

BIROn - Birkbeck Institutional Research Online

Enabling open access to Birkbeck’s published research output

DL-lite with attributes and datatypes

Book chapter (Published Version)

http://eprints.bbk.ac.uk/5784

Citation:

© 2012 IOS Press

Publisher version

__

All articles available through Birkbeck ePrints are protected by intellectual property law, including
copyright law. Any use made of the contents should comply with the relevant law.

__

Deposit Guide

Contact: lib-eprints@bbk.ac.uk

Birkbeck ePrints Birkbeck ePrints

Artale, A., Ryzhikov, V. and Kontchakov, R. (2012) DL-lite with attributes
and datatypes -
De Raedt, L. et al (Eds.) - Frontiers in Artificial Intelligence and
Applications, pp. 61 - 66
(ISBN: 9781614990970)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/9599127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.bbk.ac.uk/irstats.cgi
http://eprints.bbk.ac.uk/5784
http://dx.doi.org/10.3233/978-1-61499-098-7-61
http://eprints.bbk.ac.uk/deposit_guide.html
mailto:lib-eprints@bbk.ac.uk

DL-Lite with Attributes and Datatypes

Alessandro Artale and Vladislav Ryzhikov1 and Roman Kontchakov2

Abstract.

We extend the DL-Lite languages by means of attributes and
datatypes. Attributes—a notion borrowed from data models—
associate concrete values from datatypes to abstract objects
and in this way complement roles, which describe relation-
ships between abstract objects. The extended languages remain
tractable (with a notable exception) even though they contain
both existential and (a limited form of) universal quantification.
We present complexity results for two most important reason-
ing problems in DL-Lite: combined complexity of knowledge
base satisfiability and data complexity of positive existential
query answering.

1 Introduction

The DL-Lite family of description logics has recently been proposed
and investigated in [7, 8] and later extended in [2, 15, 3]. The rel-
evance of the DL-Lite family is witnessed by the fact that it forms
the basis of OWL 2 QL, one of the three profiles of the Web Ontol-
ogy Language, OWL 2 (www.w3.org/TR/owl2-profiles).
According to the official W3C profiles document, the purpose of
OWL 2 QL is to be the language of choice for applications that use
very large amounts of data.

This paper extends the DL-Lite languages of [3] with so-called
attributes (A), which associate concrete values from datatypes with
abstract objects. These extensions will be formalized in a new fam-
ily of languages, DL-Lite(HNA)

α with α ∈ {core, krom, horn, bool},
which contain role and attribute inclusions with both (unqualified)
existential and (a limited form of) universal quantification. Original
and tight complexity results for both knowledge base satisfiability
and query answering will be presented in this paper.

The notion of attributes, borrowed from conceptual modelling for-
malisms, introduces a distinction between (abstract) objects and con-
crete values (integers, reals, strings, etc.) and, consequently, between
concepts (sets of objects) and datatypes (sets of values), and between
roles (relating objects to objects) and attributes (relating objects to
values). The language DL-LiteA [15] was introduced with the aim
of capturing the notion of attributes in DL-Lite in the setting of
ontology-based data access (OBDA). The datatypes of DL-LiteA are
modelled as pairwise disjoint sets of values (which are also disjoint
from concepts); a similar choice is made by various DLs encoding
conceptual models [9, 6, 1]. Furthermore, datatypes of DL-LiteA
are used for typing attributes globally: e.g., the concept inclusion
∃salary− � Real can be used to constrain the range of attribute
salary to the type Real. However, this means that even if associated

1 KRDB Research Centre, Free University of Bozen-Bolzano, Italy, email:
{lastname}@inf.unibz.it

2 Dept. of Comp. Science and Inf. Sys., Birkbeck, University of London, UK,
email: roman@dcs.bbk.ac.uk

Employee

Researcher

Professor

salary (Real)

salary ({35K–70K})

salary ({55K–100K})

Figure 1. Salary example

with different concepts, attributes sharing the same name must have
the same range restriction.

We consider a more expressive language for attributes and
datatypes in DL-Lite. We present two main extensions of the orig-
inal DL-LiteA: (i) datatypes are not necessarily mutually disjoint;
instead, Horn clauses define relations between them (including dis-
jointness and subtype relations); (ii) range restrictions for attributes
are local (rather than global): i.e., concept inclusions of the form
C � ∀U.T specify that all values of the attribute U for instances
of the concept C belong to datatype T . In this way, we capture a
wider range of datatypes (e.g., intervals over the reals) and allow re-
use of the very same attribute associated to different concepts, but
with different range restrictions. As an example, consider the Entity-
Relationship diagram in Fig. 1, which says, in particular, that

• employees’ salary is of type Real, i.e., Employee � ∀salary.Real;
• researchers’ salary is in the range 35K–70K, which is an interval

type, a subset of Real, i.e., Researcher � ∀salary.{35K–70K};
• and professors’ salary in the range 55K–100K,

i.e., Professor � ∀salary.{55K–100K};
• with researchers and professors being employees,

i.e., Researcher � Employee and Professor � Employee.

Local attributes are strictly more expressive than global attributes:
for example, the concept inclusion � � ∀salary.Real is equivalent
to ∃salary− � Real mentioned above and implies that every value of
salary is a Real, independently from the type of the employee. Us-
ing local attributes we can infer concept disjointness from datatype
disjointness for the same (existentially qualified) attribute. For exam-
ple, assume that in the scenario of Fig. 1 we add the concept of For-
eignEmployee as having at-least one salary that must be a String (to
take account of the currency). Then Employee and ForeignEmployee
become disjoint concepts—i.e., Employee � ForeignEmployee � ⊥
will be implied—because of disjointness of the respective datatypes
and restrictions on the salary attribute. We also allow more general
datatype inclusions, which, for instance, can express that the inter-
section of a number of datatypes is empty.

Our work lies between the DL-LiteA proposal and the extensions

ECAI 2012
Luc De Raedt et al. (Eds.)
© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-61

61

of DLs with concrete domains (see [13] for an overview). According
to the concrete domain terminology, we consider a path-free exten-
sion with unary predicates—predicates coincide with datatypes with
a fixed interpretation, as in DL-LiteA. Differently from the concrete
domain approach, we do not require attributes to be functional; in-
stead, we can specify generic number restrictions over them, simi-
larly to extensions of EL with datatypes [5, 11] and the notion of
datatype properties in OWL 2 [14, 10]. Our approach works as far as
datatypes are safe, i.e., unbounded—query answering is CONP-hard
in presence of datatypes of specific cardinalities [12, 16]—and no
covering constraints hold between them—query answering becomes
CONP-hard again in the presence of a datatype, whose extension is a
subset of (is covered by) the union of two other datatypes (cf. Theo-
rem 2).

We provide tight complexity results showing that for the Bool,
Horn and core languages addition of local and safe range restrictions
on attributes does not change the complexity of knowledge base sat-
isfiability. On the other hand, surprisingly, for the Krom language
complexity increases from NLOGSPACE to NP. These results reflect
the intuition that universal restrictions on attributes—as studied in
this paper—cannot introduce cyclic dependencies between concepts;
on the other hand, unrestricted use of universal restrictions (∀R.C)
together with sub-roles, by which qualified existential restrictions
(∃R.C) can be encoded, results in EXPTIME-completeness [8].

We complete our complexity results by showing that positive exis-
tential query answering (and so, conjunctive query answering) over
core and Horn knowledge bases with attributes, local range restric-
tions and safe datatypes is still FO-rewritable and so, is in AC0 for
data complexity.

The paper is organized as follows. Section 2 presents DL-Lite and
its fragments. Section 3 discusses the notion of safe datatypes used
in this paper. Sections 4 and 5 study combined complexity of KB
satisfiability and data complexity of answering positive existential
queries, respectively, when attributes and datatypes are present. Sec-
tion 6 concludes this paper. Complete proofs of all the results can be
found in the full version [4].

2 The Description Logic DL-Lite(HNA)
bool

The language of DL-Lite(HNA)
bool contains object names a0, a1, . . .,

value names v0, v1, . . ., concept names A0, A1, . . ., role names
P0, P1, . . ., attribute names U0, U1, . . ., and datatype names
T0, T1, Complex roles R, datatypes T and concepts C are de-
fined as follows:

R ::= Pi | P−i , B ::= � | ⊥ | Ai | ≥ q R | ≥ q Ui

T ::= ⊥D | Ti, C ::= B | ¬C | C1 � C2,

where q is a positive integer. Concepts of the form B are called basic
concepts. A DL-Lite(HNA)

bool TBox, T , is a finite set of concept, role
and attribute inclusions of the form:

C1 � C2 and C � ∀U. T, R1 � R2, U1 � U2,

and an ABox, A, is a finite set of assertions of the form:

Ak(ai), ¬Ak(ai), Pk(ai, aj), ¬Pk(ai, aj), Uk(ai, vj).

We standardly abbreviate ≥ 1R and ≥ 1U by ∃R and ∃U , respec-
tively. Taken together, a TBox T and an ABox A constitute the
knowledge base (KB) K = (T ,A).

It is known [3] that reasoning with role inclusions and number
restrictions (even in core TBoxes without attributes) is already rather

costly, EXPTIME-complete. Thus we impose the following syntactic
restriction on sub-roles and sub-attributes [3]:

(interR) if R has a proper sub-role in T then it contains no negative
occurrences3 of ≥ q R or ≥ q R− for q ≥ 2;

(interU) if U has a proper sub-attribute in T then it contains no
negative occurrences of ≥ q U for q ≥ 2.

Semantics. As usual in description logic, an interpretation, I =
(ΔI , ·I), consists of a nonempty domain ΔI and an interpreta-
tion function ·I . The interpretation domain ΔI is the union of two
nonempty disjoint sets: the domain of objects ΔIO and the domain of
values ΔIV . We assume that all interpretations agree on the seman-
tics of datatypes and values: ⊥ID = ∅ and T Ii = val(Ti) ⊆ ΔIV
is the set of values of each datatype Ti (which does not depend on
a particular interpretation) and vIj = val(vj) ∈ ΔIV is the value of
each name vj (which, again, does not depend on I). Note that the
datatypes do not have to be mutually disjoint—instead, we assume
that datatype constraints can be captured by Horn clauses—we will
clarify the assumptions in Section 3.

The interpretation function ·I assigns an element aIi ∈ ΔIO to
each object name ai, a subset AIk ⊆ ΔIO of the domain of objects
to each concept name Ak, a binary relation P Ik ⊆ ΔIO × ΔIO over
the domain of objects to each role name Pk, and a binary relation
UIk ⊆ ΔIO × ΔIV to each attribute name Uk. We adopt the unique
name assumption (UNA): aIi �= aIj , for all i �= j. It is known [3]
that not adopting the UNA in DL-Lite languages with number re-
strictions leads to a significant increase in the complexity of reason-
ing: KB satisfiability goes from NLOGSPACE to PTIME-hard with
functionality constraints and even to NP-hard with arbitrary number
restrictions; query answering loses the AC0 data complexity. Com-
plex roles and concept are interpreted in I in the standard way:

(P−k)I = {(w′, w) ∈ ΔIO ×ΔIO | (w,w′) ∈ P Ik },
�I = ΔIO, ⊥I = ∅,

(C1 � C2)
I = CI1 ∩ CI2 , (¬C)I = ΔIO \ CI ,

(≥q R)I =
{
w ∈ ΔIO | �{w′ | (w,w′) ∈ RI} ≥ q

}
,

(≥q U)I =
{
w ∈ ΔIO | �{v | (w, v) ∈ UI} ≥ q

}
,

(∀U. T)I =
{
w ∈ ΔIO | ∀v. (w, v) ∈ UI → v ∈ T I

}
,

where �X is the cardinality of X . The satisfaction relation |= is also
standard:

I |= C1 � C2 iff CI1 ⊆ CI2 , I |= R1 � R2 iff RI1 ⊆ RI2 ,

I |= U1 � U2 iff UI1 ⊆ UI2 , I |= Uk(ai, vj) iff (aIi , v
I
j) ∈ UIk ,

I |= Ak(ai) iff aIi ∈ AIk , I |= Pk(ai, aj) iff (aIi , a
I
j) ∈ P Ik ,

I |= ¬Ak(ai) iff aIi /∈ AIk , I |= ¬Pk(ai, aj) iff (aIi , a
I
j) /∈ P Ik .

A KB K = (T ,A) is said to be satisfiable (or consistent) if there is
an interpretation, I, satisfying all the members of T and A. In this
case we write I |= K (as well as I |= T and I |= A) and say that I
is a model of K (T and A).

A positive existential query q(x1, . . . , xn) is a first-order for-
mula ϕ(x1, . . . , xn) constructed by means of conjunction, disjunc-
tion and existential quantification starting from atoms of the from
Ak(t1), Tk(t1), Pk(t1, t2) and Uk(t1, t2), where Ak is a concept
name, Tk a datatype name, Pk a role name, Uk an attribute name,

3 An occurrence of a concept on the right-hand (left-hand) side of a concept
inclusion is called negative if it is in the scope of an odd (even) number of
negations ¬; otherwise it is called positive.

A. Artale et al. / DL-Lite with Attributes and Datatypes62

and t1, t2 are terms taken from the list of variables y0, y1, . . . , ob-
ject names a0, a1, . . . and value names v0, v1, . . . ; object names and
value names will be called constants. We write q(�x) for a query with
free variables �x = x1, . . . , xn and q(�a) for the result of replacing
every occurrence of xi in ϕ(�x) with the ith component ai of a vec-
tor of constants �a = a1, . . . , an. We will equivocate between DL
and first-order interpretations and write I |= q(�a) to say that q(�a) is
true in I. A conjunctive query is a positive existential query without
disjunctions.

For a KB K = (T ,A), we say that a tuple �a of constants from A
is a certain answer to q(�x) with respect to K, and write K |= q(�a), if
I |= q(�a) whenever I |= K. The query answering problem is: given
a KB K = (T ,A), a query q(�x) and a tuple �a of constants from A,
decide whether K |= q(�a).

Fragments of DL-Lite(HNA)
bool . We consider syntactic restrictions on

the form of concept inclusions in DL-Lite(HNA)
bool TBoxes. Following

the naming scheme of the extended DL-Lite family [3], we adopt
the following definitions. A KB K belongs to DL-Lite(HNA)

krom if only
negation is used in construction of its complex concepts:

C ::= B | ¬B (Krom)

(here and below the B are basic concepts). K is in DL-Lite(HNA)
horn if

its complex concepts are constructed by using only intersection:

C ::= B1 � · · · �Bk. (Horn)

Finally, we say K is in DL-Lite(HNA)
core if its concept inclusions are of

the form:
B1 � B2, B1 �B2 � ⊥. (core)

Note that the positive occurrences of B on the right-hand side of the
above inclusions can also be of the form ∀U.T . As B1 � ¬B2 is
equivalent to B1 � B2 � ⊥, core TBoxes can be regarded as sitting
in the intersection of Krom and Horn TBoxes.

The following table summarizes the obtained combined complex-
ity results for KB satisfiability and data complexity results for query
answering (with numbers coded in binary):

language KB satisfiability query answering
DL-Lite(HNA)

core NLogSpace [Th.4] AC0 [Th.6]

DL-Lite(HNA)
horn PTIME [Th.4] AC0 [Th.6]

DL-Lite(HNA)
krom NP [Th.5] CONP [3]

DL-Lite(HNA)
bool NP [Th.4] CONP [3]

3 Safe Datatypes

In this section we define the notion of safe datatypes and show that
such restrictions are required for preserving data complexity of query
answering.

DEFINITION 1. A set of datatypes D = {T1, . . . , Tn} is called safe
if (i) the difference between an arbitrary intersection of datatypes
and an arbitrary union of datatypes is either empty or unbounded;
(ii) all constraints between datatypes are in the form of Horn clauses
Ti1 ∩ · · · ∩ Tik ⊆D Ti0 .

A set of datatypes D is called weakly safe if (i′) arbitrary inter-
sections of datatypes are either empty or unbounded and (ii) holds.

Restriction (i) has been independently introduced by Savkovic [16].

It follows, in particular, that if D is (weakly) safe we can assume
that each non-empty datatype Ti is unbounded (note that query an-
swering becomes CONP-hard in presence of datatypes of specific
cardinalities [12]); and if D is safe then also arbitrary intersections
of datatypes are either empty or unbounded. Thus, if D is safe then
it is also weakly safe. Condition (ii) ensures that datatype constraints
in D have the form of Horn clauses, T1 ∩ · · · ∩ Tk ⊆D T , and
thus computable in PTIME; we further restrict datatype constraints
to T1 ⊆D T2 and T1 ∩ · · · ∩ Tk ⊆D ⊥D when dealing with the core
language. Indeed, allowing covering constraints between datatypes
leads to CONP-hardness of conjunctive query answering:

THEOREM 2. Conjunctive query answering in DL-Lite(HNA)
core with

covering constraints on datatypes is CONP-hard (even without sub-
roles, sub-attributes and number restrictions).

Proof. We prove the result by reduction of the complement of
2+2CNF (similar to instance checking in ALE [17]). Suppose we
are given a CNF ψ in which every clause contains two positive and
two negative literals (including the constants true, false). Let T be a
datatype covered by non-empty disjoint T0 and T1. Let T contain the
following concept inclusions for an attribute U and concepts B and
C: B � ∃U , B � ∀U.T , C � ∀U.T0, and consider the following
conjunctive query

q = ∃y,�t, �u
(
P1(y, t1) ∧ P2(y, t2) ∧N1(y, t3) ∧N2(y, t4)

∧ U(t1, u1) ∧ U(t2, u2) ∧ U(t3, u3) ∧ U(t4, u4)

∧ T0(u1) ∧ T0(u2) ∧ T1(u3) ∧ T1(u4)
)

with roles P1, P2, N1 and N2. We construct an ABox Aψ with in-
dividuals true and false for the propositional constants, an individ-
ual xi, for each propositional variable xi in ψ, and an individual
ci, for each clause of ψ. Let Aψ contain assertion B(xi), for each
propositional variable xi in ψ, assertions C(false), U(true, v1), for a
value v1 of datatype T1, and the following assertions, for each clause
xji1 ∨ xji2 ∨ ¬xji3 ∨ ¬xji4 of ψ:

P1(ci, xji1), P2(ci, xji2), N1(ci, xji3), N2(ci, xji4)

(here the xj may include propositional constants). It is readily
checked that (T ,Aψ) �|= q iff ψ is satisfiable. Indeed, if ψ is sat-
isfiable we construct I by ‘extending’ Aψ by U(xi, v0) if xi is false
in the satisfying assignment and by U(xi, v1) otherwise, where v0
is in T0 and v1 in T1 (recall that these datatypes are non-empty and
disjoint). Conversely, if (T ,Aψ) �|= q then there is a model I of
(T ,Aψ) in which q is false. Then the satisfying assignment can be
defined as follows: a propositional variable xi is true if one of the
attribute U values of xi belongs to datatype T1—it does not matter
whether other values belong to T0 or not, the negative answer to the
query q guarantees that ψ is true under such an assignment.

The following theorem shows that without condition (i) we lose
FO-rewritability of conjunctive queries in the presence of number
restrictions.

THEOREM 3. Conjunctive query answering in DL-Lite(HNA)
core with

datatypes not respecting condition (i) of Definition 1 is CONP-hard
(even without sub-roles and sub-attributes).

Proof. We modify the proof of Theorem 2. Assume that the differ-
ence between a datatype, T , and a union of two datatypes, T0 and
T1, has a finite cardinality, say k. We replace the concept inclusion
B � ∃U with B � ≥ (k + 1)U , which forces a choice of at least

A. Artale et al. / DL-Lite with Attributes and Datatypes 63

one U attribute value to be in either T0 or T1. In the former case,
as before, we assume that the propositional variable gets value false,
while in the latter case it gets value true.

Thus, the safe condition essentially disallows the use of enumer-
ations and any datatypes, whose non-empty intersection or differ-
ence has a finite number of elements. From now on we consider only
(weakly) safe datatypes.

4 Complexity of KB Satisfiability in DL-Lite(HNA)
α

We first introduce the encoding of a DL-Lite(HNA)
bool KB K = (T ,A)

into a first-order sentence K‡a with one variable, adopting the tech-
nique introduced in [3]. We denote by role±(K) the set of role names
in K and their inverses, by att(K) and dt(K) the sets of attribute and
datatype names in K, respectively, and by ob(A) and val(A) the set
of all object and value names in A, respectively. To simplify the pre-
sentation, we will assume that (R−)− is the same as R and will
often use H for a role R or an attribute name U . We will also assume
that all number restrictions are of the form ∃R and ∃T (i.e., only
q = 1 is allowed) and that the ABox contains no negative assertions
of the form ¬Ak(ai) and ¬Pk(ai, aj)—see the full version [4] for
the treatment of the full language.

Every ai ∈ ob(A) is associated with the individual constant ai,
and every concept name Ai with the unary predicate Ai(x). For each
concept ∃R, we take a fresh unary predicate ER(x). Intuitively, for
a role name Pk, the predicate EPk represents the objects with a Pk-
successor—the domain of Pk—and EP−k the range of Pk. We also
introduce individual constants, as representatives of the objects in
the domain (dpk) and the range (dp−k) of each role Pk. Similarly,
for each attribute name Ui, we take a unary predicate EUi(x), rep-
resenting the objects with at least one value of the attribute U . We
also need, for each attribute name Ui and each datatype name Tj , a
unary predicate UiTj(x), representing the objects such that all their
Ui attribute values belong to the datatype Tj (as usual, if they have
attribute Ui values at all).

The encoding C∗ of a concept C is then defined inductively:

⊥∗ = ⊥, (Ai)
∗ = Ai(x),

�∗ = �, (¬C)∗ = ¬C∗(x),
(∃H)∗ = EH(x), (C1 � C2)

∗ = C∗1 (x) ∧ C∗2 (x),

(∀U.⊥D)∗ = ¬E1U(x), (∀U.Ti)
∗ = UTi(x).

The following sentence then encodes the knowledge base K:

K‡a = ∀x
[
T ∗(x) ∧ β(x) ∧

∧
R∈role±(K)

εR(x) ∧
∧

U∈att(K)

θU (x)
]
∧ A‡a ,

where

T ∗(x) =
∧

C1�C2∈T

(
C∗1 (x)→C∗2 (x)

)
∧
∧

H�∗
T H′

(
(∃H)∗(x)→(∃H ′)∗(x)

)
,

A‡a =
∧

A(ai)∈A

A∗(ai) ∧
∧

P (ai,aj)∈A

(
(∃P)∗(ai) ∧ (∃P−)∗(aj)

)

∧
∧

U(ai,vj)∈A

(
(∃U)∗(ai) ∧

∧
T∈dt(K)

val(vj)/∈val(T)

¬(∀U.T)∗(ai)
)
,

and �∗T is the reflexive and transitive closure of the sub-
role and sub-attribute relations of the TBox, i.e., of the union
{(R,R′), (R−, R′

−
) | R � R′ ∈ T } ∪ {(U,U ′) | U � U ′ ∈ T }.

Roles are interpreted as binary predicates in a DL interpretation
and so, the range of a role R is not empty whenever its domain con-
tains an element. So, in order to capture this intuition, in K‡a we
include the following formula, for each R ∈ role±(K):

εR(x) = ER(x) → ER−(dr−).

Attributes are involved both in existential and universal quantifica-
tion. So, the second conjunct of T ∗ reflects the fact that if an object
has a U value (existential quantifier ∃U) then it also has a U ′ value,
for each U ′ with U �∗T U ′; universal quantification propagates the
datatypes in the opposite direction:

β(x) =
∧

U′�U∈T

∧
T∈dt(K)

(
(∀U.T)∗ → (∀U ′.T)∗

)
.

We also need a formula that captures the relationships between
datatypes, as defined by the Horn clauses in D, for all attributes U :

θU (x) =
∧

T1∩···∩Tk⊆DT

(
(∀U.T1)

∗ ∧ · · · ∧ (∀U.Tk)
∗ → (∀U.T)∗

)
.

We note that the formula θU (x), in particular for disjoint datatypes,
e.g., with T1 ∩ T2 ⊆D ⊥D , demonstrates a subtle interaction be-
tween attribute range constraints, ∀U.T , and minimal cardinality
constraints, ∃U .

We now show that for the Bool, Horn and core languages the ad-
dition of attributes to DL-Lite(HN)

α of [3] does not change the com-
bined complexity of KB satisfiability:

THEOREM 4. Checking KB satisfiability with weakly safe
datatypes is NP-complete in DL-Lite(HNA)

bool , PTIME-complete in
DL-Lite(HNA)

horn and NLOGSPACE-complete in DL-Lite(HNA)
core .

Proof. (Sketch) We show that a given KB K is satisfiable iff the
universal first-order sentence K‡a is satisfiable. One direction is
straightforward: if there is a model of K then the model of K‡a can
be defined on the same domain by taking, say, C∗ to be CI . The key
ingredient of the converse direction is the unravelling construction:
every model of K‡a can be unravelled into a DL interpretation—in
essence, the points dpk and dp−k are copied to recover the structure
of roles as binary relations, while recovering attributes requires more
subtlety; see [4] for more details.

It is of interest to note that the complexity of KB satisfiability in-
creases in the case of Krom TBoxes:

THEOREM 5. Satisfiability of DL-Lite(HNA)
krom KBs is NP-hard with

a single pair of disjoint datatypes even without role and attribute
inclusions nor cardinalities (and so, for DL-LiteAkrom).

Proof. The proof is by reduction of 3SAT. It exploits the structure of
the formula θU (x) in K‡a : if datatypes T and T ′ are disjoint then the
concept inclusion

∀U.T � ∀U.T ′ � ∃U � ⊥,

although not in the syntax of DL-Lite(HNA)
krom , is a logical conse-

quence of T . Using such ternary intersections with the full negation
of the Krom fragment one can encode 3SAT. Let ϕ =

∧m
i=1 Ci be

a 3CNF, where the Ci are ternary clauses over variables p1, . . . , pn.
Now, suppose pi1 ∨¬pi2 ∨ pi3 is the ith clause of ϕ. It is equivalent
to ¬pi1 ∧ pi2 ∧ ¬pi3 → ⊥ and so, can be encoded as follows:

¬Ai1 � ∀Ui.T, Ai2 � ∀Ui.T
′, ¬Ai3 � ∃Ui,

A. Artale et al. / DL-Lite with Attributes and Datatypes64

where A1, . . . , An are concept names for variables p1, . . . , pn, and
Ui is an attribute for the ith clause (note that Krom concept inclusions
of the form ¬B � B′ are required, which is not available in core
TBoxes). Let T consist of all such inclusions for clauses in ϕ. It can
be seen that ϕ is satisfiable iff T is satisfiable.

5 Query Answering: Data Complexity

In this section we study the data complexity of answering posi-
tive existential queries over a KB expressed in languages with at-
tributes and datatypes. As follows from the proof of Theorem 4, for
a DL-Lite(HNA)

bool KB K = (T ,A), every model M of the first-order
sentence K‡a induces a forest-shaped model IM of K with the fol-
lowing properties:

(forest) The names a ∈ ob(A)∪val(A) induce a partitioning of the
domain ΔIM into disjoint labelled trees Ta = (Ta, Ea,
a) with
nodes Ta, edges Ea, root a, and a labelling function
a that assigns
a role or an attribute name to each edge (indicating a minimal,
w.r.t. �∗T , role or attribute name that required a fresh successor
due to an existential quantifier); the trees for v ∈ val(A) consist
of a single node, v.

(copy) There is a map cp : ΔIM → ob(A) ∪ val(A) ∪
{
dr | R ∈

role±(K)
}

, such that cp(a) = a, if a ∈ ob(A) ∪ val(A), and
cp(w) = dr, if
a(w′, w) = R−, for (w′, w) ∈ Ea.

(role) For every role (attribute name) H ,
HIM =

{
(ai, aj) | H ′(ai, aj) ∈ A, H ′ �∗T H

}
∪{

(w,w′) ∈ Ea |
a(w,w′) = H ′, H ′ �∗T H, a ∈ ob(A)
}
.

THEOREM 6. The positive existential query answering problem for
DL-Lite(HNA)

horn and DL-Lite(HNA)
core is in AC0 for data complexity.

Proof. We adopt the technique of the proof of Theorem 7.1 [3]. Sup-
pose that we are given a consistent DL-Lite(HNA)

horn KB K = (T ,A)
and a positive existential query in prenex form q(�x) = ∃�y ϕ(�x, �y)
in the signature of K. Let M0 be the minimal Herbrand model of
(the universal Horn sentence) K‡a , and let I0 = (ΔI0 , ·I0) be the
canonical model of K, i.e., the model induced by M0 (see its con-
struction in the full version [4]). The following properties hold, for
all basic concepts B and datatypes T :

aI0i ∈ BI0 iff K |= B(ai), for ai ∈ ob(A), (1)

w ∈ BI0 iff K |= ∃R � B, for w with cp(w) = dr, (2)

vI0i ∈ T I0 iff val(vi) ∈ val(T), for vi ∈ val(A), (3)

v ∈ T I0 iff w ∈ BI01 , . . . , BI0k , T |= B1 � · · · �Bk � ∀U.T, (4)

for (w, v) ∈ UI0 and v /∈ val(A).

Formula (1) describes conditions when a named object, ai, belongs
to a basic concept, B, in the canonical model I0—we say it describes
the type of ai. Similarly, (2) describes types of unnamed objects,
which are copies of the dr, for roles R; it is worth pointing out that
those types are determined by a single concept, ∃R. The same two
properties were used in the proof of he proof of Theorem 7.1 [3]. The
other two properties are specific to datatypes: (3) describes the type
of a named datatype value and (4) the type of an unnamed datatype
value. We note that (4) holds only for safe datatypes, and even weakly
safe datatypes cannot guarantee that in the process of unravelling it
is always possible, for every w ∈ (∃U)I0 , to pick a fresh attribute U
value of the ‘minimal type’, i.e., a datatype value that belongs only
to datatypes T with w ∈ (∀U.T)I0 .

It is straightforward to check that the canonical model I0 provides
correct answers to all queries:

LEMMA 7. K |= q(�a) iff I0 |= q(�a), for all tuples �a.

The depth of a point w ∈ ΔI0 is the length of the shortest path
in the respective tree to its root. Denote by Wm the set of points
of depth ≤ m (including also values v ∈ ΔI0V) that were taken to
satisfy existential quantifiers for objects in Wm−1. Our next lemma
shows that to check whether I0 |= q(�a) it suffices to consider points
of depth ≤ m0 in ΔI0 , for some m0 that does not depend on |A|:

LEMMA 8. If I0 |= ∃�y ϕ(�a, �y) then there is an assignment a0 in
Wm0 such that I0 |=a0 ϕ(�a, �y) and a0(yi) ∈ Wm0 , for all yi ∈ �y,
where m0 = |�y|+ |role±(T)|+ 1.

To complete the proof of Theorem 6, we encode the problem
‘I0 |= q(�a)?’ as a model checking problem for first-order formu-
las over the ABox A considered as a first-order model, also denoted
by A, with domain ob(A) ∪ val(A); we assume that this first-order
model also contains all datatype extensions. Now we define a first-
order formula ϕT ,q(�x) in the signature of T and q such that (i)
ϕT ,q(�x) depends on T and q but not on A, and (ii) A |= ϕT ,q(�a) iff
I0 |= q(�a).

Denote by con(K) the set of basic concepts in K together with all
concepts of the form ∀U.T , for attribute names U and datatypes T
from T . We begin by defining formulas ψB(x), for B ∈ con(K),
that describe the types of named objects (cf. (1)): for all ai ∈ ob(A),

A |= ψB(ai) iff aI0i ∈ BI0 , if B is a basic concept, (5)

A |= ψ∀U.T (ai) iff aI0i ∈ BI01 , . . . , BI0k and (6)
T |= B1 � · · · �Bk � ∀U.T.

These formulas are defined as the ‘fixed-points’ of sequences
ψ0

B(x), ψ
1
B(x), . . . defined by taking ψ0

B(x) = B∗ if B is A, ⊥
or �, ψ0

B(x) =
∨

H′�∗
T H ∃y H ′(x, y) if B = ∃H , ψ0

B(x) = ⊥ if
B = ∀U.T and

ψi
B(x) = ψ0

B(x) ∨
∨

B1	···	Bk�B∈ext(T)

(
ψi−1

B1
(x) ∧ · · · ∧ ψi−1

Bk
(x)

)
,

where ext(T) is the extension of T with the following:

– ∃H � ∃H ′, for all H �∗T H ′,
– ∀U.T � ∀U ′.T , for all U ′ �∗T U and T ∈ dt(K),
– ∀U.T1 � · · · � ∀U.Tk � ∀U.T , for all T1 ∩ · · · ∩ Tk ⊆D T .

(We again assume that all number restrictions are of the form ∃R
and ∃U ; the full version [4] treats arbitrary number restrictions). It
should be clear that there is N with ψN

B (x) ≡ ψN+1
B (x), for all B at

the same time, and that N does not exceed the cardinality of con(K).
We set ψB(x) = ψN

B (x).
Next we define sentences θB,dr , for B ∈ con(K) and dr with

R ∈ role±(K), that describe types of the unnamed points, i.e., copies
of the dr (cf. (2)): for all w with cp(w) = dr,

A |= θB,dr iff w ∈ BI0 , if B is a basic concept, (7)

A |= θ∀U.T,dr iff T |= ∃R � ∀U.T. (8)

Note that the type of copies of dr is determined by a single concept,
∃R, and therefore, there is no need to consider conjunctions in (8);
see also (6). We inductively define a sequence θ0B,dr, θ

1
B,dr, . . . by

taking θ0B,dr = � if B = ∃R and θ0B,dr = ⊥ otherwise, with θiB,dr

defined similarly to ψi
B above. As with the ψB , set θB,dr = θNB,dr .

Now, suppose I0 |=a0 ϕ(�a, �y) and a0(yi) ∈ Wm0 , for every
yi ∈ �y, where m0 is as in Lemma 8. Recall that our aim is to compute

A. Artale et al. / DL-Lite with Attributes and Datatypes 65

the answer to this query in the first-order model A representing the
ABox. This model, however, does not contain points in Wm0 \W0,
and to represent them, we use the following ‘trick.’ By (forest), every
w ∈ Wm0 is uniquely determined by a pair (a, σ), where a is the root
of the tree Ta containing w and σ is the sequence of labels
a(u, v)
on the path from a to w. Not every such pair, however, corresponds to
an element in Wm0 . In order to identify points in Wm0 , we consider
the following directed graph GT = (VT , ET), where VT is the set
of equivalence classes [H] = {H ′ | H �∗T H ′ and H ′ �∗T H} and
ET is the set of all pairs ([R], [H]) such that T |= ∃R− � ∃H and
R− ��∗T H , and H has no proper sub-role/attribute satisfying this
property. Let ΣT ,m0 be the set of all paths in the graph GT of length
≤ m0: more precisely,

ΣT ,m0 =
{
ε
}
∪ VT ∪

{
([H1], . . . , [Hn]) | 2 ≤ n ≤ m0

and ([Hj], [Hj+1]) ∈ ET , for 1 ≤ j < n
}
.

By the unravelling procedure, we have σ ∈ ΣT ,m0 , for all pairs
(a, σ) representing elements of Wm0 . We note, however, that a pair
(a, σ) with σ = ([H], . . .) ∈ ΣT ,m0 corresponds to a w ∈ Wm0

only if a has not enough H-witnesses in A.
In the first-order rewriting ϕT ,q we are about to define we assume

that the bound variables yi range over W0 and represent the first
component of the pairs (a, σ) (these yi should not be confused with
the yi in the original query q, which range over Wm0), whereas the
second component is encoded in the ith member σi of a vector �σ.
Note that constants and free variables need no second component, σ,
and, to unify the notation, for each term t we denote its σ-component
by t�σ , which is defined as follows: t�σ = ε if t is a constant or free
variable and t�σ = σi if t = yi.

Let k be the number of bound variables yi and let Σk
T ,m0

be the set
of k-tuples �σ = (σ1, . . . , σk) with σi ∈ ΣT ,m0 . Given an assign-
ment a0 in Wm0 , we denote by split(a0) the pair (a, �σ) made of an
assignment a in A and �σ ∈ Σk

T ,m0
such that t�σ = ([H1], . . . , [Hn]),

for a sequence H1, . . . , Hn of
a-labels on the path from a to a0(t).
We define now, for every �σ ∈ Σk

T ,m0
, concept name A, role or at-

tribute name H and datatype name T :

A�σ(t) =

{
ψA(t), if t�σ = ε,

θA,inv(ds), if t�σ = σ′.[S],

H�σ(t1, t2) =

⎧⎨
⎩
HT(t1, t2), if t�σ1 = t�σ2 = ε,

(t1 = t2), if t�σ1 .[S]= t�σ2 , or t�σ2 = t�σ1 .[S
−], for S �∗T H,

⊥, otherwise,

T�σ(t) =

⎧⎨
⎩
T (t), if t�σ = ε,

ψ∀U.T (t), if t�σ = [U],

θ∀U.T,ds− , if t�σ = σ′.[S].[U].

LEMMA 9. For each assignment a0 in Wm0 with split(a0) = (a, σ),

I0 |=a0 A(t) iff A |=a A�σ(t), for concept names A,

I0 |=a0 H(t1, t2) iff A |=a H�σ(t1, t2), for roles and attribute names H ,

I0 |=a0 T (t) iff A |=a T�σ(t), for datatype names T .

Finally, we define the first-order rewriting of q and T by taking:

ϕT ,q(�x) = ∃�y
∨

�σ∈Σk
T ,m0

(
ϕ�σ(�x, �y) ∧

∧
1≤i≤k

σi=([Hi],...)�=ε

(
¬ψ0

∃Hi
(yi)∧ψ∃Hi(yi)

))
,

where ϕ�σ(�x, �y) is the result of attaching the superscript �σ to each
atom of ϕ; the last conjunct ensures that each pair (a, σi) corre-
sponds an element of w ∈ Wm0 . Correctness of this rewriting fol-
lows from Lemma 9, see the full version [4].

6 Conclusions

We extended DL-Lite with local attributes—allowing the use of the
same attribute associated to different concepts—and safe datatypes
where datatype constraints can be expressed with Horn-like clauses.
Notably, this is the first time that DL-Lite is equipped with a form
of the universal restriction ∀U.T . We showed that such an extension
is harmless with the only exception of the Krom fragment, where
the complexity rises from NLOGSPACE to NP. We studied also the
problem of answering positive existential queries and showed that
for the Horn and core extensions the problem remains in AC0(i.e.,
FO-rewritable).

As a future work we are interested in relaxing the safe condition
for datatypes, in particular we conjecture that the restriction on the
boundedness of datatype difference can be relaxed for particular con-
crete domains.

REFERENCES

[1] A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Za-
kharyaschev, ‘Reasoning over extended ER models’, in Proc. of the
26th Int. Conf. on Conceptual Modeling (ER 2007), volume 4801 of
Lecture Notes in Computer Science, pp. 277–292. Springer, (2007).

[2] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev, ‘DL-
Lite in the light of first-order logic’, in Proc. of the 22nd Nat. Conf. on
Artificial Intelligence (AAAI 2007), pp. 361–366, (2007).

[3] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev, ‘The
DL-Lite family and relations’, Journal of Artificial Intelligence Re-
search, 36, 1–69, (2009).

[4] A. Artale, R. Kontchakov, and V. Ryzhikov, ‘DL-Lite with attributes,
datatypes and sub-roles (full version)’, Technical Report BBKCS-12-
01, Department of Computer Science and Information Systems, Birk-
beck, University of London, (2012).

[5] F. Baader, S. Brandt, and C. Lutz, ‘Pushing the EL envelope’, in Proc.
of the 19th Int. Joint Conf. on Artificial Intelligence, IJCAI-05. Morgan-
Kaufmann Publishers, (2005).

[6] D. Berardi, D. Calvanese, and G. De Giacomo, ‘Reasoning on UML
class diagrams’, Artificial Intelligence, 168(1–2), 70–118, (2005).

[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
‘DL-Lite: Tractable description logics for ontologies’, in Proc. of the
20th Nat. Conf. on Artificial Intelligence (AAAI), pp. 602–607, (2005).

[8] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
‘Tractable reasoning and efficient query answering in description log-
ics: The DL-Lite family’, Journal of Automated Reasoning, 39(3), 385–
429, (2007).

[9] D. Calvanese, M. Lenzerini, and D. Nardi, ‘Unifying class-based rep-
resentation formalisms’, Journal of Artificial Intelligence Research, 11,
199–240, (1999).

[10] B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider,
and U. Sattler, ‘OWL 2: The next step for OWL’, Journal of Web Se-
mantics: Science, Services and Agents on the World Wide Web, 6(4),
309–322, (2008).

[11] M. Despoina, Y. Kazakov, and I. Horrocks, ‘Tractable extensions of the
description logic EL with numerical datatypes’, Journal of Automated
Reasoning, (2011).

[12] E. Franconi, Y. A. Ibáñez-Garcı́a, and I. Seylan, ‘Query answering with
DBoxes is hard’, Electr. Notes Theor. Comput. Sci., 278, 71–84, (2011).

[13] C. Lutz, ‘Description logics with concrete domains—a survey’, in Ad-
vances in Modal Logics Volume 4. King’s College Publications, (2003).

[14] J. Pan and I. Horrocks, ‘OWL-Eu: Adding customised datatypes into
OWL’, Web Semantics: Science, Services and Agents on the World Wide
Web, 4(1), (2011).

[15] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and
R. Rosati, ‘Linking Data to Ontologies’, Journal on Data Semantics,
X, 133–173, (2008).

[16] O. Savković, Managing Datatypes in Ontology-Based Data Access,
MSc dissertation, European Master in Computational Logic, Faculty of
Computer Science, Free University of Bozen-Bolzano, October 2011.

[17] A. Schaerf, ‘On the complexity of the instance checking problem in
concept languages with existential quantification’, Journal of Intelli-
gent Information Systems, 2, 265–278, (1993).

A. Artale et al. / DL-Lite with Attributes and Datatypes66

	Cover5784).pdf
	DL-Lite.pdf

