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Abstract 

Background: There are conflicting reports concerning the ability of people with migraine to 

detect and discriminate visual motion. Previous studies used different displays and none 

adequately assessed other parameters that could affect performance, such as those that could 

indicate precortical dysfunction.  

Methods: Motion-direction detection, discrimination and relative motion thresholds were 

compared from participants with and without migraine. Potentially relevant visual covariates 

were included (contrast sensitivity: CS; acuity; stereopsis; visual discomfort, stress, triggers; 

dyslexia). 

Results: For each task, migraine participants were less accurate than a control group and had 

impaired CS, greater visual discomfort, visual stress and visual triggers. Only CS correlated 

with performance on each motion task, it also mediated performance.  

Conclusions: Impaired performance on certain motion tasks can be attributed to impaired CS 

early in the visual system rather than a deficit in cortical motion processing per se.  There 

were, however, additional differences for global and relative motion thresholds embedded in 

noise, suggesting changes in extrastriate cortex in migraine. Tasks to study the effects of 

noise on performance at different levels of the visual system and across modalities are 

recommended. A battery of standard visual tests should be included in any future work on the 

visual system and migraine. 
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INTRODUCTION 

Research on visual perception in migraine has shown differences between migraine and control 

groups using diverse visual tasks, which have been attributed to anomalous processing at 

various stages within the visual system. Some studies have highlighted anomalies within 

retinal or subcortical retinofugal pathways (1,2), however, much of the research has 

concentrated on anomalous processing within the primary visual (striate) cortex and, more 

recently, within higher (extrastriate) visual cortical areas. For example, global motion tasks 

have been employed to assess differences in extrastriate cortical excitability between migraine 

and control groups. Several studies have reported impaired global motion discrimination in 

migraine (3-6), which has been explained by a general cortical hyperexcitability. On the other 

hand, there is a report that the perception of global motion in the dynamic motion after-effect 

is not impaired in migraine (7). 

 

None of these global motion studies has adequately considered other visual parameters that 

might affect performance on a global motion task. Apparently impaired global motion 

discrimination could, for example, reflect dysfunction that occurs earlier in the visual pathways 

than in the extrastriate cortex. The importance of taking into account explanations of deficits 

in migraine at all levels of the visual system, even as early as the retina, has been emphasised 

by the recent findings of Karanovic et al (8). They investigated detection and discrimination of 

flicker contrast in migraine, and compared these data with measures of visual discomfort, 

binocular acuity and refractive errors in each eye.  They found different results between the 

migraine and control groups dependent upon the underlying contrast in the blurred, flickering 

spots of light, which were in turn related to the amount of visual discomfort the individuals 

were suffering. They concluded that the heightened sensitivity in migraine that they had found 

may lie at many levels of the visual pathway, including as early as the retina (see also 2). 

 

One group did include assessments of global motion together with other visual tasks that were 

proposed to reflect activity in pre-cortical pathways (3,4). They concluded that pre-cortical 
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visual dysfunction is likely to contribute to impaired global motion discrimination in migraine. 

They provided, however, only a qualitative assessment of deficits for individual observers 

across the different tasks, with no consistent pattern across observers. They did not provide 

quantitative correlations between patterns of deficits on the different tasks. Therefore, they 

could not determine to what extent a deficit in global motion perception could really be 

attributed to an abnormality in extrastriate cortical areas that code for global motion, or to an 

abnormality earlier in the visual system. The present study was designed to examine coherent 

motion-direction detection, global motion-direction discrimination and relative motion-direction 

discrimination in migraine and control groups, and to include potentially relevant covariates. 

To this end, tests of contrast sensitivity, visual acuity, stereo acuity, visual discomfort, visual 

stress, visual triggers and a dyslexia questionnaire were completed by all participants and 

formally correlated with performance on the motion tasks. Each of these measures taps into 

different levels of processing within the visual pathways, from the eye, to precortical and 

cortical visual and cognitive areas. They were included to assess the functioning of visual 

pathways other than the motion processing streams in extrastriate cortex. 

 

Global/coherent motion perception in random dot displays 

Much of the research on global motion perception has employed random dot kinematograms 

(RDKs). In RDKs, a number of dots move in a target direction (signal dots) and they can be 

interspersed with other dots moving in random directions (noise dots). The overall motion-

direction signal is a function of the signal-to-noise ratio (coherence). The ability to perceive 

coherent motion depends upon the integration of information about the motion of individual 

dots (from local, first-stage, oriented, spatial and temporal frequency tuned filters) into a 

global motion percept, attributed to activity within extrastriate cortex (MT/V5, see 9). 

Perceptually, as the coherence of the moving pattern increases so does the ability to reliably 

discriminate the direction of the global motion. 
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Global/coherent motion perception and migraine 

A curious feature of the coherent/global motion literature with RDKs is that the migraine 

participants' performance appears to be a function of display duration. Antal et al. (5) found 

that their migraine participants' detection of completely coherent motion-direction (all of the 

dots moved coherently in one direction) to be superior to their control group using brief 

displays (48 ms). On the other hand, impaired discrimination of coherent/global motion (when 

coherently moving dots are interspersed with dots moving in random directions) has also been 

reported, regardless of display duration [72 ms: (5); 400 ms: (4,6)]. In these studies, the 

migraine groups needed a higher proportion of dots to be moving coherently for the global 

motion-direction to be reliably discriminated against a background of randomly moving dots. 

This pattern was reported both when the dots moved relatively smoothly, changing their 

positions every 12 ms (5), or when the dots changed their positions every 50 ms, which would 

create the impression of 'jerkiness' (4,6). The similarity between the results using different 

motion-direction discrimination displays is consistent with a general visual deficit, as there is a 

difference in the visual processes underlying each of these percepts (10). Global motion-

direction discrimination impairments were observed in both migraine with and without aura, 

suggesting similar underlying deficits. 

 

To summarise, there are indications that the pattern of differences between migraine and 

control groups may depend on the task employed (detection vs discrimination) and on display 

duration, but they come from different groups of researchers each using somewhat different 

displays. There are also indications that the pattern of differences between migraine and 

control groups on global motion discrimination tasks may reflect, at least in part, an 

abnormality in earlier visual pathways. These issues could be resolved if display duration was 

assessed using the same experimental stimuli, apparatus, and participants, and if other lower 

and higher level potential deficits were measured. In this study, brief (50 ms) and longer (70 

ms) display durations were included in coherent motion-direction detection trials to try to 

replicate the results reported by Antal et al. (5) and to determine performance for longer 
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display durations. Global motion-direction discrimination was assessed with 300 ms displays. A 

battery of other standard tests of visual function was also included (see methods). 

 

Models of cortical function in migraine and global/coherent motion discrimination 

performance: cortical neuronal hyperexcitability and display contrast 

Both Antal et al. (5) and the McKendrick group (4,6) suggested impaired global motion-

direction discrimination could reflect a general cortical neuronal hyperexcitability, which 

reduced the ability to distinguish signal from noise dots. There were, however, subtle 

differences between each account. McKendrick and Badcock (4) considered increased internal 

or endogenous background neural noise (spontaneous random neural firing unconnected to 

any visual stimulus) interfered with the coherent motion signal by interfering with the 

processing of both signal and noise dots. Rather than increased internal background neural 

noise, Antal et al. (5) suggested an elevated response to the noise dots interfered with an 

elevated response to the simultaneously presented signal dots. 

 

Shepherd (7,11,12) suggested display contrast could be useful to tease apart predictions from 

different models of neural function in migraine, such as the two models described above. For 

example, if there is increased internal background neural noise compared to those without 

migraine, the signal to noise ratio would be lowered in migraine if there is not, in addition, a 

concomitant increase in the neural response to the signal dots. Motion-direction detection and 

discrimination with either low or high contrast displays should, therefore, be impaired in 

migraine, as the weak threshold signals that code motion-direction would be lost in the 

elevated background noise. Detection and discrimination thresholds should also be impaired to 

a greater extent with low contrast displays than with high contrast displays as the weaker 

signal with low contrast displays would be more readily eclipsed by the elevated internal 

neural noise. 
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On the other hand, if a heightened sensitivity results in elevated activity to a stimulus, without 

an increase in the internal background noise, the neuronal response in migraine may be 

comparable to someone without migraine viewing a higher contrast pattern. The migraine 

group may then perform better at low contrasts on motion detection trials, compared to the 

control group, and group performance differences may decrease as contrast increases. A 

greater response to incoming signals, however, without increased background noise, may 

broaden the tuning curves of cortical neurons, which could lead to impaired discrimination 

thresholds, particularly at high contrasts (see 5,13). 

 

Both of the earlier coherent motion studies used relatively high contrast displays [(5): 0.67 

Michelson contrast, (3): 0.98 Michelson contrast]. In this study, both high and low contrast 

displays were used. The dot density of the displays was also manipulated, using displays of 

either 50 or 300 dots, to test whether the spatial density of the moving pattern affects either 

group's performance. 

 

Relative motion perception in random dot displays 

Relative motion thresholds were also obtained for the migraine and control groups. Sensitivity 

for detecting and discriminating relative motion is far greater than sensitivity to absolute 

motion, up to an order of magnitude more so (14,15), perhaps because relative motion is 

ecologically important in order to differentiate an object moving against a background. 

Relative motion is processed in the extrastriate cortex, in MST cells dedicated to this type of 

motion (16,17). Here, only the dots within a central region of a densely populated random dot 

display moved coherently up or down, and the motion discrimination needed to be performed 

in the context of added external noise. The external noise consisted of additional dots that 

were either surrounding, or surrounding and interspersed amongst, the central signal dots 

(after 18). Thresholds for discriminating motion-direction were determined as the speed of the 

dot motion in the central region decreased. 
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Relative motion perception and migraine: noise and stochastic resonance 

Relative motion thresholds have not previously been compared in migraine and control groups. 

They were included to examine the effects on performance of adding different types of 

external noise to a display and, specifically, to determine whether increasing the level and 

type of noise in the display would improve performance on the threshold task in either group. 

If a display presents a just sub-threshold signal, adding relevant, low-level, external noise to 

that signal may raise it above threshold and thereby improve performance. This phenomenon 

is described as stochastic resonance. It increases the likelihood of detecting weak signals and 

there is growing evidence that it is involved in human sensory processing (19-21). For 

example, there is evidence that adding noise to a display can improve the processing of large-

scale motion signals used in computing self-motion (20). Stochastic resonance is best seen for 

visual tasks where the threshold signal is particularly small compared to either internal or 

external noise; hence, relative motion is a better task than coherent motion detection or 

discrimination to show such effects. 

 

Here, there were three levels of external noise presented together with the same coherently 

moving central display: (i) stationary surround only (no noise dots interspersed amongst the 

moving dots in the central display), to provide an anchor for the relative motion judgments; 

(ii) stationary surround with stationary noise dots interspersed amongst the moving dots in 

the central display; (iii) dynamic twinkling surround with dynamic twinkling interspersed noise 

dots. There are various ways to produce noise for motion selective systems within the visual 

pathways (22), and the interspersed dynamic noise that was selected has been shown to be 

more potent in producing stochastic resonance effects near threshold than the interspersed 

static noise (21). It was, therefore, anticipated that (regardless of group differences) 

participants would have lower thresholds with the dynamic background noise than with the 

stationary background noise. 
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Models of cortical function in migraine that involve a heightened neuronal response would 

predict different stochastic resonance effects for migraine and control groups: largest effects 

would occur in the group whose neural response to the external noise adds to and boosts, 

rather than masks, the threshold motion-direction signal present in the central part of the 

display. The size of stochastic resonance effects depends not just on the intensity of the 

external noise in the image, but also on the level of endogenous, or internal, neural noise 

(23). Clearly, models of cortical hyperexcitability that entail higher levels of endogenous 

neural noise in migraine, compared to those without migraine (4,6), also predict different 

stochastic resonance effects for relative motion thresholds. 

 

METHOD 

Participants 

Twenty-eight migraine (14 VA, 14 MO) and fourteen control participants were recruited (Table 

1). All participants completed a questionnaire detailing the characteristics of their headaches. 

All migraine participants fulfilled the IHS classification for migraine with (VA) or without (MO) 

visual aura (24). None of the control participants had headaches fulfilling the IHS criteria and 

none had a history of frequent or severe headaches. All participants had a binocular visual 

acuity of at least 20/20 (with or without optometric correction) and a monocular visual acuity 

of at least 20/25 in each eye. Most of the participants were undergraduate students who 

participated for course credit; older participants were recruited from staff at Griffith University. 

INSERT TABLE 1 HERE 

No participant had taken any acute medication within the 48 hours preceding the test and 

none was on any daily medication (e.g. migraine prophylaxis, antidepressants or beta-

blockers). None reported experiencing migraine 48 hours either side of the test session. 

Ethical approval was obtained from the Human Research Ethics Committee of Griffith 

University, and informed signed consent was obtained in accordance with the declaration of 

Helsinki (1991). 
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Auxiliary Screening Measures 

In addition to visual acuity, the following measures were also recorded for each participant to 

assess the functioning of visual pathways other than in the motion processing streams in 

extrastriate cortex: (i) contrast sensitivity using the Cambridge Low Contrast gratings (CLCG, 

28); (ii) stereopsis using the Titmus test, to screen for anomalies of binocular function; (iii) 

pattern sensitivity/pattern glare using high contrast striped patterns; (iv) a migraine trigger 

inventory, which included potential visual triggers; (v) a visual discomfort questionnaire (29); 

(vi) the revised adult dyslexia test (30).  

 

Visual acuity, contrast sensitivity and stereopsis were assessed under the recommended 

illumination. Visual acuity was assessed at 3 m, contrast sensitivity to the CLCG was assessed 

at 6 m, stereopsis was assessed at 40 cm.  

 

The CLCG measures contrast thresholds for gratings with a spatial frequency of 4 cpd, close to 

the maximum of the normal human visual system. They include 10 plates that display a 

horizontally oriented square wave grating with Michelson contrasts that range from 13% to 

0.14%. The plates are presented to participants in pairs, each presentation consisting of a 

grating and a blank plate that has the same mean reflectance as its grating pair. Participants 

must make a two-alternative forced choice when they indicate which of the two plates contains 

the grating. The test was completed in order of decreasing contrast. Each time an error was 

made, the sequence was restarted at three plates preceding the error. The plates where errors 

were made were recorded on three runs through the sequence. 

 

The Titmus circles stereo test displays nine polarized stereograms each consisting of four sets 

of annuli. One set is constructed from two orthogonally polarized images consistent with a 



 11 

particular retinal disparity when the test is viewed through congruent polarized lenses so that 

each eye sees a different image. The test was oriented to present crossed retinal disparities, 

so that the inner circle of one of the four sets of concentric circles appeared to float above the 

rest. The nine stereograms are consistent with retinal disparity angles ranging from 800 to 40 

arc sec. 

 

Pattern sensitivity/pattern glare refers to the discomfort and illusions that can be experienced 

when viewing repetitive patterns such as stripes (2,29,31-34). Pattern sensitivity was 

ascertained by gauging participants’ responses to a series of high-contrast horizontal square-

wave gratings presented within a square window (width 7.8°) on the CRT and viewed at 60 

cm. The light and dark bars of the gratings had luminances of 36.5 and 2 cd m-2, respectively, 

giving a Michelson contrast of 0.9. The gratings were presented with spatial frequencies of 0.5, 

3 and 12 cycles per degree (cpd). Each stimulus was presented 3 times for 10 sec. After each 

presentation, participants were asked whether they experienced any illusions and, if so, 

whether they saw (1) motion, (2) colour or (3) shape. A general illusion index (GII) was 

calculated, reflecting overall pattern sensitivity (2,13). First, the frequency with which colour, 

motion and shape were seen was determined for each pattern (minimum zero of three 

presentations; maximum, three of three). These were then averaged across the patterns and 

finally summed to give the GII. 

 

The questionnaire contained a migraine trigger inventory that included visual stimuli (flickering 

light, striped patterns, alternating light and shade, and other visual stimuli e.g. lattices, glare, 

computer use or television). Participants were asked whether each item commonly, 

occasionally, or never triggered migraine. ‘Commonly’ was scored as 2, ‘occasionally’ as 1, and 

‘never’ as 0. 
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The Conlon et al. (29) visual discomfort scale consists of 23 questions each with a 4-point 

rating scale to quantify the severity of symptoms, coded 0 to 3. Scores can therefore vary 

between 0 and 60. Conlon's discomfort survey principally assesses discomfort during reading 

(e.g. "Do you ever get a headache from reading a newspaper or magazine with clear print?" 

"Do the letters on a page of clear text ever go blurry when you are reading?" "When reading, 

do the words on a page of clear text ever appear to fade into the background then reappear?" 

"Do you ever have difficulty reading the words on a page because they begin to flicker or 

shimmer?" "Does the white background behind the text ever appear to move, flicker, or 

shimmer making the letters hard to read?"). A dyslexia inventory was, therefore, also 

administered to assess discomfort from reading, and reading proficiency, separately.  

 

The revised dyslexia screening test (30) consists of 20 yes/no questions (Vinegrad total score, 

Table 2), of which 12 are considered to be the most relevant indicators of dyslexia (Vinegrad 

partial score, Table 2). Questions are asked about difficulty in reading, writing, and using text 

and numbers (e.g. "Is your spelling poor?"; "Do you find difficulty telling left from right"; "Do 

you mix up dates and times and miss appointments?"; "Do you mix up bus numbers like 95 

and 59?"). 

 

Motion Displays 

Global/coherent Motion-Direction Detection and Discrimination 

Following McKendrick and Badcock (4) and Antal et al. (5), the coherent motion detection and 

discrimination stimuli were RDKs presented within a 10° by 10° circular area. McKendrick and 

Badcock (4) used RDK motion stimuli presented within 10° by 10° areas at one of 17 

locations: 16 locations were tiled across the central ±20° of each visual field, with an 

additional test location centered at fixation. Antal et al. (5) also used RDK motion stimuli 

within a 10° by 10° area, but its midpoint was presented 10° to the left of fixation to be 

consistent with an earlier study on the modulation of global motion perception following TMS 
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stimulation over V5 in healthy participants (25). In a pilot study, the motion stimuli were 

located either 10° to the left or right of fixation, selected at random on each trial, but 

performance was at chance for each group (VA: 56% correct, MO: 54%, C: 54%). Here, 

therefore, the motion stimuli were presented within a circular region, diameter 10°, with the 

midpoint presented at central fixation, which was marked with a 20 min arc fixation point. 

 

During the motion sequences, five per cent of the dots were extinguished after each frame 

and new dots randomly repositioned within the central 10° circular region (i.e. the dots had a 

limited lifetime) to minimize the chance that participants could try to do the tasks by tracking 

the motion of individual dots. Dots were also deleted and repositioned if their trajectory would 

traverse the outer diameter of the central 10°, or cross into the central 1° (so as not to 

obscure the fixation point). Each dot was two pixels square. 

 

Each dot had a luminance of either 3 cd m-2 (low contrast) or 9 cd m-2 (high contrast) and was 

presented on a dark background (2 cd m-2). All dots moved with a speed of 5 deg s-1 at a 

viewing distance of 60 cm. The dots changed position with each new frame (10 ms), producing 

smooth rather than jerky motion [after (5) cf (4, 6)]. For the motion detection trials, the 

display was presented for either 50 or 70 ms in separate blocks of trials. For the motion 

discrimination trials, the display was presented for 300 ms. 

 

Each of the coherent motion detection and discrimination tasks used a single interval, two-

alternative forced choice (2AFC) procedure, in which participants were instructed to press one 

of two labeled keys positioned one above the other ('g' or 'v') to indicate whether the dots 

were moving coherently in an upwards or downwards direction, respectively. Auditory 

feedback was given if a mistake was made. Each trial consisted of a fixation point displayed 

for 1000 ms followed by one of the coherent motion conditions (motion-direction detection or 
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discrimination presented in separate blocks of trials, see below). The fixation point then 

remained on screen until a response was made. 

 

For motion detection trials, all of the dots moved in the same direction (up or down, 100% 

coherence). Each condition [display density (30 or 500 dots), display duration (50 or 70 ms ), 

display contrast (low or high)] was presented in a separate block of trials. The order of blocks 

for dot density was counterbalanced, and within each of these, the presentation of the 

remaining conditions was randomised. Sixty practice trials (15 for each condition) were then 

followed by 140 experimental trials (35 for each condition). 

 

For motion discrimination trials, a percentage of the dots moved in a coherent direction (up or 

down) for 300 ms while the remainder moved in random directions. On consecutive trials, the 

percentage of dots moving coherently was either decreased or increased, depending on 

whether the preceding response had been correct or incorrect. A two down, one up staircase 

procedure was used to converge upon a threshold coherence corresponding to a 71% correct 

discrimination rate (35, 36). The two-down, one-up staircase procedure, and the resulting 

71% threshold discrimination rate, were chosen to achieve a reasonable estimate of threshold 

without needing an excessive number of trials. Two staircases were interleaved, both starting 

at 70% coherence. An initial step size of 10% was reduced to 1% after 3 staircase reversals. 

The practice blocks of trials terminated after a minimum of 2 reversals for each staircase in 

the four conditions. For the experimental trials, each block of trials was terminated after a 

minimum of 8 reversals for each staircase in the four conditions. Condition order [display 

density (50 or 300 dots) and display contrast (low or high)] was randomised for each 

participant. The percentage of dots that needed to be moving coherently in either direction for 

a correct discrimination rate of 71% was calculated from the mean of the last four reversals on 

each staircase in each condition. 
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Relative Motion-Direction Discrimination Displays 

Following Wood (18, personal communication), the relative motion stimuli were presented for 

1000 ms within a central 4° circular area viewed at a distance of 3.2 m. The central region 

where 1263 moving signal dots were displayed subtended 2.9°. In the stationary surrounding 

noise condition, an annulus (inner diameter 2.9°, outer diameter 4°) contained 1151 randomly 

positioned noise dots. This condition provided a baseline measure for the slowest speed 

needed to be able to judge motion-direction. In the other two noise conditions, 2414 randomly 

positioned noise dots appeared throughout the 4° display (1151 in the surrounding annulus, 

the remainder within the central 2.9°) and, therefore, noise dots were interspersed with signal 

dots in the central region. In the stationary background condition the noise dots were 

stationary, whereas in the dynamic background condition they 'twinkled' (appeared, 

disappeared, and reappeared at different locations) at a rate of 20 Hz. Perceptually, the 

centrally moving signal dots appeared to transparently glide over both types of interspersed 

noise.  

 

Each dot comprised one 1 pixel and had a luminance of 35 cd m-2, the background luminance 

was 2 cd m-2. Similar to the other motion tasks, the centrally moving dots had a limited 

lifetime and were deleted and repositioned if their trajectory would either traverse the outer 

diameter of the central 2.9° or cross over the fixation point.  

 

The central region displayed signal dots that moved up or down with an initial speed of 0.05 

deg s-1. On consecutive trials, the speed of the moving dots was either decreased or 

increased, depending on whether the preceding response had been correct or incorrect. A two 

down, one up staircase procedure was again used, with two staircases interleaved. An initial 

step size of 20% was reduced to 10% after a minimum of three reversals for each staircase. 

The practice block of trials terminated after a minimum of two reversals for each staircase in 

the three conditions. The threshold speed that was needed for a 71% correct discrimination 
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threshold was calculated from the mean of the last four reversals on each staircase in each 

condition. 

 

Each trial consisted of a fixation point displayed for 1000 ms followed by one of the relative 

motion conditions (stationary surround, stationary background, dynamic twinkling 

background), displayed for 1000 ms. The fixation point then remained on screen until a 

response was made. The order of presentation of each block of trials was randomised. 

 

Apparatus 

The motion stimuli were created using experimental scripts developed in Matlab 7.7 (The 

MathWorks, Natick, MA) in conjunction with routines from the Psychophysics Toolbox (26, 27). 

The stimuli were presented on a 21 inch CRT monitor (Hitachi) connected to an Apple 

Macintosh computer running MacOS X. The CRT monitor had a spatial and temporal resolution 

of 1280 x 960 pixels, and 100 Hz, respectively. The CRT monitor was the only source of light 

in an otherwise dark room. 

 

PROCEDURE 

The visual discomfort questionnaire and dyslexia inventory were completed as part of a class 

exercise, or sent to potential participants to be completed before the experimental session. 

The headache questionnaire and the tests of acuity, contrast sensitivity, and stereopsis were 

assessed at the beginning of the experimental session. The coherent and relative motion tasks 

were then presented in counterbalanced order. Pattern sensitivity was assessed at the end. 
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RESULTS 

Auxiliary measures 

The statistical analyses were performed using PASW statistics version 17.0 (SPSS Inc., 

Chicago, IL, USA). Most of the auxiliary measures were normally distributed for each group 

(Komolgorov-Smirnov tests, p>0.05), so group differences were assessed with a priori t-tests 

(Table 2). Stereopsis was not normally distributed, which reflected a ceiling effect 

(Komolgorov-Smirnov tests, p<0.05). Group differences for this measure were, therefore, 

assessed with Mann-Whitney U tests.  

INSERT TABLE 2 HERE 

There were significant group differences for four of the auxiliary measures (Table 2). Both 

migraine groups had significantly higher CLCG contrast thresholds than the control group [VA 

vs C: t(26)=2.3, p=0.03; MO vs C: t(26)=2.4, p=0.02, one-tailed tests]. They also had larger 

GII scores than the control group, but the difference was only significant for the group with 

visual aura [VA vs C: t(26)=3.4, p=0.002; MO vs C: t(26)=1.3, NS, one-tailed tests]. Both 

migraine groups reported significantly more visual triggers than the control group [VA vs C: 

t(26)=2.8, p=0.009; MO vs C: t(26)=3.1, p=0.005, one-tailed tests]. Finally, both migraine 

groups had significantly higher discomfort scores on the visual discomfort scale (29) [VA vs C: 

t(26)=3.2, p=0.003; MO vs C: t(26)=2.5, p=0.02, two-tailed tests). The only significant 

difference between the two migraine groups occurred for the GII: the VA group experienced 

more illusions than those with MO [t(26)=2.3, p=0.03; two-tailed tests]. None of the rest of 

the comparisons (stereopsis, total dyslexia score, partial dyslexia score) were significant (two-

tailed tests).  

 

Motion Experiments 

The data from the three motion experiments were all normally distributed (Kolmogorov-

Smirnov tests, p>0.1). Group differences were, therefore, assessed with mixed Analyses of 

Variance (ANOVA). For the global/coherent motion detection data, Group was the between-
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subjects factor (VA, MO, C) and contrast (high or low), display duration (50 or 70 ms) and dot 

density (50 or 300) were within-subjects factors. For the coherent global/coherent motion 

discrimination data, Group was again the between-subjects factor and contrast (high or low) 

and dot density (50 or 300) were within-subjects factors. For the relative motion 

discrimination data, Group was the between-subjects factor and type of noise (stationary 

surround, stationary background or dynamic twinkling background) were within-subjects 

factors. 

 

Global/coherent motion-direction detection rates in random dot displays 

The mean percentage correct was calculated for each participant in each condition (Table 3). 

The ANOVA performed on these data produced a significant main effect of Group 

[F(2,39)=3.3, p=0.047; mean performance ± one standard error — VA: 75±3%; MO: 

80±4%; C: 86±3% correct]. The control group performed better than either of the migraine 

groups (Figure 1). Three pairwise group comparisons revealed that, across all of the 

conditions, the VA group differed significantly from the Control group (Tukey HSD, p=0.04), 

whereas the performance of the MO group did not differ significantly from either the VA or 

control groups (p>0.3). There was also a significant main effect of display duration, with 

better performance across the conditions and groups for the longer displays [F(1,39)=105, 

p<0.001; 50 ms:72±6%; 70 ms: 88±5%]. There were no significant effects involving the 

contrast of the displays, or the dot density, or any significant interactions involving Group.  

 

INSERT TABLE 3 AND FIGURE 1 HERE 

 

Global/coherent motion-direction discrimination in random dot displays 

The proportion of dots that needed to be moving coherently together to discern the direction 

of coherent motion with an accuracy of 71% was calculated for each participant in each 

condition (Table 4). The analysis of these data revealed a significant Group x contrast 



 19 

interaction [F(2,39)=3.7, p=0.032] and a significant Group x dot density interaction 

[F(2,39)=3.4, p=0.043], see Figure 2. These interactions reflect similar trends: the displays 

that provided weaker stimulation (low contrast, or 50 dots) discriminated among the three 

groups, such that the control group had the lowest required coherence, followed by the MO 

group, and the VA group had the highest required coherence. In contrast, the displays that 

provided stronger stimulation (high contrast, or 300 dots) only discriminated between the 

control and overall migraine groups. The control group again had the lowest required 

coherence compared to both MO and VA groups, but the two migraine groups did not differ 

from each other. 

INSERT TABLE 4 AND FIGURE 2 HERE 

These interactions were linked to a significant main effect of Group: overall, the control group 

needed fewer dots to be moving coherently together to be able to judge the direction of 

motion [F(2,39)=9.4, p<0.001; mean ± one standard error — VA: 57±3%; MO: 52±4%; C: 

38±2%]. Finally, there was a significant main effect of contrast: a higher proportion of dots 

needed to be moving coherently with the high contrast displays than with the low contrast 

displays [F(1,39)=6.4, p=0.015 — low contrast: 47±2%; high contrast: 51±2%]. There were 

no other significant main effects or interactions (all F's < 1.7). 

 

Relative Motion Discrimination 

The slowest dot speed needed to be able to discern the direction of motion with an accuracy 

rate of 71% was calculated for each participant in each condition (Table 5). The analysis of 

these data revealed a significant main effect of Group [F(2,39)=4.3, p=0.02; mean ± one 

standard error — VA: 0.031±0.003 deg s-1; MO: 0.027±0.002 deg s-1; C: 0.021±0.001 deg s-

1], see Figure 3A. The control group could reliably detect the direction of motion at slower 

speeds than either migraine group, the VA group needed the fastest speed to be able to judge 

motion-direction reliably, and the MO group lay in-between. Three pairwise group comparisons 

revealed that, across the three noise conditions, the VA group differed significantly from the 
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Control group (Tukey HSD, p=0.016), whereas the performance of the MO group did not differ 

significantly from either the VA or control groups (p>0.17).  

INSERT TABLE 5 HERE 

There was also a significant main effect of type of noise [F(2,78)=35, p<0.001; mean ± one 

standard error — Stationary surround: 0.018±0.001 deg s-1; Stationary noise: 0.033±0.002 

deg s-1; Dynamic noise: 0.028±0.002 deg s-1], see Figure 3B. The slowest thresholds occurred 

for the stationary surround condition (i.e. the most sensitive thresholds), the fastest occurred 

for the stationary background noise condition, and the dynamic background noise condition lay 

in-between. Three pairwise comparisons revealed each noise condition differed significantly to 

the other two (Tukey HSD, p<0.005). The improvement in threshold for the dynamic 

background noise condition, compared to the stationary background noise, is consistent with 

stochastic resonance occurring with dynamic noise, however, the group by type of noise 

interaction was not significant (F<1). 

INSERT FIGURE 3 HERE 

To explore the difference between performance with the stationary and dynamic noise 

backgrounds for each observer, the threshold for the dynamic background noise condition was 

subtracted from the threshold for the stationary background noise condition. These difference 

scores represent the relative increase in sensitivity to the direction of relative motion with the 

dynamic background noise, compared to the stationary background noise (Figure 3C). A one-

way ANOVA on these difference scores, with group (VA, MO, C) as a between-subjects factor, 

was not significant [F(2,39)=2.1, p=0.14], however, the trends were similar for both migraine 

sub-groups and the sample size in each group, and hence power, was relatively small. When 

the migraine groups were combined and their performance compared to that of the control 

group, there was a significant effect of group [t(40)=1.9, p=0.03, one-tailed test, Figure 3D]. 

Moreover, a paired t-test on the data from the control group and, separately, on the data from 

the combined migraine group, revealed thresholds decreased significantly with the dynamic 

background noise for the migraine group only [dynamic vs stationary background noise; 
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control: t(13)=0.3, NS; migraine: t(27)=3.3, p=0.002, one-tailed tests, Bonferroni corrected 

for multiple comparisons]. 

 

Covariates and secondary analyses 

As each motion task produced a significant main effect of group, and performances in each 

condition within each task were highly inter-correlated, an overall motion score was calculated 

for each task and each group to look for correlations with each of the auxiliary measures. The 

only measure that correlated with performance on all three motion tasks was contrast 

sensitivity assessed by the Cambridge Low Contrast Gratings (motion-direction detection: r=-

0.34, p=0.014; motion-direction discrimination: r=0.41, p=0.004; relative motion: r=0.32, 

p=0.02, Pearson's r, one-tailed tests]. As expected from previous work, these correlations 

show that poorer contrast sensitivity (i.e. needing a higher contrast to see the gratings) was 

associated with fewer correct responses on the detection task and poorer performance (higher 

thresholds) on the global and relative motion discrimination tasks. Therefore, CLCG contrast 

sensitivity was added as a covariate and each ANOVA analysis was repeated. Note that the 

CLCG contrast sensitivity correlated significantly with the overall relative motion discrimination 

task, not the dynamic/stationary background noise difference scores (r=0.09, NS).  

 

With CLCG contrast added as a covariate, the coherent motion detection analysis produced 

only one significant effect, the main effect of display duration [F(1,38)=8.2, p=0.007]. There 

was no longer a significant main effect of group [F(2,38)=2.1, p=0.13] nor any other 

significant effects. 

 

The global motion discrimination analysis, with CLCG included as a covariate, resulted in only 

two significant effects, the main effect of Group [F(2,38)=7.1, p=0.002] and the Group x 
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contrast interaction [F(2,38)=3.9, p=0.03]. The interaction between Group and dot density 

was no longer significant, nor were there any other significant effects.  

 

The relative motion discrimination and CLCG analysis produced only one significant effect, the 

main effect of type of noise [F(2,76]=10.7, p<0.001. The main effect of group was no longer 

significant, nor was the interaction between group and noise. 

 

Several of the other auxiliary measures (Table 2) and migraine characteristics (Table 1) 

correlated with the relative motion thresholds: migraine frequency (r=0.38, N=28, p=0.04), 

years suffered (r=0.43, N=28, p=0.02), migraine triggered by striped patterns (rpb=0.48, 

N=28, p=0.009) and visual discomfort as assessed by the Conlon et al. (29) scale (r=0.37, 

N=42, p=0.02). The only auxiliary measure that correlated with the dynamic/stationary 

background noise difference scores for relative motion was whether flicker was cited as a 

visual trigger (rpb=–0.49, N=28, p=0.009).  

 

There were no significant associations between performance on the coherent motion detection 

or global motion discrimination tasks and any of the migraine characteristics (Table 1) or 

auxiliary measures other than CLCG contrast (Table 2). Furthermore, there was a strong 

negative association between performance on the coherent motion detection and global 

motion discrimination tasks (r=-0.85, N=42, p<0.001) Those with the lowest motion-direction 

detection rates (poorest performance) needed the greatest number of dots to move together 

coherently in the discrimination task (again, the poorest performance). There was not, 

however, any significant correlations between the two motion-direction detection and 

discrimination tasks and performance on the relative motion task (detection: r=-0.27; 

discrimination: r=0.29, N=42, NS). This pattern of correlations suggests that the coherent and 

relative motion tasks tap distinct, rather than shared, neural processes.  
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Finally, several of the auxiliary measures were inter-correlated and were correlated with 

migraine characteristics. Some were expected, such as: the correlations between age and the 

number of years migraine had been experienced (r=0.81, N=28, p<0.001); the frequency of 

migraine and the days elapsed since the last migraine attack (r=–0.34, N=28, p=0.03); and 

between different visual triggers (stripes, flicker, patterns of light and shade, other visual 

triggers such as computer overuse, smallest r=0.31, p=0.048, largest r=0.48, p=0.001, N=28 

for both). There was no significant association between the number of years migraine had 

been experienced and contrast sensitivity (r=0.12, NS). 

 

The GII correlated with the number of years migraine had been experienced (r=0.44, N=28, 

p=0.02): those with the longest duration migraine saw the greatest number of illusions. The 

GII also correlated with reports of any visual migraine triggers (r=0.29, N=28, p=0.03). The 

responses to the Conlon et al. (29) visual discomfort questionnaire also correlated significantly 

with reports of visual migraine triggers (r=0.50, N=28, p=0.001) and with the total and 

partial revised dyslexia questionnaire scores (30): those with the greatest discomfort also had 

the highest scores on the dyslexia questionnaire (total dyslexia score: r=0.46, p=0.002; 

partial dyslexia score: r=0.42, p=0.006, N=28 for both). 

 

DISCUSSION 

To summarise, the highest motion-direction detection rates, and the lowest global and relative 

motion discrimination thresholds, were set by the control group. Conversely, the migraine 

group with visual aura set the lowest motion-direction detection rates, and the highest global 

and relative motion discrimination thresholds. For each task and condition, the performance of 

the migraine without aura group was either the same as the group with visual aura, or their 

performance lay in-between those of the visual aura and control groups. This is consistent with 

previous research (e.g. 2,7,37,38) and suggests that the migraine sub-groups, with and 
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without aura, are not two distinct entities but rather share a common underlying 

pathophysiology that varies in degree. The other main result was that a measure of contrast 

sensitivity (CLCG contrast) correlated significantly with performance on all three motion tasks, 

and mediated performance on these tasks, but it was not related to the relative motion 

difference scores. So, a loss of contrast sensitivity can contribute to an apparent deficit in 

motion perception but there is, in addition, evidence for extrastriate involvement and 

indications that a study exploring 'relevant noise' (e.g. stochastic resonance) at different levels 

of visual processing would be informative to understand neural function in migraine. Several 

studies have now indicated that there are multiple stages of neural dysfunction in migraine 

(1–8,12,13,39,40,45), which leads to the suggestion that it may be useful to study sensory 

modalities other than vision, as well as cross-modal interactions, and this would tie the 

research to patient reports of their aura where the symptoms are not restricted to vision. 

Furthermore, a standard set of screening tests (at a minimum visual acuity, contrast 

sensitivity, and an assessment of visual discomfort and migraine triggers) should be included 

before conclusions about cortical function or dysfunction are drawn. 

 

Group Differences on each measure: 1. Auxiliary measures 

There were significant group differences for four of the auxiliary measures (Table 2), three of 

which are consistent with previous reports (2,13,31-34). Both migraine groups had poorer 

contrast sensitivity and more visual headache triggers. Both migraine groups saw a larger 

number of illusions in striped patterns, but this was only significant for the group with VA 

when compared to either the MO or control groups.  

 

A new result was the elevated scores, for both migraine groups, on the visual discomfort scale 

developed by Conlon et al. (29), which asks about visual discomfort and distortions 

experienced while reading text. There were, however, no group differences on the dyslexia 

questionnaire scores (30). Thus, there were group differences on the Conlon et al. visual 



 25 

discomfort scale when reading text, and printed text can be seen as a black on white striped 

pattern, but no group differences on the dyslexia questionnaire scores, which asks about 

reading and comprehension.  

 

Taking these results altogether, several disparate measures of visual discomfort (GII from 

striped patterns, endorsement of visual triggers including stripes and flicker, visual discomfort 

and distortions experienced while reading) all indicate elevated discomfort levels in migraine, 

which are related to particular characteristics of the visual patterns: stripes, repetitive 

geometric shapes and flicker. There were also significant positive correlations between these 

separate discomfort measures. Contrast sensitivity, however, was not significantly associated 

with any of these discomfort measures, and performance on this test alone was associated 

with performance on each motion task. 

 

2. Coherent motion-direction detection rates in random dot displays 

There was a significant group difference for the coherent motion-direction detection task in 

RDK displays in the first ANOVA analysis: the control group had the highest proportion of 

correct scores, and the VA group had the lowest. In the second ANOVA analysis, however, 

with contrast sensitivity added as a covariate, this group difference disappeared. There was 

also an expected significant effect of display duration in both analyses (50 vs 70 ms), with 

each group performing better with the longer displays.  Manipulating display contrast (high or 

low), or dot density (50 or 300 dots), surprisingly, did not significantly affect performance 

differences between the groups or across the conditions in either analysis (Table 3). Dot 

density perhaps made no difference between groups or conditions as the task was relatively 

simple. The non-significant result for display contrast is discussed, below, together with the 

global motion-direction discrimination data.  
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Finding impaired motion-direction detection in migraine in the first analysis is congruent with 

impaired performance for motion-direction-discrimination with (high contrast) RDK displays 

lasting between 72 and 400 ms (4-6). It does not, however, replicate the original report on 

which this part of the study was based, which used 48 ms (high contrast) motion-direction 

detection RDK displays and reported better performance in the migraine group (5).  

 

In the present study, the high contrast 50 ms displays were matched to those used by Antal et 

al. (5) and the only differences were the central location of the display and the use of limited 

lifetime dots. Antal et al. (5) presented their motion stimuli within a 10° by 10° area whose 

midpoint was 10° to the left of fixation. Peripheral presentation may have made the motion 

detection task easier, however, it would need to be easier selectively for the migraine groups 

as the detection rates for the control groups in the two studies are remarkably similar (here: 

76% correct, Antal et al.: 81%). Moreover, McKendrick et al. (3,4) compared performance on 

a coherent motion discrimination task when it was presented centrally and at various 

eccentricities and found no consistent group differences.  

 

What explanation can be offered for the differences in results between the current study and 

Antal et al. (5)?  If there is impaired temporal resolution in migraine, then it is possible that 

the use of limited lifetime dots accounts for the poorer performance of the migraine groups in 

the present study (here, VA: 60%, MO 68%; Antal et al. VA: 93%, MO: 89%). But this is at 

odds with performance on the high contrast 70 ms global motion-direction discrimination task, 

which was similar in the two studies (here, 300 dots, limited lifetime, high contrast VA: 58%, 

MO: 61%, C: 41%; Antal et al., 300 dots, without limited lifetime, VA: 64%, MO: 57%, C: 

36%). Thus, methodological differences in the motion-direction detection experiment do not 

explain the variance in results. The key to an explanation of the latter may lie in our finding 

that when contrast sensitivity is added as a covariate, the group difference for the detection 

task is no longer statistically significant. So, sampling differences in contrast sensitivity 

between the participants in the two studies may have occurred and this would warrant further 
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investigation. For example, participants could be recruited where contrast sensitivity is 

equated between the migraine and control groups.  

 

Impaired motion-direction detection associated with impaired contrast sensitivity is consistent 

with earlier reports that pre-cortical spatial and temporal mechanisms have impaired 

resolution in migraine (1,33,39,40,44). Impaired contrast sensitivity from pre-cortical 

dysfunction could, therefore, account for the migraine groups' poorer performance on the 

motion-direction detection task, rather than a deficit in motion processing per se, as it is the 

simplest of the motion tasks and the one most vulnerable to anomalies in early visual 

pathways. Thus, reduced activity in thalamo-cortical connections, from an impaired pre-

cortical organisation, could result in impaired motion-direction detection. The cause of any 

impaired resolution in pre-cortical pathways cannot be derived at this stage — it could reflect 

elevated noise in these pathways masking the detection of the motion signals, or it could 

reflect a reduction in the likelihood of neurons in these pathways to fire, consistent with hypo-

excitability, or a decrease in neural activation or arousal (44).  

 

3. Global/coherent motion-direction discrimination in random dot displays 

There was a significant Group difference for the coherent motion-direction discrimination task 

in RDK displays in the first ANOVA analysis: the control group needed the fewest number of 

coherently moving dots to judge their motion-direction reliably, and the VA group needed the 

greatest. There was also a significant Group by contrast interaction and a significant Group by 

dot density interaction (Table 4). When contrast sensitivity was added as a covariate, 

however, the significant Group by dot density interaction was no longer significant, whilst the 

significant Group difference and Group by display contrast interaction remained. Thus, dot 

density does not appear to be a particularly relevant factor to manipulate in a global motion 

detection or discrimination task, compared to the effects of contrast and contrast sensitivity.  
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In both analyses, the low contrast displays, which provided weaker stimulation, discriminated 

among the three groups: the control group had the lowest required coherence and the VA 

group the highest. The high contrast displays, which provided stronger stimulation, only 

discriminated between the control and the combined migraine groups: the control group again 

had the lowest required coherence, but the two migraine groups did not differ from each 

other. 

 

For the global motion discrimination task, the significant group difference that remained once 

contrast sensitivity (CLCG) was factored out partly replicates those reported by Antal et al. (5) 

and McKendrick et al. (4) and extends them to include lower contrasts. V5/MT, a mid-level 

extrastriate cortical area, is involved in global motion discrimination. This result suggests that, 

in addition to impaired contrast sensitivity (probably resulting from low-level, pre-cortical 

anomalies), there are cortical variations that result in impaired global motion discrimination 

thresholds in migraine, perhaps at the level of MT/V5. 

 

4. Global/coherent motion-direction detection and discrimination as a function of 

display contrast and models of cortical function in migraine  

As described in the Introduction, Shepherd (7,11,12) suggested display contrast could be 

useful to tease apart predictions from different models of neural function in migraine, such as 

proposed by Antal et al. (5) or the McKendrick group (3,4,6). Neither the current motion-

direction detection data nor the motion-direction discrimination data are consistent with a 

model of neural function that entails simply increased internal background neural noise 

(uncorrelated with any visual input), which lowers the signal to noise ratio (3,4,6). This model 

predicts motion-direction detection and discrimination should be impaired in migraine. Here, 

however, there were no significant effects of display contrast for the motion-direction 

detection task once contrast sensitivity was taken into account. This model also predicts that 

detection or discrimination thresholds with the low contrast displays should be affected more 

compared to high contrast displays. The opposite trend was found here, however: generally, 
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slightly greater motion-direction discrimination thresholds occurred for the high contrast 

displays (Table 4). 

 

An alternative model of heightened sensitivity/elevated activity to a stimulus (both signal and 

noise dots), without an increase in the internal background noise (5), predicts that the 

migraine group may perform better at low contrasts on motion detection trials, compared to 

the control group, and group performance differences may decrease as contrast increases. A 

significant interaction supporting this prediction was not found although, as mentioned above, 

it would be worthwhile to test migraine and control groups on this task who have been 

equated for contrast sensitivity. 

 

This model, however, is consistent with impaired discrimination thresholds (see 5,13) and 

especially the trend for higher thresholds for the high contrast displays. A heightened response 

to all motion directions present in the display may enable the high contrast incoherently 

moving noise dots to mask the coherently moving signal dots more effectively than the low 

contrast incoherently moving noise dots can mask the low contrast signal dots. This trend was 

principally seen for the MO group (Figure 2A), and would warrant further investigation with a 

study using a wider range of display contrasts. It is also possible that a heightened response 

to repetitive stimuli grows over time (44). This study was not designed to test this model, 

however: there were too few detection trials, and the use of a double staircase procedure in 

the discrimination experiment yielded too few identical stimulus presentations, to show reliable 

trends for repetitive stimuli. This model could be tested using a fixed set of near threshold 

stimuli and tracking performance over repeated presentations. 

 

Our impaired global motion discrimination results do not accord with other reports of enhanced 

global motion perception in migraine as assessed by the duration of the dynamic motion after-

effect following adaptation to motion (MAE, 7). Certainly, perception following visual 

adaptation differs to normal perception and, in the MAE test display used in (7) where every 
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pixel twinkled, the number of dots seen to be moving together coherently was unknown as it 

depended on the effects of adaptation on motion-selective cells in each individual's visual 

system. That is, it was not a stimulus variable, but rather a perceptual one dependent upon 

the adaptive state of motion selective cells.  Conversely, with global motion discrimination 

tasks, it is the stimulus variable of the number of coherently moving dots that is used to 

determine the threshold. Future research could explore the differences between performance 

on global motion discrimination tasks, and perception of the global MAE, by manipulating dot 

density with each task.  

 

When comparing the two tasks, it is noteworthy that impoverished contrast sensitivity in 

migraine could result in the percepts of the test stimuli in both the present study, and the 

prior motion after-effect studies, appearing lower contrast than for the control group. This is 

relevant as the perception of the MAE is maximised with low contrast test patterns (41-43). 

Impaired contrast sensitivity resulting from low-level, pre-cortical anomalies could enhance, 

rather than impair, the discrimination of global motion that relies on later cortical processes 

when those later processes are maximally sensitive to low contrasts. Future research could 

explore this issue by looking at contrast, contrast sensitivity, and local and global motion 

perception with both the MAE and discrimination thresholds. 

 

5. Relative motion-direction discrimination in random dot displays 

There were three noise conditions in the relative motion study: a stationary surround, a 

stationary background, and a dynamic or twinkling background. The highest relative motion 

thresholds occurred for the stationary noise background (noise added throughout the display), 

the lowest for the stationary noise surround, and the thresholds with the dynamically twinkling 

background noise lay in-between. Once again, when contrast sensitivity was added as a 

covariate, the group differences disappeared, leaving just a significant main effect of type of 

noise. There was, however, evidence of improved thresholds for the migraine groups with the 

dynamically twinkling background, compared to the stationary noise background, which is 
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consistent with stochastic resonance. The difference scores for the migraine groups combined 

(see Figures 3C and 3D) were significantly larger than those for the control group, and they 

were not correlated significantly with contrast sensitivity. General elevated internal neural 

noise models cannot accommodate this relative improvement.  

 

The association between the relative motion difference scores and whether flicker was cited as 

a visual trigger (coded as yes, no) should be replicated. The negative association was 

relatively strong (rpb=–0.49) and indicates that those whose migraines can be triggered by 

flicker had the smallest difference between the stationary and dynamic noise conditions and, 

by implication, the smallest effects of stochastic resonance. This cannot be attributed to the 

presence (N=9 endorsed flicker as a trigger) or absence (N=8) of visual aura. This result 

provides further support for the relevance of classifying migraine participants according to the 

presence or absence of visual triggers, rather than the presence or absence of aura 

(7,11,33,34), but it requires substantiation with a larger number of participants. 

 

MST/MT+ is a moderately high-level extrastriate cortical area that has cells dedicated to 

processing relative motion (16,17). The evidence for stochastic resonance effects in migraine 

with the relative motion thresholds suggests that, in addition to impaired contrast sensitivity 

(probably resulting from low-level, pre-cortical anomalies), there are cortical functional 

variations in migraine, compared to control participants, perhaps at the level of MST/MT+. The 

dynamically twinkling external noise appears to have added to, or boosted, the threshold 

relative motion signal that was presented in the central part of the display for the migraine 

groups only. 

 

The addition of external noise and the question of what is noise for the visual system are 

relatively new areas of research. The display conditions chosen were based on research on 

visual function in elderly drivers (18) and used their stimulus parameters. The present study 
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was a preliminary one to look for any evidence for differences in stochastic resonance in 

migraine and control groups. Since such differences have occurred, this paradigm appears 

promising to refine models of neural function in migraine and would warrant a more 

systematic comparison of the effects of adding various types of added external noise in 

varying amounts after the methods of Simonotto et al. (21). Typically, however, the size of 

stochastic resonance effects are also reported to depend on the level of endogenous, or 

internal, neural noise (23). Future research could also explore whether external noise adds to 

neural responses and/or internal neural noise in similar ways at different levels of the visual 

system in migraine and control groups.  

 

Migraine characteristics (migraine frequency, years suffered) and performance on two of the 

auxiliary measures (striped visual triggers, visual discomfort from reading) correlated to a 

limited extent with performance on the relative motion task only. This was surprising as, in 

earlier work, both the GII, visual discomfort the presence or absence of visual triggers, the 

time elapsed since the last attack and migraine duration (years suffered) have correlated with 

performance on various psychophysical tasks, including motion tasks (2,7,11,13,32-34,43,45).  

 

It is worth noting that the participants in this study were mostly undergraduate students and, 

hence, were relatively young (Table 1). Previously, when a loss of contrast sensitivity has 

been associated with migraine duration (years suffered), the recruitment of participants 

included a sufficient number who had experienced migraine for more than 30 years so they 

could be compared to those who had experienced it for less than 10 years (45). Our sample 

did not include such a wide range of migraine durations to be able to explore this issue 

adequately. Furthermore, each group reported more visual triggers than is usually 

encountered with older participants, indeed, all but six reported at least one visual trigger 

(these six constituted four control participants, one MO and one VA). Computer use or overuse 

was cited as a trigger in seven control participants, nine migraine participants without aura, 

and six migraine participants with visual aura. It is more usual to have stripes, flickering light, 
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glare, high contrasts and abrupt transitions from dark to light cited as visual triggers. A more 

detailed assessment of lifestyle factors is warranted in further research into visual triggers of 

headache and migraine. Here, it is probable that the relative motion is a more sensitive task, 

compared to the motion-direction detection and discrimination tasks, which enabled it to 

reveal subtle associations between migraine characteristics and performance in this particular, 

young, migraine sample.  
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