
The Combined Approach to Ontology-Based Data Access
R. Kontchakov,1 C. Lutz,2 D. Toman,3 F. Wolter4 and M. Zakharyaschev1

1Department of CS and Information Systems 2Fachbereich Mathematik und Informatik
Birkbeck College London, UK Universität Bremen, Germany
{roman,michael}@dcs.bbk.ac.uk clu@informatik.uni-bremen.de

3D.R. Cheriton School of CS 4Department of Computer Science
University of Waterloo, Canada University of Liverpool, UK

david@cs.uwaterloo.ca frank@csc.liv.ac.uk

Abstract
The use of ontologies for accessing data is one of
the most exciting new applications of description
logics in databases and other information systems.
A realistic way of realising sufficiently scalable on-
tology-based data access in practice is by reduc-
tion to querying relational databases. In this paper,
we describe the combined approach, which incor-
porates the information given by the ontology into
the data and employs query rewriting to eliminate
spurious answers. We illustrate this approach for
ontologies given in the DL-Lite family of descrip-
tion logics and briefly discuss the results obtained
for the EL family.

1 Ontology-Based Data Access
The paradigm of ontology-based data access (OBDA) has re-
cently emerged as an exciting application of knowledge rep-
resentation and reasoning technologies in information man-
agement systems [Dolby et al., 2008; Heymans et al., 2008;
Poggi et al., 2008a]. In a nutshell, the underlying idea is to fa-
cilitate access to data by separating the user from the raw data
sources using an ontology that provides a user-oriented view
of the data and makes it accessible via queries formulated
solely in the language of the ontology without any knowledge
of the actual structure of the data.

To make this idea more precise, let us assume that the on-
tology, T , is given by a finite set of sentences of (a suitable
fragment of) first-order logic (FO) and the data D by a fi-
nite set of ground atoms P (a1, . . . , an) of FO, where the ai
are individual names (constants) and P is an n-ary predicate
symbol. A query q(~x) is an FO-formula with free variables ~x,
called the answer variables. At its core, the OBDA scenario
is typical of the logic-based approach to knowledge repre-
sentation, where logical theories are employed to represent
knowledge, and reasoning is required to unlock that knowl-
edge for applications. In OBDA, the ontology T is typically
used to enrich the data with additional vocabulary for query-
ing, to translate between different data and query vocabular-
ies, and for reconciling the different vocabularies of multi-
ple data sources. The data D is assumed to be incomplete to
allow for the inference of additional data by means of rea-
soning. This requires, at least in principle, reasoning over a

potentially infinite set of possible models of T and D. Thus,
the fundamental query-answering problem we are facing is
to decide whether a tuple ~a of individual names from D is a
certain answer to q over T and D—i.e., whether q(~a) is true
in every FO-modelM of T and D. In contrast, the relational
database paradigm presupposes that the data is complete, so
answering a query means checking whether it holds in the
single model given by D.

As a simple illustration of OBDA, consider the query

ϕ(x) = ∃y, z (city(x) ∧ has airport(x, y) ∧
located in(x,US)∧named for(y, z)∧ww2 hero(z)),

asking for US cities with an airport named after a WW2 hero.
Let us assume that we have a database DB with tables for
all the relations mentioned in ϕ(x), except the more abstract
concept ww2 hero, and with additional tables for ww2 deco
(WW2 decoration) and recipient of . Thus, DB contains
atoms such as

city(Chicago), has airport(Chicago,ORD),

located in(Chicago,US), named for(ORD ,O ′Hare),

recipient of (O ′Hare,ww2 medal of honor),

ww2 deco(ww2 medal of honor).

As DB contains no data for the relation ww2 hero, no an-
swer to ϕ(x) over DB can be found. However, if we describe
WW2 heros by means of an ontology H with sentences such
as

∀x, y (recipient of (x, y)∧ww2 deco(y)→ ww2 hero(x)),

Chicago becomes an answer to ϕ(x) overH and DB.
To be useful in practice, OBDA should scale to large

amounts of data and preferably be as efficient as standard
relational database management systems (RDBMSs), where
decades of research have been invested to make them scal-
able. Realistically, this means that we are interested in
such ontology and query languages for which OBDA is ef-
ficiently reducible to tasks that can be executed using existing
RDBMSs. Thus, given T , D and q(~x) as above, we want to
compute a finite FO model D′ and an FO query q′(~x) such
that

(ans) ~a is an answer to q′(~x) over D′ if, and only if, ~a is a
certain answer to q(~x) over T and D.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/9598849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To illustrate the type of reduction we have in mind, observe
that querying (H,DB) with ϕ(x) can be reduced to ask-
ing ϕ(x) over the extension DB′ of DB with a table for
ww2 hero containing all names in DB who are recipients of
a WW2 decoration (which can be easily computed). Another
possible reduction is to use the same databaseDB but rewrite
the query ϕ(x) to a new query ϕ′(x), which results from ϕ(x)
by replacing the conjunct ww2 hero(z) with

ww2 hero(z) ∨ ∃v (recipient of (z, v) ∧ ww2 deco(v)).

As the size of data is normally large and many different
queries can be posed to the same database, at least the fol-
lowing two requirements should supplement (ans):
(dat) D′ is computable in polynomial time inD and does not

depend on q(~x);
(que) q′(~x) does not depend on D.
There are various possible refinements of these conditions.
The query-rewriting approach of [Calvanese et al., 2007]
does not allow modifications of the data, so that (dat) is re-
placed with D′ = D. As a result, this approach is only ap-
plicable to description logics for which query-answering be-
longs to the class AC0 for data complexity (that is, if only the
data is regarded as input, whereas the ontology and the query
are regarded as fixed). Although guaranteeing the same data
complexity as in RDBMSs, the rewriting approach does not
impose any restrictions on the size of the ‘rewritten’ queries
q′(~x), which may be exponential in the size of q and so pro-
hibitive for efficient execution by RDBMSs.

In this paper, we suggest a different refinement of condi-
tions (dat) and (que) by taking account of the size of T :
(dat′) D′ is computable in polynomial time in both T andD,

preferably using RDBMSs;
(que′) q′(~x) is polynomial in T and q(~x).
These conditions emerge from the combined approach to
OBDA suggested in [Lutz et al., 2009; Kontchakov et al.,
2010] and aim at scenarios where it is allowed to manipu-
late the source data (which is not always the case in informa-
tion integration). The motivation for this approach is twofold.
First, by allowing D′ 6= D, we gain the advantage of much
smaller and transparent rewritings q′(~x) of the query. The
experimental data we discuss below indicates that this leads
to significant performance improvements. Second, the ap-
proach advocated here is not confined to the languages for
which OBDA is in AC0 for data complexity. As shown in
[Lutz et al., 2009], it can be successfully applied to ontology
languages for which query-answering is PTIME-complete for
data complexity.

Over many years now, the most popular and successful on-
tology languages are based on description logics. In fact, the
DL-Lite family of description logics [Calvanese et al., 2007;
Artale et al., 2009] was specifically designed for the rewrit-
ing approach to OBDA and is the logical underpinning of the
profile OWL 2 QL of the OWL 2 Web Ontology Language.
In our exposition of the combined approach below, we focus
on a simple member of the DL-Lite family, but also briefly
discuss its applicability to the EL family of description log-
ics, which underlies the OWL 2 EL profile of OWL 2.

2 DL-Litehorn

To discuss the main ideas behind the combined approach,
we consider the description logic DL-Litehorn [Artale et al.,
2009] designed to represent relationships between concepts
(unary predicates in FO or classes in OWL) and the domains
and ranges of roles (binary relations in FO or properties in
OWL). Ontologies in DL-Litehorn, as well as most other de-
scription logics, are called TBoxes (T for terminology) and
consist of inclusions between concepts. The expressive power
of the logic depends then on the constructors available to
build concepts. In the case of DL-Litehorn, roles R and con-
cepts C are built from concept names Ai and role names Pi,
i ≥ 0, according to the following syntax rules:

R ::= Pi | P−i , C ::= > | ⊥ | Ai | ∃R,

and a DL-Litehorn TBox T is a finite set of concept inclusions
(CIs) C1 u · · · uCn v C, where the Ci and C are concepts.
Every CI can be regarded as a first-order Horn sentence. For
example, ∃P u ∃P− v A has exactly the same meaning as
∀x (∃y P (x, y) ∧ ∃y P (y, x)→ A(x)).

Thus, TBoxes are interpreted in standard FO structures
I = (∆I , AIi , P

I
i)i≥0, where ∆I is a non-empty domain,

AIi ⊆ ∆I and P Ii ⊆ ∆I ×∆I . We set >I = ∆I , ⊥I = ∅,
(P−i)I = {(x, y) | (y, x) ∈ P Ii }, and

(∃R)I = {x ∈ ∆I | there is y ∈ ∆I with (x, y) ∈ RI};

so ∃P is interpreted as the domain of P and ∃P− as its range.
We write I |=

dn
i=1 Ci v C and say that

dn
i=1 Ci v C is

satisfied in I if
⋂n

i=1 C
I
i ⊆ CI .

In description logic, ground atoms of the form A(a) and
P (a, b), where A is concept name, P a role name, and a, b
individual names, are called concept assertions and role as-
sertions, respectively. An ABox, A, is a finite set of concept
and role assertions, which is used to store instance data. In
interpretations I, aI is the domain element interpreting the
individual name a in I. As usual, I |= A(a) if aI ∈ AI , and
I |= P (a, b) if (aI , bI) ∈ P I .

We denote by Ind(A) the set of individual names occurring
in A, and often write P−(a, b) ∈ A instead of P (b, a) ∈ A.
A DL-Litehorn knowledge base (KB) is a pair K = (T ,A).
An interpretation I is a model of a KB K = (T ,A) if I |= α
for all α ∈ T ∪ A. We write K |= α whenever I |= α for all
models I of K. K is consistent if it has a model. Consistency
of DL-Litehorn KBs is known to be PTIME-complete [Artale
et al., 2009] for combined complexity.
Example 1. Consider the KB K = (T , {A(a)}), where

T = {A v ∃T, ∃T− v B, B v ∃R, ∃R− v A}.

Two models of K, called GK and UK, are depicted below:

GK
A

a

B

cTT

A

cR
R

T

UK
A

a

B

acT

T A

acT cR

R B

acT cRcT

T . . .

First-order (FO) queries q(~x) to a KB K are constructed
from concept and role names (treated as unary and binary
predicates) using individual names and variables (called, as
usual, terms). We say that a tuple ~a ⊆ Ind(A) (of the same
length as ~x) is an answer to q(~x) in an interpretation I if

I |= q[~a], where q[~a] results from replacing the (free) vari-
ables ~x in q(~x) with constants ~a. The set of all answers to q
in I is denoted by ans(q, I). A tuple ~a ⊆ Ind(A) is a certain
answer to q(~x) overK if I |= q[~a] for all models I ofK. The
set of all certain answers to q overK is denoted by cert(q,K).
Example 2. Let q(x) = ∃y, z (T (x, y) ∧ R(y, z) ∧ T (z, y))
andK be as in Example 1. Then a is an answer to q(x) in GK,
but not a certain answer to q(x) over K as UK 6|= q[a].

Conditions (ans) and (dat) cannot be satisfied for arbitrary
FO queries—simply because FO is undecidable. Although
such queries are allowed in standard database languages such
as SQL, most commonly used in practice are conjunctive
queries (CQs) of the form q(~x) = ∃~y ϕ(~x, ~y), where ϕ is
constructed from atomic predicates using only conjunction
(in databases, CQs are known as SPJ queries). In more gen-
eral positive existential queries, disjunction is also allowed in
ϕ.

Thus, the problem we are facing now is how to com-
pute, ideally in polynomial time, given a DL-Litehorn KB
K = (T ,A) and a CQ q(~x), a finite FO-structure GK, inde-
pendently from q(~x), and an FO-query q′(~x), independently
from A, such that (ans) holds: for every tuple ~a ⊆ Ind(A),
~a ∈ cert(q,K) if, and only if, ~a ∈ ans(q′,GK). The key to
a solution is the well-known property of Horn theories: the
existence of least Herbrand, or canonical, models which give
all correct answers to CQs [Apt, 1990]. (We note here that all
ontology languages used for OBDA so far are sub-languages
of the Horn fragment of FO, which is not able to express any
kind of disjunctive information.)

3 Canonical Models
To construct the canonical model, UK, for a DL-Litehorn KB
K = (T ,A), we start withA and then exhaustively apply the
CIs from T , always introducing new elements in role domain
and ranges if necessary (as in Example 1). Formally, the do-
main of UK consists of paths of the form acR1 · · · cRn , n ≥ 0,
such that a ∈ Ind(A) and the following conditions hold:
(agen) K |= ∃R1(a) but R1(a, b) /∈ A for all b ∈ Ind(A), in

which case we write a cR1
;

(rgen) for i < n, T |= ∃R−i v ∃Ri+1 and R−i 6= Ri+1, in
which case we write cRi cRi+1 .

We denote the last element in a path σ by tail(σ), and define
UK by taking:

∆UK = {acR1
· · · cRn

| a ∈ Ind(A), a cR1
 · · · cRn

},
aUK = a, for a ∈ Ind(A),

AUK = {a ∈ Ind(A) | K |= A(a)} ∪
{σcR ∈ ∆UK | T |= ∃R− v A},

PUK = {(a, b) ∈ Ind(A)× Ind(A) | P (a, b) ∈ A} ∪
{(σ, σcP) ∈ ∆UK ×∆UK | tail(σ) cP } ∪
{(σcP− , σ) ∈ ∆UK ×∆UK | tail(σ) cP−}.

The following theorem, reflecting the fact that any model of
K contains a homomorphic image of UK, provides a basis for
reductions of OBDA to query-answering in RDBMSs:

Theorem 3. For every consistent DL-Litehorn KB K and ev-
ery positive existential query q, cert(q,K) = ans(q,UK).

The consistency checkK |= ⊥ required in this theorem can
be easily encoded as an FO-query overK. So the real problem
here is how to cope with the fact that UK can be large, even
infinite.

Note first that, although UK can be infinite, its structure
is quite regular: we have a ‘kernel’ given by the ABox A,
each element a of which is a root of a tree with branches of
the form a cR1

 · · · cRn
, where the cRi

represent
‘witnesses’ for the existential restrictions ∃Ri. The concepts
from T to which the elements of UK belong are computed (in
polynomial time) by applying the ‘rules’ in T : for instance,
acR1

· · · cRn
∈ AUK if, and only if, T |= ∃R−n v A.

This suggests two ways of encoding UK. The rewriting ap-
proach of [Calvanese et al., 2007], illustrated by the query
ϕ′(x) from the introduction, ‘builds’ T into the rewritten
query, independently ofA. We give another example demon-
strating the underlying idea:
Example 4. Take again the TBox T from Example 1 and let
q(x) = ∃y R(x, y). An element a ∈ Ind(A) is an answer to
q(x) in UK if either R(a, y) is in A, for some y, or R(a, y) is
entailed by A and T . By inspecting T , we see that R(a, y)
can only be entailed by either B(a) or T (z, a), for some z.
Thus, a is an answer to q(x) over (T ,A) if, and only if, a is
an answer to q(x) ∨B(x) ∨ ∃z T (z, x) over A.

This rewriting technique reduces the OBDA problem
‘(T ,A) |= q(~x)?’ for DL-Litehorn KBs to the RDBMS prob-
lem ‘A |= q′(~x)?’ where q′ depends on q and T only. Thus,
it complies with conditions (ans), (dat) and (que) and shows
that answering positive existential queries over DL-Litehorn
KBs is in AC0 for data complexity [Calvanese et al., 2007],
the same as RDBMS query answering. However, the size
of q′(~x) in all reductions known so far is exponential in |q|,
O((|T | · |q|)|q|) in the worst case, and even modern RDBMSs
struggle with such queries.

The combined approach of [Kontchakov et al., 2010] en-
codes UK in a finite FO structure, GK, by identifying all paths
σ of UK with the same tail(σ)—all of them belong to the
same concepts by the definition of UK—as illustrated in Ex-
ample 1. Thus, the generating model GK of K is defined as
follows:

∆GK = Ind(A) ∪ {cR | a ∈ Ind(A), a · · · cR},
aGK = a, for a ∈ Ind(A),

AGK = {tail(σ) | σ ∈ AUK},
PGK = {(tail(σ), tail(σ′)) | (σ, σ′) ∈ PUK}.

The generating model GK can be constructed in polynomial
time in |K|, thus complying with condition (dat′). In Sec-
tion 5, we discuss how this can be done using RDBMSs. The
canonical model UK can be viewed as the ‘unraveling’ of GK,
with the map tail : ∆UK → ∆GK being a homomorphism
from UK onto GK. As positive existential queries are pre-
served under homomorphisms, we obtain from Theorem 3:
Theorem 5. For every consistent DL-Litehorn KB K and ev-
ery positive existential query q, cert(q,K) = ans(q,UK) ⊆
ans(q,GK).

As we saw in Example 2, the converse inclusion does not
hold because by identifying elements in UK we ruin its tree
structure. Here is another example:
Example 6. Suppose that K = (T , {A(a), A(b)}), where
T is as in Example 1. Consider the ‘fork-shaped’ query
q(x1, x2) = ∃y (T (x1, y)∧T (x2, y)). Then GK and UK look
as depicted below:

GK
A

a

A

b B

cT
T

T
A

cR
R

T

UK
A

a

B

acT

T A

acP cR

R B

acT cRcT

T . . .

A

b

B

bcT

T A

bcP cR

R B

bcT cRcT

T . . .

So we have GK |= q2[a, b], while UK 6|= q2[a, b].
The domain of the generating model GK consists of Ind(A)

and those elements of the ‘witness set’

RT = {cR | R or R− occurs in T }
that are accessible from Ind(A) via the relation . In
the combined approach, GK is computed in a preprocess-
ing step—independently of any queries—and stored in the
database. We shall discuss preprocessing in Section 5. But
before that let us see how to get rid of the spurious answers
to queries which can be given by GK as in Examples 2 and 6.

4 Conjunctive Query Answering
Suppose we are given a CQ q(~x) = ∃~y ϕ(~x, ~y). Our aim is to
rewrite q to an FO query q†(~x) in such a way that (i) for every
DL-Litehorn KB K = (T ,A), cert(q,K) = ans(q†,GK) and
(ii) the size of q† is polynomial in the size of q. We define the
rewriting q† as a conjunction

q†(~x) = ∃~y (ϕ ∧ ϕ1 ∧ ϕ2 ∧ ϕ3),

where ϕ1, ϕ2 and ϕ3 are Boolean combinations of equalities
t1 = t2, and each of the ti is either a term in q or a constant
cR ∈ RT . The purpose of the conjunct

ϕ1 =
∧
x∈~x

∧
cR∈RT

(x 6= cR)

is to ensure that the answer variables ~x receive their values
from Ind(A) only, as the witnesses cR are ‘implicit’ elements
of unknown identity and hidden from the user (labelled nulls,
in the database parlance).

The conjuncts ϕ2 and ϕ3 are closely related and serve the
purpose of filtering out the spurious answers discussed in Ex-
amples 2 and 6. The idea is to prevent any assignments that
cannot be ‘reproduced’ in the canonical model UK. Due to
the forest structure of UK, this requirement imposes strong
constraints on the way how variables can be matched to the
RT part of GK. Essentially, the part of q that is mapped to
RT must be homomorphically embeddable into a forest. This
intuition is captured by the following definition. Let (RT)∗

be the set of all finite words over RT (including the empty
word ε). To simplify notation, we identify q with the set of its
atoms and use P−(t, t′) ∈ q as a synonym of P (t′, t) ∈ q.
Definition 7. Let q be a CQ and R(t, t′) ∈ q. A partial func-
tion f from the terms of q to (RT)∗ is a tree witness for (R, t)
in q if its domain is minimal (with respect to set-theoretic in-
clusion) such that f(t) = ε and, for all atoms S(s, s′) ∈ q,

– if f(s) = ε then f(s′) = cR provided that R = S, and

– if f(s) = σcT then f(s′) =

{
σ, if T = S−,

σcT cS , otherwise.

A tree witness for (R, t) in q does not exist if, starting
from R(t, t′), we can reach some term s in q via two dif-
ferent paths, which would give different values for fR,t(s)
(see Example 8). But if one exists then it is unique, and we
denote it by fR,t. Note that, by (rgen), GK has no paths of
the form σcS−cS , which is reflected by the two cases in the
second item of the definition.
Example 8. Let q = {R(y1, y2), S(y2, y3), S(y4, y3)}. Then
the tree witnesses for (R, y1) and (S, y4) in q are:

fR,y1

y1

ε

y2

cR

R

y3

cRcS
S

y4

cR
S fS,y4

y1

undef.

y2

ε

R

y3

cS
S

y4

ε
S

For the cyclic query q = {T (x, y), R(y, z), T (z, y)} from
Example 2, there exists no tree witness for (R, y) because we
must have both fR,y(y) = ε and fR,y(y) = cRcT− , contrary
to fR,y being a function. Similarly, no tree witnesses exist for
(R−, z), (T, z) or (T−, y) in q.

Intuitively, the tree witness fR,t addresses those assign-
ments π where π(t) is an ABox element but π(t′), for
R(t, t′) ∈ q, is not (and so π(t′) = cR), by recording con-
sequences of the fact that we must be able to reproduce π in
UK: if fR,t(s) = σcS , then π has no other choice than to map
s to cS , and if fR,t(s) = ε, then π must map s to π(t).

The conjunct ϕ2 implements the matching dictated by the
tree witnesses. It turns out that the matches determined by
fR,t also apply when t is not mapped to an ABox element.
This, in turn, means that it suffices to enforce such matches
for the terms s with fR,t(s) = ε:

ϕ2 =
∧

R(t,t′)∈q
tree witness for (R,t) exists

(
(t′ = cR)→

∧
fR,t(s)=ε

(s = t)
)
.

Example 9. We illustrate ϕ2 using the ‘fork-shaped’ query
q(x1, x2) = ∃y (T (x1, y) ∧ T (x2, y)) from Example 6. As
fT,x1

(x2) = ε, we have (y = cT)→ (x1 = x2) in ϕ2, which
prevents the spurious match {x1 7→ a, y 7→ cT , x2 7→ b} of
Example 6.

If the tree witness for (R, t) in q does not exist, then there
are two paths from R(t, t′) to some term s in q. As any el-
ement σ of UK may have only one R-successor of the form
σcR, this means that t′ in every R(t, t′) ∈ q must be mapped
to an ABox element. This is ensured by the conjunct

ϕ3 =
∧

R(t,t′)∈q
no tree witness for (R,t) exists

(
t′ 6= cR

)
.

Example 10. We illustrate ϕ3 using the ‘cyclic’ query
q(x) = ∃y, z (T (x, y) ∧R(y, z) ∧ T (z, y)) from Example 2.
As shown in Example 8, there exist no tree witnesses for
(R, y) (R−, z), (T, z) and (T−, y). This gives four conjuncts
(z 6= cR), (y 6= cR−), (y 6= cT) and (z 6= cT−) of ϕ3, which
prevent the spurious matches of Example 2.

Theorem 11. For every DL-Litehorn KB K and every CQ q,
ans(q†,GK) = ans(q,UK).

Given a CQ q(~x) andR(t, t′) ∈ q, it can be decided in time
O(|q|) whether a tree witness for (R, t) in q exists. If it does
exist, the tree witness can be computed in time O(|q|). It fol-
lows that q† can be computed in polynomial time in the size
of the query q and the set RT . The length of q† isO(|q| · |T |)
since ϕ1 is of length O(|q| · |T |), ϕ3 is of length O(|q|) and
ϕ2 can be made of length O(|q|) as well by observing that,
for each R, the condition fR,t(s) = ε induces an equivalence
relation on terms. If we add a unary relation aux identify-
ing exactly the elements of RT , then we can replace ϕ1 with
ϕ′1 =

∧
x∈~x ¬aux(x) and obtain q† of size O(|q|).

5 Generating Model by Views
To make the combined approach to OBDA work in practice,
it is important to find a feasible way of extending the ABox
A stored in the RDBMS to the generating model GK. This
is all the more important as we have to reflect the changes
to GK whenever facts are added to or deleted from A. Our
solution is to use FO-queries to define views in the RDBMS
that compute the extensions of the concept and role names
in GK when executed on A. We illustrate this idea by an
example and refer the reader to [Kontchakov et al., 2010] for
details.
Example 12. Consider the TBox T from Example 1. We
have to construct views qA(x), qB(x), qT (x, y) and qR(x, y)
the answers to which over A are AGK , BGK , TGK and RGK ,
respectively. For example, a first attempt to design qB(x)
might be the following query:

q′B(x) = B(x) ∨ ∃y T (y, x) ∨ (x = cT).

The first two disjuncts reflect the ways concept B can be en-
tailed given T ; the last disjunct is meant to reflect the fact
that cT ∈ BGK when cT is in the domain of GK. However, cT
does not belong to GK if there is no element a of the ABoxA
that ‘generates’ cT , i.e., a · · · cT , and thus the answer
returned by q′B may be too large. Fortunately, the condition
‘cT is generated by an element a of the ABox’ can be ex-
pressed by another FO-query, which in this case is simply
gT (a) = (A(a) ∨ ∃y R(y, x)) ∧ ¬∃y T (a, y); cf. GK in Ex-
ample 1. Thus we can refine the last disjunct of q′B and obtain
the desired query:

qB(x) = B(x) ∨ ∃y T (y, x) ∨ ((x = cT) ∧ ∃z gT (z)).

The remaining views are constructed analogously.
In general, FO-queries such as qA(x) and qR(x, y) in the

example above can be of exponential size in |T |. However,
they always contain only polynomially many distinct sub-
queries, and therefore can be represented by means of polyno-
mial non-recursive Datalog programs or a polynomial num-
ber of views of an RDBMS.

In DL-Litecore [Calvanese et al., 2007], which results from
DL-Litehorn by disallowing conjunctions in CIs apart from
those in disjointness constraints of the form A u B v ⊥
and roughly corresponds to OWL 2 QL without role inclu-
sions, the FO-queries qA(x) and qR(x, y) are of linear size

even without structure sharing. Since these queries can be
‘plugged’ into the query q† defined in Section 4, this yields
a new implementation of the rewriting approach to OBDA.
Remarkably, for the first time we achieve pure query rewrit-
ing with only a polynomial blowup of the query (which also
works for the extension of DL-Litecore with role functionality
constraints under the unique name assumption).

6 Experimental Evidence
Pure query rewriting for the extension of DL-Litecore with role
inclusions has been implemented in the systems QuOnto [Ac-
ciarri et al., 2005; Poggi et al., 2008b], REQUIEM [Pérez-
Urbina et al., 2009], Presto [Rosati and Almatelli, 2010] and
Nyaya [Gottlob et al., 2011]. They all rewrite CQs q into
unions Q of CQs with exponentially many components (in
the length of q) in the worst case, and use various query op-
timisation techniques to reduce the size of Q. The reduction
is in some cases quite substantial, but none of the rewritings
avoids an exponential blowup in the worst case.

In the combined approach, we separate inference from
query processing and construct the generating models, which
take care of the ontology. As a result, the rewritings of CQs
over DL-Litehorn ontologies (without role inclusions) are al-
ways linear. Moreover, their simple structure ensures that an-
swers to queries can be computed by first evaluating the orig-
inal query in the generating model, and then filtering out (a
small number of) tuples violating one of ϕ1, ϕ2, ϕ3. This pro-
vides true scalability comparable to RDBMSs, which is con-
firmed by experiments in [Kontchakov et al., 2010] showing
that CQ answering with our approach is competitive in perfor-
mance with executing the original queries over the data. The
price we have to pay for this is the construction and mainte-
nance of the generating model GK, which, as discussed above,
can be implemented by using materialised views and then re-
lying on the RDBMS to maintain them and propagate ABox
updates. In the worst case, the size of GK is O(|A| · |T |). In
practice, the experiments of [Kontchakov et al., 2010] with
Galen-Lite indicate that materialization of GK results in a
five-fold increase of the size of the data, and the tests of [Cal-
vanese and Rodrı́guez-Muro, 2011] on Stanford’s BioPortal
Resource Index show even a tenfold increase. In both cases,
the main cause of the increase is the depth of the concept
hierarchies in the considered ontologies. Interestingly, [Cal-
vanese and Rodrı́guez-Muro, 2011] demonstrate that the in-
crease can be curbed, at least for DL-Litecore, by using an
encoding of concept hierarchies as nested intervals (see also
[DeHaan et al., 2003]).

7 Extensions and Variations
To simplify presentation, we have only considered a rather
small fragment of the languages investigated in [Kontchakov
et al., 2010]. First, by adopting the unique name assump-
tion (UNA), the combined polynomial rewriting can be ex-
tended to DL-Litehorn enriched with unqualified number re-
strictions. (Without the UNA, conjunctive query answering
becomes CONP-complete for data complexity [Artale et al.,
2009]; note that in the case of DL-Litehorn considered in this
paper, query answers agree with and without UNA.) For the

extension of DL-Litehorn with role inclusions (i.e., expres-
sions of the form R1 v R2), one can polynomially reduce
conjunctive query answering to answering positive existential
queries over TBoxes without role inclusions. At the price of a
worst-case exponential blowup, the latter problem can then be
reduced to answering unions of conjunctive queries; for de-
tails and side conditions, we refer the reader to [Kontchakov
et al., 2010]. We note that the blowup encountered in second
reduction depends only on the size of the query and on the
number of role inclusions, which is typically very small in
real-world ontologies.

The combined approach can also be applied to the descrip-
tion logic EL, which is used for large scale medical termi-
nologies such as SNOMED CT. In contrast to DL-Lite, in EL
one can qualify existential restrictions and use CIs such as
∃R.AuC v ∃R.B; however, EL does not have inverse roles.
Conjunctive query answering for EL ontologies is PTIME-
complete for data complexity, and so the rewriting approach
is not applicable in this case. In [Lutz et al., 2009], the com-
bined approach is developed for the extension ELHdr

⊥ of EL
with the inconsistent concept, role inclusions, and domain
and range restrictions. Although the structures of the generat-
ing models and rewritten queries are quite different from the
DL-Lite case, their size is still polynomial in T and q, respec-
tively. Here we only illustrate the polynomial representation
of canonical models for EL KBs.
Example 13. Let K = (T , {C(a)}), where

T = {C v ∃R.A, ∃R.A u C v ∃R.B, B v C}.

The canonical model UK and the generating model GK are:

UK

a
C

A

B,C

A

B,C
.

GK

a
C

c∃R.A
A

c∃R.B

B,C

Note that the generating model GK may contain an extra ele-
ment c∃R.C for each existential quantifier ∃R.C in the TBox.

Our results for DL-Lite and EL suggest a variety of future
research problems. For instance, it would be of great interest
to find out how the rewritings used for DL-Lite and EL can be
combined so as to cover other Horn descriptions logics such
as ELI or Horn-SHIQ, which use both inverse roles and
qualified existential restrictions. In this case, it seems likely
that the extension of the data has to be exponential in the size
of the input TBox, in the worst case. As noted in [Lutz et al.,
2009], DLs for which conjunctive query answering is not in
PTIME for data complexity (such as ALC and SHIQ, un-
less PTIME = NP) necessarily involve an extension of the
data that is exponential in the size of the input ABox, which
we consider useless for practical purposes. It would also be
of interest to investigate the combined approach for more ex-
pressive ABoxes and/or queries. First results on how the com-
bined approach can be extended so as to cover ABoxes and
queries with ‘epistemic’ negation are presented in [Lutz et
al., 2009]. Another interesting direction is to consider the
Datalog± family of languages [Gottlob et al., 2011].
Acknowledgments. This work was partially supported by

the U.K. EPSRC grants EP/H05099X/1 and EP/H043594/1,
by the DFG SFB/TR 8 “Spatial Cognition”, and by NSERC.

References
[Acciarri et al., 2005] A. Acciarri, D. Calvanese, G. De Gi-

acomo, D. Lembo, M. Lenzerini, M. Palmieri, and R.
Rosati. QUONTO: QUerying ONTOlogies. In Proc. of
AAAI, pages 1670–1671, 2005.

[Apt, 1990] K. Apt. Logic programming. In Handbook of
Theoretical Computer Science, Volume B: Formal Models
and Sematics, pages 493–574. Elsevier, 1990.

[Artale et al., 2009] A. Artale, D. Calvanese, R. Kontchakov,
and M. Zakharyaschev. The DL-Lite family and relations.
J. of Artificial Intelligence Research, 36:1–69, 2009.

[Calvanese and Rodrı́guez-Muro, 2011] D. Calvanese and
M. Rodrı́guez-Muro, 2011. Private communication.

[Calvanese et al., 2007] D. Calvanese, G. De Giacomo, D.
Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The
DL-Lite family. J. of Aut. Reason., 39(3):385–429, 2007.

[DeHaan et al., 2003] D. DeHaan, D. Toman, M. Consens,
and M.T. Özsu. A comprehensive XQuery to SQL trans-
lation using dynamic interval encoding. In Proc. of SIG-
MOD, pages 623–634, 2003. ACM.

[Dolby et al., 2008] J. Dolby, A. Fokoue, A. Kalyanpur,
Li Ma, E. Schonberg, K. Srinivas, and X. Sun. Scalable
grounded conjunctive query evaluation over large and ex-
pressive knowledge bases. In Proc. of ISWC, 2008.

[Gottlob et al., 2011] G. Gottlob, G. Orsi, and A. Pieris. On-
tological queries: Rewriting and optimization. In Proc. of
ICDE, 2011.

[Heymans et al., 2008] S. Heymans, et al. Ontology reason-
ing with large data repositories. In Ontology Management,
Semantic Web, Semantic Web Services, and Business Ap-
plications, pages 89–128. Springer, 2008.

[Kontchakov et al., 2010] R. Kontchakov, C. Lutz,
D. Toman, F. Wolter, and M. Zakharyaschev. The
combined approach to query answering in DL-Lite. In
Proc. of KR, 2010.

[Lutz et al., 2009] C. Lutz, D. Toman, and F. Wolter. Con-
junctive query answering in the description logic EL us-
ing a relational database system. In Proc. of IJCAI, pages
2070–2075, 2009.

[Pérez-Urbina et al., 2009] H. Pérez-Urbina, B. Motik, and
I. Horrocks. A comparison of query rewriting techniques
for DL-Lite. In Proc. of DL, 2009.

[Poggi et al., 2008a] A. Poggi, D. Lembo, D. Calvanese,
G. De Giacomo, M. Lenzerini, and R. Rosati. Linking data
to ontologies. J. on Data Semantics, X:133–173, 2008.

[Poggi et al., 2008b] A. Poggi, M. Rodriguez, and M. Ruzzi.
Ontology-based database access with DIG-Mastro and the
OBDA Plugin for Protégé. In Proc. of OWLED DC, 2008.

[Rosati and Almatelli, 2010] R. Rosati and A. Almatelli. Im-
proving query answering over DL-Lite ontologies. In
Proc. of KR, 2010.

