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Abstract 
 

The majority of breast tumours express oestrogen receptor (ER) and are 

dependent on oestrogen (E2) for their growth and survival. Endocrine 

therapy is the standard of care for this breast cancer subset and acts by 

targeting ER pathway in different ways: selective ER modulators compete 

with E2 to bind ER (e.g. tamoxifen), selective ER downregulators promote 

ER degradation (e.g. fulvestrant) and aromatase inhibitors (AI) block E2 

biosynthesis. Despite the efficacy of these endocrine agents, a large 

proportion of women relapse with endocrine-resistant disease. In this study, 

we investigated the link between altered breast cancer metabolism and 

endocrine therapy resistance. We found that AI-resistance cells can adapt 

to metabolic stress and switch ad hoc between OXPHOS and glycolysis. In 

particular, we identified the miR-155/hexokinase-2 (HK2) axis as an 

important regulator of this tumour plasticity. In addition to central carbon 

metabolism, we found a deregulated node between miR-23b-3p and the 

amino acid transporter SLC6A14 in endocrine therapy resistant cells, which 

leads to an impairment of amino acids metabolism in the resistant cells with 

subsequent activation of autophagy. Furthermore, the miRNA characterised 

have prognostic (miR-155 and miR-23b-3p) and predictive (miR-155) value 

in ER positive breast cancer. These results suggest that high metabolic 

plasticity is involved in acquiring adaptive features that allow breast cancer 

cell survival even in the presence of endocrine therapy.  
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Abbreviations used in thesis 
 

2-DG  2-Deoxy-Glucose 

ACC  Acetyl-CoA carboxylase 

ACLY  ATP citrate lyase 

ACSS2 Acyl-CoA synthetase 2 

AF  Activation Function 

Ago  Argonaute protein 

AI  Aromatase inhibitors 

AKT  Protein Kinase B, PKB 

AMPK  AMP-activated protein kinase 

ASS  Arginosuccinato synthase 

ATGs  Autophagy-related genes 

ATP  Adenosine 5-triphosphate 

Bcl-2  B-cell lymphoma 2 

BECN1 Beclin-1 gene 

BIF-1  BAX-interacting factor 1 

BSA  Bovine serum albumin 

CBP  CREB-binding protein 

CCND1 Cyclin D1 

CDK  Cyclin Dependent Kinases 

CI  Combination index 

CIC  Protein citrate carrier 

CK  Cytokeratins 

CLL  Chronic lymphocyte leukemia 

c-Met  Hepatocyte Growth Factor Receptor 

CV  Cristal Violet 

DCC  Dextran charcoal treated 

DCIS  Ductal Carcinoma in situ 

DMSO  Dimethyl sulfoxide 

dsRBD  Double-strand RNA-binding domain 
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E1  Oestrone 

E2  Oestradiol, or 17β-oestradiol 

E3  Oestriol  

ECL  Enhanced chemiluminescence 

EGFR  Epidermal Growth Factor Receptor 

EMT  Epithelial-Mesenchymal Transition 

ER  Oestrogen Receptor 

EREs  Oestrogen Response Elements 

ERK  Extracellular-signal-regulated kinase 

FA  Fatty Acids 

FANS  Fatty acid synthase 

FBP  Fructose-1-6-biphosphate 

FBS  Foetal bovine serum   

FDG  18F-fluorodeoxyglucose 

FOXO3a Forkhead box O3A 

FSH  Follicle-Stimulating Hormone 

GAB3  GRB2 Associated Binding Protein 3 

GAPDH Glyceraldeid-3-phosphate dehydrogenase 

GDH  Glutamate Dehydrogenase 

GDP  Guanosin-Di-Phosphate 

GLS  Glutaminase 

GLUTs  Glucose transporters 

GSA  Glutamic-γ-semi-aldehyde 

GTP  Guanosine Tri-Phosphate 

HAT  Histone Acetyltransferase 

HCC  Hepatocellular carcinoma cell 

HER2  Human Epidermal Growth Factor 2 

HIF1-α  Hypoxia-inducible factor 1 α 

HK  Hexokinase 

HRP  HorseRadish Peroxidase 

HTR  Hormone Replacement Therapy 
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ICI  Fulvestrant 

LBD  Ligand Binding domain 

LCIS  lobular carcinoma in situ 

LDH  Lactate Dehydrogenase 

LDs  Lipid droplets 

LH  Luteinising Hormone 

LKB1  Liver Kinase B1 

MAPK  Mitogen-Activated Protein Kinase 

MCTs  Monocarboxylate transporters 

Met  Metformin 

miRNA  microRNA 

MPC  Mitochondrial Pyruvate Carrier 

mTOR  Mammalian target of rapamycin 

mTORC1 Protein kinase complex mTOR complex 1 

NADH  Nicotinamide Adenine Dinclueotide  

NADPH Nicotinamide Adenine Dinucleotide Phosphate 

NCOA1 Nuclear-Receptor Co-activator 1 

NCOR  Nuclear-Co-Repressor 

NISCH  Nischarin 

ORF  Open Reading frame 

OXPHOS Oxidative phosphorylation 

P5C  α-pyrroline-5-carboxylate 

PAK2  P21 (RAC1) Activated Kinase 2 

PBS  Phosphatase Buffered Saline 

PCAF  p300/CBP-associated factor 

PCR  Polymerase Chain Reaction 

PDAC  Pancreatic Ductal Adenocarcinoma 

PDCD4 Programmed cell death protein 4  

PDGH  Phosphoglycerate Dehydrogenase 

PDH  Pyruvate Dehydrogenase complex 

PDK1  Pyruvate Dehydrogenase Kinase 1 
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PE  Phopshatidyl ethanolamine 

PEP  Phosphoenolpyruvate 

PET  Positron Emission Tomography 

PFK1  6-phosphofructokinase 

PI3K  Phosphoinositide 3 Kinase 

PI3P  Phopshatydilinositol-3-phosphate 

PKM1  Pyruvate Kinase M1 

PKM2  Pyruvate Kinase M2 

PR  Progesterone Receptor 

PRODH/POX Proline dehydrogenase (oxidase) 

PTEN  Phosphatase and tensin homolog  

qRT-PCR Quantitative real-time reverse transcription PCR 

RAB6A Ras-Related Protein Rab-6A 

Rb  Retinoblastoma protein 

RhoA  Ras homolog family member A 

SDS  Sodium Dodecyl Sulphate 

SERMs Selective ER Modulators 

SHMT  Serine Hydroxymethyl Transferase 

SOCS1 Suppressor of cytokine signalling 1 

SREBP-1 Sterol regulatory element-binding protein 1 

STAT3  Signal transducer and activator of transcription 3 

SWI/SNF Switch/Sucrose Non-Fermenting 

TAM  Tamoxifen 

TCA  Tricarboxylic Acid Cycle 

TIMP3  Metallopeptidase Inhibitor 3  

TP53INP1 Tumour protein 53-induced nuclear protein 1 

TRAP/DRIP/SMCC Thyroid-Hormone-Receptor-Associated Protein 

TSC2  Tuberous Sclerosis Complex 2 

ULK1  Autophagy activating kinase 1 

uPA  Urokinase-Type Plasminogen Activator 

VDAC  Voltage Dependent Anion Channel 
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WB  Western Blotting 

α-KG  α-ketoglutarate 
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Introduction 
 

Breast cancer is the second most common cancer in the world and the 

most frequent cancer among women with an estimated 1.67 million new 

cancer cases diagnosed in 2012, representing the 25% of all cancers. 

Incidence rates are very different across the world regions, with rates 

ranging from 27 per 100000 people in Middle Africa and Eastern Asia to 96 

in Western Europe. In Europe, approximately 464000 new cases were 

diagnosed in 2012, in particular ~50000 cases in Italy. Breast cancer ranks 

as the fifth cause of all the cancer related death with 522000 cases/year; it 

is the leading cause of cancer death in women in less developed regions 

(324.000 deaths, 14.3% of total) and the second cause of cancer death in 

more developed region (198000 deaths, 15.4%) after lung cancer. In 

Europe, breast cancer deaths were ~130000 in 2012 of which 12000 in 

Italy. In Western Europe and United States, breast cancer mortality rate is 

lower than incidence rate with respect to undeveloped regions, because of 

the majority availability of diagnostic technologies and cares in developed 

regions, which allow an increase of survival and better prognosis of breast 

cancer patients (1, 2).  

The breasts are composed of fat, connective tissue and gland tissue and 

are divided into lobes. A network of tubular structures (ducts) originates 

from the lobes and collectively culminates into the nipple (Figure 1). The 

breasts composition changes during lifetime: pre-menopausal women have 

more glandular tissue, whereas in post-menopausal women the glandular 

tissue is gradually replaced by fat. Breast tissue covers a large area of the 

chest. It extends from just below the clavicle to the axilla and across to the 

sternum. The breast is characterised by many blood and lymph vessels. 

The lymph vessels collect and move lymph fluid away from the breast into 

the small bean-shaped masses of lymphatic tissue, called lymph nodes, in 

the area around the breast. Lymph nodes are located all-round the breast 

tissue, but the axillary lymph nodes are most important and are divided into  
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Figure 1. Anatomy of the female breast 

 

three levels according to how close they are to the pectoral muscle. The 

lymph vessels and lymph nodes are part of the lymphatic system, which 

has a crucial role during extravasation of cancer cells. Once cancer cells 

leave the primary site, they can arrive to the axillary lymph nodes through 

the lymph vessels and from there they can invade to other tissues and 

metastasize.  (Figure 2).  

Adenocarcinoma is the most common type of breast cancer and originates 

from breast glandular tissue. Depending on the site of origin, breast 

tumours are classified as ductal carcinoma and lobular carcinoma, localized 

in the breast ducts and lobules, respectively. Ductal carcinoma can be 

defined in situ (DCIS) when the tumour is localised inside glandular tissue 

and invasive ductal carcinoma when cancer cells invade the proximal 
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lymph nodes and metastasise to other part of the body. In addition, lobular 

carcinoma can be classified as lobular carcinoma in situ (LCIS or lobular  

 

Figure 2. Breast lymphatic system. 

 

neoplasia) and invasive lobular carcinoma, when the cancer cells have 

already invaded the surrounding tissue. Around 90% of breast carcinomas 

diagnosed are ductal carcinomas, and around 10% are invasive lobular 

carcinoma, which is most common in women between 45 and 55 years old. 

Furthermore, there are other less common malignant breast tumours, such 

as inflammatory breast cancers, Paget’s disease of the nipple and 

phyllodes tumours. 

Following breast cancer diagnosis and staging of tumour based on the 

cancer size and the presence of cancer cells in lymph nodes, breast cancer 

patients are treated with specific therapy. When possible, the patient 

undergoes surgery, followed by radiotherapy, chemotherapy (e.g. 
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antracycline), biological therapy (antibody against epidermal growth factor 

receptor HER2, trastuzumab), hormonal therapy (endocrine therapy) or a 

combination of treatments, depending on the genetic and/or molecular 

profile of the cancer. 

                   
1- Molecular subtypes of breast cancers 

Breast cancer is a highly heterogeneous disease. Over the last decades, 

genomic, transcriptomic and proteomic analyses were applied to identify 

new molecular markers with prognostic and predictive value to better 

determine the appropriate therapy.  

Two distinct types of epithelial cells compose the human mammary gland: 

basal (and/or myoepithelial) cells in contact with the basement membrane 

and luminal epithelial cells that are in continuum with the basal cells and 

are polarized culminating/facing the lumen. These breast cells are 

characterised by specific cytokeratins (CK) expression. In particular, 

luminal epithelial cells are characterised by the expression of CK 8, 18 and 

19, while basal cells express CK 5/6, 14 and 17 (3). Expression profile 

studies showed two main groups of breast cancer based on oestrogen 

receptor α (ER) expression: ER positive (ER+) breast cancer characterised 

by high ER expression and ER negative (ER-) breast cancer characterised 

by low or absence of ER levels (4). Moreover, breast cancer can be 

classified into four different phenotypes based on the gene expression 

profile. These subtypes are associated to specific tumour characteristics 

and clinical outcomes. Accordingly,  they are defined as  ER+/ Luminal-like, 

basal like, HER2 positive (HER2+), characterised by overexpression of 

HER2neu/ ERBB2 oncogene, and Normal like. It is important underling that 

the clinical designation of ER- breast carcinoma encompasses at least two 

biologically distinct subtype of tumours, basal like and HER2+ (4). 

Subsequent studies demonstrated that the ER+ luminal subtype can be 

divided into additional different subgroups, according to their distinct 

expression profiles: luminal A, characterised by high expression levels of 

ER and ER-related genes; luminal B that show, in addition to ER, high 

expression of a set of genes related to proliferation and the cell cycle; and a 

new heterogeneous subtype denominated luminal C, which show a more 
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aggressive evolution than luminal A or B subtypes (5). Moreover, the 

biological behaviour of breast cancer is correlated with their gene 

expression profile, indicating that ER- tumours have a worse prognosis with 

reduced overall and clinical survival compared to ER+ tumours (5). In the 

clinical practice, three biomarkers are usually analysed to evaluate the 

subtype of a given breast cancer, that is, ER, progesterone receptor (PR) 

and HER2 (6). Taking these markers into consideration, we can correlate 

ER, PR and HER2 expression to different molecular subtypes. Indeed, 

luminal A are ER+ and/or PR+, HER2-;  luminal B are ER+ and/or PR+, 

HER2+; HER2 type are ER-, PR- and HER2+; basal like are negative for 

ER-, PR- and HER2- and are also called triple negative. In addition to ER, 

PR and HER2, the basal like group can be defined more precisely by 

antibody staining against to typical basal CK 5/6 and epidermal growth 

factor receptor (EGFR) (7). These molecular subtypes have specific 

prognosis and clinical outcome, described in figure 3 (8). 

 

           Figure 3. Molecular subtypes and clinical outcome of breast cancer. 
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2- ER positive breast cancer  
Oestrogens stimulate the proliferation and the growth of the epithelial cells 

of normal human breast (9). Approximately 10-15% of luminal epithelial 

cells of the mammary epithelium express ER at detectable levels. In normal 

human breast, ER+ cells do not proliferate, although they are often in close 

proximity to proliferating cells. Interestingly, oestrogens stimulate the 

proliferation of ER- epithelial cells through the secretion of paracrine factors 

by surrounding ER+ cells (10, 11). In contrast, in human breast tumours, 

ER+ cells are proliferating and their proliferation is directly regulated by 

oestrogens (10). Approximately 75% of breast cancers are ER+ (12) and 

they are dependent on oestrogens for their survival and proliferation. About 

two-third of ER+ tumours regress after oestrogen deprivation by endocrine 

therapy (13).  

                          2.1 Oestrogen and breast cancer risk 

Oestrogens have a key role in the aetiology of breast cancer due to their 

proliferative effects. Exposure to oestrogens is associated with an 

increased risk of breast cancer (14). Factors that correlate with increased 

risk include early menarche, late first full-term pregnancy, late menopause 

and the use of hormone replacement therapy (HRT), all of which likely 

enhance lifetime breast cancer risk by increase of exposure to oestrogens 

(15, 16). The molecular aspects underlying increased breast cancer risk 

due to oestrogen exposure are not fully understood. This prolonged 

exposure could increase cell proliferation, thus enhancing the errors 

associated with DNA replication. Additionally, oestrogen metabolites can 

have a genotoxic effects (17). In addition, prolonged exposure to other 

hormones involved in the oestrogen signalling, such as prolactin (18), 

progesterone (14) and testosterone (19) may have a role in the increased 

breast cancer risk. 

                       2.2 Oestrogens synthesis 

Oestrogens are a class of steroid hormones synthesised from cholesterol. 

Oestrogen physiological effects are mediated by ER, which acts as 

transcription factor regulating the expression of different genes (20). There 

are three major forms of physiological oestrogens in females: oestrone 
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(E1), oestradiol (E2, or 17β-oestradiol), and oestriol (E3). E2 is the major 

product from the whole biosynthesis process and is the most potent 

oestrogen during the premenopausal period in a woman's life. Oestrogens 

play key role in the development and maintenance of female sexual and 

reproductive function and regulate physiological process in the 

cardiovascular, skeletal, immune and central nervous system (21). In 

addition to these roles, oestrogens are also involved in the development 

and progression of breast cancer.  

In premenopausal women, oestrogens synthesis occurs predominantly in 

the ovaries and is stimulated by follicle stimulating hormone (FSH) and 

luteinising hormone (LH), the pituitary gonadotropins (22). Androgen 

hormones produced by theca cells are transported to the granulosa cells 

where they are converted into oestrogens, in a reaction catalysed by the 

aromatase enzyme. Ovarian synthesis of oestrogen ceases at menopause, 

when the main source of oestrogens is no longer the ovaries. In post 

menopause the major oestrogens synthesis occurs in distal organs, 

including bone, adipose tissue, the vascular endothelium, aortic smooth 

muscle and the brain. This localised production has an important role in 

tumour progression in post-menopausal women (23). Indeed, in these type 

of patients, intratumoral concentration of E2 are more than 20-fold higher 

than those present in the plasma. This is probably because also breast 

tumour tissue concurs with the other tissues in converting androgens into 

oestrogens (24, 25). 

                          2.3 Mechanisms of oestrogen action 

Oestrogens action is mediated by two oestrogen receptors, respectively 

receptor α (ERα) and receptor β (ERβ). ERs belong to the nuclear receptor 

superfamily and act as ligand dependent transcription factors. ERs contains 

six structural domains, which are defined by the putative functions 

contained in each region (Figure 4) (26).  



 
 

 
 

Dr. Marina Bacci 
     Metabolic reprogramming of oestrogen receptor positive breast cancer in endocrine therapy resistance. 

 PhD Course in Life Sciences and Biotechnologies XXIX cycle - Università degli Studi di Sassari. 
 

 18 
 

 

Figure 4. Schematic representation of human ERα and ERβ. Both receptors contain six 
functional domains (A-F) including the DNA Binding Domain (DBD), the Ligand Binding 
Domain (LBD) and both Activating Function domains 1 and 2 (AF1, AF2). The percentage 
amino acid similarity between ERα and ERβ is indicated for ERβ. 

 

The domains are: the highly conserved DNA-binding domain (DBD), which 

contains two zinc finger motifs that permit ER binding to DNA, and the 

ligand binding domain (LBD) which mediates oestrogen binding. Moreover, 

there are two additional domains with transcriptional activation functions 

(AFs), known as AF1 and AF2. The first regulates the ligand-independent 

transcriptional activation in response to phosphorylation mediated by 

downstream signalling events orchestrated by growth factors, including 

Mitogen-Activated Protein Kinase (MAPK) and Protein Kinase B (PKB or 

AKT). Conversely, AF2 is ligand dependent and regulates the 

transcriptional activation upon oestrogen binding (26, 27). ERα and ERβ 

show the 96% of amino acid identity in their DBD and only 53% homology 

in their LBD, the latter could explain the difference in the response of the 

two receptors. The characterisation of ERα and ERβ in knockout mice has 

revealed distinct, non-redundant, role for ERβ. Particularly, ERβ seems to 

have opposing proliferation related effects when compared to ERα (28-30). 

In particular, some ERβ splice variants act as dominant-negative effectors 

of ERα (31). In this context, it is interesting to note that during the 

proliferative phase of pregnancy in rats, mammary epithelial cells express 

only one of the two ERs isoforms, whereas up to 60% of epithelial cells co-

express the two receptors during the non-proliferative, oestrogen 

insensitive lactational phase (32). Despite these differences, both ERs 

seem to have similar affinity for oestrogens and bind to the same DNA 

response elements (33). Several studies show that ERβ is expressed in 
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breast cancer, but its role is highly controversial (34, 35). Since it is well 

characterised the role of ERα and its mechanism of activation, here I will 

limit my discussion to ERα, hereafter called ER.  

After entering cells, oestrogen binds to and activates ER. Oestrogen 

binding results in a conformational change that enables oestrogen-

regulated genes to be activated. The ER binds as a dimer to small 

palindromic DNA motifs, known as oestrogen response elements (EREs), 

in the promoters of specific genes, through the action of two zing fingers 

(36). Two distinct activation domains, AF1 and AF2, mediate transcription 

activation. AF2 is integral to the ligand-binding domain (LBD) and its activity 

requires the binding between LBD and oestrogen, whereas AF1 activity is 

regulated by phosphorylation (Figure 5) (37, 38). AF1 and AF2 activate the 

transcription independently and/or synergistically and there is evidence that 

AF1 and AF2 activities are influenced by the promoter and cell type (39). 

ER activates gene expression by stimulating recruitment of the general 

transcription machinery to the transcription start site through the action of 

its activation domains.  

 

Figure 5. Mechanisms of oestrogen-receptor activation. The oestrogen receptor (ER) 
has three domains: AF1, which is regulated by phosphorylation; AF2, which is regulated by 
oestogen binding; and a DNA binding domain (DBD). In the inactivated state, the ER is 
bound to corepressor (CoR) complexes, which recruit histone deacetylases (HDACs). 
HDACs maintain histones in a deacetylated state, which favours chromatin condensation. 
Oestrogen binding results a conformational change in AF2 that facilitates interaction with co-
activators (CoA), which bind histone acetyltransferases (HATs). Acetylation of histones by 
HATs leads to chromatin decondensation, facilitating transcriptional activation. Modulation of 
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ER activity by selective ER modulators (SERMs) is likely to be achieved by a balance 
between coactivator and corepressor complex recruitment to AF2, depending on the 
conformation induced by the SERM, as well as tissue-specific differences in co-
activator/corepressor availability. Other factors, such as cyclin D1 and growth-factor-induced 
phosphorylation of AF1, might facilitate ligand-independent recruitment of co-activators. 
ERE, oestrogen response element; H12, helix 12 (taken from 40). 

 

Different studies have identified co-activator complexes that mediate trans-

activation by nuclear receptors. These co-activators facilitate recruitment of 

the general transcription machinery through direct interaction but, 

importantly, several co-activator complexes also mediate chromatin 

remodelling (41, 42). These include: the SWI/SNF complexes 

(switch/sucrose non-fermenting), which facilitate transcription-factor binding 

to nucleosomal DNA by ATP dependent chromatin remodelling (43, 44); the 

TRAP/DRIP/SMCC complex, these alternative names stand for thyroid-

hormone-receptor-associated protein (TRAP); vitamin-D-receptor-

interacting protein (DRIP), and SRB and mediator-protein containing 

complex (SMCC), which associates with RNA polymerase II63; CREB-

binding protein (CBP), and p300/CBP-associated factor (PCAF), which are 

histone acetyltransferase (HAT) complexes. Hyperacetylation of histones 

seems to correlate with more actively transcribed regions of the genome 

than to hypoacetylated regions. Therefore, histone acetylation through 

recruitment of HATs might be crucial in overcoming the repressive effects 

of chromatin on transcription (45, 46). Three related co-activators, 

collectively known as the p160 co-activators, stimulate ER activity following 

ligand stimulation, through direct interaction with AF2 (41, 42). These three 

proteins, known as nuclear-receptor co-activator 1 (NCOA1; also known as 

SRC1) NCOA2 (also known as TIF2 or GRIP1) and NCOA3 (also known as 

P/CIP, ACTR, AIB-1, RAC3 or TRAM1) associate with the transcription 

factor CBP to facilitate histone acetylation (47, 48). Furthermore, NCOA1 

and NCOA3 can themselves acetylate histones (43, 44, 49). Several 

nuclear receptors that are not bound to the cognate ligands, such as the 

thyroid hormone receptor, repress gene expression. This repression is 

mediated, at least in part, through recruitment of histone deacetylase 

complexes (HDACs) by interaction of nuclear receptors with nuclear-

receptor corepressor 1 (NCOR1) or NCOR2 (also known as SMRT) (50-

52). NCOR recruitment, like that of co-activators, is mediated by the 
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LBD/AF2, albeit in the absence of ligand. Therefore, ligand binding results 

in dissociation of co-repressors and recruitment of co-activator complexes. 

Other histone-modifying proteins, such as arginine methyltransferases, act 

as co-activators for nuclear receptors, including ER, either through direct 

interaction with the LBD (53) or through association with co-activators (54, 

55). The LBD is encoded by about 300 amino acids. Structural studies have 

shown that it is a wedge-shaped structure that contains the ligand-binding 

pocket. Ligand binding results in a remarkable conformational change in 

the LBD, that induces the exposition of a surface for the recruitment of co-

activators. Co-activators recruitment to the LBD is mediated by a short 

motif, characterised by the amino-acid sequence leucine–X–X–leucine–

leucine (where X is any amino acid), which forms an α-helix (56-58). 

Different studies identified cis-regulatory domains that augment 

transcription of these ER gene targets. Specifically, ER association with 

gene targets results from an association with the pioneer factor FoxA1, 

responsible for recruitment of ER to the genome. Recruitment of ER to the 

genome does not seem to occur at the promoter proximal regions, but 

instead involves distal enhancer elements that function together with the 

ER complex at the promoter of  the target genes (59).  

Many of the genes regulated by oestrogen signalling promote tumorigenic 

phenotypes, including cell proliferation, inhibition of apoptosis, invasion and 

metastasis, and angiogenesis (60). Of particular importance are Cyclin D1 

(61, 62) and c-Myc (63, 64), both of which are essential drivers of 

oestrogen stimulated cellular proliferation and tumorigenesis. Cyclin D1 

binds to and activates cyclin dependent kinases (CDK) 4/6, which 

phosphorylate the retinoblastoma protein (Rb), resulting in release of the 

E2F transcription factor, and progression through the restriction point within 

the G1 phase of the cell cycle (65, 66). Inhibition of Cyclin D1, either with 

antibodies or by expression of its inhibitor, CDK4 p16INK, prevents 

oestrogen stimulation of cellular proliferation and progression through the 

G1 checkpoint (67). c-Myc is a proto-oncogene transcription factor that 

regulates the expression of a large number of target genes that promote 

cell growth and cell cycle progression (68, 69). Similarly to Cyclin D1, 

inhibition of c-Myc prevents oestrogen stimulated cell proliferation (70). 

Conversely, overexpression of Cyclin D1 or c-Myc can mimic the effects of 
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oestrogen by reinitiating cell cycle progression in anti-oestrogen arrested 

cells (71). These results indicate that Cyclin D1 and c-Myc are essential 

drivers of oestrogen stimulated cellular proliferation. 

Since ER positive breast cancers are dependent upon oestrogen for their 

growth and progression, this type of tumour can be treated with endocrine 

therapies that deprive cells of ER signalling, resulting in tumour inhibition. 

 

                  3- Endocrine therapy 
ER+ breast cancer cells are dependent to oestrogens for their growth and 

proliferation. The hypothesis that oestrogen could have a crucial role in the 

tumour progression dates back to 1936. In that year, Lacassagne 

demonstrated in mice with high incidence of mammary cancer that 

ovariectomy or oestrogen replacement prevents or enhance tumorigenesis, 

respectively (72). However, the mechanism of tumour inhibition was not 

elucidated until the role for the ovarian hormone oestrogen in stimulating 

breast cancer growth was discovered (73). The discovery of ER and the 

development of an assay quantifying ER expression in patients with breast 

cancer made possible to identify women likely to respond to endocrine 

therapy (20, 74). Endocrine ablation by ovariectomy in pre-menopausal 

patients has now been replaced by pharmacological agents, generally 

called selective ER modulators (SERMs). SERMs are structurally different 

compounds that interact with intracellular ERs in target organs as 

oestrogen receptor agonists or antagonists. These drugs have been 

intensively studied over the past and have been proven to be a highly 

versatile group for the treatment of different conditions associated with 

post-menopausal women’s health including osteoporosis and hormone 

responsive cancer (75, 76). The first SERM developed was MER25, non-

steroidal antioestrogen capable of blocking oestrogen action (77). However, 

MER25 was unsuccessful due to toxicity issue (hallucination) and the first 

successful oestrogen antagonist to enter the clinic was tamoxifen (ICI 

46474) (78).  Although SERMs have many benefits, they also have some 

potentially serious adverse effects, such as thromboembolic disorder and, 

in the case of tamoxifen, uterine cancer. 
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                   3.1 Tamoxifen 

Tamoxifen binds to ER and inhibits ER signalling, limiting cellular 

proliferation of breast cancer cells (79, 80). The major metabolites of 

tamoxifen in human are N-desmethyltamoxifen and trans-4-

hydroxytamoxifen; the affinity of the latter for ER is equivalent to that E2 

(81). The anti-tumour effects of tamoxifen are mediated by competitive 

inhibition of oestrogen binding to ER (82) and by recruitment transcriptional 

co-repressor (e.g. NCoR) instead of co-activator (83). As a consequence, 

tamoxifen inhibits the expression of oestrogen-dependent genes, including 

growth factor and angiogenic factor secreted by cancer cell that in turn may 

stimulate tumour growth by autocrine or paracrine mechanism (84). The net 

result is a block in the G1 phase of cell cycle and subsequent reduction of 

the cell proliferation rate. Furthermore, it has been shown that tamoxifen 

may also directly induce apoptosis (85). 

Tamoxifen has been the mainstay endocrine therapy in breast cancer for 

the last 25 years. Compelling data have demonstrated a significant overall 

survival benefit; in patients with ER+ breast cancer, tamoxifen treatment 

results in a 51% reduction in recurrence and a 28% reduction in death as 

well as improved quality of life for patients with metastatic disease (86). 

Tamoxifen has also been shown to be effective in reducing the incidence of 

breast cancer in patients at risk for developing the disease (87) and in 

women with ductal carcinoma in situ (88). 

Despite the documented benefits of ER-targeted therapy in breast cancer, it 

is known that not all patients who have ER expressing tumours respond to 

endocrine manipulation (de novo resistance) and a substantial number of 

patients who do respond will develop disease progression or recurrence 

while on therapy (acquired resistance): all patients with metastatic disease 

and 40% of early stage breast cancer patients treated with adjuvant 

tamoxifen, eventually relapse with tamoxifen resistant disease (89). 

Tamoxifen is classified as a SERM; although tamoxifen acts as an ER 

antagonist in the breast, it exerts agonistic effects in some tissues such as 

the endometrium and the vascular system. This agonistic activity is 

associated with rare yet life-threatening side effects such as 

thromboembolic events and uterine cancer (87, 90). Whether tamoxifen 
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acts as an antagonist or agonist of ER signalling depends on the cellular 

context. As discussed previously, ER contains two domains that regulate 

transcriptional activation, AF1 and AF2 (Figure 5). AF2 acts in a ligand 

dependent manner, whereas AF1 is largely controlled by phosphorylation 

and as such tamoxifen only inhibits AF2 activation. Since ER activity in the 

breast is mainly AF2 driven, tamoxifen acts largely as an antagonist. This is 

in contrast to other tissues, such as the uterus, where ER activity is also 

controlled by AF1, resulting in greater agonistic activity of tamoxifen (91). 

                   3.2 Aromatase inhibitors 

Aromatase is an enzyme belonging to the cytochrome P-450 superfamily 

(92) and is highly expressed in the placenta and in the granulosa cells of 

ovarian follicles, where its expression depends on cyclical gonadotropin 

stimulation. Aromatase is also present, at lower levels, in several non-

glandular tissue, including subcutaneous fat, liver, muscle, brain, normal 

breast and breast cancer tissue (93, 94). After menopause, oestrogen 

source derived exclusively from non glandular tissues, in particular from 

subcutaneous fat. In postmenopausal patients, an alternative to oestrogen 

antagonists for endocrine therapy are aromatase inhibitors (AI), which block 

the conversion of androgen to oestrogen by aromatase inhibition. 

Therefore, treatment of postmenopausal women with AI results in 

oestrogen deprivation and reduced ER signalling (95). Three generations of 

AI have been developed. The first- (aminoglutethimide) and second-

generation AI (e.g., fadrozole and vorozole) were less selective and in 

addition to aromatase, they decreased aldosterone and cortisol production. 

These drugs were poorly tolerated and had limited clinical efficacy 

(96). Third-generation AI such as letrozole, anastrozole or exemestane, are 

highly selective for the enzyme aromatase and are well tolerated from the 

patients. Anastrozole and letrozole are nonsteroidal inhibitors that 

reversibly bind aromatase, whereas exemestane is a steroidal AI that 

irreversibly binds aromatase (97).  These drugs are effectively challenging 

tamoxifen for use in postmenopausal patients with ER+ breast cancer (98). 

The clinical benefits associated with AI include significantly greater 

disease-free survival, a longer median time to recurrence, and a reduced 

incidence of contralateral breast cancer. Indeed, AI markedly supress 
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plasma oestrogens levels in postmenopausal women and in contrast with 

tamoxifen, AI have no partial agonist activity reducing incidences of 

thromboembolic events, vaginal bleeding, and endometrial cancer (99). As 

a consequence, aromatase inhibitors are increasingly being used for the 

endocrine treatment of postmenopausal ER+ breast cancer patients. 

Despite clinical benefits of AI, up to 50% of treated patients develop 

resistance to AI (100), again limiting effectiveness.  

                   3.3 Fulvestrant 

Oestrogen ablation therapy has been intensively used as a mean of 

treating ER+ breast cancer: antioestrogen (e.g. tamoxifen) and AI are now 

established as first–line agents in adjuvant endocrine therapy of ER+ breast 

cancer patients. Although adjuvant endocrine therapy is an effective 

treatment for breast cancer, most patients with advanced disease will 

eventually exhibit resistance to individual therapy (101). However, an initial 

response to endocrine treatment is generally indicative of a positive 

response to further alternative endocrine agents (102). Consequently, 

therapeutic options against ER+ breast cancer have expanded 

tremendously. In contrast to tamoxifen, which exhibits partial antagonist 

activity, fulvestrant (or ICI 182,780) is a “full” or “pure” anti-oestrogen that 

has no known oestrogen agonist effects (WO 2001051056 A1, Astrazeneca 

2001). Fulvestrant exerts its antitumor activity preventing the oestrogen-ER 

interaction, thus abrogating the oestrogen–regulated transcription pathway 

(103, 104). Its binding affinity for ER is higher than tamoxifen (103, 105). 

Following binding to ER, fulvestrant blocks dimerization of the receptor and 

limits its nuclear translocation (106-108). Furthermore, fulvestrant-ER 

complex is instable and more susceptible to degradation by proteasome 

(109). Fulvestrant also blocks the recruitment of both transcriptional 

activating factors, AF1 and AF2 (109). As a result, in contrast to tamoxifen, 

which blocks recruitment of AF-2 only, fulvestrant exhibits full ER 

antagonist and no agonist effects (109). Fulvestrant has similar efficacy to 

tamoxifen as a first line therapy in patients with advanced ERα positive 

breast cancer (110) and has been shown to be as effective as the 

aromatase inhibitor anastrozole as a second line therapy in patients whose 

disease has progressed on prior endocrine therapy (110). It has been 
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demonstrated that fulvestrant monotherapy may be superior to AI in 

patients who have not received adjuvant endocrine therapy and in patients 

that present inoperable locally or advanced cancer and treated in first line 

setting (111). Fulvestrant monotherapy is associated with less arthralgia, 

but the combination with AI increase the risk of hot flashes and 

gastrointestinal disturbance (111). Despite its usefulness, resistance to 

fulvestrant also occurs frequently (112). These findings have stimulated the 

search for new mixed SERMs, which are anti-oestrogenic for the breast, 

but oestrogenic for other tissues, in which the protective actions of 

oestrogen are desirable (113). 

 

4- Endocrine therapy resistance 

Despite the relative safety and significant anti-neoplastic activities of 

endocrine therapies, the major limitation remains de novo and acquired 

resistance to endocrine agents. Although clinicians are encouraged from 

positive effects of second- and third-line endocrine therapy for patients who 

initially benefited from first line treatment (114), the clinical response rate 

declines from approximately 70% for first line-therapy fulvestrant or AI to 

around 30% in the successive lines of treatments (115, 116). Several 

approaches have been used to elucidate the mechanisms that drive 

endocrine therapy resistance to discover predictive markers and/or 

alternative targets that could be investigate for therapeutic approach. 

However, the molecular mechanisms that underlie resistance are not fully 

understood and as such, definitive approaches for preventing and 

overcoming resistance are not yet available. Several mechanism have 

been associated with endocrine therapy resistance, such as mutations of 

ER (ESR1), growth factors driven signalling cross talk, cell cycle alteration, 

enhanced autophagy or epigenetic aberration (Figure 6). 
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Figure 6. Schematic representation of major endocrine-resistance mechanisms. 
Several mechanisms have been shown to contribute to endocrine therapy resistance, which 
encompass hypersensitivity to E2 stimulation, phosphorylation of the ER by several kinase 
cascades, such as phosphoinositide 3 kinase (PI3K) or mitogen-activated protein kinase 
(MAPK), which in turn can be activated by tyrosine kinase receptors. Furthermore, changes 
in the expression of transcriptional regulators of the ER transcriptional complex are 
responsible for increased expression of ER-responsive genes (taken from 117). 

 

                  4.1 ESR1 mutations 

Although loss of ER expression may be a reasonable explanation for the 

emergence of endocrine therapy resistance, loss of ER occurs in only 10% 

of primary and metastatic tumours that show the resistance (118). 

Therefore, ER remains a potential target in the majority of the endocrine 

resistant cancers.  It has been reported that in solid tumours, the resistance 

to “oncoreceptor”-targeted therapies, such as tyrosine kinase inhibitors, is 

frequently driven by the emergence of additional mutations in the target 

oncogene (119). A similar molecular mechanism might underpin resistance 

to therapies targeting the ER. Specifically, attention has recently focused 

on mutations in the gene ESR1. A recent work has revealed that ESR1 

mutations are more frequent in patients bearing metastatic breast cancers 

or that have already received a therapeutic intervention (120). Highly 
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recurrent mutations were noted at two residues in the LBD of the receptor: 

Y357S and D538G (Figure 7) (121-123).  

 

Figure 7. Structural diagram of the ERα protein encoded by the ESR1 gene. Schematic 
representation of the ER protein and its functional domains; the position and number of 
cases (n) of the ESR1 (ER) LBD point mutations reported in metastatic ER+ breast cancers 
are indicated. Black circles indicate each mutation at the specific amino acid residue; 
numbers in parentheses indicate the total number of samples reported to harbour the 
specific indicated mutations. Abbreviations: AF-1, activation function-1; AF-2, activation 
function-2; DBD, DNA-binding domain; ERα, oestrogen receptor α; LBD, ligand-binding 
domain (taken from reference (124). 

 

These mutations generally are observed in 10-30% of all endocrine-

resistant advanced breast cancers and have been linked to enhanced 

sensitivity to oestrogen as well as to the constitutive activation of 

transcriptional activity of ER in the absence of an ER agonist (121-123, 

125-127). These mutations seem to be more common only after exposure 

to one or more lines of endocrine treatments (in particular AI) (121, 128), as 

highlighted by paired analysis of primary tumours and their metastatic 

therapy-resistant counterparts (128, 129). Furthermore, gene expression of 

ESR1-harboring breast cancer cells show dysregulation of both ER-

dependent and ER-independent genes, suggesting that ESR1 mutants alter 

the natural landscape of ER interaction network, or arise together with other 

resistance mechanisms (128). However, since ESR1 mutations could be 

the indication of the emergence of endocrine therapy resistant clones, 

monitoring ESR1 mutation status in patients that are undergoing endocrine 
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therapy might help clinicians to prevent and combat therapy resistance 

(128-130).  

4.2 Growth factor receptors: PI3K/AKT/mTOR and MAPK  

pathway activation 

Overexpression and/or amplification of growth factor receptor including 

FGFR1, HER2, HER3, EGFR, IGF1R and RET are associated with the 

emergence of endocrine therapy resistance (131-135). The activation of 

growth factor receptors can induce the phosphorylation of ER and AIB1 

through cross talk mechanism, which have been shown to empower 

oestrogen signalling and induce tamoxifen resistance (136-139). 

Furthermore, their signalling pathways converge on the Phosphoinositide 3 

kinase (PI3K)/AKT/ mammalian target of rapamycin (mTOR) and MAPKs 

pathway. Several kinases belonging to MAPK family, such as ERK1/2 and 

ERK3, can phosphorylate ER (e.g. Ser-118), prompting ligand-independent 

activation of the receptor and altering the response to endocrine therapies 

(89, 136, 140, 141). PI3K and AKT also have a role in the activation of ER 

in absence of oestrogen trough of the AF-1 (PI3K) and AF-2 (PI3K and 

AKT) domains of the receptor ((142). PI3K gene is mutated in ~40% of 

human breast cancers (143, 144). These mutations promote a PI3K 

pathway hyper-activation that induces oestrogen-independent ER 

transcriptional activation (145). mTOR is a key downstream effector of 

PI3K/AKT pathway involved in important cellular processes, such as protein 

synthesis and cellular metabolism (146).  Therefore, mTOR has become an 

attractive target for therapies attempting to reverse the endocrine therapy 

resistance. Accordingly, randomized Phase III BOLER2 trial has shown that 

the combination of mTOR inhibitor everolimus with the AI exmestane 

improve progression-free survival in ER+ breast cancer patients previously 

treated with non-steroidal AI (BOLERO2 clinical trial.gov number 

NCT00863655, (147).  However, it has been reported that combinatorial  

treatment can promote several toxicity issues in breast cancer patients. 

Therefore, we should consider the real benefits of the combination in 

relation to toxicity before that patients undergo to these treatments. Other 

approaches to revert endocrine therapy resistance are based on 

combination of endocrine agents with selective PI3K inhibitors 
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(https://www.clinicaltrials.gov/ct2/show/NCT02340221, accessed online 18 

January 2016) and FGFR, EGFR or IGFR inhibitors 

(Https://www.cliniclatrials,gov/ct2/results?term=%22FGFR+AND+%22breas

t+cancer%22&recr0Open accessed online 28Febraury 2016; 

https://www.clinicaltrials.gov/ct2/show/NCT02115282, accessed online 19 

January 2016) 

                   4.3 Cell cycle checkpoint alterations 

Normal and cancerous cells receive a plethora of proliferative and 

antiproliferative signals and the balance of these inputs determines whether 

a cell will undergo cell division or will enter into quiescent phase (148). The 

deregulation of the cell cycle progression via alterations of key cell cycle 

checkpoints can also contribute to endocrine therapy resistance (149). 

Tumour suppressor Rb is a negative regulator of the cell cycle able to 

mediate antiproliferative signals. Rb itself is regulated by a complex of 

cyclin and CDK, a family of serine-threonine kinases (150). Progression 

through the G1-S phase requires the phosphorylation of Rb by CDK4 in 

complex with cyclin D1, D2 or D3 (151). Rb hyper-phosphorylation leads to 

an increase of genes synthesis whose products are essential for DNA 

replication and mitotic progression (152). Many tumours increase cyclin D-

dependent activity and thereby escape senescence via multiple 

mechanisms such as CDK4 amplification, CDK4 mutations, cyclin D1 

translocation, amplification or overexpression (153). Cyclin D1 amplification 

is a common event in ER+ breast cancer, identified in 58% of luminal B 

cancers and 29% luminal A cancers (154).  Anti-oestrogen induced growth 

arrest in ER+ breast cancer cells is accompanied by decreased cyclin D1 

expression, whereas there is a persistent cyclin D1 expression and Rb 

phosphorylation in the case of the endocrine therapy resistance (155, 156). 

The first drugs developed to target cell cycle progression abnormalities in 

human cancer were non-selective pan-CDK inhibitors (157, 158). The 

therapeutic potential of this strategy in breast cancer is increased by 

development of highly selective inhibitors of CDK. Accordingly, Palbociclib 

is a small-molecule inhibitor of CDK4 and CDK6, and preclinical data have 

shown that it was able to inhibit the growth of ER+ breast cancer and 

reverse endocrine therapy resistance (159). These results have led to a 

https://www.clinicaltrials.gov/ct2/show/NCT02340221
https://www.cliniclatrials,gov/ct2/results?term=%22FGFR+AND+%22breast+cancer%22&recr0Open
https://www.cliniclatrials,gov/ct2/results?term=%22FGFR+AND+%22breast+cancer%22&recr0Open
https://www.clinicaltrials.gov/ct2/show/NCT02115282
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clinical trial, the so-called PALOMA-1 (Palbociclib: Ongoing Trials in the 

Management of Breast Cancer). This trail has demonstrated that the 

combination of palbociclib with letrozole as first-line therapy in ER+ breast 

cancer is more effective when compared to letrozole alone, displaying a 

longer-progression free survival for patients subjected to such 

combinatorial treatment (160). Later, PALOMA-2 clinical trial has shown 

that palbociclib combined with letrozole treatment represent a good 

therapeutic approach for postmenopausal women with ER+/HER-2 

advanced breast cancer. Indeed, PALOMA-2 has confirmed the same 

results for postmenopausal women with ER+/HER2-advanced breast 

cancer (PALOMA-2 clinicaltials.gov number NCT01740427, (161).   

                        4.4 Enhanced autophagy 

Autophagy is an intracellular process leading to the degradation of 

damaged or unnecessary subcellular organelles. This process represents a 

key mechanism for survival of normal and cancer cells during stress 

condition, such as nutrient deprivation. A recent work has demonstrated 

that autophagy inhibition is linked to endocrine therapy sensitivity 

restoration, promoting cell apoptosis in preclinical models of endocrine-

resistant breast cancer (162). The inhibitors of autophagy are currently 

explored in early phase trials in breast cancer. In the advanced endocrine-

resistant breast cancer setting, hydoxychloroquine is being evaluated in 

combination with endocrine therapy in a phase Ib/II study 

(https://www.clinicaltrials.gov/ct2/shoeìw/NCT02414776, accessed online 

23 May 2016).  

                  4.5 Epigenomic signature 

Changes in gene expression are not uniquely dependent on the presence 

of mutations but can also derived from changes in DNA methylation 

patterns and histone modifications, a process named epigenetics (163). 

Endocrine therapy has been shown to alter the epigenetic landscape of 

tumour cells by downregulating oestrogen-responsive genes (164). Recent 

studies showed that compared to sensitive tumours, endocrine therapy 

resistant breast cancers are characterised by a differential gene 

methylation pattern in the enhancer regions of oestrogen-dependent genes, 

which are in turn involved in different cellular process, such as apoptosis 

https://www.clinicaltrials.gov/ct2/shoeìw/NCT02414776
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regulation, endoplasmic reticulum Golgi trafficking and DNA damage 

response (165).  Studies investigating breast cancer epigenetic alterations 

after endocrine therapy have reported dysregulation in the expression of 

genes involved in key cellular pathways, including metabolic processes, 

nucleoside transport and development process (166, 167). These results 

show that epigenetic deregulation of ER and its responsive genes largely 

contribute to endocrine resistance, although other mechanisms exist, as 

previously described. 

In conclusion, there are several mechanisms involved in endocrine therapy 

resistance and new pharmacological approaches are investigated. Clinical 

trials suggest that ER+/HER2+ tumours may benefit of the combining 

treatment of AI with HER2-targeting compounds (168, 169). Several clinical 

trials also suggest that subsets of patients with ER+/HER2- breast cancers 

may benefit from a combination of a growth factor pathway inhibitor with 

endocrine therapy agents (147).  However, given the adaptability of cancer 

cells, targeting a single growth factor or downstream signalling hub can 

lead to compensatory mechanism and the fail of therapeutic approaches. 

Further studies are necessary to understand other mechanisms of 

resistance in order to develop other therapeutic strategy to limit endocrine 

therapy resistance challenge.   

 

5- Tumour metabolism 
The hallmarks of cancer are the different biological capabilities that cancer 

cells acquire during tumour development and progression (Figure 8) (170). 

Genomic instability is the most important driver of the cancer cells 

alterations, which affect several cellular process, such as proliferation, 

senescence, survival signalling and apoptosis (170, 171). Metabolic 

deregulation is an established hallmark of cancer. To support the enhanced 

proliferation and uncontrolled cell division, most cancer cells exhibit 

metabolic adaptations that promote their survival and progression under 

non physiological conditions. Therefore, although cellular transformation 

occurring in different cell type arises from many different pathways, the 

metabolic reprogramming of cancer cells is similar (172). The requirements 
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of proliferative cancer cells are essentially to generate energy, in the form 

of adenosine 5-triphosphate (ATP), and to sustain macromolecules 

biosynthesis, while managing the high oxidative stress levels that 

accompany a rapid cell growth. Cancer cells are surrounded by different 

cell components of the tumour microenvironment that contribute to the 

acquisition of hallmarks traits. The tumour microenvironment influences 

tumour metabolism by exerting additional selective pressure on the cancer 

cells to adapt to harsh conditions, such as hypoxia, acidity and/or nutrient 

starvation. 

 

Figure 8. Hallmarks of cancer: the next generation. There are now 10 
established hallmarks of cancer, including inflammation, metabolism and genomic 
instability (taken from 170). 

 

5.1 Glucose metabolism 

Under aerobic conditions, differentiated cells metabolise glucose to 

pyruvate via glycolysis in the cytosol and then the pyruvate enters the 

mitochondrial tricarboxylic acid (TCA) cycle for its complete oxidation. This 

reaction produces NADH (nicotinamide adenine dinclueotide NAD+, 

reduced) which then fuels oxidative phosphorylation (OXPHOS) to 
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maximize the production of energy form ATP molecules. In the absence of 

oxygen, glycolysis is favoured and a small amount of pyruvate undergoes 

OXPHOS, whereas a high pyruvate quantity is converted in lactate in a 

process called fermentation. Otto Warburg first reported that in the 

presence of oxygen, proliferating cancer cells could reprogram their 

glucose metabolism, and thus their energy production, consuming glucose 

at a surprisingly high rate compare to normal cells by an increase of 

glycolysis and subsequent lactate release, in a state that has been termed 

“aerobic glycolysis”. This phenomenon is also known as the “Warburg 

effect” (figure 9) (173).  

 

Figure 9. Comparison of glycolysis between a normal tissue and tumour/ proliferated 
tissue ( taken from 174). 

 

Warburg originally hypothesized that cancer cells developed a defect in 

mitochondria that led to an impairment in aerobic respiration and a 

subsequent reliance on glycolytic metabolism (173). However, subsequent 

works showed that mitochondrial function was not impaired in most cancer 

cells (175-177). The highly glycolytic rate provides several advantages for 

proliferating cells. First, an increase of glycolysis allows cells to use the 

most abundant extracellular nutrient, glucose, to produce ATP. Although 

the quantity of ATP produced by glycolysis is lower compared to that 
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obtained via OXPHOS, if the glycolytic flux is high enough, the percentage 

of cellular ATP produced by glycolysis can exceed that produced from 

aerobic respiration (173, 178). To allow an increase in glucose uptake, 

many cancer cells upregulate the glucose transporters, (GLUTs), which can 

contribute to a substantial increase in glucose import into the cytoplasm 

(179-181). Indeed, markedly increased uptake and utilisation of glucose 

have been documented in many human tumours using positron emission 

tomography (PET) with radiolabeled analogue of glucose (18F-

fluorodeoxyglucose, FDG). Furthermore, during cell growth and 

proliferation, cells need a large quantity of nucleotides, amino acids and 

lipids to create biomass. Glucose could be used to generate biomass as 

well as ATP. Degradation of this metabolite provides cells with 

intermediates needed for biosynthetic pathways, such as glycerol and 

citrate for lipids, non-essential amino acids for protein synthesis and 

through the oxidative pentose phosphate pathway, ribose sugars for 

nucleotides and NADPH (182). The switch from OXPHOS to glycolysis, 

with its concomitant accumulation of lactate produced and released in 

tumour microenvironment results in an increased acidity in the tumour 

microenvironment, which promotes tumour cells adaptation and contributes 

to the evolution of the tumour niche (182, 183).  The availability of 

biosynthetic precursors is enhanced by regulation of the last rate-limiting 

step of glycolytic pathway, which is catalysed in normal cells by pyruvate 

kinase M1 (PKM1). PK catalyses the conversion of phosphoenolpyruvate 

(PEP) to pyruvate, with concomitant phosphorylation of ADP to ATP. It also 

exists an alternative splice form of PK, PKM2, which has reduced catalytic 

activity. This isoform is predominant in proliferating and cancer cells and 

can be allosterically activated by fructose-1-6-biphosphate (FBP) (184, 

185). This activation can be countered by either phosphotyrosine binding to 

PKM2 or by phosphorylation of a specific tyrosine residue (Y105) of PKM2 

by the activation of signalling pathways downstream of receptor tyrosine 

kinases. PKM2 can exist as both dimer and tetramer form (186, 187). The 

PKM2 dimer is less active compare to its tetrameric form in converting PEP 

to ATP and pyruvate (187, 188). While tetrameric PKM2 favours ATP 

production through TCA cycle, dimeric PKM2 plays a critical role in aerobic 

glycolysis (187). This reduced catalytic activity allows the reduction of the 
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glycolytic flux rate and causes the accumulation of intermediates that fuel 

several biosynthetic pathways (185). The dynamic equilibrium between the 

dimeric and the tetrameric form of PKM2 allows proliferating cells to 

regulate their need for anabolic and catabolic metabolism (187).  

In addition, the PI3K/AKT/mTOR pathway has a crucial role in controlling 

glucose metabolism. The AKT signalling pathway promotes continued cell 

growth and coordinates the necessary metabolic change to support cell 

growth by increasing glucose uptake, glycolysis and ATP production. 

Activation of AKT signalling leads to the switch to glycolytic metabolism in 

cancer (189). AKT directly and/or indirectly regulates the transcription (190) 

and translation (191) of GLUT1. Furthermore mTOR, the downstream 

effector of PI3K/AKT, is at the crossroads of signalling pathway and is an 

hub for signals bringing the coordinated regulation of nutrient uptake, 

energy metabolism, cell growth, proliferation and cell survival (192, 193). 

Most importantly, mTOR is an upstream activator of hypoxia-inducible 

factor 1 α (HIF1-α) in cancer cells (194), which is a subunit of transcription 

factor that upregulates the expression of several genes involved in 

glycolysis metabolism (195). During normoxia, HIF1-α undergoes a 

degradation following posttranscriptional modifications. However, in several 

cancer cells HIF1-α is stable in presence of oxygen, and this is due to 

mutations which can involve HIF1-α itself or its regulators (196-198).  

In addition to HIF1-α, other transcription factors are involved in the 

regulation of the glycolytic pathway, such as c-Myc and p53. Hexokinases 

(HK) are important enzyme that regulates the first step of glycolysis, the 

conversion of glucose in glucose 6-phosphate. HK2 is the isoform 

expressed specifically in skeletal muscle, adipocytes and in cancer cells 

(199). HK2 can be regulated by p53 as well as HIF1-α. The upstream 

regulatory elements of the HK2 gene contain response elements for protein 

kinase A, protein kinase C, HIF1-α and p53 (200, 201). In cancer cells, the 

HK2 gene is amplified, activated and induced by multiple signal cascades 

(202). Furthermore, HIF-1-α induces the expression of pyruvate 

dehydrogenase kinase 1 (PDK1) which phosphorylates and inhibit the 

pyruvate dehydrogenase complex (PDH) (203, 204). The inhibition of PDH 

impairs the entry of pyruvate into TCA cycle and promote the conversion of 
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pyruvate into lactate catalysed by the lactate dehydrogenase (LDH). LDH is 

upregulated in different types of tumour, probably due to an increased 

activity of HIF1-α and c-Myc, which regulate the expression of LDH (200). 

Lactate is transported out of the cancer cells across the plasma membrane 

by the monocarboxylate transporters (MCTs) family. MCT1 is utilised by 

oxidative tumours to upload exogenous lactate, produced by glycolytic cells 

in the tumour microenvironment, as energy source, which can be 

metabolised through OXPHOS (205). Conversely, MCT4 predominantly is 

used for lactate extrusion from glycolytic tumours (206). Overall, glucose 

uptake increase and lactate release, even in normoxic condition, are 

involved in cancer survival and proliferation via several mechanisms. 

Furthermore, the accumulation of lactate in cancer has been demonstrated 

to be of clinical relevance as prognostic markers (207).  

5.2 Amino acids metabolism 

Cancer cells have a continued and increased requirement for amino acids 

to meet their rapid proliferation. Amino acids can be divided into two 

classes: essential amino acids (isoleucine, leucine, methionine, valine, 

phenylalanine, tryptophan, hystidine, threonine and lysine) and non-

essential amino acids (alanine, glutamate, glutamine, aspartate, asparagine 

and serine).  Amino acids can be used as substrates for protein synthesis 

but also as source of energy (Figure 10).  

Serine and glycine are linked to biosynthetic pathways and represent 

essential precursors for the synthesis of building blocks including protein 

and nucleic acids. Serine can be of external source (i.e. uptaken from the 

extracellular environment) or internal, when derived from glucose 

metabolism. Several studies suggested that cancer cells have an increased 

de novo serine synthesis via the phosphoglycerate dehydrogenase (PDGH) 

pathway. PHGDH oxidases around 10% of 3-phosphoglycerate produced 

during glycolysis by converting it to 3-phospho-hydroxypyruvate (209-211). 

This compound is then transaminated and dephosphorylated to serine. This 

compound is then transaminated and dephosphorylated to serine. Both de 

novo synthesised and imported serine can be further converted into glycine 

by the serine hydroxymethyl transferase (SHMT) enzyme, which is a direct 

transcriptional target of c-Myc (212). 
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Figure 10. Amino acids metabolism in cancer cells and its crosstalk with other 
metabolism pathways. Amino acids synthesis, utilization, and involvement in other 
metabolism pathways are usually changed in cancer cells. Abbreviations: α-KG, α-
ketoglutarate; GSA, glutamic semialdehyde; P5C, pyrroline-5-carboxylate; GLS, 
glutaminase; GLUD1, glutamate dehydrogenase 1; ASS, argininosuccinate synthetase; 
ASL, argininosuccinate lyase; ADI, arginine deaminize; IDH1, isocitrate dehydrogenase-1; 
ACO1, aconitase 1; SSR serine racemase. Dashed arrows represent indirect effects or 
serial reactions (taken from 208). 

 

The glycine cleavage system represents a major metabolic pathway of the 

one-carbon metabolism that provides cofactors for purine and pyrimidine 

nucleotides biosynthesis essential for proliferating lymphocytes, cancer 

cells and foetal tissue (213, 214). PHGD is upregulated in highly metastatic 

breast cancers and therefore associated with poor prognosis (215). In 

addition to PHGDH, SHMT is also implicated in tumorigenesis. SHMT is 

targets of oncogene c-Myc, which is abnormally over-expressed in many 

tumours (216). Recent studies showed that exogenous glycine cannot be 

replaced by serine to support cancer cell proliferation. Indeed, cancer cells 

selectively consume exogenous serine, which is converted into intracellular 

glycine and one carbon units for building nucleotides (217). Moreover, the 
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uptake of exogenous glycine without the concomitant presence of serine in 

proliferative cells impaired the nucleotides synthesis (217). These data 

suggest that cancer cell proliferation is supported by serine rather than 

glycine consumption.  

Another important amino acid involved in tumour progression is proline. 

Proline is a unique proteinogenic secondary amino acid which contributes 

to collagen formation, the most abundant protein in the body (218). Proline 

can be converted by reversible reaction to glutamate, in which α-pyrroline-

5-carboxylate (P5C) and glutamic-γ-semi-aldehyde (GSA) are used as 

intermediates. Proline dehydrogenase (oxidase) (PRODH/POX) which 

catalyses the reaction from proline to P5C has a mitochondrial suppressor 

function and is induced by p53 and PPARγ and suppressed by c-myc and 

microRNA-23, a small non-coding RNA molecule with RNA silencing 

function that thus inhibits gene expression of mRNA target (219). Recent 

study indicated that proline metabolism deregulation is involved in cancer 

progression (220). Furthermore, GSA derived from glutamate or proline can 

be converted into ornithine, which is the precursor for arginine synthesis in 

the Urea cycle (218).  

Arginine is an essential amino acid in several types of cancer and many 

tumour cells are sensitive to arginine deprivation when cultured in vitro 

(221). Arginine participates in many important metabolic pathways including 

biosynthesis of nitric oxide, nucleotides, proline and glutamate (222). 

Arginosuccinate, derived from the reaction catalysed by arginosuccinato 

synthase (ASS), is converted into L-arginine and fumarate. The latter links 

arginine metabolism to glucose-generated energy metabolism via the TCA 

cycle, being fumarate a TCA intermediate. A recent study revealed that 

some human cancers cells do not express ASS and they are unable to 

synthesize arginine de novo and therefore were susceptible to arginine 

deprivation therapy (223).  

The most important amino acid for the survival and proliferation of human 

cancers is glutamine (224, 225), which is used for both energy generation 

and, as source of carbon and nitrogen, for biomass accumulation (226). 

Glutamine is imported into the cytoplasm via several membrane 

transporters (227) where it can be immediately metabolised or extruded out 
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of the cell by antiporters in exchange for other amino acids (228). In 

addition, glutamine-derived glutamate can exchange through the xCT (a 

heterodimer of two solute carrier transporters, SLC7A11 and SLC3A2) an 

antiporter for cysteine, which is quickly reduced to cysteine inside the cell 

(229). Glutamine catabolism begins with its conversion to glutamate, 

reaction catalysed by the glutaminase enzyme (GLS) (230). GLS 

expression and glutamine metabolism are activated by oncogenic 

transcription factor c-Myc in cancer cells (231, 232). In mitochondria, 

glutamate can then be converted through oxidative deamination to α-

ketoglutarate (α-KG), which enters in TCA cycle to generate ATP. This 

reaction can be catalysed by either glutamate dehydrogenase (GDH), 

which is an ammonia-releasing process, or by several non-ammonia 

producing aminotransferases, which transfer glutamate-derived nitrogen to 

produce another amino acid and α-KG (233). In addition to energy and 

amino acids production, glutamine is involved in lipogenesis process. 

Glutamine metabolism can serve as an alternative source of carbons for 

fatty acids (FA) synthesis. Indeed, glutamine-derived α-KG can be reduced 

through reductive carboxylation to citrate, which is the precursor for fatty 

acid synthesis (234). It has been demonstrated that this reaction is 

important for cancer growth and involved in tumour progression (235-238). 

Many cancer cells utilise acetyl-CoA manly converted from glucose-derived 

pyruvate (239), but in glucose deprived-condition, citrate produced by 

glutamine-derived α-KG can be converted to acetyl-CoA by ATP citrate 

lyase (ACLY) enzyme (240), inducing glutamine dependent lipid synthesis. 

A recent study showed that the import of glucose-derived pyruvate into 

mitochondria by mitochondrial pyruvate carrier (MPC) suppressed GDH 

activity and glutamine-dependent acetyl-CoA formation. The MPC inhibition 

activated GDH and divert glutamine metabolism to generate both 

oxaloacetate and acetyl-CoA, indicating a compensatory mechanism that 

allow to cancer cells to generate lipid in glucose deprived-conditions (241). 

Furthermore, glutamine is involved directly in nucleotides biosynthesis. 

Indeed, glutamine-derived carbons are used for amino acids and lipids 

synthesis, glutamine-derived nitrogen contributes directly to de novo 

biosynthesis of purines and pyrimidines (242). In fact, synthesis of 

nucleotides from exogenous glutamine has been observed in human 
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primary lung cancer (243). Glutamine can also contribute to nucleotides 

biosynthesis trough other pathways. Aspartate derivate from glutamine via 

the TCA cycle and subsequent transamination serves as a crucial source of 

carbon for purines and pyrimidines synthesis (244, 245). Indeed, 

supplementation of aspartate can rescue cell cycle arrest caused by 

glutamine deprivation in cancer cells (246). 

5.3 Lipid metabolism 

In addition to glucose and amino acids metabolic reprogramming, also 

alterations in lipids and cholesterol metabolic pathways occur in different 

types of tumour (Figure 11) (247-249). Highly proliferative cancer cells 

show a strong lipids and cholesterol avidity and FA synthesis is frequently 

increased to satisfy the requirement of lipids for energy storage, synthesis 

of membranes and signalling molecules (250). Lipids as energy storage are 

utilised by different type of tumours.  Normal and cancer store lipids in the 

form of lipid droplets (LDs) and LDs accumulation is higher in cancer than 

in normal cells (251-254). Indeed, high LDs are now considered as 

hallmark of cancer aggressiveness (253, 255-257). Citrate produced in the 

mitochondria is exported into the cytosol by the transport protein citrate 

carrier (CIC). CIC levels were found to be elevated in different human 

cancer cell lines and its activity was required for tumour proliferation in vitro 

and tumorigenesis in vivo (258). The first-rate limiting reaction of de novo 

lypogenesis is catalysed by ACLY enzyme, which links glucose and FA 

metabolism by converting citrate to oxaloacetate that can enter into TCA 

cycle and acetyl-CoA that is the precursor for FA synthesis in cytoplasm. It 

has been demonstrated that ACLY expression is increased in several types 

of cancer, including colorectal, breast, glioblastoma and ovarian cancer 

(260-262). Another rate-limiting enzyme involved in FA synthesis is acetyl-

CoA carboxylase (ACC), which catalyse the carboxylation of acetyl-CoA to 

malonil-CoA. There are two isoforms of ACC, respectively ACC1 and 

ACC2. ACC1 is located in the cytosol and is highly expressed in lipogenic 

tissue, whereas ACC2 is embedded in the mitochondrial membranes and 

locates in oxidative tissues (263). ACC1 is responsible for the rate-limiting 

step of FA de novo synthesis and ACC2 seems to be involved in the 

regulation of FA oxidation (catabolism pathway). 
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Figure 11. Lipid metabolic reprogramming in cancer. Lipid metabolic network (blue) 
includes import/export and catabolic pathways (fatty acid oxidation, FAO) as well as de novo 
synthesis pathways, such as lipids and cholesterol synthesis. Glucose- and/or glutamine-
derived citrate, provided by the increased glycolysis and/or glutaminolysis (orange), are 
common precursors of lipogenesis and cholesterol synthesis. Cancer cells can also take up 
exogenous cholesterol, transported by LDL and very-low density lipoproteins (VLDL), to 
meet their cholesterol requirement. When cholesterol, PLs and TGs are in excess in 
tumours, they are exported into circulation as high-density lipoproteins (HDLs) or locally 
stored into LDs. Exogenous FAs taken up by cancer cells are broken down to produce 
energy through mitochondrial FAO process. Abbreviations: TCA cycle, tricarboxylic acid 
cycle; αKG, α-Ketoglutarate (taken from 259). 

 

AMP-activated protein kinase (AMPK), a central energy sensor, is activated 

via phosphorylation by serine/threonine Kinase LKB1 (Liver Kinase B1), a 

known tumour suppressor (264) and strongly inhibits FA synthesis by 

phosphorylating and inactivating ACC1 (265). Another enzyme that was 

found deregulated in many types of tumour is fatty acid synthase (FANS), 

which catalyses the terminal step of de novo FA biogenesis and its activity 

provides a survival advantage in cancer cells (266).  

Acetyl-CoA is a central node in carbon metabolism and is primarily 

generated in the mitochondria via glycolysis, lipids catabolism and amino 

acids metabolism (267). It represents an important carbon source and can 

be used for the synthesis of nucleotides, FA, cholesterol and glutamate, or 
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can undergo further oxidation via TCA cycle for ATP production. Many 

cancer cells are highly glycolytic and preferentially convert glucose-derived 

pyruvate in lactate. In this way, the majority of pyruvate does not enter in 

TCA cycle for the synthesis of citrate, which is transported to the cytoplasm 

for ACLY-mediated production of acetyl-CoA. A recent study showed that in 

highly glycolytic cancer cells, acetate is captured from the environment to 

be used as a carbon source for acetyl-CoA production (268). Acyl-CoA 

synthetase 2 (ACSS2) is a cytosolic enzyme that produces acetyl-CoA from 

acetate in a reaction that requires ATP. High expression of ACSS2 is 

associated with poor survival in triple negative breast cancers and the 

acetate uptake mediated by ACSS2 has been shown to support tumour cell 

growth and survival under nutrient-limiting conditions (268).  

5.4 Therapies targeting tumour metabolic reprogramming 

Altered tumour metabolism may be utilised as a target for cancer therapy. 

One of the metabolic changes exhibited by tumour cells is the increase of 

glucose uptake and subsequently a major glycolytic flux. Indeed, there are 

several drugs that have been designed to block or attenuate the glycolysis 

pathway hence inducing glycolysis-dependent cancer cells death. In 

addition to glycolytic rate-limiting enzymes, glucose transporters and other 

enzymes involved in other metabolic pathways have been selected as 

targets for drug screening (269). However, most of the promising drugs 

targeting glucose metabolism for anti-cancer therapy have only been tested 

in preclinical models, including the inhibitors of GLUT1 (WZB117) (152), 

HK2 (2-deoxy-glucose, methyljasmonate) (270) and LDHA (271). In 

addition, activators of metabolic enzymes can be used for potential 

treatment of cancer. Indeed, increased of PKM2 activity impairs tumour 

growth (272). Two small molecules, TEPP-46 and DASA-58, can 

specifically activate PKM2 in cancer cells, promoting the formation and 

stabilisation of tetrameric form of PKM2, which increase the glycolytic flux 

rate. It has been demonstrated that PKM2 activation alters metabolism in 

cultured cells and inhibits xenograft tumour growth (272). An increase of de 

novo FA synthesis for energy metabolism and membrane production can 

be advantageous for cancer cell survival and proliferation. Indeed, it has 

been  demonstrated that hydroxycitrate treatment, an inhibitor of ACLY, is 
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able to reduce the stem like traits of cancer cell lines, a feature of 

aggressiveness in cancer progression (273). ACC1 and ACC2 inhibition 

has been utilised for the treatment of metabolic diseases such diabetes and 

dyslipidaemia and shows a potential as anticancer treatment (263). FANS 

inhibitors have also been identified, but none of them have been tested in 

the clinic (274). As far as amino acids metabolism is concerned, it has been 

identified one specific GLS inhibitor that blocks GLS and inhibits oncogenic 

transformation in preclinical models of cancer, without affecting normal cells 

(275). In addition to glutamine metabolic enzyme inhibition, the decrease of 

glutamine uptake can also impair cancer growth and tumour development 

(276). Furthermore, serine and glycine represent essential precursors for 

proteins synthesis, nucleic acids and lipids, especially through the 

participation of glycine in one-carbon metabolism. For such reason, several 

drugs targeting enzymes that catalyse the generation of tetrahydrofolate, 

involved in one-carbon metabolism, have been clinically approved in 

multiple cancers, such as methotrexate and Premetrexed (210).  

 

6- Metabolic reprogramming and breast cancer 
Metabolic reprogramming is a crucial event that occurs during 

tumorigenesis to support tumour growth, tissue remodelling and cancer 

metastasis. This switch is regulated by oncogenes and tumour suppressor 

genes and is influenced by tumour microenvironment. Breast tumours 

commonly develop a lipogenic phenotype and heavily rely on glucose and 

glutamine consumption for tumour growth. Metabolic profile analysis on 

biofluids, including serum and urine, derived from patients with breast 

cancer, have been performed to evaluate difference in metabolite profile in 

breast cancer patients compared to healthy women (277-281). These 

studies showed that the metabolic pattern of fluids derived from breast 

cancer patients is altered and identified three metabolites which were 

commonly reduced in breast cancer patients: glycine, choline and formate 

(277, 278). It has been suggested that the decrease in the levels of these 

metabolites may be attributed to their increased utilisation by cancer cells 

for anabolic reactions. In another study, glycine and choline consumption 

strongly correlated with proliferation rates of cancer cells, but not with 
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rapidly proliferating untransformed cells, suggesting that the glycine 

metabolism can be exploited as a potential therapeutic target (282). 

Moreover, recent studies reported that serine and formate metabolism are 

involved in breast cancer progression since they are involved in the 

production of NADPH. NADPH plays a critical role in maintaining cellular 

redox homeostasis through the regeneration of reduced glutathione, as well 

as in the synthesis of complex molecules such as nucleotides and lipids 

(283, 284). Furthermore, several reports have demonstrated the 

importance of de novo serine synthesis from glycine via the PHGDH 

pathway in breast cancer cells proliferation (285-287). 

We know that breast cancer is a heterogeneous disease and breast 

tumours can be classified into several molecular subtypes with specific 

gene expression. In breast cancer, large difference in tissue metabolite 

profile have been observed between ER+ and ER- tumours, however these 

differences do not appear to further classify tumours into submolecular 

subtypes based on the gene expression profiles (288-290). The 

characterisation of glucose metabolism, glutamine consumption and 

glutamine dependence showed that only the ER- cancer cells lines were 

actually glutamine dependent, while ER+ cancer cell lines were mostly 

glycolytic (Figure 12) (229). This study suggests that the ER- breast cancer 

subset could benefit from GLS inhibitors or glutamine deprivation therapy, 

while the ER+ subset should be treated by glycolysis inhibition (229). 

However, further studies are needed to understand the metabolic 

alterations that characterise different types of breast cancer in order to 

identify possible prognostic and predictive metabolic markers and 

understand the subset that can benefit for the metabolic drugs currently 

used in the preclinical setting. 
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Figure 12. Metabolic alterations of breast cancer. Major metabolic changes in the 
development of oestrogen-dependent breast cancer promote the increased production of 
lipids used for the plasma membrane, nucleotides for DNA synthesis, and amino acids (AAs) 
for protein synthesis. This is supported through metabolic alterations, which include 
increased uptake of choline to synthesize lipids. Additionally, uptake of glycine and formate 
increases to support the production of nucleotides and AAs. ER+ breast cancers exhibit 
increased glucose consumption and aerobic glycolysis, increasing lactate production and 
pentose phosphate pathway (PPP) intermediates, which also fuel nucleotide production. By 
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contrast, ER- breast cancers exhibit a shift from glycolysis towards glutamine consumption 
to fuel the tricarboxylic acid (TCA) cycle as well as to donate nitrogen and carbon as 
precursors for proteinogenic AAs and nucleotides. Red indicates a significant increase in 
either metabolite or enzymatic pathway activity. Abbreviation: AcCoA, acetyl co-enzyme A 
(taken from 291). 

 

6.1 Metabolism and therapy resistance in breast cancer 

Emerging evidences show a relationship between deregulated cellular 

metabolism and cancer drug resistance, suggesting that interfering with 

these metabolic alterations can enhance the efficacy of common 

therapeutic agents or overcome resistance to chemotherapy or 

radiotherapy (292). It has been demonstrate that the development of 

endocrine therapy resistance in breast cancer cell lines, may be prevented 

or delayed by combining the AI letrozole with drugs targeting the 

PI3K/AKT/mTOR pathway, as described above (293). Recently, it has been 

shown that ER+ tamoxifen-resistant breast cancer cells are characterised 

by HIF-1α hyperactivation via modulation of AKT/mTOR, which results in 

enhanced aerobic glycolysis and a Warburg-like metabolism. Impairing 

glycolysis restored tamoxifen sensitivity in drug-resistant cells, suggesting 

that this metabolic reprogramming is not merely a consequence of 

signalling rewiring (294). However, a different study reported that ER+ 

tamoxifen-sensitive breast cancer cells showed a glycolytic phenotype 

when cultured alone. In presence of fibroblasts, these cells became 

resistant to tamoxifen and showed a metabolism relying on OXPHOS. 

Indeed, it has been proposed that while cancer associated fibroblasts are 

undergoing a Warburg-like metabolism, secreting lactate into the media, 

cancer cells are able to uptake such carbon source, undergoing OXPHOS, 

and this is sufficient to confer tamoxifen resistance (295). It seems possible 

to overcome tamoxifen-resistance by shifting breast cancer cells back to 

their glycolytic state. Another study showed that endocrine therapy may 

select a metabolic dormant cancer stem cell-like subpopulation, which is 

characterised by the loss of mitochondrial biogenesis. Importantly, the exit 

from this metabolic dormancy is orchestrated by interleukin 6 signalling that 

impacts on ER expression and promote the reacquisition of glycolytic and 

OXPHOS metabolic activity (296). These results highlight the importance of 

metabolic adaptability of cancer cells for endocrine therapy resistance and 
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suggest that targeting such metabolic reprogramming may improve the 

response to cancer therapeutics. Furthermore, the combination of 

chemotherapeutic drugs with metabolic inhibitors may represent a 

promising strategy to overcome drug resistance in cancer therapy. 

                   6.2 Metabolic targeting in breast cancer 

A potential therapeutic approach that can be exploited in ER+ breast 

cancer cells is based on interfering with altered metabolic pathways by 

metabolic poisons in combination with endocrine therapy. Recent studies 

have demonstrated that the anti-diabetic drug, Metformin, can exhibit direct 

antitumoral effects, or can indirectly decrease tumour proliferation by 

improving insulin sensitivity. Indeed, metformin inhibits the hepatic 

gluconeogenesis via AMPK activation, increases insulin sensitivity and 

glucose utilization by skeletal muscle and adipose tissue, resulting in 

reduced glucose and insulin levels in the blood stream (297). The decrease 

in insulin levels caused by metformin can reduce, in breast cancer cell 

lines, the activation of insulin pathways such as PI3K/Akt/mTOR and 

MEK/ERK1/2 leading to a decrease in tumour growth (298). Moreover, 

metformin is known to inhibit mitochondrial complex I in vitro (299) and it is 

thus possible that this targeting of the electron transport chain could inhibit 

tumour cell growth. This latter hypothesis has been questioned as cancer 

cells have the ability to survive on ATP produced exclusively by glycolysis. 

Furthermore, cancer cells have been shown to conduct glutamine-

dependent reductive carboxylation to generate the TCA cycle intermediates 

required for cell proliferation when the electron transport chain is inhibited 

(300). Another candidate drug for the treatment of breast cancer is 2-

deoxy-glucose (2-DG) which is a widely studied glucose analogue that acts 

as a competitive inhibitor of glucose metabolism. Upon transport into the 

cell, 2-DG is phosphorylated by HK; however, unlike glucose, it cannot be 

metabolized by phosphoglucose isomerase, and is unable to undergo 

further metabolic reactions. The increase of HK2 expression has been 

showed as a prognostic factor in breast cancer and is associated with high 

rate of proliferation in breast cancer cells (301). The combination of 2-DG 

with  trastzumab treatment inhibits the survival of trastzumab-sensitive and 

-resistant breast cancers in vitro and in vivo models of HER2+ breast 
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cancers with more efficient inhibition of glycolysis via downregulation of 

heat shock factor1 and LDHA (302). In addition, LDHA inhibition has been 

showed to decrease HER2+ breast cancer cell proliferation under hypoxic 

conditions and interfere with tumorigenesis (176). Furthermore, the 

inhibition of LDHA by LDH inhibitor oxamate shows a synergistic inhibitory 

effect on taxol-resistant breast cancer cells by promoting apoptosis when 

combined with taxol (303).  

In addition to the glycolytic pathway interference, glutamine transporters 

and glutaminolysis are currently investigated as potential pharmacological 

targets in cancer therapy. The amino acid transporter SLC6A14 is 

upregulated specifically in ER+ breast cancer cells and Blockade its 

targeting induces the impairment of cancer cell survival via mTOR activity 

inhibition and subsequent apoptosis and autophagy activation (304). Two 

novel GLS inhibitors have been showed to have antiproliferative activity in 

combination with chemotherapy in ER- breast cancer cells (305, 306). 

Concerning lipid metabolic reprogramming, different studies have shown 

that FASN inhibitor cerelenin acts synergistically with docetaxel in HER2+ 

cancer cells and docetaxel resistant breast cancer cells, indicating the role 

of FASN in breast cancer chemotherapy resistance (307). FASN blockade 

also induce synergistic chemosensitisation of breast cancer cells to other 

chemotherapy agents, such as paclitaxel, adriamycin, 5-fluorouracile and 

vinorlbine (307-309). 

 

7- MicroRNAs 

The microRNAs (or miRNAs) are a group of short non-coding RNAs (22-

nucleotides) that mediate post-transcriptional gene silencing, thus 

controlling gene expression and assuming a key role in a variety of cellular 

process including proliferation, differentiation, apoptosis and metabolism 

(310-313). miRNAs bind to their target mRNAs and mediate their 

degradation with subsequent translation blockade (314). In humans, the 

majority of miRNAs are encoded by introns of non-coding or coding 

transcripts, but some miRNAs are encoded by exonic regions. Often, 

several miRNAs loci are in close proximity to each others, constituting a 

polycistronic transcription unit and the miRNAs within the same cluster are 
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generally co-transcribed, also if the individual miRNA can be additionally 

regulated at the post-transcriptional level (315). Generally, miRNAs that 

have identical sequence at nucleotides 2-8 of the mature miRNA are 

considered belonging to the same miRNAs “family”. Some miRNAs genes 

that reside in the introns of protein-coding gene share the promoter of the 

host gene, but it has been demonstrated that miRNA genes often have 

multiple transcription start sites (316) and that promoters of intronic 

miRNAs can be distinct form the promoters of their host genes (317). 

miRNAs are mainly transcribed by RNA polymerase II as a long primary 

transcript characterised by hairpin structure, called pri-miRNA. An individual 

pri-miRNA can either produce a single miRNA or contain clusters of two or 

more miRNAs that will be processed from a common transcript. In the 

nucleus, RNAse III Drosha processes this long pri-miRNA into 70-100 

nucleotides pre-miRNA (318). This originated precursor molecule is 

exported by an Exportin-5 mediated mechanism to the cytoplasm (319), 

where it is additionally processed by RNAse Dicer III. Dicer is very large 

enzyme conserved among the species and containing different domains, 

including a double-strand RNA-binding domain (dsRBD), two RNAse III 

catalytic domains, one PAZ domain that binds the 3’-end of small RNAs, 

and other domains with ATPase and RNA-helicase activity (320). Dicer 

binds to the end of the pre-miRNA positions by its two catalytic domains 

and generate the mature 22-nucleotides double strand miRNA (320). This 

RNA molecule is named miRNA /RNA* and is constitute by the mature 

miRNA guide and the complementary passenger strand, the miRNA*. Many 

publications refer to the two strand pair as miR-3p/miR-5p, referring to the 

direction of the mature and functional miRNA. The so-called miRNA* was 

initially thought to be the strand subjected to degradation, instead more 

evidence suggest that it is not simply a non-functional product of miRNA 

biogenesis, but it can be selected as a functional strand and play significant 

biological roles (322). Dicer associates with transactivation-responsive 

RNA-binging protein (TRBP) which bind dsRNA (322). Although TRBP is 

not required for pre-miRNA processing, it enhances the fidelity of Dicer-

mediated cleavage of pre-miRNAs and physically bridges Dicer with the 

Argonaute proteins (Ago1, Ago2, Ago3, Ago4) to participate in the 

assembly of miRNA induced silencing complex (miRISC) (322). 
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Figure 13. miRNA biogenesis pathway. miRNA genes are transcribed as primary miRNAs 
(pri-miRNAs) by RNA polymerase II (Pol II) in the nucleus. The long pri-miRNAs are cleaved 
by Microprocessor, which includes DROSHA and DiGeorge syndrome critical region 8 
(DGCR8), to produce the 60–70-nucleotide precursor miRNAs (pre-miRNAs). The pre-
miRNAs are then exported from the nucleus to the cytoplasm by exportin 5 (XPO5) and 
further processed by DICER1, a ribonuclease III (RIII) enzyme that produces the mature 
miRNAs. One strand of the mature miRNA (the guide strand) is loaded into the miRNA-
induced silencing complex (miRISC), which contains DICER1 and Argonaute (AGO) 
proteins, directs the miRISC to target mRNAs by sequence complementary binding and 
mediates gene suppression by targeted mRNA degradation and translational repression in 
processing bodies (P-bodies). TRBP, transactivation-responsive RNA-binding protein (taken 
from (321). 

 

As part of this complex, the mature miRNA is able to regulate gene 

expression at post-transcriptional level, binding for the most part through 

partial complementarity to target mRNAs, leading to mRNA degradation or 

translation inhibition (Figure 13). These two process can be carried out by 

any of Ago proteins (323). miRNAs can recognize their target mRNAs in the 

3’-untranslated regions (UTRs), 5’UTR and the ORF (324-326). In addition 

to their gene expression silencing function, it has been demonstrated that 

miRNAs can upregulate translation upon growth arrest conditions (327). 

Considering the different mechanisms regulating the interaction between a 

miRNA and its target mRNA, it is not surprising that each miRNA has a 
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potential to target a large number of genes and thus the subsequent 

regulation can have different significance (328-331). 

7.1 miRNAs and cancer 

The first evidence that miRNAs could be involved in cancer initiation and 

progression derived from studies on chronic lymphocyte leukemia (CLL) 

(332). In particular, Croce’s group reported that the locus including miR-15 

and miR-16 on chromosome 13q14 is frequently deleted, resulting in the 

loss or reduced phenotypic expression of this miRNAs. Other studies have 

demonstrated that malignant tissues in human cancer patients exhibit 

distinctive miRNA expression signatures (333, 334) and distinct miRNAs 

are commonly up- or downregulated concurrently in distinct types of tumour 

and often associated with distinct cytogenetic abnormalities (334). For 

example, miR-17 and miR-21 were found upregulated in colon, lung, 

stomach and prostatic tumour, and mir-155 up-regulated in breast, lung and 

colon cancer (334). In contrast, miR-29 was down-regulated in CLL, acute 

myeloid leukaemia, lung and breast cancers (335-338). These miRNA 

expression patterns suggest that the regulation of these miRNAs is not a 

stochastic event, but the result of the genomic alterations leading to up-

regulation or loss of function. Indeed, a considerable number of human 

miRNA genes are located at fragile sites or in genomic regions that are 

deleted, amplified or translocated in cancer (339). These genomic 

variations alter pri-miRNA transcription and miRNA expression, which leads 

to the aberrant expression of downstream target mRNAs. Thus, up-

regulated miRNAs may act as oncogene and lost miRNAs as tumour 

suppressor and this deregulation can promote tumorigenesis and cancer 

progression (339, 340). In addition to structural genetic alteration, silencing 

of structurally normal miRNA genes by DNA promoter hypermethylation 

and/or histone acetylation has been described in solid and haematological 

tumours (341, 342). Saito and colleagues demonstrated that miR-127 is 

silenced by promoter DNA hypermethylation and down regulated in bladder 

cancer (341). Furthermore, deregulation of miRNAs expression can result 

from increased or decreased transcription from their respective genes by 

aberrant transcription factors activity. It has been showed that the miR-34 

family transcription is induced directly by tumour suppressor p53 and high 
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expression of mir-34 correlate with high p53 levels in cancer cells (343, 

344). Another study has demonstrated that c-Myc negatively regulates the 

transcription of miR-29 family members. In particular, c-Myc binds to 

conserved sequences of the miRNAs promoter leading to repression of 

miR-29 family members. This repression contributes to lymphomagenesis, 

in fact the restoration of the silenced miRNAs decreases the tumorigenic 

potential of the lymphoma cells (345). As a consequence of the different 

expression between normal and cancerous tissues, miRNAs have revealed 

a great potential as a new early diagnosis biomarkers. For example, over-

expression of miR-205 and miR-21 in pancreatic ductal carcinoma has 

been reported to proceed phenotypic changes in the ducts, thus suggesting 

the possibility to use them for an early detection of this neoplasia (346). 

Furthermore, miRNAs are more stable than long mRNAs due to their small 

size, allowing a potential miRNA profiling and their possible use as a novel, 

minimally invasive biomarker. miRNAs can be reliably extracted and 

detected from frozen and paraffin-embedded tissues, blood (including 

plasma and serum) ((347), circulating exosomes (348) and from different 

biological fluids like urine (349) and saliva (350, 351). miRNAs have been 

shown to be able to predict also cancer prognosis. Several groups have 

successfully used miRNAs as prognostic markers to predict cancer 

outcome. For example, miR-155 overexpression and lethal-7 (let-7) 

miRNAs family downregulation are associated with poor prognosis in CLL 

and lung cancer (338), while in gastric cancer, a robust of 7 miRNAs 

signature can predict overall survival and relapse free survival (352). 

MicroRNAs signature can also be utilise to predict the response to specific 

therapies. For example, an increase of miR21 expression is sufficient to 

predict poor response to adjuvant therapy in addition to be an indicator of 

poor overall outcome in different types of tumour, including breast cancer 

(353, 354). Finally, miRNAs can also be used as potential target (336). The 

advantage of using miRNA approaches in therapy, both as targets and as 

therapeutic agents, is their ability to act simultaneously on multiple 

pathways such as proliferation, differentiation and survival. In summary, 

there are two main strategies to modulate the miRNAs expression in 

cancer. The direct strategy involves the use of oligonucleotides or viral 

constructs designed to block the expression of an oncogenic miRNA or to 
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reintroduce a miRNA that acts as a tumour suppressor. Conversely, the 

indirect strategy is based on the use of drugs that modulate the expression 

of miRNAs acting at the transcriptional level or during their maturation 

process (355). Although significant progresses have been made from the 

diagnostic and therapeutic point of view, there are still many obstacles prior 

to their clinical application. 

7.2 miRNAs and breast cancer 

Alterations in miRNA expression have been associated with tumorigenesis, 

metastasis and poor prognosis in human breast cancer. Different studies 

have demonstrated a significant deregulation in miRNAs expression in 

cancer versus normal breast tissue. Among these miRNAs, miR-10, miR-

125, miR-145, miR-21 and miR-155 resulted deregulated in breast cancer, 

suggesting that they may potentially act as tumour suppressor genes or 

oncogenes (337, 356). In particular, miR-10, miR-21 and miR-155 are 

considered oncomiRs, because their upregulation inhibits tumour 

suppressing factors expression and promote cell proliferation, metastasis 

and angiogenesis or induce epigenetic changes, favouring tumour 

progression (140, 357-360). The increase of miR-10 correlates with 

increased cell migration and metastasis in breast cancer (361). The miR-

155 exhibits its oncogenic ability by suppressing the expression of tumour 

suppressor genes, including protein Suppressor of cytokine expression 1 

(SOCS1) both in vitro and in vivo (362). Similarly, miR-21 is upregulated in 

breast cancer and it is considered an oncomiR by inhibiting the expression 

of various tumour suppressor genes, such as tissue inhibitor 

metalloprotease (TIMP3) and PDCD4 (363, 364). In contrast, miRNAs that 

act as tumour suppressors can target mRNAs of various oncogenes and 

their regulation is critical in carcinogenesis (361). The first of these that has 

been  identified is the let-7 family, which contains 12 members (365, 366). 

The oncogene RAS has been found to be a specific target of the let-7 

family members and the restoration of let-7 expression reduces cell 

proliferation and mammosphere formation of breast cancer initiating cells 

and decrease metastasis in vivo (366). In many breast cancer cell lines and 

breast cancer patient samples, the level of miR-125a and miR-125b are 

often found to be downregulated. miR-125 directly target ETS, an 
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oncogenic transcription factor, and functions as a tumour suppressor 

miRNA (367). Another frequently downregulated tumour suppressor miRNA 

in breast cancer is miR-205, which is a negative regulator of epithelial to 

mesenchymal transition (EMT) and metastasis (337). Furthermore, a 

number of miRNAs are considered associated with molecular subtypes of 

breast cancer and individual miRNAs correlate with clinicopathological 

factors (368). Several studies have demonstrated a different miRNA profile 

in basal and luminal breast cancer subtypes (368-370). Specifically, let-7c, 

miR-10a and let-7f are associated with the luminal A subtype; whereas 

miR-18a, miR-135b, miR-93 and miR-155 are associated with the basal 

type. Additionally, mir-142-3p and miR-150 are associated with HER2 type 

(370), whereas miR-342 is predominantly expressed in ER+/HER2+ breast 

tumours (371).  

miRNAs have also important roles in endocrine therapies response and 

some studies have attempted to identify miRNAs that contribute to the 

clinical benefits of hormonal therapies. MirR-342 influence ER expression 

and the response to tamoxifen (372, 373). It has been reported that miR-

221/222 are upregulated in endocrine therapy resistant breast cancer 

(374). Recently, it has been demonstrated that miR-221/222 induce 

resistance to selective ER downregulators by β-catenin activation and 

subsequent repression of transforming growth factor-β- mediated growth 

inhibition (375). Furthermore, miR-221, miR-222 and mir181b directly target 

TIMP3 and can promote endocrine therapy resistance. Indeed, ER+ MCF7 

breast cancer cells subjected to TIMP3 knockdown can survive and 

proliferate in the presence of tamoxifen (376). In addition, miR-30c has 

been identified as an independent predictor of tamoxifen response and it 

has been associated with increased progression-free survival in breast 

cancer patients (377). Recently, miR-301 expression has been found to be 

higher in tumour than normal tissues, and patients who suffered recurrence 

after tamoxifen treatment exhibit higher levels of miR-301 when compared 

to those who did not (378). miRNAs are also associated with resistance to 

AI (379). MiR-128a modulates the transforming growth factor-β-signalling 

and survival of letrozole resistant cell lines (380). A miRNA expression 

profiling before and after letrozole treatment in both preclinical and clinical 

settings revealed an increase in let-7f expression in the post-treatment 
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samples (381). Although aberrant miRNAs expression is important for 

breast tumorigenesis, it remains uncertain whether altered expression of 

miRNAs is the cause or the consequence of this pathological process. 

Understanding the molecular mechanism of action of miRNAs and the 

miRNAs profiling in breast cancer are essential area of research interest 

that will represent novel opportunities for the development of strategies for 

the diagnosis and treatment.  

7.3 miR-155 and cancer 

miR-155 is a typical multifunctional miRNA and its deregulation has been 

found associated with different types of cancer, cardiovascular diseases 

and viral infections. miR-155 was first described in 1989 and reported to be 

involved in the progression of lymphoma (382). It has more than 400 

predicted gene targets (331)(11), including over 100 confirmed ones. miR-

155 is over expressed in a number of neoplastic diseases and that it plays 

a significant role in the process of carcinogenesis, acting predominantly as 

an oncomiR (383). Several mechanisms have been suggested to explain 

this biological activity. For example, miR-155 was found to be one of the 

most potent miRNA suppressing apoptosis in human T cell leukemia Jurkat 

cells and in MDA-MB-453 breast cancer cells. In fact, over expression of 

miR-155 is followed by a substantial decrease of tumour protein 53-induced 

nuclear protein 1 (TP53INP1), that is a nuclear protein able to induce cell 

cycle arrest and apoptosis through caspase-3 activation (373). This role in 

apoptosis could be responsible for the oncogenicity of miR-155 in several 

types of cancer. High levels of miR-155 have been found in different 

haematological cancers such as Hodgkin’s and non-Hodgkin’s lymphoma 

(384, 385), Burkitt’s lymphoma (386) and CLL (387, 388). Furthermore, 

miR-155 gene was found to be over expressed in several solid tumours, 

such as thyroid carcinoma (389), breast cancer (334, 337, 390), colon 

cancer (334), cervical cancer (391), pancreatic ductal adenocarcinoma 

(PDAC) (392)(54), and lung cancer (393), where it is considered to be a 

marker of poor prognosis (338, 393).  

In human, miR-155 is encoded by gene MIR155HG, also termed the B cell 

integration cluster (BIC locus), which is located on chromosome 21 (Figure 

14) (394). Among its targets, there are Ras homolog family member A 
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(RhoA), forkhead box O3A (FOXO3a) and SOCS1 (395, 396). These genes 

in breast cancer can induce an increase in epithelial to mesenchymal cell 

transition, cell plasticity, cell survival, chemo-resistance and radio-

resistance (395, 396). miR-155 deregulated targets have been associated 

to the development and progression of breast cancer, because of their 

involvement in cell growth and survival pathways (CCND1 and GAB3), cell 

migration and invasion (PAK2, RAB6A), apoptosis and proliferation (359, 

397, 398).  

 

Figure 14. Maturation of miR-155. (A) PremiR-155 stem–loop structure. Nucleotide 
sequence of miR-155 RNA duplex is indicated in pink. (B) Mature single strand miR-155.  

 

Furthermore, overexpression of miR-155 in breast cancer cells induces the 

activation of transcription factor STAT-3 through the Janus-activated kinase 

pathway and stimulation of breast cancer cells by the inflammatory 

cytokines, suggesting that mir-155 may serve as a bridge between 

inflammation and cancer. In addition, FOXO3a is a transcription factor 

which play a crucial role in  apoptosis and cell growth by the regulation of a 

number of apoptosis/cell growth associated genes, and mir-155 can directly 

associate with FOXO3, blocking its transcription (395, 399). High miR-155 

expression associated with low FOXO3a levels are present in recurrent 

breast tumours after radiotherapy or chemotherapy (400). In conclusion, 

different studies linked miR-155 expression to both invasiveness and 

recurrence of breast tumour and have demonstrated that the deregulated 
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expression of miR-155 and its target genes are of potential clinical 

prognostic value.  

7.4 miR-23b and cancer 

MiR-23b is a highly conserved miRNA and is transcribed as part of a 

cluster of miRNAs along with miR-27b and miR-24 (Figure 15) (401). MiR-

23b gene is located on the long arm of chromosome 9 and its 

transcriptional process results in two mature miRNA transcripts, miR-23b-

3p and the less studied miR-23b-5p.  

 

Figure 15. miR-23b~miR-27b~miR-24-1 cluster on chromosome 9.  

 

MiR-23b is a classic example of pleiotropic modulator that influences and 

regulates a wide range of physiological cell functions, including 

proliferation, differentiation, motility and immune response. The 

dysregulation in miR-23b expression promotes the alteration of these 

cellular mechanisms and the development of diseases. In particular, it has 

been demonstrated that the miR-23b plays an important role in the 

tumorigenesis and progression of different types of cancer. It has been 

demonstrated that miR-23b functions as a tumour suppressor or as an 

oncogene in a cancer context-dependent manner (Figure 16) (402). MiR-

23b has been found upregulated in different types of cancer, such as oral 

squamous and bladder tumours (403, 404). Similarly, it acts as oncomiR in 

renal cancer through inhibition of PTEN gene transcription, resulting in an 

hyperactivation of PI3K/AKT pathway (405). In contrast, in prostate cancer 

plays the role of suppressor, targeting the mitochondrial enzyme GLS 

(231). In hepatocellular carcinoma (HCC), miR-23b inhibits directly the 

transcription of uPA (Urokinase-Type Plasminogen Activator) and c-Met (or 
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HGFR, Hepatocyte Growth Factor Receptor) genes and the reduced 

expression of these two factors resulted in a decreased migration and 

proliferation of HCC cells (406). Similarly, miR-23b inhibits the formation of 

metastases of colon cancer by targeting FZD7 and MAP3K1 genes (407). 

Regarding the role of miR-23b in breast cancer, there are different studies 

that have shown opposing data on the effects of miR-23b in the processes 

of proliferation, migration and invasion of cancer cells. Wu et al. have 

reported that miR-23b is over-expressed in primary tumours and in the sera 

of these breast cancer bearing patients (408). Crucially, it has been 

demonstrated that miR-23b acts as a positive regulator of tumour growth in 

breast cancer by blocking the tumour suppressor Nischarin (NISCH).  

 

Figure 16. mir-23b as tumour suppressor or oncomir. Schematic representation of direct 
target in different types of tumour. Abbreviations: ATG-12, autophagy-related protein 12; 
VHL, Von Hippel-Lindau tumour suppressor; PTEN, phosphatase and tensin homolog (taken 
from 402). 

 

NISCH is a binding partner for α5β1 integrin, interacts with members of the 

PAK (p21-Activated Kinase) family kinase and thereby regulates the 

metastatic behaviour of tumour cells (409, 410). Thus, miR-23b and 

Nischarin expression levels are inversely correlated in breast cancer: the 

up-regulation of the miR23b promotes proliferation and cell migration and 

associates with poor prognosis. Importantly, miR-23b knockdown reduces 

tumour growth and the formation of metastases in vitro and in vivo (411). 

Furthermore, the receptor HER2 and the growth factors EGF and TNF 

(Tumour Necrosis Factor alpha) promote the ectopic expression of miR-23b 
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via PI3K/AKT/NF-kB pathway, favouring its tumorigenic properties in vitro  

(411). Other studies have suggested the role of miR-23b as a tumour 

suppressor. In particular, it has been demonstrated that miR-23b has a role 

in cytoskeletal remodelling through the enhancement of cell-cell interaction, 

thus reducing cell motility and invasion during cancer progression (412). 

Moreover, miR-23b over expression or silencing significantly reduced or 

increased, respectively, cell invasion in breast cancer and its expression 

inversely correlates with breast cancer metastasis and tumour growth in 

vivo (413). An interesting study has been performed in radiotherapy 

resistant-derived pancreatic cancer cell lines, showing that the reduced 

levels of the miR-23b correlate with radioresistance and its overexpression 

sensitises the cells to radiation by inhibiting the radiation-induced 

autophagy (414).  

7.5 miRNAs and tumour metabolism 

In the last few years, different studies have demonstrated that a large 

number of miRNAs are involved in the regulation of cancer metabolism 

(Figure 17) (415). Several studies suggest that miRNAs regulate, in 

addition to glucose transporters family, several essential enzymes of 

glycolysis including HKs, glyceraldeid-3-phosphate dehydrogenase 

(GAPDH), and 6-phosphofructokinase (PFK1). It has been demonstrated 

that HK2, overexpressed in different types of cancer, can be regulated by 

miR-143. In particular, miR-143 downregulates HK2 and therefore inhibits 

glucose metabolism in head and neck squamous cell carcinoma (416), 

breast cancer (417), lung cancer (418) and colon cancer (419, 420). In 

addition, miR-155 represses miR-143 and promotes the transcription of 

HK2, inducing glycolytic phenotype in cancer cells (417). Similarly to 

glycolysis, the TCA cycle can be subjected to miRNAs control. For 

example, GLS is crucial in glutamine metabolism. Different studies suggest 

that p53, which is a direct target of miR-125, miR-30, miR-594, plays an 

essential role in sustain glutamine level by activating GLS2 (421). In 

addition, it has been demonstrated that c-Myc downregulates miR-23a and 

miR-23b in lymphoma and prostate cancer cells and leads to subsequent 

increase in GLS expression (422). Several miRNAs are involved in the 

control of lipid metabolism in cancer (423-426). 
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Figure 17. MicroRNAs regulate cell metabolism by targeting key metabolic enzymes 
and multiple oncogenic signalling pathways. miRNAs could regulate cell metabolism by 
modulating the expression of metabolic transporters (like GLUT) or enzymes (HK2, ALDOA 
and PDK1) and acting on p53, c-Myc and AKT/mTOR signalling pathways. The steps 
regulated by miRNAs are indicated by red circular arrows, and the related miRNAs are listed 
in the bracket. FASN, fatty acid synthase; GLUT, glucose transporter; HIF, hypoxia-inducible 
factor; LAT1, L-type amino acid transporter 1; LDH-A, lactate dehydrogenase isoform A; 
MCT, monocarboxylate transporter; PDH, pyruvate dehydrogenase; PDK, pyruvate 
dehydrogenase kinase; PI3K, phosphatidylinositol 3-kinase (taken from 415).  

 

In literature, it has been reported that miR-185 and miR-342 regulate lipids 

and cholesterol biosynthesis in prostate cancer cells by reducing the 

expression of transcription factor SREBP-1 and downregulating its target 

genes, including FASN and 3-hydroxy-3-methylglutarate CoA reductase 

(425). These data suggest that miRNAs are important in the control of 

cancer metabolic reprogramming by regulating the expression of genes 

involved in key metabolic pathways.  
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8- Autophagy 
Autophagy, or cellular “self-eating”, is an evolutionary conserved process 

that occurs in all eukaryotic cells, from yeast to mammals (427, 428). It 

consist in a vesicular trafficking pathway where intracellular substrates, 

such as entire organelles, protein aggregates and specific proteins, are 

targeted for lysosomal degradation and recycling (429). During the 

autophagy, the portions of the cytoplasm and intracellular organelles are 

sequestered in double membrane bound structures called autophagosomes 

(figure 18). These autophagosomes then fuse with lysosomes to form 

autolysosomes, and the sequestered contents are degraded by lysosomal 

hydrolases and recycled. The degradation of intracellular aggregates and 

organelles is important to maintain cellular homeostasis. In addition to have 

a role in the turnover of protein and organelles, autophagy is involved in 

many physiological and pathophysiological processes (429-431). Low 

levels of basal autophagy prevent the gradual accumulation of damaged 

proteins and organelles in tissues that is toxic over time (429), and a strong 

activation of autophagy occurs when the cells are under stress conditions, 

such as nutrient deprivation and pathogen infections. Autophagy deficiency 

is thought to contribute to the pathogenicity in many diseases including 

neurodegenerative and liver disease, cancer and aging (432). Autophagy 

process is very complex, but in general, it can be divided into different 

phases: induction, vesicle nucleation, vesicle elongation and completion, 

docking and fusion, degradation and recycling. Up to 35 autophagy-related 

genes have been identified (ATGs). These genes, that compose the core 

machinery of autophagy, can be classified into several functional units: the 

Unc-52 like autophagy activating kinase 1 (ULK1) protein kinase complex, 

an initiating effector for the autophagic cascade; the VPS34-beclin 1 PI3K 

complex; two autophagy-specific ubiquitin-like (Ubl) conjugation systems; 

phopshatydilinositol-3-phosphate (PI3P) effector and the transmembrane 

recycling protein ATG9. Many ATG proteins contribute to the two Ubl 

conjugation reactions in which LC3 and ATG12 are the Ubl proteins (434). 
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Figure 18. The autophagy pathway. Schematic of the intracellular membrane events 
involved in the autophagy and its biological functions (taken from 433).  

 

Finally, LC3 is conjugated to phopshatidyl ethanolamine (PE), resulting in 

LC3-PE (known also LC3-II), which is required for autophagosome 

formation, cargo recognition and autophagic membrane tethering (435-

437). Vesicles nucleation is the initial step in which protein and lipids are 

recruited for construction of the autophagosomal membranes. In 

mammalian cells, this process is initiated by activation of the class III 

PI3K/beclin1 complex. Numerous additional binding partners of this 

complex function as positive regulator, including BAX-interacting factor 1 

(BIF-1), ATG14L and Ambra 1 (activating molecule in Beclin1 regulated 

autophagy protein 1) that promote the autophagy, or negative regulators 
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such as Rubicon and B-cell lymphoma 2 (Bcl-2) that inhibit autophagic 

activation (438). Intracellular substrates, which must be degraded through 

autophagy, are targeted at least in part by poly-ubiquitination. It has been 

demonstrated that during autophagosome formation LC3-II act as a 

“receptor” at the growing phagophore membrane and interacts with 

“adaptor” molecules on the targets (e.g. protein aggregate) to promote their 

selective uptake into phagophore and degradation. The most characterised 

molecule in this regard is p62/SQMT1, a multifunctional adaptor molecule 

that promote turnover of poly-ubiquitinated protein aggregates (439). Other 

molecules, such as NRB1, function similarly to p62/SQMT1 in promoting 

turnover of poly-ubiquitinated proteins (440).  

8.1 Autophagy and metabolism 

Autophagy induction is important for normal cells to survive nutrients 

starvation, which is attributed to the recycling of intracellular component 

into metabolic pathways (430). The autophagy pathway and nutrient 

signalling intimately communicate between each other. A central node that 

coordinates this communication is the nutrient-sensing protein kinase 

complex mTOR complex 1 (mTORC1), which senses growth factors and 

amino acid levels in surrounding environment. This master regulator of 

cellular metabolism serves as an autophagy response switch by controlling 

the phosphorylation status, and therefore the autophagy activity, of the 

ULK1 complex. The main components of the ULK1 complex include the 

protein kinase ULK1 and its regulatory proteins ATG13 and FIP200 (437, 

441, 442). Under nutrient-rich conditions, mTORC1 phosphorylates ATG13 

and ULK1 to suppress the autophagy. When mTORC1 is inactivated by 

nutrient starvation or other stresses, the ULK1 complex becomes 

hypophosphorylated and active. There is an elegant feedback loop 

between mTORC1 activity and autophagy output. Upon nutrient starvation, 

mTORC1 is suppressed, leading to activation of ULK1-dependent 

autophagy. Downstream of autophagy, autophagic cargos are degraded 

into lysosomes to recycle building blocks, including amino acids, which 

reactivate mTORC1 and thereby attenuate ULK1-dependent autophagy 

(443, 444). Another important cellular energy sensor, AMPK, also plays a 

role in autophagy induction by phosphorylating TSC2 and the mTORC1 
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component Raptor, leading to inactivation of mTORC1 and subsequent 

activation of the ULK1 complex. Recently, AMPK has also been shown to 

directly interact with and phosphorylate ULK1 in a nutrient-dependent 

manner (445-449). One study suggests that AMPK-driven ULK1 

phosphorylation is stimulated by glucose starvation, contributing to ULK1 

activation (446). The mechanism of autophagy activation by nutrient 

deprivation is resumed in figure 19.  

 

Figure 19. The autophagy pathway senses various nutrient signals via the ULK1 
complex. Multiple nutrient-sensing mechanisms, including that modulated by mTORC1, 
AMPK, and acetyl-CoA, can directly interact with the ULK1 complex and thus regulate 
autophagy. Autophagy, by recycling amino acids to the cytoplasm, can reactivate mTORC1, 
and thus feedback suppress the autophagy function of the ULK1 complex. Pi, 
phosphorylation; Ac, acetylation; ATG16, ATG16L1. The dual-direction arrow indicates 
protein-protein interaction (taken from 433). 
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8.2 Autophagy and cancer 

Autophagy has been reported to either inhibit or promote cancer cell 

proliferation, suggesting that the role of autophagy in cancer is 

controversial and context dependent (450). Autophagy was initially thought 

to be a tumour suppression mechanism. This concept derived from early 

reports that showed that the essential autophagy gene ATG6/BECN1 was 

monoallelically lost in 40% to 75% of human prostate, breast, and ovarian 

cancers, indicating Beclin-1 as a tumour suppressor factor (451-453). 

Breast cancer cell lines frequently contain deletions of one allele of BECN1, 

which is necessary to induce autophagy in response to nitrogen deprivation 

(453). Introduction of BECN1 into MCF7 breast cancer cells induced 

autophagy and inhibited tumorigenicity (453). Furthermore, levels of 

BECN1 were significantly decreased in 18 out of 32 breast cancer samples, 

compared with normal epithelial cells from the breast (453). The 

contribution of the allelic deletion of BECN1 to carcinogenesis has been 

demonstrated by two studies in which BECN1+/– mice showed an 

increased incidence of lung cancer, hepatocellular carcinoma, and 

lymphoma (454, 455). It has been hypothesised that the inhibition of 

autophagy could provide advantages for tumour development, because 

during tumorigenesis cancer cells could prefer to increase protein synthesis 

compared to their degradation in order to meet high growth and 

proliferation rate (456). Furthermore, it has been thought that autophagy 

decreases the mutation rate and suppresses oncogenesis by eliminating 

damaged organelles that produce genotoxic stresses such as free radicals 

(457). Therefore, blockage of autophagy could contribute to development of 

cancer not only by reducing the rate of protein degradation, but also by 

allowing genotoxic free radical to accumulate. Although autophagy is 

suppressed during the early stages of tumorigenesis, it seems to be 

upregulated during the later stages of tumour progression as a protective 

mechanism against stressful conditions (456, 458, 459). As the tumour 

grows, cancer cells that are located in the central areas of the tumour are 

poorly vascularized, so the induction of autophagy could allow them to 

survive in these low-nutrient and low oxygen conditions (456). Cancer cell 

lines of various origins, including colon cancer, breast cancer, melanoma, 
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hepatoma, and malignant glioma cells, undergo autophagy in response to 

nutrient deprivation (460-464). 

Autophagy can promote the adaptation and survival under conditions that 

lead to cell death, such as anti-cancer therapy. For example, an increase of 

ATG12 expression confers radioresistance in pancreatic cancer cells, 

through an upregulation of autophagic processes (414). Studies in breast 

cancer cells showed that the induction of autophagy by anticancer 

therapies is usually prosurvival (465-467). It has been demonstrated that 

tamoxifen and fulvestrant induce autophagy in ER+ breast cancer cells 

(465, 468-472). Antioestrogen resistant cell lines exhibit increased basal 

autophagy when compared with their antioestrogen sensitive parental cells 

(469). Inhibiting autophagy via ATG5 silencing potentiates antioestrogen 

mediated cell death, indicating that antioestrogen-stimulated autophagy is a 

prosurvival event and a critical mechanism of endocrine therapy resistance 

(469). Analysis of publicly available human datasets indicates that ATG5, 

ATG7 and p62 are elevated in early recurring breast cancer when 

compared with breast cancers that show no recurrence (473). Furthermore, 

Cloroquine treatment, which inhibits autophagy by preventing degradation 

of autolysosome, in combination with antioestrogen therapies increases the 

sensitivity of resistant breast cancer cells to endocrine therapies (473). 

These results suggest that autophagy may be involved in cancer 

progression and in resistance to anticancer therapy, indicating that 

autophagy may become a therapeutic target to resensitise the cancer cells 

to the initial therapies.   
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Materials and Methods 
 

Materials 

 Unless specified, all reagents used for cells culture were purchased 

from Euroclone Group, Invitrogen and Sigma. 

 Solutions and equipment for protein analysis were purchased from 

Biorad, except for PVDF membrane (Polyvinylidene fluoride), used 

for Western Blotting, which was provided from Millipore.  

 Proteases and phosphatases inhibitors were from Sigma-Aldrich.  

 Bradford reagent for protein dosage and all materials for SDS-

PAGE were from Biorad.  

 Chemiluminescence revelation kit was from GE Health Care.  

 Matrigel was purchased from BD Biosciences.  

 Transwells for invasion assays were from Costar (Euroclone 

Group). The Diff-Quick staining was purchased from BIOMAP SNC.  

 The photographic plates were from Kodak.  

 All radiolabelled molecules were purchased from PerkinElmer. 

 Reagents for real-time PCR were from Qiagen or Applied 

Biosystem.  

 

Drugs and Compounds 

 E2: dissolved in 100% ethanol at 1 μM, stored at -20°C purchased 

from Sigma (E2758-1G). 

 Androstenedione: dissolved in 100% ethanol at 10 μM stored at -

20°C purchased from Sigma (46033) 

 Letrozole: dissolved in 100% ethanol at 10 μM stored at -20°C 

purchased from Sigma (L6545) 

 4-OH tamoxifen: (hereafter simply tamoxifen) dissolved in 100% 

ethanol at 10 mM, stored at -20°C purchased from Sigma (H7904). 

 ICI-182,780: (Fulvestrant) dissolved in DMSO at 10 mM, stored at -

20°C purchased from Tocris Bioscience (1047). 



 
 

 
 

Dr. Marina Bacci 
     Metabolic reprogramming of oestrogen receptor positive breast cancer in endocrine therapy resistance. 

 PhD Course in Life Sciences and Biotechnologies XXIX cycle - Università degli Studi di Sassari. 
 

 69 
 

 2-DG: dissolved in Phosphate buffered saline (PBS) at 100 mg/ml 

stored at +4°C purchased form Sigma (D6134). 

 Metformin: dissolved in PBS at 250 mM stored at -20°C purchased 

from Sigma (D150959). 

 3-Bromopyruvic acid: dissolved in PBS at 10 mg/ml stored at +4°C 

purchased from Santa Cruz Biotechnology (sc-260854B). 

 Ilomastat: dissolved in DMSO at 50mM stored at- 20°C purchased 

from Chemicon International (CC1010). 

 

Common use solution 

 PBS (Phosphate buffered saline): 0.27 g/L di KH2PO4, 0.2 g/L KCl, 

8.01 g/L NaCl , 1.78 g/L NaH2PO4 pH 7.4.  

 Ripa lysis buffer: (50 mM Tris HCl pH 7.5, 150 mM NaCl, 1% 

Nonidet P-40, 2 mM EGTA, 1mM sodium ortovanadate, 100 mM 

NaF).  

 SDS−PAGE 4X Sample Buffer: 40% Glycerol, 240 mM Tris/HCl pH 

6.8, 8% SDS, 0.04% bromophenol blue, 5% β-mercaptoethanol.  

 SDS-PAGE 1X running buffer: 25 mM Tris, 192 mM glycin, 0.1% 

(W/V) SDS, pH 8.3.  

 SDS-PAGE 1X blotting buffer: 25 mM Tris, 192 mM glycin, 10% 

methanol, pH 8.3.  

 Blocking solution: non-fat dry milk 2 %, tween 0.05 % in PBS.  

 Washing solution: tween 0.1 % in PBS (T-PBS).  
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Antibodies: 

 

Table 1. List of antibodies used in thesis. WB = Western blotting; O/n = overnight. 

 

Cell lines  

The ER+ wild-type (wt) MCF7 and ZR75-1 breast cancer cells were from 

American Type Culture Collection (ATCC) and are oestrogen dependent for 

survival and proliferation. Long-Term E2 Deprived (LTED) cell lines were 

obtained by culturing MCF7 cells in medium deprived of E2 for at least 20 

weeks, to mimic the resistance to aromatase inhibitors. wt-MCF7 and wt-

ZR75-1 cells were cultured in phenol red-free RPMI 1640 (Gibco, Life 

Technologies) supplemented with 10% Fetal Bovine Serum (FBS, 

Euroclone), 2 mM L-glutamine and 1 nmol/L E2 (both Sigma). LTED cells 

were cultured in steroid-depleted phenol red-free RPMI 1640 plus 10% 

dextran charcoal-stripped (DCC) FBS (Hyclone) and 2 mM L-glutamine 

(DCC medium). For clarity, MCF7-E2 are wt-MCF7 deprived of E2 for 72 h 

to mimic the acute-phase treatment with AI, whereas LTED cells mimic 

chronic treatment. MCF7 cells expressing human aromatase at clinical 



 
 

 
 

Dr. Marina Bacci 
     Metabolic reprogramming of oestrogen receptor positive breast cancer in endocrine therapy resistance. 

 PhD Course in Life Sciences and Biotechnologies XXIX cycle - Università degli Studi di Sassari. 
 

 71 
 

relevant levels, known as MCF7-2A and MCF7-AROM1 were generated by 

stable transfection with a retroviral construct pBabeAROM expressing full-

length human aromatase (CYP19) (474, 475). MCF7-2A were used as 

model of AI sensitivity and were maintained in RPMI 1640 (Euroclone) 

containing 10% FBS, 2 mM L-glutamine, and 1 mg/ml Geneticin/G418 

(Invitrogen). For functional analysis, MCF7-2A were E2 deprived for 3 days 

by culturing in phenol red-free RPMI-1640 supplemented with 10% DCC. 

MCF7-TAM and MCF7-ICI cells were obtained by culturing MCF7 cells in 

DCC medium plus 1µM of 4-OH tamoxifen (MCF7-TAM) or 100 nM of 

fulvestrant (MCF7-ICI) for at least 12 weeks and represent cellular models 

of tamoxifen and fulvestrant resistance, respectively. Cells were amplified, 

stocked, and once thawed were kept in culture for a maximum of 4 months.   

 

Methods 

General culture conditions 

Cell lines were grown under 5% CO2 at 37°C in their respective media. 

When passaging cells, growth medium was removed, washed with PBS 

and the cells incubated with a covering volume of trypsin. After the cells 

were detached, media was added to the cells to neutralize the trypsin and 

cells seeded into a new plate. 

Frozen storage of cells  

Cells were detached using trypsin, re-suspended in culture medium and 

pelleted by centrifugation at 1,000 g for 5 min. The cells were re-suspended 

in 1 ml of cell freezing medium (90% FBS and 10% DMSO) and then 

moved in specific freezing vials. Vials were then placed in polystyrene 

insulated boxes at -80°C for at least 48 h. After that, frozen vials were 

stored in liquid nitrogen. 

Cell viability 

Crystal violet survival assay. Crystal violet (CV) is a triphenylmethane dye 

(4-[(4-dimethylaminophenyl)-phenyl-methyl]-N,N-dimethyl-aniline) also 

known as Gentian violet (or hexamethyl pararosaniline chloride). Breast 

cancer cells were plated in 24-well culture dishes and treated as reported in 
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the Figures and described in the Results section. After the removal of the 

culture medium, the cells were fixed in a 4% formaldehyde solution at room 

temperature for 15 minutes and then incubate with CV solution for 10 

minutes at 37°C. CV solution contains 0.5% CV in deionized water and 

20% methanol. After incubation, CV was removed through aspiration and 

the cells were washed with PBS. Finally, CV uptaken by cells was 

solubilised with 2% SDS (Sodium dodecyl sulphate) solution through 

incubation in slow agitation for 20 minutes at 37°C. The solution containing 

CV solubilised was then collected and its absorbance was evaluated at a 

595 nm wavelength. Absorbance is positively correlated to crystal violet 

amount bound to cells. 

Protein manipulation 

Protein extraction: cells were washed twice in PBS solution and then lysed 

with RIPA lysis buffer supplemented with proteases and phosphatases 

inhibitors. Protein lysates were collected, kept in ice and centrifuged at 

6000 rpm for 10 minutes. After centrifugation, the supernatant was 

collected and total proteins were quantified with Bradford assay. 

Protein quantification: protein quantification is evaluated with Coomassie 

Brilliant Blue (Bradford protein assay), which binds to basics and aromatics 

amino acidic residues (especially arginine) of the proteins, leading to 

maximum absorption at 595 nm wavelength. Thus, Coomassie Brilliant 

Blue intensity is positively correlated to protein concentration. To obtain the 

standard curve of reference, we used Bovine Serum Albumine (BSA), 

diluting BSA 2 mg/ml concentrated in deionized water and then obtaining 

rising BSA concentrations from 2 μg/mL to 15 μg/mL. Then Bradford 

reagent is prepared diluting 1/5 of starting solution with Coomassie Brilliant 

Blue in 4/5 of deionized water. To run the assay, 5 μL of each sample, 

opportunely diluted in 45 μL of water, were added to 950 μl of the working 

solution. After 5 minutes incubation, the absorbance of each sample is 

evaluated at a wavelength of 595 nm, subtracting the blank value. From the 

values obtained from the standard curve it is possible to create a curve of 

absorbance in function of its concentration, thus, interpolating absorbance 

values to the standard curve, it is possible to calculate the final protein 

concentration. Correlation between absorbance and concentration is 
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expressed by Lambert-Beer law: A=εdc, where ε represents the molar 

extinction coefficient, d the path length and c represents sample 

concentration. For each Western Blotting experiment from 20 to 50 μg of 

total proteins are loaded in each lane on a 4–20% pre-cast Mini-PROTEAN 

TGX Gel. 

Polyacrylamide gel electrophoresis: it is a technique utilised for proteins 

separation based on their ability to move within an electric current, based 

on the length of their polypeptide chains or of their molecular weight.  

SDS polyacrylamide gel electrophoresis (SDS- PAGE) samples are boiled 

for 5 minutes in a sample buffer containing SDS and β-mercaptoethanol, 

which leads to disulphuric bonds reduction and destabilization of eventual 

protein tertiary structure. In addition, sample buffer is supplemented with 

bromophenol blue, ionizing coloured-tracking solution for the 

electrophoretic run, and glycerol, which increases sample density and 

promotes its stratification at the bottom of the loading well.  

Once the samples are loaded in the stacking gel, an electric field is applied 

across the gel, causing the negatively-charged proteins to migrate across 

the gel towards the positive electrode (anode). Stacking gel, characterised 

by very low acrylamide concentration (4%), is required to better stratify the 

samples before entering the separating gel. Proteins relative molecular 

mass is evaluated by comparison with protein ladder standard molecular 

weights, separated in the same gel. Running is carried on at 100V for 

almost 1 h. 

Western blotting: Once the protein samples are run , in order to make the 

proteins accessible to antibody detection, they are moved from within the 

gel onto a membrane made of polyvinylidene difluoride (PVDF). The 

method for transferring the proteins is called electroblotting and uses an 

electric current to pull proteins from the gel into the PVDF membrane. The 

proteins embedded into the gel are transferred onto the membrane while 

maintaining the organization they had within the gel. Proteins transfer is 

carried out at 100V for 1 h and half. PVDF membrane must be previously 

activated through treatment with methanol for 10 seconds. 
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After electroblotting the PVDF membrane is incubated overnight in slow 

agitation at 4°C with specific primary antibodies in a blocking solution 

containing non-fat dry milk 2% and Tween 0.05%. After incubation, the 

membrane is washed three times with a washing solution containing PBS 

1X and Tween 0.1% and, in order to reveal the specific protein, the 

membrane is incubated with horseradish peroxidase (HRP) conjugated 

secondary antibody for 1h at room temperature and then washed again for 

three times. In the chemiluminescence reaction horseradish peroxidase 

catalyses the oxidation of luminol into a reagent which emits light when it 

decays. Since the oxidation of luminol is catalysed by HRP, and the HRP is 

complexed with the protein of interest on the membrane, the amount and 

location of emission light is directly correlated with the location and amount 

of protein on the membrane. Chemiluminescent protein revelation is carried 

out with ECL Western Blotting reagents and developing of blots is carried 

out in the developing room placing imaging films on top of the membrane. 

Exposure is repeated, varying the time as needed for optimal detection. 

In vitro Boyden motility and invasion assay 

Transwell system is constituted by an upper chamber and a lower part 

(transwell) separated by 8 μm pore polyvinylpirrolidone-free polycarbonate 

filters (6.5 mm diameter). The day before the experiment is performed, the 

upper side of the porous polycarbonate filters was coated with 50 μg/cm2 of 

Matrigel dissolved in sterile water and incubated over night at room 

temperature. The following day, the cells starved from 15-18 h were loaded 

into the upper compartment of the transwell (100.000 cells in 200 μl of 

starved medium) and placed into 24-well culture dishes containing 500 μl of 

complete growth medium. After 48 h of incubation at 37°C, non-invading 

cells were removed mechanically using cotton swabs from the upper 

chamber, and the micro porous membrane was stained with Diff-Quick 

solutions. For the migration assay, cells were starved from 15-18 h and 

were loaded in the upper compartment of the transwell, in the absence of 

Matrigel. The procedure is the same of the above described invasion test. 

Chemotaxis was evaluated by counting the cells migrated to the lower 

surface of the filters (six randomly chosen fields). 
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Three dimensional (3D) tumour spheroid invasion assay 

96 well flat bottomed plate was coated with 50 μL/well of 1.5% of agarose 

to impair cell adhesion. For spheroid generation, 200 μL/well of MCF7-

LTED suspension at optimized density (0.5 × 104 cells/mL) was distributed 

in agarose-coated 96-wells plate and centrifuged at 800 g for 3 minutes to 

facilitate cell aggregation. The plate was incubated for 4 days at 37°C, 5% 

CO2. At day 4, when the spheroids were well formed, 100 μL medium was 

removed from wells and 100 μL Matrigel was gently added. 

RhoA or Rac1 activity assay 

RhoA-GTP and Rac1-GTP were analysed by pull-down assay from cell 

lysates. MCF7 and MCF7-LTED cells were directly lysed in RIPA buffer, the 

lysates were incubated with 10 μg Rhotekin-GST fusion protein (Becton 

Dickinson) or p21 activated kinase (PAK)-GST fusion protein, both 

absorbed on glutathione Sepharose beads for 1 h at 4°C. Immunoreactive 

RhoA or Rac1 were then quantified by western blot analysis. Lysates were 

normalised for RhoA or Rac1 content by immunoblot. 

Gelatin zimography 

Zimography was performed using cultured media collected in our 

experimental conditions. Aliquots of cultured media were electrophoresed 

on 8% SDS-PAGE co-polymerized with 0.13% type A gelatine under non-

reducing conditions. Gels were washed twice in 2.5% Triton X-100 for 30 

min and then incubated overnight at 37°C in 50 mM TRIS-HCl, pH 7.4, 200 

mM NaCl and 5mM CaCl2 to allow MMPs activity. After incubation, the gels 

were stained for 90 minutes with a saturated Coomassie brilliant blue 

solution (methanol 40%, acetic acid 10%, distilled H2O 50%) at room 

temperature and then destained by several washings in the same buffer 

without dye. After the wash in distilled water, the gels were scanned 

immediately with Quantity-One Image Analysis software (Bio-Rad). The 

bands containing gelatinase activity appeared transparent and were evident 

in the otherwise homogeneous blue gel.  
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FITC-collagen release assays 

Cell suspension was copolymerized with non-labelled rat tail collagen I 

containing 2% FITC-labelled collagen monomers. Migration was allowed for 

48 h, and solid-phase collagen containing the cells was pelleted, whereas 

FITC released into the supernatant was analysed by spectrofluorometry at 

595 nm wavelength. 

Gene expression and miRNA analysis 

Total RNA was extracted from wt-MCF7 cells cultured in presence or 

absence of E2, and their LTED derivatives and subjected to miRNA and 

mRNA profiles analysis by Human miRNA and Gene Expression 

Microarrays (Agilent Technologies). Data were normalized and the 

differentially regulated genes (fold-change>1.5, adjusted p-value<0.05) 

were obtained using One-way ANOVA and Student-Newman-Keuls post 

hoc test.  Gene expression data were then subjected to Gene Set 

Enrichment Analysis (GSEA, Broad Institute). The integrated analysis and 

reconstruction of post-transcriptional regulatory networks was performed 

using Magia 2.0 (476).  

Quantitative real-time RT-PCR (qRT-PCR)  

Total RNA was extracted from tissue culture cells, grown as a monolayer, 

using RNeasy Mini Kit (Qiagen). RNA concentration and quality of the 

samples were determined by measuring the UV absorbance at 260 nm and 

280 nm on Nanodrop 1000 (Thermo Scientific) and 500 ng of total RNA 

were reverse transcribed to strands of cDNA using Quantitech Reverse 

Transcription Kit according to manufacturer’s instructions (Qiagen). mRNA 

expression by qRT-PCR analysis was performed using QuantiFast SYBR 

Green (Qiagen) for GLUT1 (GLUT-1 Forward: 

5’CGGGCCAAGAGTGTGCTAAA-3’; GLUT-1 Reverse: 5’-

TAGCGATACCGGAGCCAATG-3’), Sso Advanced Universal SYBR Green 

Supermix (Bio-Rad) for Beclin-1 (qHsa CID0016032) and TNFAIP3 (qHsa 

CID0012648), and Taqman assay (Applied Biosystem) for HK2 

(Hs0060686_m1) and SLC6A14 (Hs00924564_m1).  Data were normalised 

on β-2 microglobulin for SYBR (Qiagen) or GAPDH (qHsa CED003874) for 



 
 

 
 

Dr. Marina Bacci 
     Metabolic reprogramming of oestrogen receptor positive breast cancer in endocrine therapy resistance. 

 PhD Course in Life Sciences and Biotechnologies XXIX cycle - Università degli Studi di Sassari. 
 

 77 
 

SYBR (Bio-RAD), or GAPDH (Hs02758991_g1) and ACTB (4310881E) for 

TaqMan.  

For miRNA analysis, total RNA, including small RNAs, was purified using 

miRNeasy kit (Qiagen). RNA concentration and the quality of the sample 

was evaluated using Nanodrop as described above, the reverse 

transcription reaction of 500 ng of total RNA was carried on using miScript 

II RT kit (Qiagen).  The quantification of miRNAs expression level was 

assessed by qRT-PCR using miScript SYBR Green PCR kit and miScript 

Primer Assay Hs_miR_143_1, Hs_miR_155_2 and Hs_miR_23b_2 

(Qiagen). Data were normalised on Hs_SNORD61_1 (Qiagen). All the 

amplifications were run on 7500 Fast Real-Time PCR System. Data were 

reported as relative quantity with respect to the calibrator sample using the 

2-ΔΔCt method. For miR-155 analysis on patient-derived RNA, we used a 

ΔCt technique normalising on both miScript Primer Assay SNORD61 and 

RNU6-2 (Qiagen). 

RNAi transfection 

The day before the transfection 30 x 104 cells were plated in 6-well culture 

dishes in order to reach 70% of confluence the day after. Cells were  

transfected according to the protocol of mirVana miRNA Mimics RNAi 

Transfection (Invitrogen by Life Technologies) with 20 nmol/L anti-miR-155 

(Ambion, MH12601), miR-23b-3p mimic (Ambion, MC10711) and miR-23b-

3p inhibitor (Ambion, MH10711) or miRNA mimic negative control#1 

(Ambion, # 4464058),  and anti-miRNA negative control (Ambion, 

AM17011) using Lipofectamine 2000 Reagent (Invitrogen). Functional 

analysis were performed after 48 h or 72h after transfection. 

Glucose, lactate, glutamine and amino acids uptake 

Breast cancer cells were plated in 6-well culture dishes and treated as 

reported in the Figures and described in the Results section. Radiolabeled 

nutrients uptake was evaluated in a buffered solution (140 mM NaCl, 20 

mM Hepes/Na, 2.5 mM MgSO4, 1 mM CaCl2, and 5mM KCl, pH 7.4) 

containing 0.2 μCi/mL D-[U-3H]-glucose, or 0.2 μCi/mL D-[U-14C]-lactate, 

glutamine or L-[U-14C]-amino acids mixture for 15 min at 37°C. Cells were 

subsequently washed with cold PBS and lysed with 0.1 M NaOH. 
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Incorporated radioactive nutrients derived signal was measured by liquid 

scintillation counting and normalised on protein content. 

Detection of released CO2 by radioactive glucose or lactate 

Breast cancer cells were treated as indicated in the Results section and 0.2 

μCi/mL [U-14C]-glucose or U-14C]-lactate was added for 15 minutes. Each 

dish had a taped piece of Whatman paper facing the inside of the dish 

soaked with 100 μL of phenyl-ethylamine-methanol (1:1) to trap the CO2. 

Then 200 μL of 4 M H2SO4 were added to the cells. Acidification of the 

medium allow CO2 release.  Each plate was incubated for 37°C, 5% CO2 

for 1 h to permit 14CO2 to be trapped into the Whatman paper. Finally, the 

Whatman paper was removed and transferred to scintillation vials for 

counting.  Measuring CO2 production is  a read-out for OXPHOS evaluation. 

In fact, cells use glucose together with O2 for producing energy, H2O and 

CO2, according to the reaction C6H12O6 + 6 O2  → 6 CO2  + 6 H2O + energy. 

When a given radioactive substrate is administered to the cells and enters 

a catabolic reaction that leads to CO2 production, radioactive CO2 can be 

detected by a scintillation counter. 

3H thymidine incorporation assay 

This assay allows measuring the proliferation rate of cells by 3H-Thymidine 

incorporation into the new synthesised DNA. Cells were plated in 12-well 

culture dishes and incubated in culture medium with 1 μCi/ml of methyl-3H-

Thymidine for 4 h leading to the incorporation of radioactive nucleotide into 

the new DNA synthesised during cell division. After incubation, the cells 

were washed twice with PBS and precipitated with 1 ml of 10% TCA 

(trichloracetic acid) for 15 minutes at room temperature. Cells were 

subsequently wash for three times with TCA solution and finally lysed with 

NaOH 1 M for 15 minutes at room temperature. Incorporated radioactive 

was assayed by liquid scintillation counting and normalised on protein 

content. Radioactivity is positively correlated to cell proliferation index. 

In vivo experiments 

Female Ncr Foxhead nude 6- to 8- week-old mice (Harlan) were kept under 

sterile conditions with free access to food and water. Mice were 

ovariectomised and then allowed to acclimatize for approximately 14 days. 
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MCF7-AROM1 xenografts were initiated by subcutaneous inoculation of 

100 mL cell suspension containing 1 x 107 cells in Matrigel (BD 

Biosciences) into the right flank. Growth was maintained by 

androstenedione support through intradermal daily injection (100 µg/day). 

Tumours were grown to approximately 8-mm diameter and assigned to 

treatment groups. Mice continued to receive androstenedione support and 

were randomized to receive daily doses of vehicle (10% N-methyl-

pyrollidone (NMP)/90% polyethylene glycol (PEG300) or letrozole (1 mg/kg 

in 150 mL of 10% NMP/90% PEG300). Letrozole was administered daily 

and mice were sacrificed after 21 days. All animal work was performed in 

collaboration with Dr Clare M. Isacke at Institute of Cancer Research (ICR, 

London), and carried out with UK Home Office approval. 

Immunohistochemistry (IHC)  

For GLUT1 IHC, antigen retrieval was carried out by microwave for 5 

minutes at full power (900 W) in citrate buffer pH 6.0. Anti-GLUT1 antibody 

(Abcam) was applied at 1:3000 dilution. The stained slides were then 

scanned on a whole slide scanner (Nanozoomer 2.0-HT, Hamamatsu). 

Statistical analysis 

Statistical analysis of the data was performed using GraphPad Prism 

Software by Student’s t-test or ANOVA as described in the figure legends 

and Results section. Differences were considered statistically significant 

when p < 0.05.  
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      Results and Discussion 
 

Despite the clinical benefit of endocrine therapy for the ER+ breast cancer 

subset, resistance to endocrine agents remains a problem, with a large 

proportion of women relapsing with endocrine resistant-disease. As 

extensively described in the Introduction section, several molecular 

mechanisms have been proposed to contribute to endocrine therapy 

resistance including hypersensitisation to oestrogen (477, 478) and ER 

activation via aberrant growth factor signalling (479). Different 

pharmacological compounds have been developed to target this altered 

signalling pathways in combination with endocrine therapy. However, given 

the adaptability of tumour cells, targeting a single growth factor or a 

downstream signalling hub likely leads to compensatory mechanism and 

many patients fail to benefit from these combined therapeutic approaches. 

It has been shown that targeting bioenergetic alterations sensitise breast 

cancer cells to chemotherapies (292, 480, 481) and to biological therapy, 

such as Herceptin (302).  

The final goal of this study was to identify and characterise the metabolic 

phenotype of ER+ resistant breast cancer cells (compared to parental 

cells), with a particular focus on the metabolic reprogramming in response 

and adaptation to long-term oestrogen deprivation (LTED), a condition that 

mimics AI treatment. In addition, since this metabolic reprogramming could 

be involved in the resistance to endocrine therapy, understanding the 

metabolic reprogramming during LTED will help to identify potential 

metabolic-related predictive biomarkers of endocrine therapy response 

and/or potential therapeutic targets that can be further exploited for 

combinatorial treatment approaches. 
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Role of central carbon metabolism in response and 
adaptation to AI 
The combination of letrozole and glycolysis inhibitors 
synergistically inhibits MCF7-2A cancer cell growth in vitro 

As described in the Material and Methods section, MCF7-2A cell line is a 

cellular model sensitive to AI treatment. They stably express the aromatase 

enzyme and thus can convert the androgens into oestrogens. Therefore, 

when cultured in the presence of androstenedione (10 nM) they showed a 

dose-dependent decrease in cell survival in response to the AI letrozole 

(Figure 20A). Importantly, after 3 days of letrozole treatment, MCF7-2A 

cells showed a dose-dependent decrease in their glycolysis capacity, 

indicated by reduced radioactive [3H] glucose uptake (Figure 20B). 

However, at this point time, MCF7-2A did not show a significant cell growth 

decrease, suggesting that the inhibition of glycolysis by letrozole precedes 

cell growth inhibition and indicates that glycolysis impairment is not merely 

a bystander effect of the cell growth inhibition. In fact, the inhibition of 

glucose uptake, index of glycolytic capacity, positively correlates with the 

inhibition of cell viability induced by letrozole, as shown by statistical 

correlation analysis (r = 0.92, P < 0.001, figure 20C), suggesting that 

combining letrozole with a glycolysis inhibitor may be more effective in 

decreasing cell survival than using AI alone. Indeed, the combination of 

letrozole treatment with glycolysis inhibitor 2-DG enhanced the effect of 

letrozole in inhibiting MCF7-2A cell survival, but had no effect on parental 

MCF7 cells, which have no endogenous aromatase expression (Figure 

20D). It is important to note that the effect of 2-DG was synergistic with that 

of letrozole, as demonstrated by combination index analysis (Table 2). 

Comparable results were obtained when letrozole was combined with 3-

bromopyruvate, another glycolytic inhibitor (Figure 20E), suggesting that AI 

sensitive breast cancer cells are dependent on glycolysis to survive and 

proliferate.   
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Figure 20. Letrozole impairs glycolysis in MCF7-2A cells and targeting glycolysis in 

combination with letrozole synergistically inhibits cancer cell growth. A, MCF7-2A 

were E2 deprived for 3 days with addition of 10 nmol/L androstenedione for the last 24 

hours. Cells were then subjected to letrozole treatment with the indicated concentration. B, 

cells were treated as in A but glucose uptake was measured after 3 days of letrozole 

treatment. Data represent mean ± SEM, n = 3. 1 way ANOVA; Dunnett corrected; **, P < 

0.01; ***, P < 0.001. C, correlation scatter plot of inhibition of glycolysis (glucose uptake) and 

inhibition of cell viability (r = 0. 92, P < 0.001). D, cells were treated as in A and after 24 

hours received either letrozole, 2-DG (1 mg/mL), or the combination of both for further 72 

hours. Parental MCF7 cells that have no endogenous aromatase expression responded to 1 
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nmol/L E2 but not to androstenedione (andro, 10 nmol/L), letrozole (10 nmol/L), or a 
combination of the two. E, cells were treated as in A and then subjected to letrozole 
treatment with or without 3-BP for further 72 hours. Data are presented as the ratio of cell 
survival inhibition measured compared with untreated cells. Data represent mean ± SEM, n 
= 3. 1 way ANOVA; Dunnett corrected; ***, P < 0.001; ns, not significant. 

 

 

Table 2. Combination Index (CI) analysis of MCF7-2A cells treated with letrozole and 
2-deoxyglucose (2-DG). CI is a parameter obtained by Chou-Talalay method to analyse the 
drug combination effects (ref) and offers quantitative definition for additive effect (CI = 1), 
synergism (CI < 1), and antagonism (CI > 1) in drug combinations.   

 

Aerobic glycolysis is enhanced in an in vitro model of AI 
resistance 

To investigate the role of the central carbon metabolism in the context of AI 

resistance, the expression of key molecular components of glycolytic 

pathway were analysed by Western Blot and qRT-PCR in MCF7-LTED, a 

cellular model of AIs resistance, compared to parental MCF7 cells. MCF7-

LTED, independently to E2 stimulation, showed higher expression both at 

mRNA and protein level of the key glycolytic enzyme HK2 compared to 

parental MCF7 cells (Figure 21A and 21B). Furthermore, MCF7-LTED cells 

increased the expression of the glucose importer GLUT1 (Figure 21C) and 

of the lactate exporter MCT4 (Figure 21A). This increase in glycolysis-

associated components correlated with an increase of glucose uptake 

(Figure 21D) accompanied by reduced glucose respiration, assessed by 

[14C] CO2 release (Figure 21E). Conversely, MCF7-LTED did not differ from 

parental MCF7 cells in lactate consumption, revealed by analysis of lactate 

upload (Figure 21F), but reduced the amount of lactate respired (Figure 

21G). This data show that AI-resistant ER+ breast cancer cells have a 
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glycolytic phenotype associated to OXPHOS impairment with respect to 

parental cells. 

 

Figure 21. MCF7-LTED cells display higher aerobic glycolytic activity. A, MCF7-LTED 
cells were compared with wt-MCF7 in presence or absence of 1 nmol/L E2. Total protein 
lysates were subjected to Western blot analysis as indicated. B–G, MCF7-LTED cells were 
compared with wt-MCF7 and subjected to qRT-PCR (B and C) after 3-day culture or to 
radioactive assays (D–G) as described in Materials and Methods. Data represent mean ±  
SEM, n = 3. Student t test; *, P < 0.05, **, P < 0.01; ***, P < 0.001; ns, not significant. 
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MCF7-LTED cells display high metabolic plasticity following the 
metabolic targeting 

To investigate whether targeting glycolysis could lead to decreased survival 

in MCF7-LTED cells, parental MCF7 cells and their LTED derivatives were 

exposed to the metabolic poisons, 2DG and Metformin, which inhibit 

glycolytic pathway and OXPHOS, respectively. Single drug treatment 

significantly impaired parental cell survival, both in presence and absence 

of E2 (Figure 22A). Conversely, no effects were observed in cell survival 

when MCF7-LTED were treated with metformin, and only minor survival 

fraction changes were noted when MCF7-LTED were treated with 2DG 

(Figure 22A). As expected, the combination of 2-DG treatment with 

Metformin dramatically impaired cell survival of both parental MCF7 and 

LTED cells (Figure 22A), suggesting that MCF7-LTED cells are capable of 

switching from glycolysis to OXPHOS metabolism when glycolysis is 

impaired. Indeed, in MCF7-LTED cells, 2-DG treatment decreased HK2 

expression (Figure 22B) and glucose uptake (Figure 22C) while induced 

their ability to upload lactate (Figure 22D), which can be diverted to 

OXPHOS metabolism. We also analysed the effects of metabolic targeting 

in another breast cancer cell lines: ZR75-1 cells that have similar level of 

ER expression compared to MCF7, and their derived ZR75-1-LTED, which 

in contrast to MCF7-LTED show no ER expression (482). 2-DG and 

Metformin administration reduced the survival fraction of both parental and 

ZR75-1-LTED cells (Figure 22E). Crucially, combining metformin with 2-DG 

had an addictive effect. This suggests that ER expression is a prerequisite 

for the metabolic plasticity observed in MCF7-LTED. Indeed, following the 

treatment with the ER downregulator fulvestrant (ICI 182,780), parental 

MCF7 cells and their derivatives (LTED and MCF7-2A) showed impaired 

glucose uptake and enhanced OXPHOS (Figure 23).  
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Figure 22 MCF7-LTED cells display metabolic plasticity and are insensitive to 
glycolysis targeting. A, MCF7-LTED cells were compared with wt-MCF7 in presence or 
absence of 1 nmol/L E2 and were subjected to 1 mg/mL 2-DG and 5 mmol/L metformin 
(Met) treatments. Data are presented as fold change of survival cell fraction compared with 
untreated cells. B–D, MCF7-LTED cells were treated with or without 2-DG or metformin and 
subjected to Western blotting (B), radioactive glucose uptake (C), or radioactive lactate 
uptake (D). 1 way ANOVA; Dunnett corrected; *, P < 0.05; ***, P < 0.001. E, ER- ZR75-1-
LTED cells were compared to ER+ wt-ZR75 and were subjected to 2- DG and metformin 
treatments. Data are presented as fold change of survival cell fraction compared to 
untreated cells.  
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Figure 23. Fulvestrant (ICI 182,780) treatment impairs glucose uptake in MCF7-2A, wt-
MCF7 and MCF7-LTED and increases CO2 production in wt-MCF7 and MCF7-LTED. A, 
MCF7-2A were E2 deprived for 3 days with addition of 10 nmol/L androstenedione for the 
last 24 hours. Then, cells were treated with 100 nM of ICI 182,780 in combination or not with 
letrozole for 72 hours and were subjected to radioactive assay. Data are presented as mean 
value ± SEM, n = 3. 1 way ANOVA; Bonferroni corrected; ***, P<0.001. B-C, MCF7-LTED 
were compared to wt-MCF7 and were subjected to 100 nM ICI 182,780 treatment for 72 
hours. Glucose uptake (B) and CO2 production ©) were analysed by radioactive assay. Data 
are presented as mean value ± SEM, n = 3. Student t test *, P <0.05; **, P <0.01; ***, P 
<0.001. 

 

In addition to metabolic plasticity, MCF7-LTED cells also display 
high motile plasticity 

Since it is established that metabolic reprogramming and motile plasticity 

correlates with enhanced aggressiveness of cancer cells (170), we 
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analysed the motile and invasive behaviour of MCF7-LTED compared to 

parental MCF7 cells.  
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Figure 24. MCF7-LTED cells display high motile and invasive abilities and 2-DG 
administration enhances these features. A and B, MCF7-LTED cells were compared with 
wt-MCF7 in presence or absence of 1 nmol/L E2 and were subjected to 48-hours migration 
assay with or without drug treatments, as indicated; 1 mg/mL 2-DG and 5 mmol/L metformin 
(Met). 1 way ANOVA; Bonferroni corrected; ***, P < 0.001. C, MCF7- LTED cells were 
compared to wt-MCF7 in presence or absence of 1 nM E2. Total protein lysates were 
subjected to Western Blot to evaluate EMT markers. D, Rac1-GTP and RhoA-GTP were 
assayed as described in Materials and Methods. wt-MCF7 cells were compared to MCF7-
LTED with or without metabolic target treatments and subjected to (E) gelatin zymography 
or (F) FITC-collagen release assays as described in Materials and Methods. F, A375 were 
used as negative control (i.e. amoeboid invasion) while HT1080 and A375-M6 used as 
positive cell model control (i.e. mesenchymal motility). CTR pos is collagenase. G, cells 
were treated as in B and subjected to invasion assay. H, MCF7- LTED cells were subjected 
to invasion assay in presence or absence of the MMP inhibitor ilomastat (50 mmol/L). 
Student t test; ns, not significant. Data represent mean values ±  SEM, n = 3. 1 way ANOVA; 
Bonferroni corrected; **, P < 0.01; ***, P < 0.001. 

 

To characterise whether metabolic plasticity was paralleled by motile 

plasticity, MCF7-LTED cells were first subjected to a Boyden assay, in the 

presence or absence of a Matrigel barrier that mimics the extracellular 

matrix. LTED cells showed increased migration, both in presence and in 

absence of E2 (Figure 24A and B) as well as increased invasion (Figure 

24G) when compared with parental MCF7 cells. Epithelial-mesenchymal 

transition (EMT) marker levels, E-cadherin and vimentin, were unchanged 

in MCF7-LTED with respect to parental cells, suggesting that EMT is not 

directly involved in the enhanced motility (Figure 24C). Alternative to 

mesenchymal motility, cells can also adopt amoeboid motility allowing them 

to slide through the extracellular matrix (483). Amoeboid migration is 

characterised by MMP exclusion, inhibition of Rac1 and activation of RhoA 

(484). Accordingly, MCF7-LTED showed enhanced RhoA-GTP expression 

levels and decreased of Rac1-GTP (Figure 24D). In addition, gelatine 

zymography of parental and MCF7-LTED cells revealed no significance 

differences in metalloproteases (MMP) activity (Figure 24E) and 

fluorescence isothiocyanate (FITC)-collagen release assay showed no 

increase in collagen degradation (Figure 24F). Finally, treatment with MMP 

inhibitor Ilomastat did not reduce the invasive capacity of MCF7-LTED cells 

through Matrigel (Figure 24H). 

Since 2-DG and metformin monotherapies had not substantial effect on 

MCF7-LTED cell survival, we investigated whether these treatments 

impeded their migratory capacity. Surprisingly, 2-DG treatment enhanced 
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MCF7-LTED cells motility (Figure 24B) and invasive abilities (Figure 24G), 

without affecting MMP activity (Figure 24E) and their collagen-degrading 

capacity (Figure 24F). These features were confirmed by three dimensional 

tumour spheroid assay. Indeed, MCF7-LTED spheroids embedded in 

Matrigel treated with 2-DG were more invasive that those generated from 

untreated MCF7-LTED cells, and the invading cells were characterised by 

single cell dispersal, resembling typical amoeboid migration (Figure 25).  

 

Figure 25. 2-DG increases MCF7-LTED tumor spheroid invasion in Matrigel.  MCF7-

LTED spheroids were generated as described in Materials and Methods and treated with or 

without 2-DG (1 mg/mL) and spheroid images were captured using an inverted microscope 

(Nikon Eclipse TS 100) equipped with a DS camera Nikon Digital Sight at 0, 48 and 72 

hours. Scale bar, 20 μm (A). The invasion capacity was evaluated by measuring the 

invading area using ImageJ software (B). Data are presented as mean value ± SEM, n = 3. 

2 way ANOVA; **, P < 0.01; ***, P < 0.001. 
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These data show that MCF7-LTED cells are characterised by amoeboid 

motility, in line with the absence of EMT markers expression and MMP 

activity.  

ER-dependent miR-155 is responsible for metabolic and motile 
plasticity of MCF7-LTED cells 

After the unexpected results obtained following the 2-DG treatment in the 

AI-resistant cell model, we investigated the molecular mechanism 

responsible for the metabolic and motile plasticity of MCF7-LTED cells. 

Deregulation of miRNA expression has been demonstrated in many types 

of cancer as they act as upstream regulators of mRNA expression of genes 

involved in carcinogenesis (485). In particular, miR-155 has been shown to 

be overexpressed in breast cancers and be modulated by oestrogen (29). 

In addition, miR-155 controls miR-143 expression, a miRNA known to 

target and decrease HK2 expression in MCF7 cells (417). Therefore, we 

hypothesised that miR-155 and miR-143 may be deregulated in MCF7-

LTED cells and responsible for the increase of glycolytic metabolism noted 

in this cell model. qRT-PCR analysis showed that E2 induced a significant 

increase in miR-155 expression in parental MCF7 cells and that MCF7-

LTED cells had higher (~3 fold) miR-155 expression when compared with 

their parental counterpart (Figure 26A). This increased miR-155 expression 

was paralleled by a significant reduction in miR-143 (Figure 26B), 

consistent with the increased HK2 expression both mRNA and protein 

levels (Figure 21A and B). E2-induced miR-155 expression was confirmed 

in MCF7-2A cells upon androstenedione administration (Figure 26C). 

Importantly, letrozole administration, which blocks the androgen to 

oestrogen conversion, restored basal miR-155 expression (Figure 26C). In 

addition, ER dependency was validate in both E2-treated MCF7 and MCF7-

LTED cells by administration of ICI 182,780 (Figure 26D). Thus, the 

hypothesis was that enhanced miR-155 and HK2 expression in MCF7-

LTED cells was related to their retention of a functional ER. This was 

further supported by the observation that miR-155 and HK2 expression 

were not significantly altered in ER- ZR75-1-LTED cells (Figure 26E and F). 

At this point, we targeted miR-155 to impair the metabolic properties of 

MCF7-LTED cells. 
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Figure 26. miR-155 is ER-dependent and control HK2 expression. A and B, MCF7-LTED 
cells were compared with wt-MCF7 in presence or absence of 1 nmol/L E2 and subjected to 
qRT-PCR. Data represent mean ± SEM, n = 3. 1 way ANOVA; Dunnett corrected; *, P < 
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0.05; **, P < 0.01. ) MCF7-2A were E2 deprived for 3 days with addition of 10 nmol/L 
androstenedione for the last 24 hours with or without letrozole (100 nM) before qRT-PCR 
analysis. D, MCF7-LTED were subjected to the ER downregulator ICI 182,780 (ICI 1 μM) 
and compared to untreated MCF7- LTED and parental MCF7 cells. ZR75-LTED cells that do 
not retain ER expression were compared to wt-ZR75 cells and subjected to qRT-PCR to 
evaluate miR-155 (E) and HK2 (F) expression. MCF7-LTED cells were transfected with the 
indicated RNAi oligos and culture for further 72 hours before qRT-PCR analysis to evaluate 
miR-155 (G), miR-143 (H) and HK2 expression (I). 

 

Anti-miR-155 caused a marked reduction of miR-155 and HK2 expression, 

and a corresponding increase of miR-143 expression, as expected (Figure 

26G, H and I). Anti-miR-155 transfected MCF7-LTED cells showed a small 

change in cell survival when compared with anti-miR-scramble control. 

However, exposure of the anti-miR-155 transfected cells to metformin led to 

a marked reduction in cell survival (Figure 27A). In addition to its role in the 

control of glycolytic metabolism, miR-155 has been demonstrated to 

increase lymphoma cell motility (416). To evaluate whether miR-155 may 

also be responsible for 2-DG induced migration of MCF7-LTED cells, we 

compared the anti-miR-155 transfected cells to the anti-miR-scramble 

control cells. Notably, anti-miR-155 transfection reverted the invasive ability 

of MCF7-LTED cells when exposed to 2-DG (Figure 27B).  

Glycolytic key players and miR-155 levels are decreased in AI-
sensitive human breast cancer xenografts following the 
letrozole treatment 

To determine the effects of letrozole treatment on the glycolytic key players, 

GLUT1 and HK2, and on miR-155 levels in breast cancer xenografts, 

MCF7 aromatase-transfected cell line, MCF7-AROM1, was injected 

subcutaneously into immunocompromised mice (see Materials and 

method). MCF7-AROM1 tumours are sensitive to letrozole administration. 

Indeed, letrozole-treated tumours were significantly smaller than those that 

were vehicle-treated (P=0.009, figure 28A). These tumours were subjected 

to IHC and/or proteins and RNA were extracted for Western Blot analyses 

and qRT-PCR analyses, respectively. Letrozole significantly reduced the 

expression levels of GLUT1, as shown by IHC (Figure 28B) and Western 

Blot analysis (Figure 28C), and that of HK2, both at protein (Figure 28C) 

and at mRNA levels (Figure 28D). 
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Figure 27. miR-155/miR-143 axis controls metabolic and motile plasticity of MCF7-

LTED cells. A and B, MCF7- LTED cells were transfected with the indicated oligos and 

treated with 5 mmol/L metformin for further 72 hours before survival fraction calculation (A) 

or subjected to migration assays after further 48 hours of 2-DG treatment (B). Data 

represent mean ± SEM, n = 3. Student t test; *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

 

Importantly, miR-155 levels were significantly reduced by letrozole 

administration (Figure 28E), reinforcing the in vitro results linking miR-155 

expression and the glycolytic phenotype. 
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 Figure 28. Letrozole administration decreases glycolytic key players and miR-155 
levels in AI-sensitive human breast cancer xenografts. Mice under androstenedione 
support were treated daily with or without letrozole as described in material and methods (n 
= 10 per group). Tumour growth was assessed by calliper measurements of the two largest 
diameters. Volumes were calculated according to the formula: a × b2 × π/6, where a and b 
are orthogonal tumour diameters. (A) Tumour volume after 21 days treatment is shown. 
Data shown are from 10 mice per group ± SEM (Student t test, P = 0.009). B, representative 
IHC GLUT1 images of vehicle and letrozole-treated human MCF7-AROM1 xenografts (day 
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21 of treatment) and relative quantification per field of view (FOV). Data shown are from 7 
mice per group ± SEM (Student t test, P = 0.004). Scale bar, 1 mm. C, total lysates 
extracted from MCF7-AROM1 tumours were subjected to Western blot analysis as 
indicated. Quantification shown below the blots was performed using ImageJ and 
normalized on GAPDH. Data represent mean ± SEM, n = 3. D and E, RNA was extracted 
and subjected to qRT-PCR for HK2 (D) and miR-155 (E). Data represent mean ± SEM, n = 
4; Student t test: HK2, P = 0.084; miR-155, P = 0.048. 

 

Glycolytic key players expression correlate with response to AI 
treatment in vivo 

Next, we evaluated whether glycolytic players, such as GLUT1 and MCT4, 

which are differentially expressed in MCF7-LTED cells compared to 

parental cells, correlated with response to AI treatment. To obtain this 

information, we analysed publicly available gene expression data from 

biopsies of 52 ER+ breast cancer patients taken before and after 2 weeks 

of neoadjuvant letrozole treatment (486). The patients were subsequently 

divide into responders and non-responder defined by a more than 50% and 

less than 50% reduction, respectively, in tumour volume, following a further 

3 months of letrozole treatment. Pairwise comparison shows a significant 

decrease in GLUT1 expression after 2 weeks of letrozole treatment in the 

responder cohort (P = 0.008), but not in the non-responder cohort (Figure 

29A). Conversely, MCT4 expression increases in the non-responders 

cohort with a borderline statistical significance (P = 0.055, figure 29B), but 

not in the responder cohort. These findings were independently validated in 

gene expression data derived from 69 paired ER+ breast tumours biopsies 

taken pre- and post- 2- week neoadjuvant treatment with nonsteroidal AI 

anastrozole (487). The response to AI can be monitored by a Ki67 staining, 

a proliferation index that has been shown to predict poor long-term disease 

outcome (488). In particular, high levels of Ki67 after AI treatment correlate 

with poor prognosis. Pretreatment (i.e. samples before receiving 

anastrozole) MCT4 expression showed a significant inverse correlation with 

pretreatment Ki67 levels (r = -0.28, P = 0.02; Figure 29C), suggesting that 

MCT4 expression is not merely a surrogate marker of highly proliferating 

tumours. 
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Figure 29. MCT4 and GLUT1 expression levels in the response to AI in clinical 
specimens. A–D, correlation of metabolic key players GLUT1 and MCT4 expression with 
response to AI. A and B, changes in 52 paired ER+ breast cancer samples pre- and post-2-
week letrozole treatment. A, responder patients show a significant decrease in GLUT1. No 
significant change was observed in the non-responder group. B, conversely, MCT4 
expression is increased in the non-responder group (Wilcoxon test). C and D, correlation of 
the MCT4 expression with Ki67 staining before receiving anastrozole treatment (C) or of the 
2-week change in GLUT1 expression with the change in Ki67 staining between pre- and 
posttreatment biopsies (Spearman correlation; D). Paired pre- and posttreatment gene 
expression profiles and Ki67 IHC staining were available for 69 patients.  

 

Furthermore, the change in GLUT1 expression in the pre- and 

posttreatment samples positively correlated with the proportional 2-week 

change in Ki67 (r =0.26, P = 0.03; Figure 29D). In addition, we investigated 

whether the glycolytic component monitored in AI setting could also be 

responsible for patient stratification in breast cancers that had been treated 

with tamoxifen. Notably, the Kaplan-Meier analysis of publicly available 
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data revealed that patients characterised by higher levels of HK2 (HR 

=1.72, P = 0.0015), MCT4 (HR = 1.46, P = 0.019), or GLUT1 (HR = 1.36, P 

= 0.062) showed poorer relapse-free survival when compared with lower 

expressing tumours (Figure 30A, B and C). Crucially, high miR-155-

expressing tumours also showed a poorer prognosis in a cohort of patients 

that have been treated with tamoxifen (HR =3.62, P = 0.0048; Figure 30D), 

suggesting that miR-155 and glycolysis could also have a role in tamoxifen 

response.  

 

Figure 30. Tamoxifen-treated patients expressing high levels of HK2, GLUT1, MCT4 
and miR155 show worst prognosis. Patients analysed were treated exclusively with 
tamoxifen and the best cut-off was chosen for the analysis. Relapse free survival data were 
retrieved using Km-plotter (489). Logrank p-value and hazard ratio (HR) with 95% 
confidence interval are shown. 
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These data support the idea that glycolytic metabolism plays an important 

role in the response and adaptation of breast cancer patients to AI 

treatment and potentially to other endocrine agents, such as tamoxifen.     

miR-155 expression in ER+/HER- breast cancers identifies a 
subset of patients that do not respond to AI anastrozole 

As our in vitro data suggested miR-155 as key regulator of the metabolic 

and motile reprogramming in AI-resistant cells, we wanted to validate 

whether this could be of clinical relevance. Therefore, we analysed by qRT-

PCR the expression levels of miR-155 in 64 ER+ and HER2- breast cancer 

patients before undergoing anastrozole treatment (487). Ki67 levels were 

also monitored before and after 2 weeks of anastrozole treatment and used 

as an indicator of therapy response (482). Notably, pretreatment miR-155 

levels positively correlate with the Ki67 levels posttreatment (r = 0.3593, P 

= 0.0035; Figure 31A) and with the proportional 2-week change in Ki67 (r = 

0.2973, P = 0.0171; Figure 31B). Pretreatment miR-155 levels did not show 

a significant correlation with pretreatment Ki67 levels (r = 0.22, P = 0.08), 

thus excluding a possible association between miR-155 and proliferation. 

These results indicate that high miR-155 levels correlate with poor 

response to anastrozole therapy, reinforcing the idea that miR-155 plays a 

role in the response and adaptation to AI treatment in ER+ breast cancer. 

Conclusion 

These results show that ER-dependent miR-155 controls the metabolic 

plasticity of AI-resistant cells and allows them to shift ad hoc between 

oxidative phosphorylation and glycolysis. Clinical data confirm that an 

increased expression of key glycolytic enzymes and miR-155 correlates 

with poor prognosis in ER+ breast cancer patients. Crucially, targeting 

glycolysis in ER+ breast cancers may be of clinical benefit in combination 

with an AI in sensitive tumours, but could be detrimental once the tumour 

become resistant. However, targeting miR-155 could impair metabolic 

adaptation of AI-resistant tumours, therefore prolonging the efficacy of AI 

treatment. 
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Figure 31. miR-155 expression levels in the response to AI in clinical specimens. 

correlation of the pretreatment miR-155 expression with the Ki67 staining after anastrozole 

treatment (E) or with the change in Ki67 staining between pre and posttreatment biopsies 

(Pearson correlation; F). RNA was available for 64 patients. 
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miR-23b-3p regulate amino acids metabolism and 
influences the response and adaptation to endocrine 
therapy of ER+ breast cancer 
Since we have demonstrated that central carbon metabolic reprogramming 

is involved in response and adaptation to AI, we then asked whether the 

metabolic plasticity of resistant cells could also involve additional metabolic 

pathways and be responsible for the resistance to different endocrine 

agents. Therefore, we continued our studies in order to identify potential 

metabolic-related pathway alteration in addition to glucose metabolism 

reprogramming observed in AI-resistant cells.  

Global gene expression and miRNAs analysis in parental MCF7 
and MCF7-LTED cells show that miR-23/SLC6A14 node is 
deregulated in LTED cells and seems to have a role in endocrine 
therapy response.  

To evaluate potential differences in metabolic-related pathway between AI-

sensitive and -resistant cells, we analysed gene expression and miRNA 

profiles of MCF7-LTED cells compared to parental MCF7 cells. Total RNA 

was extracted from parental MCF7 cells, cultured in presence or absence 

of E2, and their LTED derivatives. mRNA and miRNA profiles were 

analysed on three biological replicates for each cell line using Human 

miRNA and Gene Expression Microarrays (Agilent Technologies). 

Statistical analysis based on 1 way ANOVA Benjamin-Hochberg corrected 

test (FDR<0.05, fold-change >2 and <-2) revealed 62 miRNAs and ~3,000 

mRNAs differently regulated in MCF7-LTED versus MCF7+E2 cells, and 56 

miRNAs and 2924 mRNAs differentially regulated between MCF7- LTED 

and MCF7-E2 cells (Figure 32A). Gene expression data were then 

subjected to Gene Set Enrichment Analysis (GSEA). It is interesting to note 

that GSEA confirms that the LTED model shares common features with 

other independent endocrine therapy resistant ER+ breast cancer models, 

with significant overlaps with the results of Craighton et al. (MSigDB 

M13661), highlighting that LTED cells are a good AI resistant cell model 

(Figure 32B). Furthermore, GSEA revealed that gene sets related to amino 

acid transporters (MSigDb M188; MSigDb M15239) were negatively 
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correlated with LTED cell profile, suggesting a role for amino acids 

metabolism in the response and resistance to AI (Figure 32C). 

 

Figure 32. A Global gene expression and miRNA analysis in MCF7 and MCF7-LTED 
cells. A, Three biological replicates of MCF7 + or –E2 and MCF7-LTED cells were subjected 
to gene or miRNAs expression profiling using Agilent Technology. Statistical analysis 
performed based on 1 way ANOVA Benjamin-Hochberg corrected test (FDR < 0.05, fold-
change > 2 and < -2) revealed 62 miRNAs and 3393 mRNAs differently deregulated in 
MCF7-LTED versus MCF7+E2 and 56 miRNAs and 2924 mRNAs differentially regulated in 
MCF7-LTED versus MCF7-E2  . B and C, GSEA confirms that  genes associated to 
endocrine therapy resistance expressing in impendent ER+ breast cancer model positively 
correlated with LTED (B), and revealed that amino acid transporters are negatively 
correlated with LTED cell profile (C). 

 

Integration analysis of miRNA and mRNA profiling using MAGIA 2.0 

software (476) showed a key deregulated node controlling amino acids 

metabolism in MCF7-LTED cells between miR-23b-3p and amino acid 

transporter SLC6A14 (amino acid transporter Solute Carrier Family 6 

Member 14), also known as ATB0,+  (Figure 33A). The integrated analysis 

between miRNAs and mRNAs showed that there are other miRNAs that 

correlate with the expression levels of the SLC6A14 transporter, such as 
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miR-23a-3p, miR-29b-3p and miR-29b-5p. However, only miR-23b-3p 

showed an inverse correlation with SLC6A14 (Figure 33A). 

 

 

Figure 33. miR-23b-3p/SLC6A14 node is deregulated in AI-resistant MCF7-LTED cells. 
A, Integration analysis of mRNAs and miRNAs using Magia 2.0 software shows a key 
deregulated node between miR-23b-3p and amino acid transporter SLC6A14. Other 
miRNAs are found to be correlated to SLC6A14 expression, but only miR-23b-3p shows an 
inverse correlation with SLC6A14 expression. B, Gene expression data show an increased 
miR-23b-3p expression associated to low SLC6A14 in MCF7-LTED cells compared to 
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parental MCF7 in presence or absence of 1nmol/L E2. Normalized data were analysed by 1 
way ANOVA Benjamin-Hochberg corrected test. 

However, only miR-23b-3p showed an inverse correlation with SLC6A14 

(Figure 33A). Indeed, gene expression analysis revealed that MCF7-LTED 

cells had a significantly lower amounts of the amino acid transporter 

SLC6A14 compared to MCF7+E2 (FC:-247.7) or MCF7-E2 (FC:-284.9) 

(Figure 33B) and that lower levels of SLC6A14 correlate with higher level of 

miR-23b-3p expression in MCF7-LTED compared to parental MCF7 cells in 

presence or absence of E2 (LTED vs MCF7+E2, FC:+5.7; LTED vs MCF7-

E2, FC:+4.06; Figure 33B). Considering that miRNAs regulate gene 

expression through transcriptional inhibition of their target mRNAs, this 

inverse correlation between miR-23b-3p and SLC6A14 suggests that miR-

23b-3p could directly regulate the SLC6A14 expression, and thus to have a 

role in the control of amino acids metabolism in MCF7-LTED cells. 

AI-resistant MCF7-LTED cells have lower SLC6A14 expression 
when compared to parental cells 

SLC6A14 is an amino acid transporter with unique characteristics. It is able 

to transport 18 of the 20 proteinogenic amino acids, except the non-

essential and negatively charged glutamate and aspartate (304). This 

transporter is expressed at low levels in normal tissue, but its expression is 

up-regulated in different types of cancer, such as colon (490) and cervical 

(491) cancer. It has been demonstrated that SLC6A14 is upregulated also 

in breast cancer models, but only in the ER+ cell lines (492). SLC6A14 is 

able to transport large amount of leucine, an essential amino acid that is 

able to activate mTOR, glutamine, which provides carbon and nitrogen 

sources for tumour cells and arginine, an essential amino acid for those 

tumour cells that are lacking the arginine-synthesising enzyme (493, 494). 

These characteristics suggest that cancer cells increase SLC6A14 

expression to meet the increasing demand for these amino acids due to 

their rapid growth. The treatment of ER+ breast cancer cells with the 

SLC6A14 blocker α-methyl-DL-tryptophan (α-MT) deprives the cells of 

glutamine, arginine and other essential amino acids, decreasing cell 

proliferation and causing apoptotic cell death (492). Considering the 

importance of SLC6A14 for the survival and proliferation of ER+ breast 

cancer cell lines, we hypothesised that the down regulation of SLC6A14 in 
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AI-resistant MCF7-LTED cells could confer advantages in term of survival 

and proliferation during the adaptation to oestrogen deprivation, making the 

resistant cells independent to external amino acids support for their growth. 

 

Figure 34. MCF7-LTED cells show an increase of SLC6A14 expression compared to 
parental MCF7 cells.  A and B, MCF7-LTED cells were compared with wt-MCF7 in 
presence or absence of 1nmol/L E2. Total protein lysates or mRNAs were subjected to 
Western Blot analysis (A) and qRT-PCR analysis (B). Data represent mean ± SEM, n = 3 1 
way ANOVA; Bonferroni corrected test; ***, P<0.001.  

 

Gene expression data of SLC6A14 were confirmed by Western Blot and 

qRT-PCR in MCF7-LTED cells compared to parental MCF7 cells. The 

results showed an important downregulation in the expression of SLC6A14, 

both at protein (Figure 34A) and mRNA level (Figure 34B) in MCF7-LTED 

cells. The differences in SLCA614 expression revealed by Western Blot 

and qRT-PCR analyses are less than those obtained by Microarray 

analysis, but this could be caused by the different sensitivity of the two 

techniques utilised and/or the use of primers and probes that recognizes 

different regions of SLC6A14 transcript. Of note, the results showed also a 

weak reduction of SLC6A14 in MCF7-E2 compared to MCF7+E2, 

suggesting that SLC6A14 expression could be linked to E2 induced ER 

activation. 
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The increase of miR-23b-3p correlates with low SLC6A14 levels 
and decreases amino acids uptake in AI-resistant MCF7-LTED 
cells  

The gene expression data of miR-23b-3p derived by microarray analysis 

(Figure 33B) were then confirmed by qRT-PCR analysis. MCF7-LTED 

showed an increased miR-23b-3p expression compared to parental MCF7 

cells, in presence or absence of E2 (Figure 35A), which correlated with a 

downregulation of SLC6A14 expression (Figure 34A and B), suggesting 

that effect exerted by miR-23b-3p on the amino acid transporter SLC6A14 

can be direct. To evaluate the role of SLC6A14 in amino acids metabolism, 

we analysed the capacity of uptaking exogenous amino acids of MCF7-

LTED cells compared to parental MCF7 cells by administration of 

radioactive [14C] amino acids pool and glutamine. Importantly, MCF7-LTED 

decreased the amino acids and glutamine consumption (Figure 35B and 

C), suggesting that this could be due to miR-23b-3p/SLC6A14 node 

deregulation in MCF7-LTED cells and have a role in the response and 

adaptation to oestrogen deprivation. 

Low levels of SLC6A14 and high miR-23b-3p expression 
correlate with poor prognosis and lower survival in ER+ breast 
cancer patients 

To investigate whether the deregulated expression of miR-23b-3p and 

amino acid transporter SLC6A14 could be of clinical relevance and used for 

patients stratification in ER+ breast cancer, we analysed the publicly 

available data of ER+ breast cancer patients to correlate the expression 

levels of miR-23b-3p and SLC6A14. Notably, Kaplan-Meier analysis 

revealed that ER+ breast cancer patients with low levels of SLC6A14 

(n=909) showed poorer relapse-free survival (HR= 0.78, P=0.0051) 

compared to patients with high SLC6A14 expression (n= 893), who showed 

better prognosis (Figure 36A). Furthermore, in this cohort of patients the 

levels of SLC6A14 expression could discriminate the patients with good 

prognosis from those with bad prognosis following the endocrine therapy 

treatment. Indeed, patients with low levels of SLC6A14 (n=624) showed 

poorer prognosis (HR=0.77, P= 0.012) after endocrine treatment compared 

to patients with high SLC6A14 expression (n=601) (Figure 36B). 
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Figure 35. AI-resistant MCF7-LTED cells show an increase of miR23b-3p expression 
and a decreased amino acids uptake ability compared to parental MCF7 cells. A, 
MCF7-LTED were compared to wt-MCF7 cells in presence and absence 1nmol/L E2. Total 
miRNAs were extracted and subjected to qRT-PCR analysis. Data represent mean ± SEM, 
n = 3. 1 way ANOVA; Bonferroni corrected; *, P < 0.05. B and C, MCF7-LTED were 
compared with wt-MCF7 in presence of 1nmol/ E2 and subjected to radioactive amino acids 
pool uptake (B) and radioactive glutamine uptake (C) as described in Materials and Method.  

 

In addition, analysis of publicly available TCGA ((The Cancer Genome 

Atlas) clinical data of 328 patients revealed that also miR-23b-3p could 



 
 

 
 

Dr. Marina Bacci 
     Metabolic reprogramming of oestrogen receptor positive breast cancer in endocrine therapy resistance. 

 PhD Course in Life Sciences and Biotechnologies XXIX cycle - Università degli Studi di Sassari. 
 

 108 
 

have a prognostic value in ER+ breast cancer. Notably, high levels of miR-

23b-3p in ER+ breast cancer patients correlated with lower survival (HR= 

2.3, P= 0.018) compared to patients with low miR-23b-3p expression 

(Figure 36C). These results show that miR-23b-3p and SLC6A14 could be 

used respectively as prognostic and predictive markers, and suggest that 

the regulation of SLC6A14 expression by miR-23b-3p could be directly 

involved in the adaptation of ER+ breast cancer cells to oestrogen 

deprivation. To understand the role of miR23b-3p and SLC6A14 in the 

resistance to endocrine therapy, we further investigated the effect on 

survival and proliferation of ER+ breast cancer cells following interference 

with this pathway.  

miR-23b-3p modulates SLC6A14 expression and influences the 
proliferation of MCF7-LTED cells in oestrogen-deprived 
conditions 

To evaluate whether there is a direct link between miR-23b-3p and 

SLC6A14, we analysed the changes in SLC6A14 expression following RNA 

interfering approach against miR-23b-3p (see Material and methods). In 

particular, we overexpressed miR-23b-3p in parental MCF7 cells, where 

low miR-23b-3p levels are correlated to high SLC6A14 expression, by miR-

23b-3p mimic transient transfection, a specific oligonucleotide that mimics 

the functions of miR-23b-3p. In contrast, in MCF7-LTED, where miR-23b-

3p is expressed at higher levels and SLC6A14 is downregulated, we 

transfected a specific miR-23b-3p miRNA inhibitor, which inhibits miR-23b-

3p expression and thus its functions. SLC6A14 expression was evaluated 

by Western Blot and qRT-PCR analyses. As expected, transfection with 

miR-23b-3p mimic increased miR-23b-3p expression in parental MCF7 

cells compared to miRNA mimic negative control#1-transfected cells 

(Figure 37A) and induced a parallel decrease in SLC6A14 expression both 

at mRNA (Figure 37B)  and at protein level (Figure 37C). In contrast, miR-

23b-3p inhibitor decreased miR-23b-3p expression in MCF7-LTED cells 

compared to anti-miRNA negative control#1-tranfected cells (Figure 38A), 

with the subsequent increased in SLC6A14 expression both at mRNA 

(Figure 38B) and at protein (Figure 38C).  
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Figure 36. Low SLC6A14 levels and high miR-23b-3p expression correlate with poor 
prognosis and low survival in ER+ breast cancer patients. A and B, Kaplan-Meier 
analysis on SLC6A14 expression correlated with prognosis of ER+ breast cancer patients 
both untreated (A) and endocrine therapy treated (B). C, analysis of publicly available TCGA 
clinical data of 328 patients with ER+ breast cancer on miR-23b-3p expression in correlation 
with survival rate of ER+ breast cancer patients.  
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Figure 37. miR-23b-3p overexpression induces a decrease of amino acid transporter 
SLC6A14 expression in wt-MCF7 cells. A-C, Parental MCF7 cells were transfected with 
miR-23b-3p mimic or miRNA mimic negative control#1, as described in Materials and 
Methods. miR-23b-3p mimic transfected wt-MCF7 cells were compared to miRNA mimic 
negative control#1 transfected cells. After 48 hours from transfection, total miRNAs were 
extracted and subjected to qRT-PCR analysis to evaluate miR-23b-3p expression (A). Total 
mRNA and protein content were subjected to qRT-PCR analysis (B) and Western Blot 
analysis (C) to evaluate SLC6A14 expression. 

 

To investigate whether miR-23b-3p downregulation could impair the ability 

of miR-23b-3p inhibitor-transfected MCF7-LTED cells to adapt to oestrogen 

deprivation, we analysed the proliferation index of this cells in the absence 

of oestrogen by radioactive [3H] thymidine incorporation analysis compared 

to MCF7-LTED cells transfected with miRNA negative control#1. Crucially, 

the cells transfected with miR-23b-3p inhibitor showed a reduced 

proliferation when compared to anti-miRNA negative control#1-tranfected 

MCF7-LTED cells (Figure 38D), suggesting that miR-23b-3p is involved in 

the proliferation and survival of ER+ breast cancer cells during oestrogen 

deprivation. 
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Figure 38. miR-23b-3p dowregulation induces an increased SLC6A14 expression and 
impairs proliferation of AI-resistant MCF7-LTED cells. A-D, MCF7-LTED cells were 

transfected with miR-23b-3p inhibitor or anti-miRNA negative control#1, as described in 

Materials and Methods. MCF7-LTED cells transfected with miR-23b-3p inhibitor were 

compared to anti-miRNA negative control#1-tranfected cells. After 48 hours from 

transfection, total miRNAs were extracted and subjected to qRT-PCR analysis to evaluate 

miR-23b-3p expression (A) and total mRNAs and protein lysates were subjected to qRT-

PCR analysis (B) and Western Blot analysis (C) to evaluate SLC6A14 expression. D, 

proliferation index of MCF7-LTED in oestrogen-deprived condition by radioactive [3H] 

thymidine incorporation. Data represent mean ± SEM, n = 3. Student t test; **, P < 0.01. 
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miR23b-3p/SLC6A14 node is involved in the response and 
resistance to tamoxifen and fulvestrant treatments. 

To evaluate whether miR-23b-3p deregulation observed in AI-resistant 

MCF7-LTED cells was involved also in the resistance to other endocrine 

agents, we analysed miR23b-3p expression in tamoxifen (MCF7-TAM) and 

fulvestrant (MCF7-ICI) resistant cell lines derived by parental MCF7 cells 

(respectively, figure 39A and B).  

 

Figure 39. MCF7-TAM and MCF7-ICI cells are resistant to tamoxifen and fulvestrant 
treatments, respectively. A and B, wt-MCF7 cells were compared to MCF7-TAM or MCF7-
ICI cells and treated  with increasing doses of tamoxifen (A) or fulvestrant (B). Data are 
presented as fold change of survival fraction compared to untreated cells.   

 

The results showed that MCF7-TAM and MCF7-ICI had an upregulation of 

miR-23b-3p levels (respectively 5 and 3 folds) compared to parental MCF7 

cells (Figure 40A). Next, according to the hypothesis that SLC6A14 

expression is regulated by miR-23b-3p, we investigated SLC6A14 

expression in MCF7-TAM and MCF7-ICI cells and we found that the 

resistant cell lines showed a down regulation of SLC6A14 expression 

compared to parental MCF7 cells (Figure 40B). These results indicated that 

high miR-23b-3p levels correlated to low SLC6A14 expression in MCF7-

TAM and MCF7-ICI cells, suggesting that miR-23b-3p can have a role not 

only in the AI response, but also in the resistance to tamoxifen and 

fulvestrant. 
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Figure 40. miR-23b-3p and amino acid transporter SLC6A14 are deregulated in 
endocrine therapy resistant cells compare to wt-MCF7 cells. A and B, wt-MCF7 were 
compared to endocrine therapy resistant MCF7-LTED, MCF7-TAM and MCF7-ICI cells 
derived by parental cells. Total miRNAs (A) and mRNAs (B) were extracted and subjected to 
qRT-PCR analysis to evaluate mR-23b-3p and SLC6A14 expression, respectively. 

 

Crucially, the transfection of parental MCF7 cells with miR-23b-3p mimic 

conferred to sensitive MCF7 cells the ability to survive to tamoxifen and 

fulvestrant administration (when compared to miRNA mimic negative 

control#1-transfected cells) (Figure 41A and B), reinforcing the idea that 

miR-23b-3p overexpression could be involved in endocrine therapy 

resistance. Further studies are necessary to identify the role of miR-23b-3p 

in endocrine therapy resistance, in order to develop possible therapeutic 

approaches and confirm miR-23b-3p as predictive and prognostic marker. 

Gene expression data reveals that autophagy-related markers 
are deregulated in MCF7-LTED cells compared to parental MCF7 
cells 

As our in vitro results suggested that AI-resistant MCF7-LTED cells are 

independent to exogenous amino acids for their growth and proliferation, 

we have hypothesised that they could be able to utilise endogenous 

proteins to sustain biosynthetic pathways. Nutrient deprivation is a potent 
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activator of autophagy pathway that it has been demonstrated to be able to 

either inhibit or promote cancer cells proliferation (450). 

 
Figure 41. miR-23b-3p overexpression protects wt-MCF7 cells from tamoxifen and 
fulvestrant effect. A and B, wt-MCF7 cells were transfected with miR-23b-3p mimic or 
miRNA mimic negative control#1. miR-23b-3p mimic transfected MCF7 cells  were 
compared with miRNA mimic negative control#1 transfected cells and treated with 
increasing doses of tamoxifen (A) or fulvestrant (B). Data are presented as fold change of 
survival fraction compared to untreated cells.  

 

In particular, low levels of exogenous amino acids inhibit mTOR sensor and 

activate autophagy via the activation of the class III PI3K/beclin1 complex 

(443). In addition, Beclin1 has a central role in the control of autophagy 

(438). Furthermore, SLC6A14 blockade induces amino acids deprivation, 

leads to inhibition of mTOR and activates autophagy in ER+ MCF7 cells 

(304). Importantly, our gene expression data on three biological replicates 

showed an increase of Beclin-1 expression in AI-resistant MCF7-LTED 

cells compared to parental MCF7 cells (Figure 42A). Another regulator of 

autophagic process is the TNFα (tumour necrosis factor α) Induced Protein 

3 (TNFAIP3 or A20) (495), which negatively regulates Beclin-1 expression 

by acting on Lys63 deubquitination (496). High levels of TNFAIP3 are 

associated with low levels of ubiquinated Lys63 and subsequently low 

activity of Beclin-1, resulting in an inhibition of the autophagic process 

(497). In addition, we found that TNFAIP3 is a putative target of miR-23b-

3p by MIRGator database analysis, a platform that integrates publicly 

expression data of miRNA with those of mRNA and protein (498). In our 
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cell model, gene expression data showed that TNFAIP3 was 

downregulated in MCF7-LTED cells compared to parental MCF7 cells 

(Figure 42B), indicating that miR-23b-3p could indirectly regulate the 

expression of Beclin-1 by TNFAIP3 downregulation and subsequent 

activation of autophagy.  

 

Figure 42. MCF7-LTED cells show an increase of Beclin1 expression and low TNFAIP3 
levels compared to parental MCF7 cells. A and B, analysis of total gene expression data 
on Beclin1 (A) and TNFAIP3 (B) expression derived gene expression profile on three 
biological replicates of MCF7-LTED cells compared to MCF7 cells in presence or absence of 
1nmol/L E2. Normalized data were analysed by 1 way ANOVA Benjamin-Hochberg 
corrected test. C and D, MCF7-LTED cells were compared to wt-MCF7 in presence of 
1nmol/L E2. Total mRNAs were extracted and subjected to qRT-PCR for Beclin1 (C) and 
TNFAIP3 (D). Data represent mean ± SEM, n = 3. 
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This suggested that autophagy was activated in our cell model to promote 

the proliferation and survival of MCF7-LTED cells during oestrogen 

deprivation. We analysed Beclin-1 and TNFAIP3 expression by qRT-PCR 

in order to confirm the gene expression data. The results showed an 

increase of Beclin-1 expression (Figure 42C) associated with decreased 

TNFAIP3 expression (Figure 42D). Importantly, Kaplan-Meier analysis 

revealed that ER+ breast cancer patients characterised by low levels of 

TNFAIP3 showed poorer prognosis compared to patients with high 

TNFAIP3 expression. Statistical significance is achieved in the whole 

cohort of ER+ patients and in the subgroup that has been treated with 

endocrine therapy, (HR= 0.77, P= 0.0045, figure 43A, HR= 0.75, P= 0.041, 

figure 43B, respectively). These data suggest that autophagy activation is a 

pro-survival stimulus in AI-resistant cells and that the autophagy is involved 

in the adaptation of oestrogen deprivation, allowing MCF7-LTED cells to 

become independent to exogenous nutrients for survival and proliferation. 

 

Figure 43. Low TNFAIP3 expression correlates with poor prognosis in ER+ breast 
cancer patients. A and B, Kaplan-Meier analysis of TNFAIP3 expression in correlation with 
prognosis in 1802 ER+ breast cancer patients (A) and in the subgroup of 999 patients 
treated with endocrine therapy (B). 

 

 



 
 

 
 

Dr. Marina Bacci 
     Metabolic reprogramming of oestrogen receptor positive breast cancer in endocrine therapy resistance. 

 PhD Course in Life Sciences and Biotechnologies XXIX cycle - Università degli Studi di Sassari. 
 

 117 
 

AI-resistant MCF7-LTED cells show an autophagic phenotype 
compared to parental cells 

Autophagy activation in AI-resistant MCF7-LTED cells compared to 

parental MCF7 cells was analysed by Western Blot. First, we evaluated the 

phosphorylation of ribosomal protein S6 kinase beta-1 (p70S6k) as a read-

out of mTOR activation. mTOR phosphorylation and subsequent activation 

inhibits the recruitment of autophagy players and thus impairs autophagy. 

Crucially, p70S6K was dephosphorylated in MCF7-LTED cells compared to 

parental MCF7 cells (Figure 44A), indicating that mTOR was inactivated. In 

addition, MCF7-LTED cells showed increased Beclin-1 and LC3-II protein 

expression (Figure 44A). The presence of LC3-II is an indication of the 

autophagosome formation and activation of autophagic flux (499). Another 

cell energy sensor is AMPK, which is phosphorylated in nutrient deprived-

condition and its activation in turn can inhibit mTOR activity (500).  

 

Figure 44. Analysis of the major autophagic markers in MCF7-LTED cells. A and B, 
MCF7-LTED cells were compared to wt-MCF7 cells in presence of 1nmol/L E2. Total protein 
content was subjected to Western Blot analysis in normal culture conditions (A) and with or 
without cloroquine (CQ) (B).  

In our cell model, MCF7-LTED cells showed increased AMPK 

phosphorylation with subsequent inactivation of mTOR (analysed by the 
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phosphorylation of the downstream effector p70S6k) and increased Beclin-

1 expression (Figure 44A). It has been reported that cloroquine (CQ) 

administration blocks autophagic flux by inhibition of lysosome degradation 

with subsequent LC3-II accumulation (499). Crucially, MCF7-LTED cells 

showed an increased LC3-II accumulation compared to parental MCF7 

cells following CQ treatment (Figure 44B), indicating that AI-resistant cells 

could become independent to exogenous amino acids and activate 

autophagy for proliferation and survival. This metabolic reprogramming 

could be pivotal during oestrogen deprivation and represent another aspect 

of metabolic plasticity of MCF7-LTED cells. 

Conclusion 

MiR-23b-3p expression is increased in endocrine therapy resistant breast 

cancers and plays a role in the response to therapy. The acquisition of 

exogenous amino acids independence via SLC6A14 downregulation and 

subsequent activation of autophagy could be involved in therapy resistance 

of ER+ breast cancer. Further investigations are necessary to understand 

the role of miR-23b-3p in the control of autophagy and amino acids 

metabolic reprogramming in order to identify both potential metabolic 

related-biomarkers and therapeutic targets in endocrine therapy resistance. 

 

Discussion 

Approximately 70% of breast tumours are characterised by ER expression 

and are dependent on ER signalling for their growth and survival. 

Endocrine therapy is the standard of care for the treatment of this breast 

cancer subset and acts by targeting the ER pathway using different 

endocrine agents such as selective ER modulators, that compete with 

oestrogen to bind ER (e.g. tamoxifen), selective ER downregulators, that 

promote ER degradation (e.g. fulvestrant) or aromatase inhibitors (AI) that 

block oestrogen biosynthesis. In postmenopausal patients, AI have become 

the first-line treatment choice, showing higher efficacy than tamoxifen 

therapy. However, resistance to such agents remains a problem and many 

patients relapse with either de-novo or acquired resistance. Several 

mechanisms have been proposed to contribute to endocrine therapy 



 
 

 
 

Dr. Marina Bacci 
     Metabolic reprogramming of oestrogen receptor positive breast cancer in endocrine therapy resistance. 

 PhD Course in Life Sciences and Biotechnologies XXIX cycle - Università degli Studi di Sassari. 
 

 119 
 

resistance, including hypersensitisation to oestrogen (488, 501) and 

activation via aberrant growth factor signalling (477). Recent studies have 

highlighted that combining endocrine therapy with HER2-targeting 

compounds (168, 478) or with inhibitors targeting downstream signalling 

effectors such as mTORC1, is superior to endocrine therapy alone (168). 

However, given the adaptability of tumour cells, targeting a single growth 

factor or a downstream signalling hub will likely lead to compensatory 

upregulation. Indeed, many patients fail to benefit from these combined 

therapeutic approaches and there remains an urgent need for more 

efficient therapeutic strategies.  

Metabolic adaptation is essential for the cancer cells to satisfy the different 

energetic requirements that support a cancer cell from the initial 

proliferation, dissemination, therapy response and finally, the resistance. 

Several recent studies have reported that OXPHOS metabolism is 

associated with an aggressive phenotype of cancer cells (502) and 

characterise cancer cells that have developed resistance to different 

chemotherapeutic agents in various cancer models (503, 504). Conversely, 

reprogramming toward a hyperglycolytic metabolism has been associated 

with resistance to biologic agents such as Herceptin and Avastin in breast 

cancer (302, 505). To study the metabolic reprogramming that a cell 

undergoes in response and resistance to AI treatment, we have used an 

array of different in vitro and in vivo models. As such, we investigated 

primarily whether metabolic reprogramming could be responsible for breast 

cancer cell adaptation to LTED and whether metabolic targeting could be of 

any benefit in AI-sensitive and AI-resistant in vitro models. As breast cancer 

cell lines are characterised by low or no expression of endogenous 

aromatase, we have used cells transfected with the human aromatase 

gene as sensitivity model to AI (MCF7-2A). In addition, we have used ER+ 

cells adapted to LTED to study AI resistance, as lack of oestrogen in the 

medium mimics the hormone withdrawal that occurs during AI treatment 

(MCF7-LTED). However, such models have some limitations: MCF7 cells 

overexpressing aromatase do not account for the fact that androgen to 

oestrogen conversion predominantly occurs in the stromal cells of breast 

cancers, and LTED models cannot mimic the rewiring that cancer cells 

undergo when chronically treated with an AI. Therefore, to confirm the 
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clinical relevance of our in vitro findings, we have used tumour biopsies 

derived from patients enrolled in neoadjuvant trials of AI and a xenograft 

model that mimics letrozole clinical treatment. First, we have found that 

letrozole sensitivity of MCF7-2A is potentiated in vitro by concomitant 

antiglycolitic agents administration. In addition, we have observed reduced 

expression of the glycolytic-related components GLUT-1 and HK2 in a 

human xenograft model that is responsive to AI letrozole treatment . This 

indicates that blocking glycolysis in AI-sensitive breast tumour leads to 

therapeutic advantages in association with endocrine therapy. To identify 

then the metabolic pathways associated with AI resistance, we analysed 

the expression of key glycolytic components and performed tracking 

radioactive assay in ER+ breast cancer cell. The results showed that AI-

resistant MCF7-LTED cells have a glycolytic phenotype compared to 

parental MCF7 cells. In addition, publicly available clinical data analysis 

show that ER+ breast cancer patients with poor prognosis are 

characterised by enhanced MCT4 and GLUT1 expression (i.e. 

hyperglycolytic phenotype) and therefore may have a potential value in 

predicting AI response. Taken together, these results highlight a “glycolysis 

dependency” of the MCF7-LTED cells and AI-sensitive models. 

Surprisingly, targeting glycolytic metabolism in AI-resistant MCF7-LTED 

cells did not affect cell survival. Indeed, these cells were capable of 

switching from glycolysis to OXPHOS metabolism and furthermore, 2-DG 

treatment enhanced their promigratory and proinvasive capabilities. This 

suggests that the acquisition of a hyperglycolytic phenotype correlates with 

aggressive clinical features of AI-resistant breast cancer. Indeed, ER+ 

luminal B tumours have poorer prognosis compared with luminal A with an 

increased risk of early relapse and resistance to endocrine therapy and 

chemotherapy (5) and it has been reported that luminal B breast cancers 

show a higher FDG-PET signal (i.e. higher glucose uptake) when 

compared with luminal A (506).  Consequently, 2-DG used in combination 

with standard therapy may be of clinical benefit to the AI-sensitive tumours 

but detrimental to AI-resistant ones. Therefore, the metabolic plasticity of 

AI-resistant breast cancer could allow cancer cells adaptation to target 

treatments and be ultimately responsible for resistance and relapse.  
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Next, we evaluated the molecular components that could be responsible for 

the metabolic and motile reprogramming that MCF7 cells undergo under 

LTED conditions and after 2-DG treatment. Deregulation of miRNAs 

expression has been demonstrated involved in several types of cancer and 

the involvement of miRNAs has been previously described in breast cancer 

endocrine therapy response and resistance (379). As we have observed 

the metabolic plasticity exclusively in LTED cells that retain ER expression 

(MCF7), but not in those who lose it during LTED adaptation (ZR75-1), we 

focused our attention on those miRNAs regulated by ER signalling. 

Notably, miR-155 has been found to be associated with metastasis events 

and invasive properties of breast cancer (507) and E2 has been shown to 

upregulate miR-155 expression in MCF7 cells. Furthermore, it has been 

demonstrated that miR-155 regulate the expression of HK2 by miR-143 

regulation (417) and increase the motility of lymphoma cells by impacting 

on RhoA activity (508). As miR-155 and miR-143 expression levels were 

found to be deregulated in MCF7-LTED cells, we hypothesised that miR-

155 could be responsible for the altered metabolism observed in these cells 

and for the motile and invasive abilities displayed. Notably, impairing ER 

signalling by adding letrozole to androstenedione-treated MCF7-2A cells or 

by fulvestrant administration in MCF7-LTED cells, confirmed ER 

dependency of miR-155 expression. This was further confirmed in the 

xenograft-derived samples, where miR-155 expression was significantly 

decreased following ER signalling impairment, induced by in vivo letrozole 

administration. Finally, targeting miR-155 with anti-miR agents impaired 2-

DG–induced motility of MCF7-LTED cells and potentiated the effect of 

metformin treatment, indicating that miR-155 targeting could have a 

potential therapeutic implication in AI-resistant tumours that retain ER 

expression. Crucially, miR-155 levels were significantly associated with 

response to AI therapy in ER+ breast cancers, identifying a subset of 

patients that could benefit from combinatorial approaches targeting miR-

155 rather than AI monotherapy. Moreover, publically available data 

analysis showed that high miR-155 levels associated with poor prognosis 

on tamoxifen, suggesting that this miRNA could be involved in the 

resistance to additional endocrine agents. In conclusion, our results 



 
 

 
 

Dr. Marina Bacci 
     Metabolic reprogramming of oestrogen receptor positive breast cancer in endocrine therapy resistance. 

 PhD Course in Life Sciences and Biotechnologies XXIX cycle - Università degli Studi di Sassari. 
 

 122 
 

highlight a potential diagnostic approach and therapeutic intervention based 

on miR-155 patient stratification in ER+ breast cancer.  

Preliminary data that have been obtained in the last year of my PhD 

program suggest that in addition to AI-resistant cells the central carbon 

metabolic reprogramming, alteration of the amino acids metabolism is 

involved in the response and in the adaptation to oestrogen deprivation. 

Indeed, cancer cells can undergo different metabolic alterations to drive 

macromolecular biosynthesis for rapid cell growth and proliferation. 

Increased glutamine metabolism is an alternative energy source for cancer 

cells and is thought to be a central metabolic pathway cooperating with 

glycolysis by providing intermediates for amino acids (509, 510) and lipid 

synthesis necessary to sustain the higher proliferation rate (511). It has 

been  reported that many types of tumour, including breast cancer, 

overexpress different amino acid transporters to support their rapid growth 

(512). First, we analysed the gene expression and miRNAs profiles of 

LTED and parental MCF7 cells (in presence or absence of E2) to identify 

possible deregulated metabolic pathways involved in the response to 

endocrine therapy. Notably, integration analysis of mRNA and miRNA 

profiling using MAGIA 2.0 software (476) revealed a key deregulated node 

controlling amino acids transport in MCF7-LTED cells composed of miR-

23b-3p and the amino acid transporter SLC6A14. SLC6A14 is able to 

transport 18 of the 20 proteinogenic amino acids, excluding glutamate and 

aspartate. This transporter is expressed at low levels in normal tissue, but 

its expression is upregulated in different types of cancer, including ER+ 

breast cancer (304). By the upregulating this transporter, cancer cells can 

increase exogenous amino acids uptake to support their rapid growth and it 

has been demonstrated that selective blockade of SLC6A14 starves MCF7 

cells of arginine, glutamine and essential amino acids, decreasing cell 

proliferation and causing apoptosis (304). Interestingly, AI-resistant MCF7-

LTED cells show a decreased SLC6A14 expression compared to parental 

MCF7 cells, suggesting that this downregulation could confer a series of 

advantages to AI-resistant cells during the adaptation to oestrogen 

deprivation. Importantly, low levels of SLC6A14 correlated with increased 

miR-23b-3p expression in MCF7-LTED. This correlation between miR23b-

3p and SLC6A14 was inverse in parental MCF7 cells, which showed high 
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SLC6A14 levels associated with low miR-23b-3p expression. Crucially, 

publicly available data analysis showed that low levels of SLC6A14 and 

high miR-23b-3p expression correlated with poor prognosis and low 

survival in ER+ breast cancer patients, highlighting that they could have a 

prognostic and predictive value, respectively. As expected, downregulation 

of SLC6A14 led to a decreased exogenous amino acids uptake in MCF7-

LTED cells compared to parental MCF7 cells, suggesting that AI-resistant 

cells are independent of exogenous amino acids for proliferation and grow. 

In fact, gene expression data and Western Blot analysis revealed that 

decreased amino acids uptake is associated with the activation of 

autophagy in MCF7-LTED cells. The autophagy is a process that a given 

cell can activate to recycle organelles and proteins during nutrient 

starvation in order to obtain precursors for biosynthetic pathways (433, 513) 

Our data showed in MCF7-LTED cells an increase of autophagy, as 

demonstrated by mTOR inactivation and subsequent increased expression 

of the autophagic markers Beclin1 and LC3-II. This suggests that 

exogenous amino acids independence together with autophagy activation 

could represent a metabolic reprogramming that allows to AI-resistant cells 

to survive and proliferate during oestrogen deprivation. Furthermore, 

TNFAIP3 that controls Beclin-1 expression by deubiquitinization is 

dereg(259)ulated in MCF7-LTED and it is a putative miR-23b-3p target. 

Therefore, miR-23b-3p could regulate directly both amino acids uptake, 

autophagy and subsequent amino acids metabolism. Beclin-1 has a central 

role in the autophagic process and its overexpression is correlated with an 

increase of autophagic activation. Notably, Beclin-1 was overexpressed in 

MCF7-LTED cells compared to parental MCF7 cells. Next, we have 

observed that interfering with miR-23b-3p expression by transient 

transfection induced changes in SLC6A14 expression, indicating that a 

direct link between miR-23b-3p and amino acid transporter SLC6A14 might 

exist. Specifically, mimicking miR-23b-3p in parental MCF7 cells led to 

decreased SLC6A14 expression. However, following the increase of 

miR23b-3p, the levels of SLC6A14 were not completely abolished, as 

expected. This could be explained by the important role that SLC6A14 

seems to play in the survival of parental MCF7 cells, and therefore other 

mechanisms may be involved in the maintenance of SLC6A14 expression 
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in MCF7 cells. In contrast, the inhibition of miR-23b-3p highly expressed in 

MCF7-LTED induced an increase in the SLC6A14 levels. Crucially, miR-

23b-3p has a direct role in the favouring the survival in oestrogen deprived-

conditions. In fact, following miR-23b-3p inhibition, AI-resistant MCF7-LTED 

cells decreased their proliferate capacity. In addition to AI-resistant cell 

model, we analysed two cell lines derived from parental cells that are 

resistant to tamoxifen and fulvestrant, to evaluate whether miR-23b-

3p/SLC6A14 node deregulation may represent a common mechanism of 

resistance to endocrine therapy. The results showed that both resistant 

cancer cell lines had an increased miR-23b-3p expression associated with 

low SLC6A14 levels compared to parental cells. Crucially, mimicking miR-

23b-3p in parental MCF7 cells increase the resistance to tamoxifen and 

fulvetsrant treatment, suggesting that miR-23b-3p could have a crucial role 

in the resistance to different endocrine agents. Further investigations are 

necessary to understand the role of amino acids metabolic reprogramming 

by deregulation of miR23b-3p/SLC6A14 node to identify possible 

therapeutic targets and/or potential prognostic and predictive biomarkers in 

ER+ breast cancer. 

In addition to glucose and amino acids metabolic reprogramming, 

alterations in lipid-and-cholesterol associated pathways are also frequent in 

different types of tumour (259, 514). Recently, FASN expression has been 

recognized as an oncogene for its role in carcinogenesis and it has been 

reported to be upregulated in several cancers (250). We hypothesised that 

lipids metabolism could be reprogrammed in AI-resistant cell model. 

Preliminary data showed an increase in lipids biosynthesis from glucose 

and an increased lipid accumulation (lipid droplets) in MCF7-LTED cells 

when compared to parental MCF7 cells. It has been demonstrated that 

cancer cells have an increase in lipid droplets content compared to normal 

cells (255) and that high lipid accumulation is considered a hallmark of 

cancer aggressiveness. In AI-resistant cells, lipid droplets could be a 

source of energy in stress nutrient condition, but also represent an acetyl-

CoA storage. In addition to its metabolic function, acetyl-CoA can function 

as acetyl-group donor for the acetylation of histones, an epigenetic event 

crucial in controlling cancer cells metabolism (515). Therefore, lipid 

metabolic reprogramming could confer an advantage to resistant cells in 
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terms of metabolic plasticity: depending on nutrient conditions, they could 

utilise lipid droplets as an acetyl-CoA storage to regulate the transcription of 

certain metabolic related-gene or as energy source instead of glucose, 

which we have shown to be fundamental in AI-resistant cells. High rate of 

de novo lipids biosynthesis could be necessary to maintain high lipid 

accumulation. Lipid metabolic alterations, together with glucose and amino 

acids metabolic reprogramming may be different aspects of a common 

phenotype, that is, high metabolic plasticity of AI-resistant cells needed for 

acquiring adaptive features that allow cell survival to oestrogen deprivation 

and to other stressful conditions thus promoting endocrine therapy 

resistance. Future aims of the current study are the identification of one or 

more molecular players involved in the described metabolic plasticity (e.g. 

miR-155 and miR-23-3p). On one hand, deregulated miRNAs could be 

used as potential clinical biomarkers, since there are still difficulties in 

targeting small RNAs (516); on the other hand an interesting area of 

research could be the investigation of potential targeting approaches of the 

pathways that are controlled by the deregulated miRNAs to be used as 

monotherapies or in association with current therapy.  

 

A part of this study was published on Cancer Research: Bacci et al. miR-

155 Drives Metabolic Reprogramming of ER+ Breast Cancer Cells 

Following Long-Term Estrogen Deprivation and Predicts Clinical Response 

to Aromatase Inhibitors. DOI: 10.1158/0008-5472.CAN-15-2038. Published 

15 March 2016. 
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