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Abstract

Title: Minimal operating system implementation

Author: Tine Šubic

The following thesis describes an implementation of a minimal operating

system which supports user interaction through keyboard and a terminal

window. The system design is inspired by GNU/Linux operating system and

is at its core monolithic kernel with support for memory management, ker-

nel modules and various peripheral drivers, like serial ports, VGA terminal,

timers and interrupts. The second part of the system is the user mode us-

ing a REPL terminal with some inbuilt tools for basic computer tasks and

demonstration on system capabilities. The operating system uses C program-

ming language, as well as x86 architecture assembly for some critical parts.

Bochs, the virtual machine software was used to emulate hardware while

in development, however, the system can be booted on compatible physical

hardware.

Keywords: assembly, C, interrupts, operating system, kernel, Linux.





Povzetek

Naslov: Implementacija minimalnega operacijskega sistema

Avtor: Tine Šubic

V diplomskem delu je predstavljena implementacija minimalnega operaci-

jskega sistema, ki podpira interakcijo z uporabnikom skozi terminalsko okno.

Sam sistem se zgleduje po operacijskem sistemu GNU/Linux in je v osrčju

sestavljen iz monolitnega jedra in podpira dinamično upravljanje s pomnil-

nikom, podporo jedrnim modulom in gonilnike za tipkovnico, VGA terminal,

prekinitve in serijske vhode. Drugi del sistema predstavlja uporabnǐski del v

obliki REPL terminala z nekaj vgrajenimi osnovnimi orodji za uporabo sis-

tema in prikaz osnovnih funkcionalnosti. Projekt je napisan v programskih

jezikih C in zbirniku za arhitekturo x86. Za simulacijo strojne opreme med

razvojem je bil uporabljen virtualni stroj Bochs, sistem pa je možno naložiti

tudi na zgoščenko in ga zagnati na kompatibilni fizični strojni opremi.

Ključne besede: zbirnik, C, prekinitve, operacijski sistem, jedro, Linux.





Razširjeni povzetek

Naslov: Implementacija minimalnega operacijskega sistema

Avtor: Tine Šubic

Trg modernih računalnǐskih operacijskih sistemov že vrsto let zasedajo

veliki igralci, ki razvijajo in prodajajo operacijske sisteme, namenjene širši

javnosti. Tako na trgu operacijskih sistemov osebnih računalnikov prevladuje

Microsoft 90-odstotnim deležem [4], medtem ko si operacijski sistemi podjetja

Apple, GNU/Linux in različni nǐsni sistemi delijo preostalih 10 odstotkov.

Na strani javno dostopnih strežnǐskih sistemov (poštni in DNS strežniki,

strežniki za strežbo spletnih strani) je stanje ravno nasprotno, saj tu pre-

vladujejo različne distribucije GNU/Linux s 66% deležem [9], preostalih 34%

pa skorajda v celoti zajemajo različne izdaje operacijskega sistem Microsoft

Windows Server. Mac OS X se v tem sektorju pojavlja z manj kot 0.1%

deležem. V podatkih sicer niso vključeni zasebni strežniki in interni strežniki

podjetij, saj zanje v večini primerov ni informacij. Iz podatkov je razvidno,

da imajo najbolj razširjeni sistemi za sabo podporo močnih podjetij, ali pa

zelo zavzeto razvijalsko skupnost, saj je sicer nemogoče razumeti in urejati

razvoj tako velikega števila komponent z več milijoni vrstic izvorne kode.

Tudi v GNU/Linux skupnosti, ki slovi po velikem številu distribucij operaci-

jskega sistema, gre pri raznolikosti pogosto le za manǰse nadgradnje ali zgolj

razlike v uporabnǐskih aplikacijah oziroma uporabnǐskem vmesniku. Nǐsni in

specializirani sistemi se v veliki meri nahajajo le na napravah zanesenjakov

in namensko izdelanih platformah.

Kljub vsemu pa je razvoj manǰsih sistemov v današnjih časih še vedno

popolnoma dosegljiv cilj, saj je na voljo mnogo virov in odlične dokumentacije

- že Intel za svojo arhitekturo IA-32 ponuja več kot 3000 strani podrobnih

navodil o strojnih ukazih, procesorskih mehanizmih in funkcionalnosti plat-



forme. Manǰsi, specializirani sistemi lahko v nekaj tisoč vrsticah kode podpi-

rajo osnovne funkcionalnosti kot so periferni gonilniki, sistemske prekinive,

dinamično upravljanje s pomnilnikom in uporabnǐski vmesniki. Seveda je

pri razvoju sistema potrebno najprej ugotoviti za kakšno platformo želimo

napisati operacijski sistem. Odločitev je lahko odvisna od različnih de-

javnikov, na primer kompleksnosti platforme, željenih lastnosti sistema in

obsegu dokumentacije ki je na voljo za to platformo. Če so naši končni

uporabniki ljudje, ki so navajenih modernih operacijskih sistemov, je ena od

ključnih funkcionalnosti zagotovo grafični vmesnik, kot tudi možnost zagona

večih programov hkrati in mrežna povezljivost.

Pred letom 2000 letih je na področju osebnih računalnikov prevladovala

arhitektura IA-32/x86 (32 bitna zasnova podjetja Intel), po prelomu tisočletja

pa sta se pojavili 64 bitni arhitekturi IA-64 (Intel) in AMD64 (AMD). Kljub

temu da gre pri obeh za moderno 64-bitno arhitekturo sta se podjetji lotili

zasnove na različne načine. Intel je IA-64 (Itanium Architecture) proizvedel

kot popolnoma novo platformo, medtem ko je AMD razvil zgolj nadgrad-

njo obstoječega 32-bitnega modela z dodatnimi funkcionalnostmi in strojn-

imi ukazi. AMD svojo arhitekturo še vedno uporablja v svoji zadnji gen-

eraciji procesorjev (Ryzen) z nekaj nadgradnjami, medtem ko je Intelovo

Itanium arhitekturo na trgu osebnih računalnikov zamenjala arhitektura In-

tel64. AMD, Intel in VIA so v letu 2000 izdali dokument, ki specificira last-

nosti generične arhitekture 64-bitne platforme pod imenom x86 64. Zaradi

te odločitve je uporaba modernih generacij procesorjev podjetij AMD in In-

tel skoraj identična z vidika platforme, čeprav imata nekaj razlik pri naborih

strojnih ukazov in izvajanju le teh. Predstavljeni operacijski sistem v tem

diplomskem delu uporablja arhitekturo IA-32 zaradi enostavnosti in lažjega

uporabljanja s pomnilnikom.

V sledečem diplomskem delu je predstavljena implementacija operaci-

jskega sistema, ki se zgleduje po operacijskem sistemu GNU/Linux in je v

osrčju sestavljena iz monolitnega jedra, ki v tesno povezanem kosu kode

združuje jedrne storitve in periferne gonilnike. Gre za eno-uporabnǐski sis-

tem, ki podpira eno aplikacijo naenkrat - tok kode je, z izjemo prekinitev,

linearen. V samem jedru je podprto dinamično upravljanje s pomnilnikom

preko funkcij free in malloc ki uporavljata s kopico, podporo jedrnim mod-

ulom in upravljanje s strojnimi prekinitvami. Implementirani so tudi gonil-



niki za nekatere periferne naprave. Sistemski čas je podpt s prekinitvenim

časovnikom, uporabnik lahko uporablja tipkovniko z razporeditvijo tipk UK,

izpis je viden na VGA terminalu velikosti 25x80 znakov, možno pa je tudi

dostopati do datotek na statičnem podatkovnem sistemu.

Drugi del sistema predstavlja uporabnǐski del v obliki interaktivne besedilne

konzole z nekaj vgrajenimi osnovnimi orodji za uporabo sistema in prikaz

osnovnih funkcionalnosti. Tako lahko na zaslon izpisujemo nize znakov,

pregledamo seznam datotek v datotečnem sistemu, preberemo njihovo vse-

bino, ali preverimo trenutni čas sistema. Sama konzola podpira tudi nala-

ganje izvršljivih skript iz podatkovnega sistema in izvajanje le-teh - skripte

podobno kot v okolju Bash podpirajo standardne ukaze iz konzole. Projekt je

napisan v programskih jezikih C in zbirniku za arhitekturo x86, saj ta jezika

zaradi nizkonivojskosti omogočata natančno upravljanje z viri in naslavljanje

pomnilnika. Izvorno kodo je mogoče prevesti z orodji ld, GCC in NASM, ki

so na voljo v večini GNU/Linux distribucij. Za simulacijo strojne opreme je

bil uporabljen virtualni stroj Bochs, ki je sposoben emulirati različno strojno

opremo, procesorske frekvence in periferne naprave. Sistem je možno naložiti

tudi na zgoščenko in ga zagnati na kompatibilni fizični strojni opremi.

V diplomskem delu je na začetku predstavljenih nekaj osnovnih koncep-

tov operacijskih sistemov in orodja, uporabljena za prevod izvorne kode v

izvršljivo obliko. Sledeča poglavja, opisujejo: proces inicializacije sistemskega

jedra, kjer vklopimo podporo prekinitvam in dinamičnemu pomnilniku ter

naložimo gonilnike, sledijo periferni gonilniki za tipkovnico, serijske vhode in

podatkovni sistem, nato pa na kratko opǐsemo še preskok sistema iz jedrnega

načina v neprivilegirani način. Predzadnje poglavje predstavi odločitve pri

implementaciji besedilnega uporabnǐskega vmesnika in predstavi nekaj imple-

mentiranih ukazov. Prikazani so tudi njihovi rezultati in zaslonske slike vmes-

nika. Zaključno poglavje zaokroži opis in predstavi nekaj idej za nadaljnji

razvoj - sistemu lahko v bodoče dodamo podporo drugim podatkovnim siste-

mom, možnost vzporednega zagona programov, ali pa morda podporo mrežni

opremi za komunikacijo s spletom.





Chapter 1

Introduction

The current operating systems market is dominated by the big players: On

desktop, 90% [4] of the market is taken up by various Microsoft Windows

distributions, with remaining 10 percent divided between Mac OS X (4.0%),

GNU/Linux (2.4%) and various other specialised OSes (3.6%). The disparity

is reversed if one looks at public-facing Internet servers (website, mail and

DNS server), where Unix derivatives are used in approximately 66% of servers

and Microsoft Windows distributions claim remaining 34%. However, the un-

known/other category in server section remains well below 0.1% of market

share. These numbers do not include data about privately owned and inter-

nal company servers. A look at the numbers above tells us, that homegrown

and specialised OSes are not exactly widespread. The most commons op-

erating systems either have a large corporation or a dedicated community

backing them and continuing the development.

However, development of an operating system that provides some basic

functionality like peripheral drivers, memory management, user interface and

interrupt handling need not be done by a large group of specialised experts.

Such a system, utilising a monolithic kernel and tightly coupled code can be

implemented in just a couple thousand lines of code. The operating system

showcased herein was inspired by the GNU/Linux philosophy [1] on a smaller

scale, mainly with the use of Virtual File System, shell-like interface and other

components.

1
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1.1 Structure and aims of the thesis

The following thesis is divided into 6 separate chapters. First chapters deals

with motivations for this thesis and introduction to some general operat-

ing systems concepts, as well as reasoning behind specific types of the im-

plemented operating system. The second chapter describes tools used for

compiling and preparing operating system and shows relevant scripts and

commands for generating the bootable disk image. The next chapters con-

tain details on implementation for system service initialisation, device drivers

and user interface. The final chapters sums up the structure and capabilities

of shown operating system.

1.2 Types of operating systems

Most commonly, modern operating systems like Windows, Max OS X and

various Linux distributions are general-purpose multi- or single-user, multi-

tasking operating systems, which allow one or more users to run more than

one program concurrently. However, there do exist other specialised operat-

ing systems, built specifically with certain tasks and hardware in mind:

• distributed - used to manage computer clusters, commonly in a net-

worked environment like data centres (example: Inferno1 OS by Bell

Labs and Vita Nuvoa Holdings),

• templated - used in conjunction with virtualization and cloud com-

puting for virtual guest operating systems, allowing easy deployment

of identical environment instances,

• embedded - developed for use with embedded computer systems with

limited resources and specialized interfaces (example: Windows CE/Em-

bedded2),

• real-time - used in time-critical environments with deterministic task

scheduling. Specialises in minimising operation latency and buffer de-

lays (example: FreeRTOS3),

1Available at: http://www.vitanuova.com/inferno/
2Available at: https://www.microsoft.com/windowsembedded/en-us/purchase.aspx
3Available at: http://www.freertos.org/
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• library - commonly used with unikernels [5], using a conglomeration of

libraries that provide common operating system services like memory

management, networking, peripheral drivers, etc. (example: used by

IncludeOS4 unikernel).

The OS implementation presented in this thesis uses a single-user,

single-task approach, commonly seen in early version of operating sys-

tems before the rise of time-sharing and late true multitasking. The

architecture allows the user to run a single program.

1.3 Types of operating systems’ kernels

The operating system’s core, named kernel, handles the most critical tasks

from start-up to I/O requests, peripheral interfaces and memory manage-

ment. As shown in diagram 1.1, traditional kernel in monolithic systems

is the interconnecting layer between hardware devices and user-space ap-

plications, using system calls, interrupts and inter-process communication

protocols to communicate between layers and interfaces. Some kernel types

may differ form this diagram, especially those using external services that

bypass kernel when talking to the hardware.

Figure 1.1: System architecture diagram.

There are multiple overarching kernel design approaches, described below:

• monolithic kernels - a kernel where all OS services are stored in

one common memory space. Most work is done by system calls and

4Available at: http://www.includeos.org/
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hardware interrupts due to easy hardware access. Due to dynamic

loading of subsystems, they can be very small when installed, but can

become hard to maintain when the codebase grows (example: Linux),

• microkernels - usually designed for a specific platform and implements

only the core services multi-tasking, memory management, interrupt

handling, inter-process communication, etc. in privileged mode. Other

peripheral interfaces are implemented as user-space software. They

are easier to maintain, but can be slower due to higher amount of

abstraction,

• hybrid kernels - used by modern Microsoft Windows and Mac OS

X operating systems. They take inspiration from microkernel design,

but include some additional services (like networking) in kernel-space

to provide a performance boost. They also use modules that provide

additional kernel functionalities, but cannot be dynamically loaded as

is the case with monolithic kernels,

• others - exokernels, nanokernels - rare and used for very specific hard-

ware architectures or tasks.

The implemented operating system uses a monolithic kernel type due to

relative ease of implementation, with all essential services running in kernel

mode and optional privileged mode switch.



Chapter 2

System initialisation

2.1 Boot code

Every operating system needs a section of code that allows it to be actually

called and executed. This implementation uses GRUB’s Multiboot specifi-

cation along with GRUB’s second-stage bootloader file, allowing it to boot

from a disk image into full environment. Listing 2.1 shows main code for

this section. After setting up Multiboot-specific fields, such as header flags,

checksum and section addresses, we first clear our flags register and then

push 2 registers to the stack, containing the magic number 0x1BADBOO2 and

multiboot structure address (used later for initialising memory management

routines). Expected magic numbers, flags and header layout are described

in Multiboot documentation [3].

With that done, we disable interrupts to avoid unwanted operations dur-

ing our setup phase and finally call the kmain(...) function, which allows

the C code to take over. kmain function will initialise all appropriate drivers,

peripherals and kernel modules like memory management and interrupt han-

dling. The final instructions merely start an infinite loop to allow the OS to

run asynchronous code, such as interrupt handlers and the like.

5
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1 MAGIC_NUMBER equ 0x1BADB002

2 ; Before this: magic numbers , constants , fields requested by

Multiboot spec

3 GLOBAL start ; Kernel entry point.

4 EXTERN kmain ; C main addres

5

6 start:

7 push 0 ; clear EFLAGS

8 push eax ; Load magic number

9 push ebx ; Load multiboot info ptr

10

11 cli ; Disable interrupts.

12 xor eax , eax

13 call kmain ; start kernel execution

14 .loop: ; run infinite loop

15 jmp .loop

Listing 2.1: Main bootloader assembly code.

The kernel C code entry function called kmain starts the initialisation

process with serial and VGA terminal devices. These two services allow boot

procedure logging to the screen and to an external log file for further anal-

ysis. We initialise device drivers for keyboard and initrd filesystem, enable

interrupt handling and memory management and finally set up system call

facility. Thus equipped, we can make the jump to user-space, where user

can interact with the system using inbuilt utilities that utilise system calls

to generate expected feedback.

1 int main(struct multiboot *mboot , uint32 stack) {

2 init_serial ();

3 init_terminal ();

4 print_boot_msg ();

5 fb_write("Serial ports: COM1 , COM2 , COM3 , COM4

initialized .\n", 100);

6 fb_write("Terminal screen initiated. VGA mode: 25x80

characters .\n", 100);

7 log(KERNEL , INFO , "Serial ports: COM1 , COM2 , COM3 , COM4

initialized.");

8 log(KERNEL , INFO , "Terminal screen initiated. VGA mode:

25x80 characters.");

9

10 initial_esp = stack;

11 init_descriptor_tables ();
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12 fb_write("ISR and segmentation routines initialized .\n",

100);

13 log(KERNEL , INFO , "ISR and segmentation routines

initialized.");

14

15 interrupt_enable ();

16 init_timer (100);

17 init_kbd ();

18 fb_write("Keyboard driver initialized .\n", 50);

19 log(KERNEL , INFO , "Keyboard driver initialized");

20

21 placement_addr = *( uint32 *) (mboot ->mods_addr + WORD_S);

22

23 initialise_paging ();

24 fb_write("Virtual memory management routines initialized

.\n", 100);

25 log(KERNEL , INFO , "Virtual memory management routines

initialized.");

26

27 fb_write("Filesystem loaded at /dev.\n", 100);

28 log(KERNEL , INFO , "Filesystem loaded at /dev.");

29 fs_root = init_initrd (*(( uint32 *) mboot ->mods_addr));

30 initialise_syscalls ();

31 fb_write("Boot sequence completed .\n", 50);

32 fb_write("Press Enter to run user interface ...", 100);

33 wait_for_keypress ();

34 log(KERNEL , INFO , "User interface started.");

35 ui_run ();

36

37 return RET_VAL;

38 }

Listing 2.2: C code entry point.

When the system finalises boot process, we are greeted with screen, shown

in screenshot shown in Figure 2.1. Similar output is logged to kernel.out

log file. The system is now waiting for a key press that will trigger the console

user can then interface with.

2.2 Common library functions

Since our source code is compiled without inclusion of the standard library,

we need to implement some of the common functions and definitions our-
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Figure 2.1: Boot process log displayed on screen.

selves, for easier programming and system extension. In the project, they

are implemented in stddef.h and stddef.c source files.

1 #define NULL ((void *)0)

2 #define TRUE 1

3 #define FALSE 0

4 #define RET_VAL 0xCAFEBABE

5

6 typedef unsigned long uint64;

7 typedef unsigned int uint32;

8 typedef unsigned short uint16;

9 typedef unsigned char uint8;

10

11 typedef long int64;

12 typedef int int32;

13 typedef short int16;

14 typedef char int8;

15 typedef int32 bool

Listing 2.3: Part of custom standard library header file.

Header file stddef.h (Listing 2.3) implements some useful type aliases.
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For better visibility in code, it adds explicit short forms for unsigned and

signed integers - uint32, uint16, int32..., as well as a type alias for bool.

We also define a number of constants: TRUE and FALSE values, NULL

value and RET VAL which is the value that will be returned in eax register

when kernel finishes execution.

stddef.c file contains implementations of some standard functions:

1. strlen - Returns the length of NULL-terminated string

2. strcpy - Copies a NULL-terminated string to a destination address,

assuming valid free memory location.

3. strcat - Concatenates two strings in memory by appending to desti-

nation.

4. memcpy - Copies value in memory from source to destination (Used

for duplicating structures and arrays)

5. memset - Fills memory location with repeated user-defined character

(Commonly used for structure and array initialisation)

6. panic - Helper function for logging a critical error and triggering an

infinite loop.

Since we treat all memory structures and strings as blocks of bytes, the

functions are generally simple, iterating over a given memory block until

they encounter a NULL byte or reach requested length, while performing

a requested operation - swapping or replacing byte values. However, to use

these functions efficiently, we need memory management facilities that expose

function with which we can allocate memory to use. This is described in

Memory management section.
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1 int32 strlen(const char *str) {

2 int len = 0;

3 while (str[len] != NULL) len++;

4 return len;

5 }

6

7 void memcpy(uint8 *dest , uint8 *src , uint32 len) {

8 uint8 *sp = (const uint8 *) src;

9 uint8 *dp = (uint8 *) dest;

10 for (int i = len; len != 0; len --) *dp++ = *sp++;

11 }

12

13 // Write len copies of val into dest.

14 void memset(uint8 *dest , uint8 val , uint32 len) {

15 uint8 *temp = (uint8 *) dest;

16 for (int i = len; i != NULL; i--) *temp++ = val;

17 }

18

19 //Copy string from source to destination

20 char *strcpy(char *dest , const char *src) {

21 while (*src != NULL) {

22 *dest++ = *src++;

23 }

24 }

25

26 extern void panic() {

27 int_disable (); // Disable interrupts.

28 log(KERNEL , ERR , "PANIC!");

29 for (;;); //Loop forever

30 }

Listing 2.4: Custom standard library.

2.3 Interrupt handling

Interrupt request handling is one of the core services of the kernel. Interrupts

allow devices and software to asynchronously trigger certain actions without

the need for endless spinning or periodic device checks (polling). As such,

they are used for device drivers for keyboards, mouses, hard drives, software

timers, handling system exceptions (like division by zero), special subroutine

calls and others.
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In the presented operating system, interrupts are used primarily for key-

board driver, programmable timers and exception handling. However, the

implemented interface offers a register interrupt handler(...) func-

tion which allows new kernel modules to register their own interrupt handlers

for specific actions. In further development, we could implement interrupt

handler that might react on mouse commands, allow hot-plugging for new

external devices and other actions.

2.3.1 Interrupt Descriptor Table

While capturing the interrupts signal is relatively easy, we still need to map

these interrupt requests to correct handlers (function). To do this, we use

an Interrupt Descriptor Table (IDT), that stores architecture-specific flags

(Specified by Intel’s IA-32 manual [2, p. 2823], ) and handler addresses.

Intel also provides LIDT command, that will load base address of our IDT to

a special-purpose register to be used in calculating interrupt vector offsets in

IDT, as shown in diagram from Intel’s manual in Figure 2.2.

Figure 2.2: Structure of IDT register in IA-32 achitecture, diagram from

Intel’s IA-32 manual [2].
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1 struct idt_descriptor {

2 uint16 offset_low; // low 16b of interrupt address

3 uint16 selector; // kernel segment sel

4 uint8 zero; // must be zero

5 uint8 flags; // x86 flags.

6 uint16 offset_high; // high 16 of interrupt addr

7 };

8

9 #define KERN_SEL 0x08

10 #define IDT_FLAGS 0x8E

11 static void initialize_idt () {

12 ... // address setup

13

14 //remap PIC numbers with port commands

15 outb(PIC1 , 0x11);

16 outb(PIC2 , 0x11);

17 ...

18 outb(0xA1 , 0x0);

19

20 install_gate( 0, (uint32)isr0 , KERN_SEL , IDT_FLAGS);

21 ...

22 install_gate (31, (uint32)isr32 , KERN_SEL , IDT_FLAGS);

23

24 lidt_trigger (& idt_ptr);

25 }

26

27 static void install_gate(uint8 num , uint32 addr , uint16 kss ,

uint8 flags) {

28 idt_entries[num]. offset_low = addr & OFFSET_MASK;

29 idt_entries[num]. offset_high = (addr >> 16) & OFFSET_MASK;

30

31 idt_entries[num]. selector = kss;

32 idt_entries[num].zero = NULL;

33 idt_entries[num].flags = flags;

34 }

Listing 2.5: Initialization of Interrupt Descriptor Table.

Listing 2.5 shows IDT entry structure and initialisation code. The IDT

entry structure contains the address, as well as specific flags field that consists

of magic number 14 and bits that describe privilege level. During initiali-

sation, we prepare the IDT memory block and then add first 32 interrupt

handlers. Since they are all working on kernel level, we add a kernel segment
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selector parameter. install gate function takes care of splitting the base

address and setting the structure fields correctly.

We also remap interrupt controller numbers, since by default, some inter-

rupts will conflict with CPU’s exception and fault handlers. Thus we shift

IRQs 0 through 15 to 32 through 47, since 31 is the last interrupt service

register used by the CPU. In the end, we call assembly code to reload IDT

address in IDTR register.

2.3.2 Interrupt handlers

To facilitate usage of interrupts, we need to implement certain functions. We

need a catch-all initial interrupt request (IRQ) code which will handle the

registers and and data segment descriptors and call the IRQ handler in C

code. This is shown in Listing 2.6.

1 irq_common:

2 pusha ; Push general purpose register to stack

3 ... ; Data segment descriptor loading

4

5 call irq_handler ; Call C code handler

6 pop ebx ; reload the original data segment descriptor

7 ... ; restore register values

8

9 popa ; Restore registers from stack

10 add esp , 8 ; Clean stack

11 sti ; Reenable interrupts

12 iret

Listing 2.6: Common IRQ handler.

The code above is called by a specific IRQ# function, identified by a

number (#) from 0 to 15. This function disables interrupts (since we are in

a interrupt service subroutine already), pushes error code (0) and an inter-

rupt service register (ISR) mapping (32) to the stack and finally jumps to

execution of the irq common code as shown above.
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1 GLOBAL irq0

2 irq0:

3 cli ; disable interrupts

4 push byte 0 ;store error code

5 push byte 32 ; store register mapping

6 jmp irq_common ; execute common handler

Listing 2.7: IRQ handler for interrupt number 0, mapped to ISR 32.

The final part is the IRQ handler implemented in C code (shown in Listing

2.8). When irq common calls irq handler function, it firstly sends appropri-

ate reset signals, acknowledging the interrupt and then executes the interrupt

service routine handler registered for the particular interrupt number.

1 #define RESET 0x20

2 void irq_handler(registers regs) {

3 if (regs.int_no >= 40) {

4 outb(0xA0 , RESET); // slave rst signal;

5 }

6 outb(0x20 , RESET); // master rst signal

7

8 if (interrupt_handlers[regs.int_no] != NULL) {

9 isr_t handler = interrupt_handlers[regs.int_no ];

10 handler (&regs);

11 }

12 }

Listing 2.8: C code for handling interrupt requests.

New handlers can be registered using a function shown in Listing 2.9, which

maps the provided handler function to an element in the list of handlers,

that will be later accessed by interrupt number.

1 void register_interrupt_handler(uint8 n, void *handler (

registers_t)) {

2 interrupt_handlers[n] = handler;

3 }

Listing 2.9: Function for registering custom IRQ handlers.
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2.4 Memory management

IA-32 (Intel x86) architecture provides two common approaches to memory

protection and virtual memory utilisation. The currently popular modern

x86-64 architecture has in fact largely dropped segmentation support due to

superiority of paging method, as well as because some x86-64 instructions

require a flat memory model that cannot be provided by the segmentation.

However, for our purposes, segmentation is still a perfectly viable (and in

certain cases, unavoidable) approach, especially when setting privilege ring

levels.

Memory allocation routines like malloc are generally provided by stan-

dard C library and supported by the host operating system. Since we have

neither, implementing memory management routines provides us with a cus-

tom analogue of these methods. These routines will later on provide basis of

tools available to developer and exposed via special functions (in kernel) or

system calls (in user-space).

2.4.1 Segmentation

Memory segmentation approach dictates a division of computer’s physical

memory into segments. x86 architecture implements multiple physical reg-

isters, aimed at holding addresses of different memory segments (up to 6).

Most commonly used are cs (code segment), es (extra segment), ds (data

segment) and ss (stack segment) registers. Addresses within a specific seg-

ment are specified by a segment address and an offset. Upon accessing a

memory location, the address is checked against segment bounds and ac-

cordingly, a hardware exception is triggered is the address is incorrect. One

of the common results of this in C programs is the infamous segmentation

fault.

To start using segmentation in operating system, we must initialise a

global descriptor table (GDT). It holds addresses and access permissions

for difference segments. The data for each segment is stored in a gdt data

structure, referenced in Listing 2.10. base field contains our 32-bit address of

the segment. limitfield allows us to define the size of addressable memory

block. Access and granularity fields contain special bit fields, which allow
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setting privilege status, executable status, readability and so forth.

1 struct gdt_data {

2 uint16 limit_low; // low 16 address bits of the limit.

3 uint16 base_low; // low 16 address bits of the base.

4 uint8 base_middle; // next 8 address bits of the base.

5 uint8 access; // privilege ring flags

6 uint8 granularity;

7 uint8 base_high; // final 8 address bits of the base.

8 }

Listing 2.10: Global description table element structure.

With this, we can set up initial four descriptors (kernel code segment,

kernel data segment, user code segment, user data segment). When switching

to user mode later, we will need an additional stack segment. Additionally,

to satisfy Bochs limitations, we include a null descriptor.

When call data fields are correctly set up, we use gdt flush (shown in

Listing 2.11) function to reload GDT data in CPU registers - replacing the

base addresses and GDT limit. This is achieved with LGDT1 instruction, used

to flush previous selectors.

1 gdt_flush:

2 xor eax , eax

3 mov eax , [esp+4] ; load param from stack

4 lgdt [eax] ; load new GDT address

5

6 mov ax , 0x10 ; offset 16 in GDT for data segment

7 mov ds , ax ; Load all data segment selectors

8 mov es , ax

9 mov fs , ax

10 mov gs , ax

11 mov ss , ax

12 jmp 0x08:. flush ; far jump , 0x08 = data segment

13 .flush:

14 ret

Listing 2.11: gdt flush function for reloading GDT data.

This concludes segmentation initialisation and sets up the groundwork

for virtual memory management that will allow us to dynamically allocate

and free arbitrary memory blocks.

1Instruction documentation: http://x86.renejeschke.de/html/file module x86 id 156.html
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2.4.2 Paging

Segmentation can be improved with the addition of paging. Instead of ac-

tual data, the segment information holds information about page table, where

pages are mapped into physical memory in blocks called frames. These pages

are generally 4KB in size and can be mapped/unmapped to physical memory

location, thus providing a virtual memory mechanism.

Each page contains a metadata contains frame address, which tells the

CPU which frame (block of physical memory) the page is mapped to. Because

of this, we also need to maintain a list of which frames are currently in use

and which are free to be allocated. To do this, we can define a set of functions

that will allow us to set, unset and check which frames are free:

1 #define PAGE 0x1000

2

3 void set(uint32 addr) {

4 uint32 frame = addr/PAGE;

5 frames[frame /32] |= (1 << (frame %32));

6 }

7

8 void unset(uint32 addr) {

9 uint32 frame = addr/PAGE;

10 frames[frame /32] &= ~(1 << frame %32);

11 }

12

13 bool is_free(uint32 addr) {

14 uint32 frame = addr/PAGE;

15 return (frames[frame /32] & (1 << (frame %32));

16 }

Listing 2.12: Memory allocation routine.

These routines are subsequently used by frame allocation and deallocation

in heap routines that expand and contract free and used blocks of memory.

Memory allocation and deallocation procedure

The main requirement of memory allocation routine in this system is, that

it returns the address of allocated memory block that is page-aligned (4kB

page size). Because of this, we first check if the current free block is already

page aligned, and if not, we allocate the beginning of memory block to the

next page-aligned address:
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1 #define PAGE_MASK 0xFFFFF000

2 #define PAGE_SIZE 0x1000

3 uint32 kmalloc(uint32 length , uint32 *phys_addr) {

4 uint32 retaddr = NULL;

5 if(heap_addr != NULL) {

6 void *addr = alloc(size , DO_ALIGN , heap);

7 page_t *page = get_page_at (( uint32)addr , NULL ,

kernel_dir);

8 *phys_addr = page ->frame * PAGE_SIZE + (( uint32)addr

& 0xFFF);

9 retaddr = addr;

10 } else {

11 if (placement_addr & PAGE_MASK) {

12 placement_addr &= PAGE_MASK;

13 placement_addr += PAGE_SIZE;

14 }

15 retaddr = placement_addr + size;

16 }

17 return retaddr;

18

19 }

Listing 2.13: Memory allocation routine.

The kmalloc calls the alloc function in kheap.c file, which performs

necessary checks and find the requested free space in page directory. Likewise,

free function for memory deallocation frees the memory and attempts to

merge the resulting fragments if any exist.

2.5 System calls

System calls allow the user’s programs to request execution of certain actions

from the kernel. More specifically, they allow us to call kernel-only function

through a special interface from unprivileged Ring 3. In Linux, these calls2

can perform many actions, from filesystem management to handling system

signals or even rebooting the system.

2Linux Syscall Reference: http://syscalls.kernelgrok.com/
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Setup

To use system calls, we must register the interrupt handler for interrupt

vector 128. The syscall handler will access the table of function mappings,

indexed by syscall number (passed via eax register to handler) which will be

called with appropriate parameters.

The assembly function to trigger a syscall interrupt can now look like

this:

1 GLOBAL syscall2

2

3 syscall2:

4 mov eax , 2 ; syscall number

5 mov ebx , param1 ; syscall parameter

6 mov ecx , param2 ; syscall parameter

7 int 80h ; interrupt

Listing 2.14: Sample syscall code with 2 parameters.

This code will trigger interrupt #2, passing it two parameters (can be read

from stack or registers). This will be handler by syscall handler described

above, that will access the appropriate handler function and pass it the given

parameters.

2.5.1 Implemented system calls

This section contains the list of some implemented system calls. While some

calls utilise new code, many of them are merely user-mode interfaces for al-

ready implemented kernel-mode functions - like terminal and serial functions.

All implemented system calls that reuse existing function can be called by

prefixing said function with syscall .

Shutdown

In a proper, feature-complete operating system, the developer generally uses

ACPI mechanism to handle power state management. However, Bochs emu-

lator includes an undocumented feature, that allows the operating system to

write a string of characters to port 0x8900, as shown in Listing 2.15, causing

a system shutdown.
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1 #define HALT_PORT 0x8900

2

3 void shutdown () {

4 log(KERNEL , INFO , "System shutdown initiated.");

5 char shutdown [9] = "Shutdown";

6 for (int s = 0; i < 9; i++) {

7 outb(HALT_PORT , shutdown[i]);

8 }

9 }

Listing 2.15: Shutdown code.

Reboot

As with shutdown, reboot can be caused by multiple means - ACPI reset,

system triple fault and most importantly a keyboard controller3 triggering

the CPU reset pin.

As shown in Listing 2.16, do this, we merely need to write a value of 0xFE

to CPU port 0x64 when the keyboard buffer is empty.

1 void reboot () {

2 log(KERNEL , INFO , "System reboot initiated.");

3 outb(0x64 , 0xFE);

4 halt_system (); //halt if reboot failed

5 }

Listing 2.16: Reboot code.

Others

We also need some previously used functions to work in user mode:

1. syscall read scan code() - allows us to poll the keyboard for pressed

keys in user mode when interrupt handler is disabled

2. syscall fb write(...) - display a user defined string

3. syscall fb write dec(...) - display a decimal number

4. syscall fb write hex(...) - display a hexadecimal number

38042 keyboard controller: http://stanislavs.org/helppc/8042.html
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5. syscall fb write char(...) - display a character

6. syscall log(...) - log a message from user mode.

7. syscall shutdown(...) - initiate system shutdown.

8. syscall reboot(...) - reboot the system.

9. syscall read file(...) - reads file contents from filesystem.

10. syscall find file(...) - finds file in filesystem.

11. syscall memset(...) - sets a memory block to value.



22 Tine Šubic



Chapter 3

Peripheral drivers

3.1 Terminal screen

The terminal screen routines implement a VGA text mode video driver using

writing to frame buffer located at address 0x000B8000. This allows the driver

to display 25 rows of 80 characters, where each character is represented by a

16 bit value. The highest 8 bits encode ASCII value, bits 7-4 the background

colour and 3-0 the foreground text color, as shown in Figure 3.1.

Figure 3.1: In-memory binary representation of letter A, displayed in white

color with black background.

3.1.1 Initialising the terminal screen

To start using the terminal screen, our kernel entry point first calls initiali-

sation function init terminal() shown in Listing 3.1, which resets colours

and erases all characters on screen.

23
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1 void clear_terminal () {

2 //Set all characters to ' '
3 for (int i = 0; i < FB_COL_HEIGHT; i++) {

4 for (int j = 0; j < FB_ROW_LEN; j++) {

5 fb_write_colour_char(get_fb_pos(i, j), BLANK ,

WHITE , BLACK);

6 }

7 }

8

9 set_fb_pos (0, 0); //set cursor position to start

10 fb_move_cursor(tc.fb_pos); //move cursor to position;

11 }

12

13 void init_terminal () {

14 set_foreground_color(WHITE);

15 set_background_color(BLACK);

16 clear_terminal ();

17 }

Listing 3.1: Terminal initialisation.

3.1.2 Displaying data

Because we often want to display various kinds of data in our terminal, the

driver implements multiple functions, shown in Listing 3.2 for printing single

characters, null-terminated strings and numbers in decimal and hexadecimal

representations.

1 /**

2 * Write a character c to screen using specified colors

3 * @param i Address in framebuffer where we are writing

4 * @param c Character to be written

5 * @param fg Colour of text

6 * @param bg Colour of background

7 */

8 void fb_write_clr_char(uint32 pos , char c, uint8 fg , uint8 bg

);

9

10 /**

11 * Write a string to screen at current position

12 * @param buf Array of character to be written

13 * @param len Length of text to be written

14 */
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15 void fb_write(int8 *buf , int32 len);

16

17 /**

18 * Print a number to terminal in base 16

19 * @param x Number to be displayed.

20 */

21 void fb_write_hex(uint64 x);

22

23 /**

24 * Print a number to terminal in base 10

25 * @param x Number to be displayed.

26 */

27 void fb_write_dec(int64 x);

Listing 3.2: Terminal screen interface functions.

The most basic function (Listing 3.3) merely prints the given character

in specified colour at set position by setting ASCII value and colour value at

an appropriate offset relative to starting position of the frame buffer.

1 void fb_write_clr_char(uint32 addr , int8 c, uint8 fg , uint8

bg) {

2 fb[addr] = c;

3 fb[addr + 1] = (bg << 4) | (fg);

4 }

Listing 3.3: Function for printing a single ASCII character on screen.

Cursor movement is achieved through sending location data to an appro-

priate port. Since the outb function writes a single byte to a given port, we

need to make two such calls. We first announce our intent (using command

port 0x3D4) to send the high bits of the location indicator and then send the

actual data to a data port 0x3D5. This is repeated for the lower bits. Such

function will produce a blinking cursor at given location.

1 void fb_move_cursor(uint16 pos) {

2 pos = pos / 2; // needed due to 16b resize;

3 // First request write to upper byte , send upper , then

send lower

4 outb(FB_COMMAND_PORT , FB_HIGH_BYTE_COMMAND);

5 outb(FB_DATA_PORT , ((pos >> 8) & 0x00FF));

6 outb(FB_COMMAND_PORT , FB_LOW_BYTE_COMMAND);

7 outb(FB_DATA_PORT , pos & 0x00FF);

8 }

Listing 3.4: Function for setting cursor position.
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3.2 Serial ports and logging

While serial ports and RS-232 protocol have been largely succeeded by USB

and other modern interfaces and hardware connections are rare, the software

implementations still have some uses, mainly due to ease of programming

and direct hardware support. In this project, the serial port has been used

as a general method of communicating with host OS and a logger facility.

BIOS generally provides at least two COM ports - shown implementation

uses four, to separate various sources of messages and allow easier debugging.

3.2.1 Implementing serial port

Listing 3.5 shows the core of serial port communication implementation.

Each COM port needs to be initialised with baud rate to determine its speed

and a line configuration. I used a baud rate of 57.600 bauds with line con-

figuration 8N1 - 8 bits of data, no parity bits and one stop bit.

1 uint16 serial_ports [4] = {COM1 , COM2 , COM3 , COM4};

2

3 void conf_baud_rate(uint16 port , uint16 divisor) {

4 outb(port + 3, 0x80);

5 outb(port , (divisor >> BYTE) & LOW_MASK);

6 outb(port , divisor & LOW_MASK);

7 }

8

9 void conf_line(uint16 com) {

10 outb(com + 3, LINE_CONFIG);

11 }

12

13 void serial_char_write(uint16 port , int8 c) {

14 while (! transmit_line_empty(port)) {}

15 outb(port , c);

16 }

Listing 3.5: Functions comprising main serial port functionality.

ASCII characters can be written to a serial port by serial char write(port,

char) function, which first checks if transmit buffer is empty before sending

requested character. Other implemented functions in serial port library em-

ploy multiple such calls to print strings, decimal numbers and hexadecimal
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numbers to serial port when needed.

3.2.2 Logger extensions

Logging functionality is extended via logger.c file, that provides multiple

log function. For this, logger.h file defines KERNEL, USER, DEV and

OTHER log files, corresponding to COM ports 1 through 4. Thus, a devel-

oper can use klog (kernel), ulog (user), dlog (dev) or olog (other) function

to write to any given log file. For every port, we also allow event severity

statuses: ERR, WARN and INFO - this status will be prefixed to the mes-

sage when writing to log file. Below, function log(...) shows the generic

log implementation that handles all writing to log files.

1 void log(log_src facility , sev severity , const char *msg) {

2 switch (facility) {

3 case KERNEL:

4 out = COM1;

5 break;

6 ...

7 default:

8 out = COM4;

9 }

10

11 char *severity_str;

12 switch(severity) {

13 case ERR:

14 severity_str = "[ERROR] ";

15 break;

16 ...

17 default:

18 severity_str = "[NONE] ";

19 }

20

21 serial_write(out , severity_str , 100);

22 serial_write(out , msg , 200);

23 }

24

25 void klog(const char *format_str , sev severity) { log(KERNEL ,

severity ,format_str); }

Listing 3.6: Parts logger functions.
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Screenshot 3.2 shows a sample kernel log output during system boot. Not

that all messages are prefixes by [INFO] status string to denote that message

is non-critical, also allowing easier log searching with grep and other tools.

Figure 3.2: Example screenshot of a kernel log output during boot process.

3.3 Keyboard

To allow the user means of interaction with the system, a keyboard driver is

implemented which supports standard alphanumerical keys as well as mon-

itoring state of special keys (Caps Lock, Shift, Control, etc.), allowing us

to modify application behaviour based on this. The system uses UK layout

by default (shown in Listing 3.3), but other layouts can be implemented or

loaded via kernel modules.

Figure 3.3: UK keyboard layout, from Wikipedia [10].
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3.3.1 Implementing keyboard driver

Keyboard driver is initialised by registering an interrupt handler on IRQ1,

passing it a pointer to void kbd hadler(...) (shown in Listing 3.7) which

is called on interrupt trigger.

1 uint8 read_scan_code () {

2 return inb(KBD_DATA_PORT);

3 }

4

5 static void kbd_handler(registers_t regs) {

6 //read scancode from port

7 uint8 scancode = read_scan_code ();

8

9 if (scancode & KEY_RELEASE_MASK) { // check if releases

10 // Negate mask to remove this bit from scancode

11 reset_special(scancode &~ KEY_RELEASE_MASK);

12 } else {

13 set_special(scancode);

14 put_char(kmp[scancode ]);

15 }

16 }

Listing 3.7: Keyboard reading.

Upon interrupt trigger, we first read a keyboard scancode from keyboard

input port 0x60. Since interrupt is triggered for every press and release of a

key, we check which is the current action by using 0x80 key mask. On every

press, we simply write an ASCII character representation of a key press to

the terminal screen. In both cases, we also check the status of our special

keys and whether we need to set/unset any of them, as well as modify the

current scan code if necessary (ex. when Shift modifier is pressed, make letter

uppercase).

3.3.2 Keymap

By default, the implemented kernel uses a standard UK layout keymap. Key

values are stored in an array (shown in Listing 3.8) with their ASCII values.

Certain keys (function keys, modifiers, etc.) are stored as value 0 since their

ASCII representation are not printable, but rather their press is handled

directly by the keyboard interrupt handler function and treated accordingly
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- modifier keys, Backspace, Enter key...

1 static uint8 kmp[KEYMAP_LEN] = {

2 0x0, //none

3 0x1B , //ESC

4 '1', '2', '3', '4', '5', '6', '7', '8', '9', '0',
5 '-', '=', '\b', '\t',
6 'q', 'w', 'e', 'r', 't', 'y', 'u', 'i', 'o', 'p',
7 '[', ']', '\n', 0x0,

8 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', ';',
9 '\'', '`', 0x0 , '\\',

10 'z', 'x', 'c', 'v', 'b', 'n', 'm', ',', '.', '/',
11 ...

Listing 3.8: Part of a UK keymap implementation.

3.3.3 Special keys

This implementation uses a special structure to hold the state of special

keys: Alt, Ctrl, Left/Right Shift, Caps Lock, Num Lock and Scroll

Lock.

With Ctrl, Shift and Alt, every press of the corresponding key sets the

value to 1, while the release resets it back to 0. When using any of the Lock

keys, the first press will set the value to 1, but only releasing and pressing

again will reset it. This structure can be used to check modifier key state at

any time and modify system behaviour accordingly. Using this, the developer

can also easily bind certain actions to specific keys (like system shutdown, or

screen clearing).

3.4 Filesystem

3.4.1 Virtual File System Interface

The implemented filesystem interface follows the basic design of Linux’s Vir-

tual File System (VFS [8]), which is an abstraction on top of a filesystem

implementation. It is meant to provide a common interface for reading and

storing files across multiple common file systems.
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Thus, every file in filesystem is represented by a structure containing its

metadata: file name, length in bytes, identification number and implementa-

tion specific fields. Since different filesystems also have different methods of

accessing files, these structures define common format of function callbacks

via C’s function pointers. Thus, any filesystem driver can implement its’ own

version of file writing or reading functions. One such version of this file entry

structure is shown in Listing 3.9

1 typedef struct {

2 char name [255]; // The filename.

3 uint32 flags; // describes file type (dir , file)

4 uint32 inode; // file id

5 uint32 length; // filesize in bytes.

6 read_type_t read; //func callback for reading content

7 readdir_clb readdir; // callback for dir listing

8 finddir_clb finddir; // callback for searching

9 fs_node_t *ptr; // file ptr for mountpoints.

10 } file_entry;

Listing 3.9: Structure containing file metadata.

Since this implementation uses only read-only initial ramdisk filesystem,

some structure elements are ommited - generic implementation should also

include write function callback, as well as permission mask and others which

are note needed in a single user system.

1 uint32 read_fs(file_entry *node , uint32 offset , uint32 size ,

uint8 *buf) {

2 return node ->read != NULL ? node ->read(node , offset , size

, buf) : NULL;

3 }

4 dir_entry *readdir_fs(file_entry *node , uint32 index) {

5 return is_dir(node ->flags) && node ->readdir != NULL ?

6 node ->readdir(node , index) : NULL;

7 }

8

9 fs_node *finddir_fs(file_entry *node , int8 *name) {

10 return is_dir(node ->flags) && node ->finddir != NULL ?

11 node ->finddir(node , name) : NULL;

12 }

Listing 3.10: Generic VFS function handlers.

Listing 3.10 shows implementations of generic VFS interface file handling

functions. When a file callback is triggered by a system call or an internal
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kernel function, the request is first passed through VFS that check for flags

and presence of the callback and only then triggers actual filesystem action.

3.4.2 Construction of initrd

Initrd is a static, read-only, filesystem, existing on the bootable ISO image

alongside with kernel code. The initrd disk image is constructed before

bootable ISO image is finalised, and in this step, any file can be added. To

achieve this, we use a simple piece of C code, that allows us to specify local

files to be added. In its current iteration, it supports only flat filesystem

model, without nested directories.

Beacuse initrd is loaded as GRUB module, and we currently ony have

one module, the location can be easily read from multiboot header structure:

1 uint32 initrd_location = *(( uint32 *) mboot ->mods_addr);

When mounting the initrd filesystem in kernel boot process, we need to

first set up our root filesystem node:

1 initrd_root = (file_entry *) malloc (sizeof(file_struct));

2 strcpy(initrd_root ->name , "ramdisk");

3 initrd_root ->inode = NULL;

4 initrd_root ->length = NULL; //just a dir node

5 initrd_root ->flags = IS_DIRECTORY;

6 initrd_root ->read = NULL; // cannot be read

7 initrd_root ->readdir = &initrd_readdir;

8 initrd_root ->finddir = &initrd_finddir;

Listing 3.11: Loading data for root node.

During addition of files to initrd disk image, the script also sets final file

count to filesystem header. Now we can easily iterate over filesystem address

space and load the file metadata:

1 for (i = 0; i < initrd_header ->num_files; i++) {

2 strcpy(root_nodes[i].name , &file_headers[i].name);

3 root_nodes[i]. length = file_headers[i]. length;

4 root_nodes[i].inode = i; // simple sequential nums

5 root_nodes[i].flags = IS_FILE;

6 root_nodes[i].read = &initrd_read;

7 ... // Other fields set to NULL

Listing 3.12: Loading metadata for files.
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3.4.3 Filesystem interaction

The current interface for mounted filesystem exposes two chief function, find

and read. The first allows a user or developer to execute a search for file

that will return a file pointer, containing file size, name and other metadata.

Read function (implementation shown in Listing 3.13) fetches file contents

from disk image to a buffer that can be used for further purpose.

1 uint32 initrd_read(file_entry *node , uint32 off , uint32 size ,

uint8 *buffer) {

2 initrd_file_header header = file_headers[node ->inode ];

3 if (off > header.length) return NULL;

4 if (off + size > header.length)

5 size = header.length - off;

6 memcpy(buffer , (uint8*) (header.offset+off), size);

7 return size;

8 }

Listing 3.13: Function for reading file contents from ramdisk filesystem.

This functions can now be used in console commands and via syscalls,

providing us with ability to list files in filesystem as well as read their con-

tents.



34 Tine Šubic



Chapter 4

User mode

The x86 architecture provides a mechanism called privilege rings, which al-

lows fault protection and better security. This is done by a hierarchy of

protection levels, where outermost privilege level has the least privileges and

is usually exposed to the user. In this mode, we usually implement the

user-facing applications that communicate with kernel via system calls. This

allows for a level of abstraction, as well as a protection mechanism that

disallows indiscriminate memory access.

4.0.1 Privilege levels

The multiple levels of protection were first pioneered by Multics operating

system, a predecessor of UNIX - since the underlying hardware, a GE645

mainframe did not have the support for this novel feature, Multics develop-

ers implemented ring protection in software. Nowadays however, most CPU

architectures (like Intel x86 used here) implement some form of it, although

not all operating systems use this protection to the full extent.

The schematic in Figure 4.1 shows the privilege rings available for usage

in x86 architecture. In general, the most privileged mode, called Ring 0, is

used for kernel facilities, Rings 1 and 2 for device drivers and Ring 3 for run-

ning unprivileged code, usually the software users interact with. However,

these delineations are mostly guidelines and not hard rules, and different

systems will use a different amount of protection rings. In our system, Ring

0, which is the default protection ring we boot into, is used for hosting both

kernel code and peripheral drivers, while Ring 3 runs the user interface and

35
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Figure 4.1: Diagram of privilege rings.

inbuilt utilities. Rings 1 and 2 are unused.

The general procedure calls for kernel to be initialised first in Ring 0 and

then running a special subroutine to trigger user-mode, continuing the boot

of the user-facing part of the operating system.

4.0.2 Switching mechanism

The IA-32/x86 architecture does not have a straightforward mechanism for

switching from privileged to user mode. We fake the user mode switch by

using a subroutine, shown in Listing 4.1. This subroutine firstly switches

kernel mode segment selector with user mode selectors, and then loads the

desired destination address (user-mode C code) onto stack.
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1 GLOBAL switch_mode

2 EXTERN user_mode_code

3

4 switch_mode:

5 cli ;disable interrupts

6 mov ax , 0x23 ; set user selector

7 mov ds , ax ; for all segments

8 mov es , ax

9 mov fs , ax

10 mov gs , ax

11 mov eax , esp

12 push 0x23 ;user data segment selector

13 push eax ;stack address

14 pushf

15 push 0x1B ;user code segment selector

16 push user_mode_code ;returning address

17 iret

Listing 4.1: Assembly function for triggering user mode.

The IRET instruction returns from a subroutine by popping the instruc-

tion pointer, return code segment selector and EFLAGS register value from

stack. Since we replaced previous caller’s values with our own, we fool the

CPU into jumping to our desired function. With this, we can now implement

other applications, assuming we initialised system calls accordingly.
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Chapter 5

User interaction console

To provide some interactive experience, the implemented operating system

exposes a simple shell that starts up after boot process. The shell is inspired

by GNU/Linux shells, using REPL (Read-Evaluate-Print Loop) principle.

Screenshot 5.1 shows the console displaying the output of help command.

At boot, the display is cleared and the prompt is displayed. During user’s

typing, the presses are buffered and displayed on screen. This implementation

is shown in Listing 5.1 and is triggered via keyboard interrupt handler. When

press of enter key is detected (a newline character), the buffer is flushed to

command decoding and execution.

Figure 5.1: Output of help command.
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1 void put_char(char c) {

2 if (! script) fb_write_char(c);

3 if (c == '\b') {

4 log(KERNEL , INFO , "Backspace");

5 idx = idx > 0 ? idx - 1 : idx;

6 command[idx] = '\0';
7 } else if (c == '\n') {

8 execute ();

9 print_prompt ();

10 memset(command , 0, 255);

11 idx = 0;

12 } else {

13 command[idx] = c;

14 idx ++;

15 }

16 }

Listing 5.1: Console command reading.

Driver also implements fully working Backspace key for fixing typing mis-

takes. During command decoding, the buffer is tokenized and the system

extracts specific commands and their parameters. Commands are compared

to an array of known string using our own strcmp(...) implementation and

accordingly, the correct function is executed, be it system reboot, displaying

text message or others. If an unrecognised command is encountered, the

system will react by printing a string signifying this to the user on screen.

This can be seen in screenshot shown in Figure 5.2.

5.0.1 Commands

• shutdown - shuts down the operating system

• reboot - reboots the operating system via CPU reset pin

• help - displays a help text, listing all available commands and their

short descriptions

• uptime - displays the system uptime in seconds. This command reads

the status of Programmable Interrupt Timer ticking at 100Hz and con-

verts this to second count.
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Figure 5.2: Using exec and uptime commands.

• name string - used with a single parameters to set string displayed in

console prompt

• ls - lists files present in /dev filesystem

• exec script name - executes script containing console commands that

is loaded from filesystem

• cat file name - display contents of the file

• echo string string2 - display a string on screen

• size filename - displays size of file in bytes on screen

Executable scripts (an example in Listing 5.2) are inserted into initial

ramdisk image before boot and can include any of the above commands,

even executing sub-scripts.



42 Tine Šubic

1 echo Hello FRI

2 uptime

3 ls

4 cat tst.sh

5 echo Bye Bye Blue Sky!

Listing 5.2: Example of an executable script.

The result of the short script above is shown on the bottom of screenshot

depicted in Figure 5.3.

Figure 5.3: Result of executing tst.sh script loaded from filesystem.



Chapter 6

Development environment and

toolchain

Most commonly, operating systems are developed using system programming

languages that allow the programmer to closely interact with hardware. Fol-

lowing this, the operating system described in this thesis uses C program-

ming language, augmented by assembly language for x86 architecture, since

resources for both are widely available and they allow finely-tuned hardware

and memory interaction. All source code was compiled to 32-bit executable

binaries.

6.1 Compilation tools

Multiple tools were used to transform and prepare the source code for inser-

tion into a bootable disk image and further execution. make build system was

used to link these tools together for streamlining the compilation process.

6.1.1 GCC suite

GCC1 (standing for GNU Compiler Collection) is a suite of tools, first re-

leased in May 1987, which includes multiple compiler for a variety of lan-

guages like C, C++, Fortran, Java, Ada, etc. GCC runs on a wide set of

architectures and is therefore a singularly useful tool for operating systems

development. In this thesis, C sources were built using gcc cross-compiler

1Available at: https://gcc.gnu.org/
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[7] v6.3.0, specially compiled to produce i686-elf binaries.

The compilation options (shown in Listing 6.1) ensure that all C sources are

compiled without inclusion of standard C library and built-in functions, as

well as output all warnings about potential problems.

1 > i686 -elf -gcc -std=gnu99 -nostdlib -nostdinc -fno -builtin -

fno -stack -protector -c -Wall

Listing 6.1: GCC command line configuration.

6.1.2 NASM

NASM2 is an open-source assembler and disassembler for x86 architecture,

originally written by Simon Tatham. It can produce various binary formats,

including but not limited to ELF, COFF and Mach-O. It is especially useful

because of its ability to create flat binary files often used for bootloaders

and the like in OS development. Assembly programs written for NASM

assembling use Intel’s assembly syntax.

Listing 6.2 shows how Assembly sources are assembled into ELF binaries.

1 > nasm -felf $SRCS

Listing 6.2: NASM command line configuration.

6.1.3 GNU linker

GNU linker ld3 is a part of binutils package, provided by GNU Project.

It supports most input and output formats, like ELF, PE, COFF, etc. It

is used to combine object and archive files and resolve symbol references.

In this project, linker combines the objects, compiled from source code and

produces an ELF binary, that is later inserted into a bootable image.

With command shown in Listing 6.3, the compiled sources are linked and

combined into a single ELF binary, which is later embedded into the disk

image.

1 > ld -Tlink.ld -melf_i386 $SRCS -o oskernel.elf

Listing 6.3: LD linker command line configuration.

2Available at: http://www.nasm.us/
3Available as part of binutils package: https://www.gnu.org/software/binutils/
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6.2 Running the kernel

The source files are put through multiple steps to produce executable kernel.

We first compile the C sources with gcc, assemble ASM sources using nasm

and finally link them together using ld linker. This produces an ELF file,

which is used to generate the final bootable ISO image.

The ISO image is used by Bochs4, an open-source IA-32 and x86-64 emu-

lator. It is able to emulate core components of a computer, as well as common

hardware peripherals.

Following Bochs configuration file (Listing 6.4) was used to run the virtual

machine. It causes the system to boot from a bootable CD-ROM image

test.iso, sets Bochs and OS log files and synchronises timers with host

OS. Emulation ROM images for BIOS and VGA are provided by Bochs

installation in host OS.

1 megs: 32

2 display_library: x

3 romimage: file=/usr/share/bochs/BIOS -bochs -latest

4 vgaromimage: file= /usr/share/bochs/VGABIOS -lgpl -

latest

5 ata0 -master: type=cdrom , path=test.iso , status=

inserted

6 boot: cdrom

7 log: ./logs/bochs.log

8 clock: sync=realtime

9 cpu: ips =1000000

10 com1: enabled=1, mode=file , dev =./ logs/kernel.

out

11 com2: enabled=1, mode=file , dev =./ logs/user.out

12 com3: enabled=1, mode=file , dev =./ logs/debug.

out

13 com4: enabled=1, mode=file , dev =./ logs/err.out

Listing 6.4: Bochs virtual environment configuration.

4Available at: http://bochs.sourceforge.net/
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Chapter 7

Conclusions

Development of a modern operating system is a very open-ended task, since

different users and developers imagine different core services and tools that

should be included in such a system. Operating systems with large user-

bases have become so enormous, that no single person can objectively have

a handle on everything going on in the codebase. Operating systems built

by a small group of enthusiasts have been mostly phased out of mainstream

usage, especially with rise of users who demand impressive graphical inter-

faces, streamlined usage and a multitude of obscure tools. Even GNU/Linux

collective has grown to a large size, including a number of supporting com-

panies and acclaimed developers. Many other niches operating systems are

merely finely tuned and tweaked versions of each other (as is often the case

with Unix distributions).

The main aim of this thesis was to investigate the development process

and structure of a minimal operating system with a monolithic kernel, in-

spired by core GNU/Linux concepts [6], that would allow the developer fur-

ther extensibility and the user some simple tools to interact with. The final

product features complete kernel with memory management facility and sev-

eral peripheral drivers as well as working user mode, interrupt handling and

system calls. Its source code is available in an online repository [11] and can

be built with the array of tools described in this thesis. Due to time con-

straints and some compatibility issues, FAT16 filesystem and multitasking

implementations have been dropped for the moment, though they remain on

the roadmap and the base support exists in the codebase via Virtual File

System (VFS) interface and virtual memory management respectively.
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Such additional modules can be integrated relatively easily via initiali-

sation functions in C entry code, interrupt handler registration and system

call registration functions. With this, full support for mounting file-systems,

multitasking and process forking, network drivers and more can be added

in the future. The final step to usability would be recompiling and port-

ing commonly used Unix tools, as well as implementing a proper graphics

driver, dropping reliance on inbuilt VGA support and adding a graphical

user interface.
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