149. 

 

Vacuolar protein sorting 35-VPS-35 (PARK17) 

In 2011, Zimprich and colleagues using next generation sequencing identified the 

VPS35 gene in an Austrian family with 16 members affected by late-onset autosomal 

dominantly inherited parkinsonism. Later, the mutation D620N, was validated by 

Sanger100, 150. Simultaneously, Vilarino-Guell and colleagues, using next generation 

sequencing, identified the D620N mutation as a cause of PD in a large Swiss family151. 

VPS35 mutations are a rare cause of PD concerning 1% of familial parkinsonism and 

0.2% of sporadic PD150, 152. VPS35 linked PD is characterized by bradykinesia, resting 

tremor and is responsive to levodopa therapy comparable to idiopathic disease153. 

VPS35 gene was mapped on the 16q11.2 locus and encodes for a highly conserved 796 
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amino acid protein. The yeast homologous of Vps35 has been well characterized and it 

has been shown to compose the retromer complex with other 4 Vps proteins (Vps5, 

Vps17, Vps26, Vps29). The retromer complex is involved in retrograde transport of 

proteins to the trans-Golgi network154. VPS35 is a helical solenoid like protein, such as 

other proteins involved in coated vesicle trafficking155. The VPS35 human homolog 

have been found to be involved in the same endosome–trans-Golgi network pathway 

as the yeast Vps35156. A recent study links the D620N mutation to dysfunction of the 

retromer complex, generating a redistribution of the retromer endosomes to the 

perinuclear region in cell lines and PD patient-derived fibroblasts. Moreover, the 

D620N mutant alters the cathepsin D trafficking, a protein implicated in the α-

synuclein degradation100.  
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1.5   Leucine rich repeat kinase 2 – (LRRK2) 

PARK8 locus have been associated for the first time to PD by Funayama and colleague 

in the 2002157 in a large Japanese family presenting a dominant autosomal 

Parkinsonism without Lewy Body. After two years, two groups independently have 

identified in PARK8 locus the LRRK2 gene (Leucine-rich repeat kinase 2)158, 159; 

subsequently many pathological mutations have been identified and associated with 

PD. Mutations in LRRK2 gene are the most frequently cause of familiar PD. In 2014 

Nalls and colleagues associated LRRK2 as a risk locus implied in sporadic PD160.   

General characteristic and structural domains of LRRK2 

The gene encoding for LRRK2 is located on chromosome 12.q12 and is composed by 51 

exons. LRRK2 is a 286-kDa multidomain protein exhibiting both GTPase and kinase 

activities that belongs to the Roco protein family of G proteins protein. LRRK2 has 7 

functional conserved domains (figure 6)161-163: 

 An “armadillo repeats” domain; 

 An “ankyrin repeats” domain; 

 A leucine-rich repeats (LRR) domain;  

 A Roc domain with GTPase activity;  

 A carboxy terminal of Roc domain (COR);  

 A Kinase domain, homologous with MAP-kinase-kinase-kinase (MAPKKK);  

 A C-terminal WD-40 repeat domain. 

 

 Figure 6. Domain structure of LRRK2163. 
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The Armadillo Repeats domain is a motif of 42 amino acid, composed by three α-

helixes and was firstly identified in the “Armadillo” protein of Drosophila, whose 

human homologue is the β-catenin. The Armadillo domain forms a versatile molecular 

interaction domain like a platform available for different protein164.  

The Ankyrin Repeats domain is a 7 ankyrin repeats motif, which forms helix-loop-helix 

structures that ends in a loop or hairpin (figure 7). This motif is common in a high 

number of prokaryotic and eukaryotic proteins like cytoskeletal proteins, transcription 

factors, signaling proteins and cell cycle regulators165. 

LRR domain is made of an 11 amino acid conserved motif LxxLxLxxNxL (Leucines can be 

replaced by isoleucine, valine or phenylalanine). These repeats are formed by a β-

strand followed by an α-helix that line up side-by side to form an arch-like structure 

(figure 7). LRR domains participate in the interactions with different proteins through 

binding to their extended solvent-accessible surface166, 167.  

 

 

Figura 7. Homology models of (A) the ankyrin repeat domain and (B) the leucine-rich repeat (LRR) domain of 
LRRK2166. 

 

The WD40 repeat domain (known as β-transducin repeat) has a high conserved 

tridimensional structure and form a seven-blade propeller-like structure. Each repeat is 

composed by four antiparallel β-sheet and together these repeats form a circular 

bladed propeller-like structure. The predicted WD40 domain of LRRK2 contains seven 

WD40 repeats (figure 8), to form an interaction platform for protein-protein reversible 

interactions. Proteins containing WD40 domains have been found in all eukaryote 

proteins with different functions including the Gβ subunit of heterotrimeric G proteins, 

 

(A) (B) 
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transcriptional regulators, protein phosphatase subunits, RNA processing complexes, 

cytoskeletal assembly proteins, and proteins involved in vesicle formation and 

trafficking. Different experimental results suggest an important role for the WD40 

domain in the intramolecular regulation of LRRK2 activity166, 168. 

 

 

Figure 8. Homology models of  the WD40 repeat domain166. 

 

LRRK2 and Roco proteins are serine/threonine specific kinases. Gilsbach colleagues 

proposed a structure of the LRRK2 kinase domain based on Dictyostelium discoideum 

Roco4 (figure 9) in its active and inactive state169. Dictyostelium Roco4 has the same 

domain architecture of LRRK2, but is biochemically and structurally more easily worked 

than LRRK2. The Roco4 kinase structure consists of a canonical, two lobed kinase 

structure.  The N-terminal lobe is composed of anti-parallel β sheets and contains the 

conserved αC-helix. The C-terminal lobe consists of α-helices and contains the 

activation loop with the conserved N-terminal DFG motif. The ATP binding site is 

formed by a cleft between those lobes and forms the catalytic site of the kinase. The 

formation of a polar contact between Roco4 K1055 from the β3-strandand E1078 from 

the αC-helix is essential for correct positioning of the αC-helix. The DFG motif is 

essential for catalysis: the Aspartic acid is essential to interact with ATP directly or via 

coordination of a magnesium ion; the Phenylalanine takes hydrophobic contacts to the 

αC-helix and the HxD motif and is responsible for the correct positioning of the DFG 

motif169, 170. 

                

(A) (B) 
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The putative GTPase domain of LRRK2 is a member of the ROCO family. In the ROCO 

proteins predicted GTPase (Roc) domain is always in tandem with the COR domain. 

This Roc–COR structure is conserved throughout evolution, suggesting the functional 

interdependence of the two domains170. Deng and colleagues suggested that the 

structure of the LRRK2 Roc domain (figure 9) displays a homodimer with extensive 

domain-swapping. Each monomer contains five α-helices and six β-strands with loops 

in between, showing three subdomains: head, neck, and body. The head domain is 

composed by β1, α1, β2, and β3. The loop between α2 and β2, such as that between 

β2 and β3, are not folded. The neck domain consist of a bent helix α2. The body 

domain is structured with β4, α3, β5, α4, β6, and α5 with loops in between. In the 

same paper, Deng and colleagues, suggest that LRRK2 Roc domain structure revealed 

an inverted dimer or rather the N-terminal of one domain interacts with the C-terminal 

of the other171. In contrast, the C. tepidum Roc-COR domain structure showed that the 

COR domain is the dimerization domain and that Roco proteins that are not able to 

dimerize are not able to hydrolyze GTP172. 

 

Using size-exclusion column chromatography and native gel analysis, Greggio and 

colleagues and Sen and colleagues proved that recombinant LRRK2 expressed in 

HEK293FT cells exists as monomer, dimer and higher order oligomers, but only the 

Figure 9. Models of the (A) kinase domain of Dictyostelium discoideum ROCO4 and (B) Roc domain of LRRK2170, 

171. 
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dimeric form has significant kinase activity173, 174. The existence of LRRK2 dimer in cells 

was also confirmed by several other groups of researchers175-177. 

 

Guaitoli and colleagues proposed a high-resolution structure model for LRRK2 (figure 

10). This model suggest that there are close contacts of the kinase domain with the N-

terminal ankyrin and LRR repeat domains. In the model, the kinase-ankyrin module 

localizes in a position close to the LRR domain and the α0-helix connecting the LRR and 

the Roc G-domain. In this model the dimerization domain is represented by the COR 

domain163.  

 

 

Figure 10. LRRK2 high-resolution homodimer structure model163. 

  

This LRRK2 structure is in contrast with the Deng model in which the dimerization 

domain is displayed by the Roc domain. In a general view there is the possibility that 

LRRK2 has a differential conformational structure and there are different possible 

conformations of a more dynamic molecule178. 

 

It has been shown that the G-domain of LRRK2 is a GTP-binding protein and that GTP 

binding is essential for the regulation of kinase activity176, 179.  Until now, the activation 

mechanism of LRRK2 is unknown. In a general model (figure 11), LRRK2 activity is 

regulated by at least three different ways: dimerization, intramolecular activation, and 

binding of the substrates. After dimerization, LRRK2 can switch from an inactive state 

(GDP binding) to an active state (GTP binding). Subsequently, LRRK2 conformation 

changes; this change is imparted to the others domains of the protein. Subsequently 

the activation loops of the two-kinase protomers are auto phosphorylated and 
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activated. The GTPase reaction is also critically dependent on dimerization. In this way, 

the intramolecular GTPase reaction functions as a stopwatch for the activation and 

function of Roco proteins. The N- and C-terminal segments of LRRK2 regulate the 

intramolecular signaling cascade and are important for kinase activity, oligomerization, 

localization and determine the specificity of the Roco proteins170, 180. 

               

 

 

 

Mutations in LRRK2 gene and their implication in PD 

Up to now, more than 100 distinct missense and non-sense mutations have been 

reported in LRRK2100, 181; however, only a small number of these mutation are related 

with PD (R1441C/G/H, Y1699C, S1761R, I2012T, G2019S and I2020T)182-186. These 

pathogenic modifications are located in exons encoding the Roc domain, COR domain, 

or kinase domains of the protein. Phenotypically, LRRK2 mutation patients are 

fundamentally indistinguishable from sporadic PD presenting a late onset around 60 

years of age, with a slow progression and responsive to levodopa therapy187.   

The most studied mutation, G2019S, affects the kinase domain and is common in 

various populations: it has been identified in up to 42% of familial cases, depending on 

the ethnic group182, 188. It is frequent in North African, Middle Eastern, Ashkenazi 

Jewish PD patients and North African Berber populations (35–40% of PD patients are 

G2019S carriers). G2019S mutation was found in sporadic cases of PD in approximately 

Figure 11. Proposed model of the activation mechanism of LRRK2 modified. Modified from180.  
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2% in Northern European and US populations and up to 10% of sporadic cases 

worldwide. The penetrance of the G2019S mutation depends on the age from 28% at 

59 years to 74% at 79 years of age100. As mentioned, the G2019S mutation is located in 

the kinase domain of LRRK2, determining an approximatively twofold increase in its 

kinase activity189-191. Another mutation, the I2020T, was found in the kinase domain 

and isolated in a Japanese family192, but the effect of this mutation on LRRK2 kinase 

activity and cellular toxicity remains poorly understood193-196. The R1441C, R1441G and 

R1441H mutations are located in the GTPase domain of LRRK2; the R1441G mutation 

are founded in > 40% of familial PD cases in the Basque population197, 198. The Y1699C 

mutation is located between the GTPase and kinase domains, and have been reported 

25 affected subjects in a large PD affected family in UK199. The R1441C/G/H and 

Y1699C mutations show a decrease in GTP hydrolysis200-202, but the impact on the 

kinase function of LRRK2 remains controversial198. 

 

LRRK2 functions in physiological and pathological conditions 

Up to now, although the extensive studies performed, the physiological role of LRRK2 

remains elusive. LRRK2 is ubiquitously expressed in various tissues. LRRK2 is expressed 

throughout the brain, including the olfactory bulb, striatum, cortex, hippocampus, 

midbrain, brainstem, and cerebellum203, 204. Gene expression analysis suggests that 

LRRK2 is expressed in peripheral organs such as kidney, lung, spleen and peripheral 

blood mononuclear cells and immune cells205-208. The subcellular localization of LRRK2 

is fundamentally cytosolic with an important component associated with the 

membranes, Golgi apparatus, mitochondria, lysosomes, endoplasmic reticulum, 

microtubules and cytoskeleton structures203. LRRK2 has been implicated in different 

cellular pathways, including cytoskeletal dynamics, autophagy, mitochondrial 

homeostasis, vesicular trafficking, protein aggregation and protein translation (figure 

12). 
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Figure 12. Implication of LRRK2 in cellular functions198.  

 

LRRK2 and cytoskeleton dynamics 

Microtubules are cytoskeletal structures that are involved in different cellular 

functions such as neuronal polarity, neuronal morphology and transporting cargo 

proteins209. One of the most significant effects of LRRK2 mutants on the cytoskeleton is 

the impairment in neurite outgrowth210-212. However, it is not clear if this is due to 

LRRK2 mediated changes in tubulin phosphorylation, tubulin acetylation, MAP 

phosphorylation and/or microtubule associated protein kinase regulation. In vitro 

experiments in HEK293 cells revealed that LRRK2 colocalize with β-tubulin193. It has 

been reported that LRRK2 can phosphorylates bovine brain β-tubulin and 

phosphorylation was significantly increased G2019S pathological mutant213. 

Experimental evidence shows a functional interaction between LRRK2 and the 

microtubule-associated protein tau214. Kawakami and colleagues proved that LRRK2 

mediates tau phosphorylation at threonine 181 in vitro211, 215. 
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LRRK2 and autophagy 

It has been reported that blocking macroautophagy the toxicity of overexpressed 

LRRK2 G2019S was reduced216. Although there is experimental evidence on the 

involvement of LRRK2 in autophagy, the current data are not sufficient and sometimes 

controversial for a LRRK2 accurate implication in this pathway, suggesting the 

possibility that LRRK2 may have different roles in different cell types or different 

physiological conditions. An age dependent biphasic alteration in macroautophagy has 

been observed in kidneys of LRRK2 knockout animal models, in which autophagy was 

enhanced at young age and reduced at old age. In this study there was an increased 

ratio of LC3-II/LC3-I in young animals and an opposite ratio was reported in older 

animals198, 217. On the contrary, another study reported a generalized increase in LC3-II 

in 12 to 20 months animals218. Recently Manzoni and colleagues reported that in H4 

glioma cell line and in primary astrocytes the LRRK2 kinase activity is involved in the 

non-canonical control of macroautophagy, working in parallel with the mTOR/ULK1 

pathway and dependent on PI3P and Beclin-1 activity198, 219.   

 

LRRK2 and mitochondrial dysfunctions 

Mitochondria have essential functions for cellular homeostasis. Fibroblasts from LRRK2 

G2019S PD patients display abnormal mitochondrial morphology220. It has been 

demonstrate that an increase in mitophagy and altered calcium levels were observed 

in primary mouse cortical neurons expressing LRRK2 G2019S or LRRK2 R1441C 

mutants198, 221. It has been shown that endogenous LRRK2 directly interacts with the 

fission regulator dynamin-related protein (Drp1) at the mitochondrial membrane, 

increases Drp1 phosphorylation and activation leading to mitochondrial fission222, 223. 

This LRRK2-Drp1 dependent mitochondrial fragmentation is enhanced by 

overexpressing wild type LRRK2 or G2019S mutant form222, 224. LRRK2 also interacts 

with the mitochondrial fusion regulators mitofusin protein 1/2 (Mfn1/2) and the 

dynamin-like 120 kDa protein (OPA1) modulating their activities; PD patients carrying 

the G2019S mutation have reduced levels of mature OPA1225, 226. Iaccarino and 

colleagues have demonstrated that mutant LRRK2 toxicity in human (SH-SY5Y) and 

murine (ETNA embryonic neuronal precursors) neuronal cells is mediated by the 
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mitochondria-dependent apoptotic pathway227. These observations suggest that LRRK2 

might be involved in the control of mitochondria homeostasis. 

 

LRRK2 and vesicular trafficking  

LRRK2 is associated with membranous structures and vesicles as well as Golgi complex 

in mammalian brain and Golgi fragmentation was observed in mice overexpressing 

LRRK2 wild-type or G2019S210, 228, 229, 228. As mentioned a subcellular localization study 

performed in primary cortical neurons and rodent brains showed that LRRK2 co-

localizes to Golgi apparatus and Golgi-associated vesicles, endoplasmic reticulum (ER), 

lysosomes and mitochondria, and in a lesser extent, to vesicle markers like 

synaptotagmin203. Different experimental evidence suggests that LRRK2 has a 

functional role in the vesicle trafficking control, and alteration in synaptic vesicle 

trafficking seems a common pathological mechanism in PD230, 231. LRRK2 has been 

implicated in the regulation of synaptic endocytosis with Rab5b; LRRK2 overexpression 

remarkably reduced synaptic vesicle endocytosis, and this phenotype was rescued by 

the introduction of Rab5b232. In mammalian cells, has been demonstrated that LRRK2 

interacts with members of the dynamin GTPase superfamily Dnm1, Dnm2 and Dnm3, 

which play an important in clathrin-mediated endocytosis225. In Drosophila, Matta and 

colleagues demonstrated that LRRK2 phosphorylates EndophilinA (EndoA), resulting in 

an EndoA decreasing affinity for membranes. LRRK2 G2019S mutant prevented 

synaptic endocytosis and this phenotype was rescued by pharmacological inhibition of 

LRRK2 kinase activity233. Recently, the same group validated these data in mammalian 

cells, in which LRRK2 phosphorylate EndoA1, the neuron-specific EndoA isoform234. To 

clarify the physiological role of LRRK2 in synaptic vesicular trafficking, Piccoli and 

colleagues analysed, at presynaptic and postsynaptic levels, the cortical neurons in 

which LRRK2 was silenced by RNA interference. Electrophysiological analyses were 

performed and revealed that LRRK2 silencing modifies synaptic transmission. 

Moreover, LRRK2 silencing perturbs vesicle dynamics and distribution in the recycling 

pool, determining a significant decrease in docked vesicles, but an increase in the 

amount of recycling vesicle235. LRRK2 can regulate synaptic vesicle exocytosis by 

phosphorylating Snapin, and therefore regulating soluble NSF attachment protein 
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receptor (SNARE) complex activity and late endosomal transport236. Migheli and 

colleagues demonstrated that the expression of disease-associated LRRK2 mutants 

lead to alteration of dopamine receptor D1 trafficking both in animal and cellular 

models. In particular, expression of G2019S LRRK2 determines an increase of 

dopamine receptor D1 on membrane that parallels a decrease in the vesicle pool237. 

Two independent studies showed a genetic interaction between LRRK2 and Rab7L1238, 

239; a genetic risk factor for sporadic PD. The expression of LRRK2 G2019S in primary 

neurons cause lysosomal swelling and accumulation of cation-independent mannose-

6-phosphate receptor (C6-MPR), a component of the retromer complex198, 238. The C6-

MPR is in general recycled between endolysosomes and the Golgi apparatus240. The 

C6-MPR accumulation was rescued either by the overexpression of VPS35 (another PD 

causative gene) component of the retromer or by the overexpression of Rab7L1238. 

Later, Rab7 was found in complex with LRRK2 to further the clearance of Golgi vesicles 

to degradation. In vivo models of LRRK2, while do not show significant typical PD-like 

alterations or relevant signs of neurodegeneration, some of them present different 

synaptic alterations241 such as decreased DA release and re-uptake242, impairment of 

dopamine D2 receptor signaling243, impaired of dopamine reuptake244, impaired 

synaptic vesicles endocytosis234 and decreased extracellular dopamine levels, storage 

and uptake198, 245. Even though some results are quite contradictory or difficult to 

interpret, it is obvious a prominent role for LRRK2 in the tangled network of vesicular 

trafficking (figure 13). To date, LRRK2 appear to be involved in anterograde and/or 

retrograde vesicle trafficking between the ER and Golgi apparatus and/or Golgi and cell 

membrane and/or Golgi and lysosomes and/or endosome and endosome and/or 

endosome and lysosome trafficking in a dynamic process233, 238, 246-249. 
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Figure 13. The localization of LRRK2 in cells supports a role in vesicular trafficking. The distribution of LRRK2 is 
represented as a shadow across multiple organelle compartments and associated with microtubules and the 
centrosome (in yellow)178.  
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Chapter 2 
 
 
 

Materials and methods 
 

Tween® 20 (Polyethylene glycol sorbitan monolaurate), protease inhibitor cocktail, 

Dopamine hydrochloride, IGEPAL® CA-630 (Octylphenoxy poly(ethyleneoxy)ethanol), L-

Glutathione reduced, Streptavidin−Agarose from Streptomyces avidinii, Collagen type 

IV, IBMX (3-Isobutyl-1-methylxanthine), Ro 20-1724 (4-(3-Butoxy-4-

methoxybenzyl)imidazolidin-2-one), R-(−)-Apomorphine hydrochloride hemihydrate 

were obtained from Sigma-Aldrich (Milano, Italy). EZ-Link™ Sulfo-NHS-Biotin was from 

Thermo Fisher Scientific. LRRK2 inhibitors: CZC-25146 and GSK 2578215A from 

Calbiochem. The phosphate-buffered saline (PBS) solution was made using NaCl (137 

mM), KCl (2.7 mM), Na2HPO4 (8.1 mM), KH2PO4 (1.47 mM) from Sigma and then 

adjusted to pH 7.4. Dulbecco’s modified Eagle’s medium (DMEM)–F12, Fetal Bovine 

Serum (FBS), Streptomycin/Penicillin, Geneticin-G418 were purchased from Life 

Technologies. 

Animals  

Male homozygous LRRK2 G2019S KI mice backcrossed on a C57Bl/6J background were 

raised at the University of Ferrara. Male non-transgenic wild-type (WT) mice were 

littermates obtained from the respective heterozygous breeding. Mice employed in 

the study were kept under regular lighting conditions (12 h light/dark cycle) and given 

food and water ad libitum. Experimental procedures involving the use of animals were 

approved by the Italian Ministry of Health (license 318/2013-B). Adequate measures 

were taken to minimize animal pain and discomfort. 
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Molecular biology techniques 

Standard molecular biology techniques were performed in according to Joseph 

Sambrook and David W. Russell Molecular Cloning a Laboratory Manual250.  

Plasmid constructions 

cDNA   corresponding   to   human   LRRK2   (accession   no. NM_198578)  was  RT – 

PCR  amplified  from  human  lymphoblast  mRNA and cloned as previously described 

in227. PacI recognition site on LRRK2 cDNA was mutagenized by site-directed 

mutagenesis (forward TTGAGAAATTAATCAAACAGTGTTTG, reverse 

CAAACACTGTTTGATTAATTTCTCAA) without changing the amino acidic sequence. 

pShuttle2-LRRK2 (WT or R1441C or D1994A or G2019S)  were obtained by digestions of 

cDNAs corresponding to human LRRK2 without PacI restriction site with NotI and XbaI 

and subcloned in DraI/XbaI cloning sites in pShuttle2 vector (Clontech). Expression 

cassettes containing LRRK2 cDNAs were excised from pShuttle2 and subcloned into 

pAdeno-X vector according to Adenoviral-X Expression System 1 (Clontech). Plasmids 

to generate DRD1 or DRD2 stable cell lines were obtained as previously described in237 

Adenoviral delivery 

Adenoviral particles were produced and titrated using the Adenoviral-X Expression 

System 1 (Clontech) according to manufacturer’s instruction. Cells were transduced by 

adenoviral  particles  (10-30 pfu/cell) in DMEM-F12 and incubated  at  37°C for  1 h.  

The  transduced  cells  (usually  more  than 90% expressing LRRK2) were analysed  48h 

transduction. 

Cell lines and SH-SY5Y stable clones 

Human neuroblastoma SH-SY5Y cells (ATCC number CRL-2266) were grown in DMEM–

F12, 10% Fetal Bovine Serum (FBS) at 37°C. The plasmid pcDNA3.1 containing cDNAs 

coding for DRD1-Flag or DRD2-Flag were transfected using Lipofectamine® LTX Reagent 

(Life Technologies) according to the manufacturer’s protocol. The different SH-SY5Y 

clones were maintained under selection by 400 µg/mL of G418. Individual clones were 

picked after 14 days of selection, moved in a 96 well plate, and maintained under 
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selective medium until confluence growth. Different individual clones were analysed 

for DRD1 or DRD2 expression by western blot and immunofluorescence. 

Adeno-X 293 cell line: Adenovirus 5-transformed Human Embryonic Kidney 293 cell 

line (HEK 293; ATCC, Rockville, MD, CRL 1573) were used to package and propagate the 

recombinant adenoviral-based vectors produced with the BD Adeno-X Expression 

System. 

Biotin Protection/Degradation Assay (BPA) 

1x106 -DRD1 SH-SY5Y or cells were grown in a collagen type IV (Sigma-Aldrich) coated 

6-well plates. After 24 hours, cells were transduced by recombinant adenovirus and 48 

later subjected to the biotin protection assay protocol as described in (25). Briefly, cells 

were treated with 0.3 mg/ml Sulfo-NHS-SS-Biotin for 30 min at 4°C. Cells were then 

washed in PBS 1X supplied with 1 mM MgCl2, 0.1 mM CaCl2, pH 8.2 and placed in 

DMEM–F12 pre-warmed medium for 15 min before treatment with 10µM Dopamine 

hydrochloride (or no treatment). After ligand treatment, plates were washed in PBS 1X 

containing 1 mM MgCl2, 0.1 mM CaCl2, pH 8.2, and remaining cell surface-biotinylated 

receptors were stripped in 75 mM NaCl, 1 mM MgCl2, 0.1 mM CaCl2, 50 mM reduced 

glutathione (GSH), 80 mM NaOH, 10% FBS pH 8.6  at 4 °C for 30 min. Cells were then 

washed in PBS 1X containing 1 mM MgCl2, 0.1 mM CaCl2, pH 8.2 and lysed by 150 mM 

NaCl, 1% NP40, 20mM Tris-HCl pH 7.5, protease inhibitor cocktail. Cellular debris were 

removed by centrifugation at 13,000xg. Cleared lysates were precipitated by 

Streptavidin-Agarose beads overnight at 4°C. Beads were washed 4 times with 20 mM, 

150 mM NaCl, 1% IGEPAL, 20mM Tris-HCl pH 7.5. Samples were then resolved by SDS-

PAGE. 

Subcellular fractionation of cells or mouse tissues 

Tissues from 4 months old LRRK2WT or LRRK2G2019S KI male mice were quickly 

dissected and frozen. Subcellular fractionation was conducted as described in (40). 

Briefly, striatum were homogenized in ice-cold homogenization-buffer (320 mM 

sucrose, 4 mM HEPES, pH 7.4, protease inhibitor cocktail (Sigma)). The homogenates 

were centrifuged at 1000xg for 10 min to produce the pellet containing nuclei and 
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large debris fraction (P1). The supernatant (S1) was further fractionated into pellet (P2 

containing the membrane fraction) and supernatant (S2) by centrifugation at 10,000xg 

for 20 min. The S2 was ultracentrifuged at 100,000xg g to obtain the pellet (P3 

containing the vesicle fraction). Protein content was determined using the Bradford 

protein assay. Equal amount of protein extracts were loaded into the SDS-PAGE.  

Western blot analysis 

Western blot analysis was performed as previously described237. Briefly, protein 

content was determined using the Bradford protein assay. Equal amounts of protein 

extracts were resolved by standard sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis. Samples were electroblotted onto Protan nitrocellulose (GE 

Healthcare Life Sciences). Membranes were incubated with 3% low-fat milk in 1X PBS-

Tween 0.05% solution with the indicated antibody: anti-LRRK2 (1:5000 MJFF2 c41-2 

Epitomics), anti-Flag (1:2500 Sigma-Aldrich), anti-D1 dopamine receptor (1:2000 

Sigma-Aldrich), anti-beta-actin (1:5000 Sigma-Aldrich), Phospho-p44/42 MAPK 

(Thr202/Tyr204) (1:1000 Cell Signalling) for 16 h at 4°C. Goat anti-mouse 

immunoglobulin G (IgG) peroxidase-conjugated antibody (1:2500 Millipore 

Corporation) or goat anti-rabbit IgG peroxidase-conjugated antibody (1:5000 Millipore 

Corporation) were used to reveal immunocomplexes by enhanced chemiluminescence 

using Pierce™ ECL Plus Western Blotting Substrate (Thermo Fischer Scientific). 

Immunofluorescence  

For cells: 1×105 SH-SY5Y-DRD1 or SH-SY5Y-DRD2 cells, grown on a cover-glass, were 

washed twice with PBS 1X and then fixed with 4% paraformaldehyde/PBS for 20 min. 

Cells were permeabilized with 0.1% Triton X-100 diluted in PBS. For tissue: after 

apomorphine hydrochloride (3mg/Kg) treatment mice were sacrificed. The brains were 

embedded in OCT freezing medium and 10 µm-thick  sections  were prepared by 

cryostat. All sections were fixed with 4% paraformaldehyde/PBS for 15 min and 

washed with 0.05% Tween-20 diluted in PBS.  Non-specific binding was blocked with 

5% bovine serum albumin, 0.05% Tween-20 diluted in PBS for 1 h at room 

temperature. Cells or tissue were incubated with primary antibodies: anti-LRRK2 

(1:500 MJFF2 c41-2 Epitomics), anti-Flag (1:2500 Sigma-Aldrich), anti-alpha-synuclein 
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(1:500, Millipore), anti-D1 dopamine receptor (1:1000, Sigma-Aldrich), anti-H4 histone 

(1:5000, Sigma-Aldrich) diluted in blocking solution, overnight at 4°C. Samples  were  

then  washed  with  PBS, 0.05% Tween-20 diluted in PBS and incubated with secondary 

antibodies: Goat anti-Mouse IgG Secondary Antibody Alexa Fluor® 488 (Life 

Technologies), Goat anti-Mouse IgG Secondary Antibody Alexa Fluor® 647 (Life 

Technologies), Rabbit IgG Secondary Antibody Alexa Fluor® 488 (Life Technologies), 

Rabbit IgG Secondary Antibody Alexa Fluor® 647 (Life Technologies) and Rat IgG 

Secondary Antibody Alexa Fluor® 488 (Life Technologies)  diluted 1:1000 in blocking 

solution for 1 hour at room temperature. Golgi staining was performed with anti-

TGN46 antibody (Bio-Rad) and Donkey anti-Sheep IgG Alexa Fluor® 647 as secondary 

antibody were used. Before analysis, cells were mounted using Mowiol mounting 

medium and fluorescence was revealed with a Leica TCS SP5 confocal microscope with 

LAS lite 170 image software with a 63x magnification oil immersion objective and 3.50 

digital zoom. Post analysis were performed using ImageJ NIH software. 

Intracellular cAMP Determination 

SH-SY5Y-DRD1 cells were incubated in sterile 96-well plate with a seeding density of 

1x104 cells per well. Cells were cultured in DMEM-F12 10% FBS during 24 hours and 

transduced by adenovirus encoding LRRK2s for 48 hours. Medium was replaced by 

serum-free medium containing 10µM Dopamine hydrochloride, 500μM IBMX and 

100μM Ro 20-1724 and incubated for different times. Intracellular cAMP levels 

measurement  was performed using cAMP-Glo assay kit according to manufacturer’s 

instruction (Promega Corporation). Luminescence was measured using the Victor™ X5 

Multilabel Plate Reader (PerkinElmer) 

Statistical analysis 

The results are presented as means ± S.D. of n≥3 independent experiments. Statistical 

evaluation was conducted by one-way or two-way ANOVA and Bonferroni post test. 

Values significantly different from the relative control are indicated with an asterisk. 

*p<0,05; **p<0,01; ***p<0,001.  
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Chapter 3 
 
 
 

Results  
 

3.1 Characterization of SH-SY5Y cells stably expressing dopamine 

receptor D1 or D2 and LRRK2 adenoviral vectors 

SH-SY5Y cells stably expressing dopamine receptor D1 or D2 

To generate stable SH-SY5Y cell lines stably expressing dopamine receptor D1 (DRD1) 

or dopamine receptor D2 long isoform (DRD2L), pcDNA3.1-DRD1-3xFlag or pcDNA3.1-

DRD2L-3xFlag plasmid constructs were transfected in SH-SY5Y cell lines using 

Lipofectamine® LTX with Plus™ Reagent (Life Thecnologies) as described in the 

manufacturer’s instructions. After several weeks of selection by G418, single stable 

clones were isolated. Different individual clones were analysed for DRD1 or DRD2L 

expression by western blot and immunofluorescence (figure 14 B-C-D). As expected, 

DRD1 is largely localized on the cell membrane. On the contrary DRD2L is partially 

localized inside SH-SY5Y cells. This phenotype is comparable to published data 

obtained by independent groups that have generated similar DRD2L stable clones251, 

252 

Adenoviral delivery of LRRK2  

As molecular tool to express LRRK2 WT or pathological mutants, recombinant LRRK2 

adenoviral vectors were generated. The assembly of recombinant adenoviruses has 

been completed in few stages: first, the cDNA encoding for LRRK2 WT, R1441C or 

G2019S pathological mutants and D1994A kinase dead were cloned into pShuttle2 

plasmid DNA. Second, the expression cassette was excised from recombinant 
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pShuttle2 plasmid DNA by digestion with I-Ceu I and PI-Sce I and ligated into Adeno-X 

and selected. Third, the recombinant adenoviral constructs were cleaved by PacI to 

expose the inverted terminal repeats (ITR) and transfected into HEK-293 AdenoX cell 

lines. After 7–10 days, viruses were harvested and amplified by infecting packaging 

cells for three times to obtain high titer virus stock. The final yields were evaluated 

performing an end-point dilution assay. To characterize LRRK2 adenoviral expression 

vectors, recombinant adenoviruses were used to transduce SH-SY5Y cells with a scalar 

multiplicity of infection (M.O.I.). Forty-eight hours after transduction cells were lysed 

and protein extracts analysed by Western Blot. As shown in figure 14A all adenoviral 

preparations are able to produce a high level of expression of LRRK2 in SH-SY5Y cell 

lines.  

 

Figure14. Evaluation of LRRK2 expression level and SH-SY5Y stable clones analysis. (A) SH-SY5Y were transduced 
by increasing amount of recombinant adenoviruses (5-20-60 pfu/cell) and analyzed 48 hours after transduction. Cell 
lysates were subjected to reducing SDS-PAGE and western blot. The anti-LRRK2 antibody (MJFF2 c41-2) was used to 
visualize LRRK2 expression level and β-actin serves as controls for equal loading of samples. (B) SH-SY5Y stable 
clones were analyzed to evaluate the expression levels of DRD1 and DRD2L by SDS-PAGE and western blot using an 
anti-FLAG antibody and (C-D) by immunofluorescence using an anti-FLAG antibody and an Alexa Fluor-488 anti-
mouse as a secondary antibody. Imagines were acquired by a DMI 6000 CS Leica florescent microscopy at 63x 
magnification. 
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3.2   LRRK2 affects DRD1 trafficking in cellular models 

To investigate the role of LRRK2 in DRD1 trafficking, stable SH-SY5Y-DRD1 cells were 

transduced with the adenoviral vectors encoding for LRRK2 WT, R1441C or G2019S 

pathological mutants and D1994A dead kinase. The internalization of DRD1 was 

analysed upon DA (10µM) treatment, at different time points, by confocal microscopy. 

As shown in figure 15 A and 16 A, at basal conditions the receptor is mainly localized 

on the cell surface, both in not transduced cells or in cells overexpressing the different 

LRRK2 isoforms. Upon DA treatment (figure 15 B) DRD1 is rapidly internalized at five 

minutes as displayed by the presence of red dots inside the cells. On the contrary, 

LRRK2 G2019S mutant overexpression impairs the receptor internalization. This effect 

becomes even more evident after fifteen minutes of dopamine treatment (figure 15 B 

and 16B). After one hour of DA treatment, the DRD1 is almost completely recycled 

back to the membrane in untrasnsduced cells while some red dots are still visible in 

cells transduced by G2019S LRRK2. No significant effects on DRD1 internalization were 

obtained in cells expressing LRRK2 WT, R1441C mutant or D1994A kinase dead 

compared to negative control (figure 15 B-C-D and 16 B) or two different LRRK2 kinase 

inhibitors CZC-25146 or GSK 2578215A inhibitors (figure 17 only CZC-25146 treatment 

at 0 and 15 minutes is shown in A and B). The reduced internalization of DRD1 

observed in the presence of G2019S LRRK2 after stimulation with dopamine, strongly 

indicates an alteration of endocytosis rather than an increase in recycling/exocytosis 

pathway. 
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Figure 15. Analysis of DRD1 internalization upon dopamine treatment in SH-SY5Y-DRD1 cells untransduced or 
transduced by WT or mutant G2019S LRRK2. (A-D) DRD1 localization at basal conditions (A) and upon 5-15-60 
minutes (B-C-D) of dopamine (10µm) treatment of SH-SY5Y-DRD1 cells transduced by the different recombinant 
adenovirus for 48h. After agonist treatment the cells were fixed and incubated by the different primary antibodies 
(anti-FLAG for DRD1 and anti-LRRK2 (MJFF2) for LRRK2) and with Alexa647-conjugated secondary antibody (red) or 
Alexa488-conjugated secondary antibody (green) for DRD1 or LRRK2 respectively. Scale bars = 10µm. 
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Figure 16. Analysis of DRD1 internalization upon dopamine treatment in SH-SY5Y-DRD1 cells untransduced or 
transduced by WT, R1441C G2019S mutants or D1994A kinase dead LRRK2. DRD1 localization at basal conditions 
(A) and upon 15 minutes (B) of dopamine treatment of SH-SY5Y-DRD1 cells transduced by the different recombinant 
adenovirus for 48h. After dopamine (10µm) treatment the cells were fixed and incubated by the different primary 
antibodies (anti-FLAG for DRD1 and anti-LRRK2 (MJFF2) for LRRK2) and with Alexa647-conjugated secondary 
antibody (red) or Alexa488-conjugated secondary antibody (green) for DRD1 or LRRK2 respectively. Scale bars = 
10µm. (C) The graph represents the percentage of cells with dots at 15’ minutes of dopamine treatment and Two-
way ANOVA analysis. ***p<0,001. 
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To have a more quantitative evaluation of the alteration of DRD1 trafficking in the 

presence of G2019S LRRK2 a biotin degradation protection assay (BPA) was 

performed253. As shown in figure 18 A-B the kinetic of DRD1 internalization is strongly 

reduced in LRRK2 G2019S transduced cells compared to untransduced cells or cells 

transduced with LRRK2 WT upon 15 minutes of DA treatment. It is interesting to note 

the shift in DRD1 molecular weight upon agonist treatment, probably due to receptor 

phosphorylation. In fact, in absence of any phospho-specific antibody that recognize 

phospho-DRD1, the DRD1 shift has been largely used to measure the receptor 

phosphorylation/activation state254.  

 

Figure 17. Analysis of DRD1 internalization upon dopamine treatment and LRRK2 kinase inhibitors in SH-SY5Y-
DRD1 cells untransduced or transduced by LRRK2 G2019S. DRD1 localization at basal conditions (A) and upon 15 
minutes (B) of dopamine treatment of SH-SY5Y-DRD1 cells transduced by the different recombinant adenovirus for 
48h. Cells were and treated with two different LRRK2 inhibitors (5µM overnight). After agonist treatment the cells 
were fixed and incubated by the different primary antibodies (anti-FLAG for DRD1 and anti-LRRK2 (MJFF2) for 
LRRK2) and with Alexa647-conjugated secondary antibody (red) or Alexa488-conjugated secondary antibody (green) 
for DRD1 or LRRK2 respectively.  
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As previously mentioned in the introduction chapter different experimental evidence 

suggests a potential role of synuclein in the control of vesicle trafficking255. The 

possible effect of synuclein overexpression on DRD1 trafficking upon DA treatment 

was analysed in the same experimental conditions performed in LRRK2 experiments. 

As shown in figure 19 A-B no significant effect in DRD1 trafficking is displayed by the 

overexpression of alpha synuclein WT or the pathological mutant A53T. 

 

 

 

 

 

 

 

 

Figure 18. Evaluation of DRD1 intracellular and extracellular level by BPA upon dopamine treatment in SH-SY5Y-
DRD1 cells untransduced or transduced by WT or G2019S LRRK2. (A) Cells stably expressing  FLAG-tagged DRD1 
were transduced by the different LRRK2 isoforms. 48h after transduction the cell membrane protein were labeled 
by biotin. After 15 minutes of dopamine treatment the cell surface-biotinylated receptors were stripped and the cell 
lysates subjected to immunoprecipitation by anti-biotin. Total and immunoprecipitated (beads) proteins were 
visualized by western blot using specific antibody for the indicated proteins. β-actin serves as controls for equal 
loading of samples. (B) Densitometric analysis of data obtained in (A) normalized by the untransduced cells and 
analyzed by two-way ANOVA test. **p<0,01; ***p<0,001. 
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Figure 19. Analysis of DRD1 internalization upon dopamine treatment in SH-SY5Y-DRD1 cells untransduced or 
transduced by WT or A53T Alpha synuclein. DRD1 localization at basal conditions (A) and upon 15 minutes (B) of 
dopamine treatment of SH-SY5Y-DRD1 cells transduced or not by alpha-synuclein WT or A53T. After agonist 
treatment the cells were fixed and incubated with the different primary antibodies (anti-FLAG for DRD1 and anti-
synuclein (Millipore) for alpha-synuclein) and with Alexa647-conjugated secondary antibody (red) or Alexa488-
conjugated secondary antibody (green) for DRD1 or synuclein respectively. Scale bars = 10µm. No significative 
results were obtained after two-way ANOVA test analysis. 

 

3.3   LRRK2 alters the dopamine D2 receptor trafficking 

As mentioned, DRD1 is largely localized on the cell membrane whereas DRD2L is 

partially localized inside SH-SY5Y cells, likely linked to vesicle structures and Golgi 

apparatus. This phenotype matches with reports from other groups that used similar 

DRD2L stable clones251, 252. Moreover, in SH-SY5Y cells, the dopamine receptor 

trafficking differs between the different subtypes. DRD1 is recycled back to the plasma 

membrane while DRD2 is mainly degraded after receptor internalization upon agonist 

treatment253.  

First of all, to analyse the possible alteration in DRD2L localization the stable SH-SY5Y-

DRD2L cells were transduced by the different LRRK2 isoforms. After 48 hours post-

transduction intracellular DRD2L distribution was analysed by confocal microscopy. As 

shown in figure 20 A-B, the overexpression of LRRK2 pathological mutants causes a 

significant accumulation of DRD2L into the cells compared to LRRK2 WT, kinase dead 

and even more compared to not transduced cells. Co-staining by anti-TGN46 antibody 

detect the presence of DRD2L into the Golgi apparatus (figure 20 A).  
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To investigate if DRD2 Golgi localization results in an alteration in DRD2L total protein 

level in presence of LRRK2 overexpression, or if LRRK2 affect only the DRD2 Golgi 

localization without any chance in DRD2 total protein level, stable SH-SY5Y-DRD2L cells 

were transduced by the different LRRK2 isoforms. After forty-height hours the total 

DRD2L protein level was analysed by western blot. As shown in figure 21 A-B, the over-

expression of LRRK2 mutants determines a slight but significant increase in DRD2L total 

protein level compared to LRRK2 WT and an important increase compared to 

untransduced cells. No change in DRD1 total level protein was detectable in the 

presence of any LRRK2 isoforms (figure 21 G). In a general view, the increased DRD2 

protein total level can be linked to a higher transcription rate, an increase in protein 

synthesis or a DRD2 protein degradation inhibition. However no difference in DRD2 

Figure 20. Analysis of LRRK2 effect on DRD2 cell localization. (A) SH-SY5Y cells stably expressing  FLAG-tagged 
DRD2L were transduced by WT or G2019S LRRK2. 48h after transduction, the cells were fixed and incubated with 
the different primary antibodies (anti-FLAG for DRD2, anti-LRRK2 antibody (MJFF2 c41-2) for LRRK2 and anti-TGN46 
antibody as trans-Golgi marker) and  with Alexa488-conjugated secondary antibody (green), Alexa546-conjugated 
secondary antibody (red) and Alexa647-conjugated (blu) for DRD2, LRRK2 and trans-Golgi respectively. Scale bars = 
10µm. (B) Quantification of data obtained in (A). One-way ANOVA analysis *p<0,1 **p<0,01; ***p<0,001. 
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mRNA total levels, analysed by real time PCR, were detected 48 hours after adenoviral 

transduction, by any LRRK2 mutant, compared to untransduced cells (data not shown).  

De novo protein synthesis was then analysed after short protein translation block by 

puromycin treatment. As shown in figure 21C and 21D, the level of DRD2L protein 

synthesis was comparable between the different experimental samples at early time 

points (1 or 2 hours), strongly indicating that LRRK2 expression does not alter DRD2 

protein translation rate. However, at 3 hours is possible to detect significant 

differences in DRD2L level in the presence of G2019S LRRK2 that likely reflects an 

alteration in localization and/or degradative pathways. No differences on LRRK2 or 

beta-actin protein level were detected by this short puromycin treatment. Then, the 

DRD2 turnover was evaluated by blocking protein synthesis by puromycin treatment 

forty-height hours after transduction of SH-SY5Y-DRD2L cells by WT or G2019S LRRK2 

recombinant adenovirus.  As shown in figure 21 (E and F), the degradation rate is 

slower in G2019S LRRK2 cells than in untransduced cells. Roughly 50% of DRD2 is 

degraded in untransduced cells after 15 minutes of puromycin treatment compared to 

the roughly 20% decrease in cells transduced by G2019S LRRK2. Cells transduced by 

LRRK2 WT show an intermediate phenotype. Taken together, these data suggest that 

LRRK2 pathological mutants can affect the DRD2L trafficking between the Golgi and 

the plasma membrane that in turn may influence the DRD2L half-life. These results do 

not exclude also a direct fuction/involvement of LRRK2 in the autophagic-lysosomal 

pathways. 
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Figure 21. Analysis of LRRK2 effect on DRD2 total protein level. (A) SH-SY5Y cells stably expressing FLAG-tagged 
DRD2 were transduced by the different LRRK2 isoforms. 48h after transduction, protein extracts were prepared and 
subjected to SDS-PAGE and western blot. The indicated proteins were visualized by western blot using specific 
antibody. β-actin serves as controls for equal loading of samples. (B) Quantification of data obtained in (A) and one-
way ANOVA test analysis **p<0,05, ***<0,0001. (C) SH-SY5Y-DRD2 transduced as in (A) were treated for 2 hours by 
puromycin (+), then the compound was removed and the new DRD2L protein synthesis was analyzed at 1h, 2h and 
3h. Cell lysates were prepared and analyzed by western blot. (D) Relative band densitometry of data obtained in (C) 
normalized by the untransduced cells, and two-way ANOVA analysis test were performed as statistical analysis. (E) 
SH-SY5Y-DRD2 transduced as in (A) were treated for different time points (15', 30', 45', 60') by puromycin, then cell 
lysates were prepared and analyzed by western blot. DRD2 decrease was visualized by specific anti-FLAG antibody. 
(F) Relative band densitometry of data obtained in (D) normalized by the untransduced cells and two-way ANOVA 
analysis test were performed as statistical analysis. (G) SH-SY5Y-DRD1 were transduced and analyzed as in (A). 
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3.4   LRRK2 expression alters both DRD1 and DRD2 signalling 

To study whether the DRD1 and DRD2 trafficking dysregulation due to LRRK2 mutant 

expression may influence the DA receptor signalling pathways the phosphorylation of 

Extracellular signal Regulated Kinases 1 and 2 (ERK1 and ERK2) was analysed. As 

mentioned in the introduction, data obtained from different cell culture systems 

suggest that both D1- and D2-class dopamine receptors can regulate ERK 

phosphorylation/activation256-259. 

DRD1- or DRD2-SH-SY5Y cells were transduced by recombinant adenovirus expressing 

WT or G2019S LRRK2. Forty-eight hours after transduction, cells were incubated for 2 

hours without serum and then dopamine was added at different time points (15, 30 or 

60 minutes). Subsequently, protein extracts were analysed by western blot using an 

anti-phospho-ERK antibody. As shown in figures 22 A-B, the presence of G2019S LRRK2 

determines a strong ERK activation upon DA treatment in the SH-SY5Y-DRD1 cells and 

this activation is more persistent than in untransduced cells  or in cells transduced by 

WT LRRK2 that show an intermediate phenotype. Similar results were obtained on ERK 

phosphorylation, in SH-SY5Y cells stable expressing DRD2, transduced by the different 

LRRK2 isoforms upon dopamine stimulation (figure 22 C-D). These results suggest that 

the overexpression of WT and G2019S LRRK2 modifies the DRD1 and DRD2 signalling, 

most likely through an alteration of receptor trafficking. To further explore the DRD1 

signalling in cells overexpressing LRRK2, cAMP generation upon dopamine treatment in 

SH-SY5Y-DRD1 was analysed (figure 22 E). In SH-SY5Y-DRD1, upon dopamine 

treatment, G2019S LRRK2 determines a significant decrease of ATP level (that indicates 

an increase in cAMP generation) compared to cells transduced with WT LRRK2 or 

untransduced cells. 
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3.5   Analysis of DRD1 trafficking in LRRK2 animal models 

Before performing any experimental analysis in animal models, commercial anti-DRD1 

or anti-DRD2 antibodies were tested.  The commercial anti-DRD1 antibody (Sigma 

D2944) was able to detect the DRD1 protein either by western blot or by 

immunofluorescence. Unfortunately, in the same experimental conditions, no 

commercial anti-DRD2 antibodies were able to detect the DRD2 either by western blot 

or by immunofluorescence. Therefore, mice tissues were analysed only for DRD1 

expression.    

Figure 22. Analysis  of DRD1 and DRD2 signaling upon dopamine treatment in SH-SY5Y-DRD1 or -DRD2 stable 
lines  untransduced or transduced by WT or G2019S LRRK2. (A) Cells stably expressing  FLAG-tagged DRD1 were 
transduced by the different LRRK2 isoforms. 48h after transduction the cell were treated for different time points 
(15', 30', 60') by dopamine. Cell lysates subjected to western blot using specific antibody for the indicated proteins. 
β-actin serves as controls for equal loading of samples. (B) Relative band densitometry for DRD1 of data obtained in 
(A) normalized by untransduced and untreated cells. (C) Cells stably expressing  FLAG-tagged DRD2 were treated as 
before and analyzed by western blot. (D) Relative band densitometry for DRD2 of data obtained in (C) normalized by 
untransduced and untreated cells. (E) The SH-SY5Y-DRD1 were treated as before and analyzed for cAMP level at 
upon 15 minutes of dopamine treatment. The assay is measuring the ATP decrease due cAMP generation. Two-way 
ANOVA as statistical test were performed **p<0,01; ***p<0,001. 
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The DRD1 trafficking was analysed in the striatum of 4-month old male mice knock-in 

for  G2019S LRRK2 and 4-month old male mice WT LRRK2 as a control. Western blot 

analysis showed no difference in DRD1 level in total, membrane or vesicle fraction 

between WT or G2019S LRRK2 knock-in mice, either in basal conditions or after 

treatment with apomorphine (3 mg/Kg) for 20 or 60 minutes to stimulate dopamine 

receptors trafficking (data not shown). However, immunofluorescence analysis on 

striatal sections highlighted significant differences between the two genotypes. In 

particular, after 25 minutes of apomorphine treatment is detectable a relevant dotted 

DRD1 staining (likely in vesicle structures) in WT compared to G2019S knock-in mice 

(Figure 23 A-B). No significant differences were visible in saline treated animals 

between the two different genotypes. 

 

 

Figure 23. Analysis  of DRD1 internalization in G2019S LRRK2 knock-in mice.  (A) DRD1 localization/internalization 
upon 20 minutes of saline (saline) or apomorphine treatment (apomorphine) of G2019S LRRK2 knock-in mice or 
WT. After agonist treatment the mouse brain were dissected and frozen in embedding medium. Cryostat sections 
were incubated with the different primary antibodies (anti-DRD1 or histone H4) and with Alexa488-conjugated 
secondary antibody (green) or Alexa647-conjugated secondary antibody (red) for DRD1 or H4 respectively. Scale 
bars = 10µm. (B) Quantification of the data obtained in (A). Two-way ANOVA as statistical test were performed 
**p<0,01. 
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Chapter 4 
 
 
 

Discussion 
 

Parkinson’s disease is a common, progressive neurodegenerative disorder, affecting 

3% of people over 75 years of age. Until now, the aetiology of PD is largely unknown. 

In the majority, PD cases are sporadic however in a small percentage PD are 

hereditary. Mutations in the LRRK2 gene (PARK8; OMIM #609007) are the major 

genetic causes of PD. Furthermore, LRRK2 has been identified as a risk factor in PD 

onset. Phenotypically, LRRK2 PD linked is indistinguishable from sporadic PD, mid to 

late onset, slow progression and a good response to levodopa therapy. LRRK2 appears 

to be involved in different cellular pathways such as mitochondrial function, vesicular 

trafficking, cytoskeletal dynamics, protein aggregation, autophagy, neurite 

morphology. The most important symptoms of PD are related to movement disorders 

and are caused by a progressive and profound loss of dopaminergic neurons in the 

SNpc100, 260.  

Five subtype of dopamine receptors have been identified (D1, D2, D3, D4 and D5) and 

mediate all physiological functions of the catecholaminergic neurotransmitter 

dopamine. Among them, dopamine receptors D1 and D2 are the most abundant. 

Dopamine receptors belong to G protein-coupled receptors (GPCRs) family. In a 

canonical mechanism of action, they are stimulated by agonist binding, desensitized, 

internalized into vesicles and degraded or recycled to the plasma membrane. At the 

same time, they evoke a signal transduction cascade that is typical of each receptor 

subtype25. It has been demonstrated that dopamine receptor D1 is rapidly internalized 

in response to dopamine and recycles in vivo261, 262,  in contrast, dopamine receptor D2 

is significantly down regulated in vivo after prolonged drug administration263, either in 
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animals with increased dopamine level obtained through deletion of the dopamine 

transporter264 or after chronic low doses of dopamine receptor D2 agonists265. These 

data parallel those obtained in the majority of experiments using cultured cells stably 

expressing dopamine receptors D1 or D2253, although with some differences for 

dopamine D2 receptor251. The SH-SY5Y cells stably expressing dopamine receptors D1 

and D2, used in this experimental work, largely summarize the dopamine receptor 

trafficking observed in vivo and in vitro in most of experimental models, therefore can 

be reasonably used to generate in vitro data to study the effect of LRRK2 on dopamine 

receptor physiology.  

The main goal of this experimental work was to study the effect of LRRK2 on dopamine 

receptor trafficking and signalling by different molecular approaches, in fact different 

experimental evidence suggests that LRRK2 plays an important role in the control of 

vesicle trafficking. In SH-SY5Y cells stably expressing the dopamine receptor D1 the 

expression of G2019S LRRK2 causes a strong impairment in dopamine receptor D1 

internalization upon dopamine treatment. This effect is not visible in cells transduced 

of either WT or A53T alpha synuclein, excluding any possible artefact in this assay due 

to recombinant protein expression or to adenovirus transduction.  The reduced 

internalization of dopamine receptor D1 in cells overexpressing LRRK2 G2019S, even at 

short time (5 minutes), strongly suggests an alteration in endocytosis more than an 

increase in recycling/exocytosis pathway. It is interesting to note that this result 

coincides to the clustering/internalization impairment upon apomorphine treatment in 

G2019S LRRK2 knock-in mice compared to WT LRRK2 mice as shown by 

immunofluorescence analysis on brain sections. In animal models it was not possible to 

confirm these data by western blot analysis, but this incongruity can be reasonably 

explained by the complexity of the striatal tissue; for instance, striatal neurons differ in 

terms of firing rate and timing in response to agonist stimulation. The internalization 

impairment is most probably independent of dopamine receptor D1 phosphorylation, 

since the receptor band undergoes a similar molecular weight shift when analysed by 

SDS-PAGE in the absence or presence of WT or G2019S LRRK2. The dopamine receptor 

D1 trafficking alteration in cells overexpressing G2019S LRRK2 parallels a change in its 

signalling, with a higher cAMP generation and ERK phosphorylation, strongly 
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suggesting that the impairment in receptor internalization may alter signalling 

transduction cascade. Therefore, these results indicate that G2019S LRRK2 is altering 

some molecular mechanism that mediates the internalization of dopamine receptor 

D1 following the receptor phosphorylation due to agonist treatment.  

An alteration in receptor trafficking is detectable also in SH-SY5Y-DRD2 stable line 

indicating that the LRRK2 overexpression determines a significant dopamine receptor 

D2 accumulation into the Golgi apparatus compared to untransduced cells. This 

phenotype is more evident in the presence of LRRK2 pathological mutants compared 

to WT. These results are of particular interest since all LRRK2 pathological mutants 

show similar phenotype suggesting a common pathological pathway for all these 

mutants. The dopamine receptor D2 accumulation into the Golgi correlates with a 

significant increase of dopamine receptor total protein levels. The presence of any 

LRRK2 isoform does not significantly alter the dopamine receptor transcriptional or 

translational rate. Conversely, expression of mutant LRRK2s determines a significant 

decrease in dopamine receptor D2 degradation (compared to untransduced or WT 

LRRK2) likely due to the dopamine receptor D2 accumulation into the Golgi. A general 

explanation might be that physiologically a certain amount of dopamine receptor D2 is 

kept into the Golgi apparatus and that mutant LRRK2s affect its vesicle-mediated 

transport to the cell membrane; in turn, this could affect dopamine receptor trafficking 

turnover although this last LRRK2 effect may be partially due to the suggested role of 

LRRK2 pathological mutants in autophagy-lysosomal pathways. As mentioned, two 

independent studies showed a genetic interaction between LRRK2 and Rab7L1; The 

LRRK2-Rab7L1 pathway cause abnormal Golgi clearance defects239 and alterated 

lysosomal structure and retromer complex function238.  The DRD2 vesicular trafficking 

alteration may be likely due to defects connecting Golgi apparatus to the 

endolysosomal protein degradation system. It is possible speculate that LRRK2 is part 

of a protein complex that regulates the Golgi-membrane trafficking by different 

protein-protein interaction/modification such as Rab GTPases proteins. 

Overexpression of WT LRRK2 and even more the pathological mutant is likely 

increasing the formation/activity of this complex that may partially lock the DRD2 into 

the Golgi apparatus. Different LRRK2 interactors belong to protein families involved in 
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the regulation of vesicle trafficking233, 238, 246-249 or involved in the regulation of the 

cytoskeleton dynamics that in turn may modulate vesicle trafficking195, 266-268. Any of 

these LRRK2 interactions may be responsible for dopamine receptor D1 and D2 

trafficking alteration that were observed in the presence of mutant forms of LRRK2. 

These data are in agreement with those obtained, to a different extent, to the 

alteration of dopamine receptor level or signalling observed in LRRK2 mouse models. 

In particular, the PKA-dependent phosphorylation of GluR1 is aberrantly enhanced in 

the striatum of young and aged LRRK2-null mice after treatment with a dopamine 

receptor D1 agonist266 and the  total dopamine receptor D2 protein level is higher in 

mice over-expressing WT LRRK2269. Moreover, the results illustrated in this thesis 

correlate with accumulating evidences that demonstrate a critical role of LRRK2 in the 

vesicle trafficking machinery that transports proteins from dendritic ER exit sites to 

Golgi outpost and to dendritic surface248. In particular, it has been reported that either 

LRRK2 loss or R1441C missense mutation impair the activity-dependent trafficking of 

NMDRs in neurons248. Different PD causative genes have been related to dysregulation 

in vesicular trafficking such as SNCA, LRRK2, VPS35 and the risk factor RAB7L1100. It is 

possible to speculate that alteration in vesicle trafficking may a starting point of 

neuronal alteration in PD patients. Alteration in dopamine receptor or dopamine itself 

trafficking, both regulated by vesicle dynamics, may alter the neuronal physiology 

leading in the long term to neuronal toxicity/dead. In fact both in animal models and in 

PD patients the density of D1 and D2 receptors changes269 as well as, up to date, 

dysregulation of dopamine and DA metabolite level is still considered one of the most 

likely hypothesis of dopaminergic neuronal toxicity270.  

Figure 23 summarizes a general view of this work on the involvement of LRRK2 in the 

regulation of dopamine receptor trafficking. Mutant LRRK2s modulate the DRD2 

protein level likely affecting the trafficking from Golgi to cell membrane. G2019S LRRK2 

also impairs DRD1 internalization upon dopamine treatment. Further experiments are 

required to better understand the molecular mechanisms of LRRK2 action and to 

understand if this effect is specific for the dopaminergic receptors or it is a general 

mechanism regulating a large number of neuronal membrane receptors.  
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Figure 23. Model for mutant LRRK2 action in the alteration of dopamine receptor trafficking. 
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The main topic of this Ph.D. thesis, as extensively previously discussed, was to 

elucidate the role of LRRK2 in dopamine receptor trafficking/signaling and its 

implications in Parkinson disease.  The results obtained in this work are under review 

in Plos One journal. During these three years of Ph.D. in parallel with the research 

activity above described, I was involved in other projects of different topics. In 

particular, in collaboration with Prof. Mario Sechi (Department of Chemistry and 

Pharmacy, University of Sassari), different molecular screenings of various  compounds 

were performed to study their biological activity. Specifically, the biological activity of 
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