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Abstract 

 Our objective was to demonstrate that human right-handedness, is not species specific, 

precipitated from language areas in the brain, but rather is context specific and inherited from a 

behavior common to both humans and great apes. In general, previous methods of assessing 

human handedness have neglected to consider the context of action or employed methods 

suitable for direct comparison across species. We employed a bottom-up, context-sensitive 

method to quantitatively assess manual actions in right-handed, typically developing children 

during naturalistic behavior. By classifying the target to which participants directed their manual 

action, as animate (social partner, self) and inanimate (non-living functional objects), we found 

that children demonstrated a significant right-hand bias for manual actions directed towards 

inanimate targets, but not for manual actions directed towards animate targets. This pattern was 

revealed at both the group and individual levels. Using a focal video sampling corpus data 

mining approach allowed for direct comparisons with captive gorillas (Forrester et al. in Anim 

Cogn 14(6):903–907, 2011) and chimpanzees (Forrester et al. in Anim Cogn in press, 2012). 

Comparisons of handedness patters support the view that human handedness, and its origin in 

cerebral lateralization is not a new or human-unique characteristic. Additionally these data are 

consistent with the theory that human population-level right-handedness is a trait developed 

through tool use that was inherited from an ancestor common to both humans and great apes. 

  

 Keywords: human, handedness, cerebral lateralization, evolution 
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1. Introduction 

The human brain is not symmetrical, neither functionally nor anatomically. There are 

different functional specializations of the left and right hemispheres for processing sensory 

information [for a review, see 1]. Furthermore, the organization of the brain is such that the 

innervations of the musculature that come from the motor cortices extend contralaterally. The 

left hemisphere controls the right side of the body and the right hemisphere controls the left side 

of the body. The result of such organization means that cerebral lateralization can manifest in 

contralateral physical actions [e.g. 2]. Thus, in some cases, physical action can be used as 

indirect markers of underlying neural generators [for a review, see 3].  

The most notable example of lateralized motor action underpinned by cerebral 

lateralization for cognitive function in humans is handedness and neural regions associated with 

speech production (e.g. inferior frontal gyrus [4]), and comprehension (superior temporal gyrus 

[5]). For the vast majority of the population, language function and handedness are both hosted 

by the left hemisphere [e.g. 6]. Additionally, it is commonly reported that the human population 

exhibits approximately 90% right-handedness [e.g. 7] and within this population approximately 

95% of individuals have language-processing regions situated in the left hemisphere of the brain 

[8]. Human population-level right-handedness has been theorized to have evolutionary links with 

gesture [9, 10], speech [11], tool use [e.g. 12], coordinated bimanual actions [13, 14], posture 

[15] and bipedalism [16, 17]. Scientists have been drawn to the unique coupling of manual action 

and brain organization for skilled communication in the hopes that it may shed light on the 

origins of human language. However, to date, a causal relationship between human handedness 

and language function remains a hotly debated topic [18].  
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While behavioral lateralization, driven by dominant contralateral neural regions, was 

historically considered to be unique to humans, it is now widely accepted that lateralized motor 

action underpinned by contralateral neural regions is present in both vertebrates [19, 20] and 

invertebrates [e.g. 21]. This division of labor between the two hemispheres is proposed to be an 

advantageous evolutionary adaptation that provides the brain with increased neural efficiency.   

Lateralized brains allow for disparate functions to operate in parallel within the left and right 

hemisphere. Additionally, by avoiding the duplication of functioning across hemispheres, there is 

no concern regarding the simultaneous initiation of incompatible responses [19, 22, 23]. Recent 

research suggests that cerebral lateralization for specific capabilities emerged before the rise of 

vertebrates such that the left hemisphere evolved to control well-established patterns of behavior 

and the right hemisphere became adapted for detecting and responding to unexpected stimuli [for 

a review, see 24]. 

The studies above suggest that cerebral lateralization resulting in lateralized behaviors is 

an extremely old evolutionary adaptation and that more recent cognitive capabilities embedded 

in behavior are likely to be extensions to previously existing neural architecture. While this 

perspective may stand in contrast to the perception that humans have a special evolutionary 

status, it fits well with our understanding of natural selection which dictates that it is more likely 

that new behavioral and cognitive capabilities emerge from existing skills, rather than from 

scratch. This position is also consistent with evidence from disparate fields (e.g. archeology and 

neuroscience discussed in more detail below), suggesting that language and tool use share 

cognitive characteristics supported by the same left hemisphere neural architecture, which 

provides support for right-handedness emerging from a skill that preceded and potentially gave 

rise to language capabilities. 
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 5 

 Recent archeological evidence reports that humans have been right-handed tool users for 

over 2.5 million years [25, 26] while modern human language is thought to have emerged less 

than one hundred thousand years ago [27]. Additionally, new functional magnetic resonance 

imaging (fMRI) results have demonstrated an overlap of activity between tasks related to 

language  and  tool  use  in  Broca’s  Area  (Broadmann’s  Area  44) in a group of healthy humans 

[28]. Broca’s  area  has  historically  been  categorized  as  the  brain  region  responsible for speech 

production.  The  overlap  of  location  for  language  and  tools  in  Broca’s  Area  suggests  that  these  

two behaviors share similar computational principles for processing hierarchical sequences of 

events. These findings directly challenge the historical perspective that human right-handedness 

is the result of language capabilities that emerged specifically within hominid evolution. 

All of these findings together are consistent with  the  ‘tool-use’  theory  put  forward  over  

three decades ago which argued that speech, produced by the movements of the tongue, lips, and 

vocal chords, requires precisely timed and sequenced actions to manifest communication [29]. 

This process was likened to that of the construction of tools, which involves skilled serial motor 

activities, such as the movements of arms, hands and fingers, hierarchically employed to reach a 

goal. Others posited that the ability to build and use tools is linked to language, as both activities 

can generate infinite complex hierarchical structures [30]. For example, during tool use, humans 

can combine together different constructive elements (action grammar) in the same way that 

language requires grammar, which is based on rules for combining words in a meaningful order 

[31]. Many researchers support the theory that right-handed actions are underpinned by left-

hemisphere specialized areas for orchestrating hierarchical sequences of events to reach a goal 

state [9, 32-35], and postulate that language could have evolved as an extension of right hand and 

left hemisphere ability to produce temporal sequences of motor activities derived from tool use 
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[36-39]. Until recently, were missing convincing behavioral data from our closest living relatives 

to support archeological and neuroscientific findings in favor of the tool use theory. 

Evolutionary psychologists contend that the most comprehensive method to study the 

origin of handedness and hemispheric specialization for language may be to observe the 

spontaneous behaviors of our closest living relatives. Great apes represent a functional model to 

study the evolution of both handedness and human cognition, not only because of their 

phylogenetic proximity to humans, but also because they display clear anatomical human-like 

features, such as the morphology and the manipulative skills of hands [40], the ability to 

occasionally locomote bipedally [41] and the capacity to exhibit intentionally communicative 

gestures [e.g. 42-46]. Great apes do not only share physical characteristics with humans, the 

neural organization of the great ape brain shares many structural and processing capabilities with 

the human brain. Recent neuroimaging studies have indicated that all four species of great apes 

also  display  homologous  human  Broca’s  [47] and  Wernicke’s  [48] areas that are asymmetrically 

larger in the left hemisphere of all species of great apes. Further neuroimaging studies 

corroborate a left hemisphere specialization for tool use in apes demonstrating an overlap with 

brain regions associated with language-like skills in humans [49-51].  

While all four species of great apes have been shown to be tool users both in captivity 

and in the wild, interestingly, to date, there are no consistent population-level behavioral findings 

that indicate a lateral manual bias in great apes. Great ape handedness has been extensively 

explored from a plethora of different methods. While a range of studies find no clear evidence of 

species-level manual lateralization [e.g. 52-57], others have reported right-hand biases in 

chimpanzees (Pan troglodytes) for: bimanual feeding, coordinated bimanual actions, bipedal 

reaching and throwing [for reviews, see 58, 59], in captive gorillas for bimanual feeding [60] and 
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for communicative gesture in chimpanzees [e.g. 10, 61, 62]. Alternatively, it has been noted that 

orangutans a exhibited a significant left-hand preference for scratching and for fine manipulation 

of parts of the face in rehabilitated orangutans [63], while chimpanzees exhibited a significant 

increase in left-handed self-directed behaviors with increased in task complexity [64] contending 

that self-directed behaviors may be influenced by motivational factors underpinned by a right 

hemisphere dominance within both social and nonsocial contexts. Along with inconsistent 

finding across laboratories, some results, particularly related to chimpanzees, have been 

challenged on methodological grounds [e.g. 65] and sampling factors [66, 67]. 

More recently, systematic investigations of ape handedness, employing larger sample 

sizes have attempted to clarify confounds in earlier studies. Hopkins et al. investigated the 

influences of rearing histories on handedness [68], while Llorente et al. tested the influence of 

bimanual and unimanual tasks on handedness [69, 70]. Although no ape study has revealed a 

manual bias with a similar degree of lateralization compared with the human population, each of 

the above investigations demonstrated significant right-hand biases using their own 

methodological assessment, consistent with the hypothesis of an early adaptation for a left 

hemisphere specialization for behaviors requiring structured sequences of actions [e.g. 13]. 

Human handedness measures are not without their own methodological concerns. Despite 

strong neuropsychological correlates for handedness, methods of assessment are not uniform or 

consistent across development. Human handedness is typically assessed through self-report, 

questionnaires and observations. For adults, questionnaires, such as the Edinburgh Handedness 

Inventory [71] and the Waterloo Handedness Questionnaire [72], focus exclusively on literate 

populations, querying with which hand subjects pick up or manipulate a functional object (e.g. 

pencil, scissors). While human right-handedness appears to be an extremely robust and universal 
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finding [73], questionnaires focus exclusively on precision tool use, and therefore represent a 

specific subset of individuals on a specific subset of tasks. The few studies that explore 

spontaneous naturalistic handedness demonstrate patterns that are more complex and may give 

clues to the neural generators driving the behaviors. For example, during observations of 

naturalistic conversation, manual actions, which did not otherwise touch anything and occurred 

during speaking but not silent verbal tasks or nonverbal communication, were significantly 

biased to the right hand in left hemisphere language dominant individuals [74]. In another study 

of naturalistic behavior, handedness was tracked across three different preliterate populations and 

demonstrated that although there was a general population trend for right-handedness, 

individuals were mixed-handed for all actions with the exception of tool use, which was 

distinctly right-handed [75]. Additionally, others reported a human left hand preference for the 

self-directed behavior of face touching, in individuals who were otherwise right-handed [76], 

suggesting that social or emotive hand action might activate the right hemisphere’s  dominance 

for emotional processing [77]. 

For children, handedness has been demonstrated to be a potential determinant of 

cognitive development. Left- or mixed-handedness has been associated with atypical cognitive 

abilities [78, 79] and mental health [80]. Observing the writing hand of children is often the 

easiest approach for children aged 6 to 10 years of age [81], although this approach can be 

criticized based on cultural bias [82]. Other tests attempt to either distinguish between lateral 

dominance (based on whether a task is easier to perform with the left or right hand) [e.g. 83], or 

hand preference, focusing on the quality of the performance and spontaneous hand preference 

[e.g. 84]. Others still have opted for an ethological approach to assessing handedness through 

observations of videoed naturalistic handedness behavior [85, 86]. More recently a standardized 
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hand assessment for preschool children has been established for aged 4-6 years old [87]. While 

the method  establishes  a  very  high  correlation  with  parent’s  estimates of child handedness and 

observations of writing hand, it focuses exclusively on the manipulation of functional objects. 

One remarkable large-scale study that did investigate children (3-5 years old) and gorillas within 

similar experimental parameters noted that small object manipulation was the only activity in 

which children elicited the greatest number of right hand responses and all gorillas used one 

hand more than the other. The authors conclude that handedness in both gorillas and human 

children is a continuum of bias from left to right with individual variations in in the strength of 

the bias, but generally skewed to the right [88].  

A review of the literature suggests that human handedness may well give clues to the 

evolution and neural organization underlying lateralized behavior. However, it is necessary to 

construct a methodological approach that can accommodate a range of human and primate 

populations to identify common patterns of behavior across species. Based on the current body 

of literature, the general perception remains that while other animals may demonstrate some 

lateralized behaviors, no other animal shows this trait to an equal level of significance as 

population-level right-handedness in humans. Therefore, humans retain a special evolutionary 

status, primarily resting on the lack of evidence for population-level handedness in nonhuman 

primates. Diverse methods for testing handedness exist across laboratories, within human 

populations and between species, inhibiting the ability to assess handedness from an 

evolutionary perspective. Therefore, it is difficult to discern if apes truly lack population-level 

handedness, or if the pattern is masked by discordant methods. 

To date, we have not explored human and ape handedness systematically under a unified 

methodological framework that supports direct comparisons. Consequently, the current study 
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employed a naturalistic behavior observation technique to investigate if handedness is influenced 

by context. We designed the study to methodologically match two previous studies on 

handedness conducted on two species of great apes: gorillas [89] and chimpanzees [90]. We 

simply questioned if the target of a manual action can influence the hand with which a child 

choses to interact with that target. Based on these pervious studies of great apes, we 

hypothesized that right-handed children would vary their choice of hand, depending on the 

functional (inanimate) or social (animate) aspects of the target of their manual reach, indicating 

that right-handedness is specifically tied to functional objects and underpinned by left 

hemisphere brain regions, while manual actions towards social targets involve an increase in 

right hemisphere resources demanding an increase in left-handed actions.  

 

2. Methods 

2.1 Subjects 

Ten typically developing children (mean age = 47.7 months, range: 40.5-53.2 months) 

participated in the study: four native English-speaking participants (males) and six native Italian-

speaking participants (5 males, 1 female). Based on parent reports and overall percentage of 

lateralized hand actions (Table 1) all children were classified as right-handed. Children within 

this age range were chosen because evidence suggests that stable handedness has already 

emerged [91, 92], while exposure for social conditioning for right-handed dominant individuals 

is minimized.  

The Multidimensional Method (MDM) [93] was employed for data capture, coding and 

analyses to facilitate direct comparisons with previous investigations on great apes [83, 84]. The 
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bottom-up collection method was designed to reveal patterns in behavior comprised of fine-

grained physical actions.  

 

2.2 Data Handling 

2.2.1 Data Capture 

To allow for the focal individuals to habituate to the experimenter and camera equipment, a two-

day familiarization period was conducted. Video samples for each participant were taken during 

natural, spontaneous activities within their school classroom and playground. Subsequent 

experimental data collection involved 5-minute continuous focal sampling sessions, 

counterbalanced  such  that  each  participant’s  data  represented  behaviors throughout a typical day 

[e.g. 94]. The final data set consisted of 90 minutes per participant. Dual-synchronized video 

recording was, as prescribed by the MDM was utilized for the capture of fine motor actions (e.g. 

eye gaze) as well as gross manual motor actions, within context. Digital video cameras 

(Panasonic NVGS11B: UK; Sony DCR - TRV900E, IT) were tripod mounted, but mobile, and 

followed child activity using zoom, tilt and swivel to optimize view. Synchronization of the two 

video streams was established using a flash bulb. Video footage was collected at 24 frames per 

second, and saved off-line for subsequent statistical analysis. Synchronized video streams were 

compressed into a single file (15 frames per second) viewed in a top/bottom format for 

subsequent coding, such that the focal view was placed above the wide-angle view. 

 

2.2.2 Data Coding  

OBSERVATRON software designed to run on the Mac OS X platform was used to code 

and store action records [see 81]. Unimanual actions were classified as single-handed lateralized 
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(left, right) actions that acted upon (made physical contact) with an animate (conspecific, self) or 

inanimate target (objects, ground, and enclosure), while the other hand remained at rest. Rest was 

a state of physical inactivity. Any action where one hand was already engaged or was performing 

an act of posture support or locomotion was excluded from the dataset. Animate targets were 

classified as those involving the self or a social partner. Inanimate targets were classified as those 

involving both loose and fixed non-living objects. The subsequent task performed by the hand 

was not considered, only the nature of the target itself. 

Two different environments were used to establish generality. Environment 1 (soft play) 

was a padded room with fixed climbing equipment and no loose objects to elicit social 

interactions. Environment 2 was within the main classroom where children engaged in an 

instructed object manipulation task, food consumption (e.g. snack, lunch) or free play. Neither of 

the two environments elicited interactions with exclusively animate or inanimate targets, and all 

unimanual actions were coded across both environments. A unimanual hand frequency count 

was attributed to an action where the child reached and made contact with the target (see Table 

1). All subjects were sampled for 45 minutes in each environment (90 minutes per child), 

counterbalanced by time and day using 5-minute sampling sessions.  

 

2.2.3 Data Analysis 

Group data were analyzed using a 2(left hand, right hand) x 2(animate target, inanimate 

target) repeated measures analysis of variance (ANOVA). Paired-sample t tests were used to test 

simple effects. Binomial tests and z-scores were calculated to highlight individual participant 

patterns. Because all participants were observed for equal durations, statistical calculations were 

performed on raw frequencies of manual actions. However, proportions were calculated for each 
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participant in parallel analyses to equalize the weighting that each participant contributed to the 

data set. Proportions were calculated by dividing the frequency of left or right hand actions by 

the total frequency of actions.  Alpha was set at 0.05 and all tests were two-tailed. 

 

3. Results 

Raw frequency counts, z-scores and binomial statistics for each participant (P) by lateralized 

target condition (animate, inanimate) are illustrated in Table 1. Participants with frequency 

counts of less than 10 for either target condition (animate, inanimate) were excluded from 

binomial calculations (e.g., n/a in Table 1). 

 

Table 1.  

(Frequencies, z-scores and binomial results of unimanual lateralized hand actions) 

 

A 2x2 ANOVA revealed a significant interaction of handedness and animacy when 

assessing both raw frequency (F1,9 = 10.79, P = 0.009) and proportions (F1,9 = 19.35, P = 0.002) 

(Figure 1). 

 

Figure 1. Demonstrates a significant interaction between the lateralization of manual actions 

directed by children and the animacy of the target with which they interact. The inanimate target 

condition demonstrated a greater degree of variation in handedness compared with the animate 

target condition. The figure depicts the interaction using rates per minute to foster direct 

comparisons between these human children and previous findings in great apes. 
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Main effects of target type (animate, inanimate) demonstrated significantly increased 

frequency (F1,9 = 34.22, P < 0.001) and proportion (F1,9 = 111.82, P < 0.001) of inanimate 

compared with animate targets. A main effect of hand (left, right) illustrated a significantly 

higher frequency (F1,9 = 14.78, P = 0.004) and proportion (F1,9 = 32.30, P < 0.001) of right-

handed compared with left-handed actions.  

Planned comparisons were conducted using paired-sample t-tests to assess the dominance 

of handedness within the animate and inanimate conditions. Participants demonstrated a 

significant preference for right hand actions (frequency: M = 141.7, SE = 24.91; proportion: M = 

0.088, SE = 0.024) versus left hand actions (frequency: M = 52.2, SE = 7.92; proportion: M = 

0.067, SE = 0.011) only within the inanimate target condition (frequency: t(9) = -3.605, P = 

0.006; proportion: t(9) = -1.11, P < 0.001). No such difference was found comparing right hand 

actions (frequency: M = 18.7, SE = 5.33; proportion: M = 0.605, SE = 0.043) with left hand 

actions (frequency: M = 14.4, SE = 2.98; proportion: M = 0.240, SE = 0.032) within the animate 

target condition (frequency: t(9) = -1.02, P = 0.333; proportion: t(9) = -5.357, P = 0.296). 

We further investigated individual patterns of handedness using binomial tests. These 

tests revealed that nine of the ten children indicated a right-hand dominance within the inanimate 

target condition, (Z(9) = 2.21, P = 0.022) and only one of the ten children revealed a significant 

right hand dominance within the animate target condition (Z(9) = -2.21, P = 0.021). One child 

demonstrated no lateral bias in either the animate or inanimate conditions (see Table 1 for z-

scores and binomial results). 
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4. Discussion 

Results indicated a significant interaction between handedness and target condition where the 

right hand was more influenced by the animacy of the target than the left hand. Post-hoc t-tests 

revealed a significant group right hand bias for actions towards inanimate objects, but no 

significant difference between left and right hand actions for interactions with animate targets. 

Although there was a clear difference in the raw frequencies of animate and inanimate unimanual 

actions, over 330 unimanual actions contributed to the animate condition, extinguishing concerns 

that the pattern revealed was generated  by  a  “floor  effect”.  At  the  individual participant level, 

binomial tests confirmed the pattern held true in the vast majority of participants. Nine of the ten 

children demonstrated a significant right-hand bias for manual actions directed towards 

inanimate targets. Additionally, eight of the ten children demonstrated no significant difference 

in hand use for manual actions directed towards animate targets. One child possessed insufficient 

counts within the animate condition to warrant an inferential test.  

Although the group demonstrated a significant general right-hand bias, should we have 

ignored the context of action, we would simply have replicated the standard view that humans 

are right-handed dominant for manual actions. The patterns of handedness reported here are 

consistent with those recently uncovered in two populations of great apes [89, 90]. The clear 

implication is that human right-handedness is not species-specific, but is context dependent. 

From an evolutionary perspective, one interpretation of these results is that both humans and 

great apes possessed an early, neural division that distinguishes between objects that require 

functional manipulation in an ordered sequence of actions to reach a goal state, and those that do 

not.  
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These  findings  are  consistent  with  ‘tool  theory’, which argue that object manipulation 

shares common features with modern human language such that they both require the production 

of temporal sequences of actions and implicate tool-use as a likely precursor and catalyst for the 

emergence of language-like skills [1, 9, 29].  The  left  hemisphere’s  dominance  for  interacting  

with objects that require the processing of hierarchical sequences of manual actions (e.g., tool 

use, tool manufacture, food preparation) could be described as a proto-syntax and may have 

provided the necessary scaffolding for the evolution of a human protolanguage. This 

interpretation would also explain why both ape and human studies indicate that communicative 

gestures are often found to be right-hand dominant [e.g. 44, 74]. We provide the first quantitative 

comparative behavioral results that are consistent with this theory, demonstrating that right-

handedness is a behavioral manifestation of context-specific brain regions for processing 

external physical syntax inherent in the manipulation of functional objects. 

Technological advancements allow for corpus data analyses akin to those that have been 

so informative in recent human language studies [e.g. 95]. The MDM [93] is just one example of 

a new corpus technique that has successfully revealed context-specific, latent behavioral patterns 

across disparate species, demonstrating the strength of data-rich methods and forging a path 

towards a consistent, comparative experimental framework. Techniques such as this, will lead to 

the unveiling of potentially richly structured behavioral patterns unfolding across space and time, 

generating a better understanding of both the evolution and development of humans and other 

animal species. 

To generalize our findings to the general human population and all great ape species, 

further investigations are required to see if this handedness pattern is visible across larger 

samples human participants and other populations of primates, particularly investigating the 
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context of handedness in species that are known to be tool users and those that are not. Further 

investigations are also required to explore handedness within a social or stressful context, as a 

rise in the proportion of left-handed actions within a social context may prove to be a useful 

indirect marker of cerebral lateralization for processing social-emotional content [e.g. 77] and 

increasing task complexity [64]. Finally, in order to verify the manipulative intent of the 

unimanual action, it would be beneficial to also explore the different aspects of the behaviors that 

occur once unimanual action makes contact with the target object (e.g. type of grip/grasp, type 

and complexity of manipulation). 

Our behavioral data, demonstrating matching handedness patterns between typically 

developing preschool children and great apes, facilitates explanations of findings from 

archeology and the neurosciences. For example, a right-handed preference for unimanual actions 

directed towards inanimate objects, but not animate objects goes some distance to explain why 

archeological evidence indicates that humans have been right-handed tool users for more than 

two million years [25, 26], while the current view is that language emerged less than one 

hundred thousand years ago [27]. Moreover, these data help to clarify why recent neuroimaging 

studies reveal that all four species of great apes (all known to be tool users in both captivity and 

in the wild) possess neuroanatomical left hemisphere asymmetries consistent with language areas 

in humans [47, 48], yet do not possess human-like language capabilities. Finally, these data are 

consistent with recent brain-imaging studies that indicate a high correlation between brain areas 

responsible for tool use in great apes and those that process language in humans [49-51]. These 

findings taken together with our recent studies on gorilla and chimpanzee handedness support the 

view that human handedness, and its origin in hemispheric brain organization, is not a new or 
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human-unique characteristic, but rather a property developed through tool use, and a trait that 

was inherited from an ancestor common to both humans and great apes. 
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Table 1. 

 

 

 

P 
animate 

left 
animate 

right 
inanimate 

left 
inanimate 

right 
total 
freq. 

z-score 
animate 

p-value 
animate 

z-score 
inanimate 

p-value 
inanimate 

1 36 25 56 180 297 -1.28 0.200 8.01 <.001* 
2 24 62 53 89 228 3.99 <.001* 2.94 0.003* 
3 11 19 27 49 106 1.28 0.200 2.41 0.016* 
4 5 4 11 39 59 n/a n/a 3.81 <.001* 
5 11 6 54 151 222 -0.97 0.332 6.70 <.001* 
6 10 9 80 119 218 0.00 1.000 2.70 0.007* 
7 8 12 101 100 221 0.67 0.503 0.00 1.000 
8 7 9 45 177 238 0.25 0.803 8.79 <.001* 
9 14 24 52 292 382 1.46 0.144 12.89 <.001* 

10 18 17 43 221 299 0.00 1.000 10.90 <.001* 
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