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ABSTRACT

The objective of tills study is to discriminate between aeolian and fluvial deposits of
the Permian Unayzah formation in Central Saudi Arabia by using wireline logs. The
analysis is conducted on wire-line logs (field data): Density, sonic, gamma, and neutron,
from two vertical wells (U1 and U2) in Central Saudi Arabia. Core data are available
at well location U1 but not at U2. We apply an automated neural-network method
to the wireline data for facies discrimination. Our analysis has been applied to the
logs of well U2 after training the method on U1 logs using available core information.
Results indicate that the Unayzah formation at well location U2 consists mainly of
fluvial deposits (about 90%), which is consistent with previous studies and is supported
by surface seismic images.

We also investigate an analysis method based On the Fourier transform. We study
the decay of the energy spectrum in the frequency domain and estimate the associated
power-law exponent (i.e., the slope of the decay) for each depositional system. Analysis
on the porosity logs (density, neutron, sonic, and shear), which are highly influenced by
deposition composition and texture, has shown that the exponent is about the same for
fluvial deposits at both well locations, while it is different for aeolian deposits.
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INTRODUCTION

Borehole geophysics studies the physical properties of the stratified Earth around a hole
penetrating the subsurface. Tools are used to measure certain physical properties (e.g.,
density, resistivity, velocity (sonic), etc.) and generate wire-line logs for the subsurface.

Wireline logs provide continuous recording of formation parameters versus depth
that can be useful for geologic applications, ranging from simple well-to-well correlation
through stratigraphic information to the study of entire reservoirs. The three funda
mental geological parameters-composition, texture, and structure--can be related in
some manner to the response of well-logging sensors. The fact that different deposits
and environments may manifest different characteristics (hence different log responses),
wireline logs are intensively used for lithology discrimination. The application of wire
line logs to lithology determination has been discussed extensively (e.g., Asquith and
Gibson, 1982; Serra, 1989; Ransom, 1995; Schlumberger, 1991; Bigelow, 1992).

The emergence of sciences such as neural networks, geostatistics, and multiresolution
signal representations, has opened the door to a new class of research that could be
helpful in the interpretation process of wireline logs. Several studies have attempted
to incorporate such teclmiques in wireline logs (see Wolff and Pelissier-Combescure,
1982; Busch et aI., 1987; Delfiner et al., 1987; Baldwin et al., 1990; Rogers et al., 1992;
Herrmann, 1999; Saggaf and Nebrija, 1999).

In this paper, we approach the problem of identifying both lithologic and depo
sitional facies from well logs through the use of neural networks that perform vector
quantization of input data by competitive learning. This technique has provided suc
cessfullithology classification in marine environments (Saggaf and Nebrija, 1999). Here,
we apply such an unconventional method to a more complex area (in terms of lateral
heterogeneity) where we discriminate between different continental depositional systems
or the lithology of the Unayzah formation, in Central Saudi Arabia. The neural net
work method, via competitive learning, is simple, compute-efficient, and inherently well
suited to classification and pattern identification.

The geology of Central Saudi Arabia is discussed in many publications (e.g., Powers
et al., 1966; Murris, 1980; Ayres et al., 1982; Bois et al., 1982; Alsharhan and Kendall,
1986; Beydoon, 1991; McGillivray and Husseini, 1992). The geology of the Unayzah
formation is discussed in detail by AI-Laboun, (1987), McGillivray and Husseini (1992),
AI-Jallal (1996), and Evans et al. (1997). In our work, two sets of wire-line logs (field
data)-density, sonic, gamma, resistivity, and neutron, are used from two vertical wells
from Central Saudi Arabia. Our objective is to discriminate between the aeolian and
the fluvial deposits of the Unayzah formation from the wireline logs. Aeolian sand in
Central Saudi Arabia is an excellent reservoir aquifer for hydrocarbon accumulation with
excellent reservoir properties, such as porosity and permeability. The characteristics of
the deposits for both environments have been discussed previously (e.g., Pettijohn et al.,
1987; Walker and James, 1992; Boggs, 1995; Emery and Myers, 1996; Reading, 1996;
Selley, 1996). Conducting our analysis on datasets from different well locations (Ul
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and U2) provides useful information about the validity of this technique to distinguish
between both geological settings. Furthermore, neural net implementation allows us to
incorporate additional information that we may collect about the local geology.

Finally, an additional method based on the Fourier transform is investigated to assist
in conducting our analysis. In this case, we study the decay of the energy spectrum in
the frequency domain and estimate the associated power-law exponent (i.e., the slope of
the decay) for each depositional system in the log-log domain. This technique is based
on ideas which are adopted from multi-fractal and multi-scale analyses (e.g., Wornell,
1996; Herrmann, 1999) that are yet to be studied in wireline logs as a tool to discriminate
between depositional systems.

STUDY AREA AND DATA

The Usaylah field is located 175 km south of Riyadh, Central Saudi Arabia (Figure 1).
It is the first stratigraphic trap to be discovered in Central Saudi Arabia. Hydrocarbon
is produced from the top of the Unayzah formation with a hydrocarbon column of about
35 ft. The trap is an updip pinch-out of an Upper Unayzah formation along the eastern
flanks of a north-south anticline of the Hawtah trend. The seal is the basal shale and
siltstone of the Khuff (upper seal) and Unayzah (lateral seal) formations (Evans et at.,
1997). The source rock is the Qusaibah Shale, deposited during the Early Silurian sea
level rise following the deglaciation of Gondwana (Beydoon, 1991; Mahmoud et at.,
1992; McGillivray and Husseini, 1992).

The Unayzah formation is of early-to-late Permian age (about 250 Ma), which re
sulted from a complex succession of continental clastics (Al-Laboun, 1987; Evans et
at., 1997; McGillivray and Husseini, 1992) and is one of the most important producing
formations in Central Saudi Arabia. It consists mainly of two depositional systems:
Aeolian (dunal and interdunal) and fluvial (braided-channel and flood-plain) deposits.
Figure 2 shows a geological cross section of Central Saudi Arabia illustrating the gen
eral structure and stratigraphy of the area. Note that the Unayzah formation is quite
heterogeneous laterally, as we expect from continental deposits. At well Ul, the Un
ayzah formation consists of aeolian deposits which are concentrated in the top 50 feet
(Al-Jallal, 1996). The rest of the formation at well Ul is fluvial (Al-Jallal, 1996). The
Unayzah formation rests unconformably on the Qusaibah Shale of the Lower Silurian
age and is overlain by the Late Permian Khuff Formation.

We study well logs from two vertical wells-Ul and U2-that are 2 km apart. The
logs available at well Ul are: Density, compressional sonic, gamma, and neutron poros
ity. Well Ul is a key well since we have a detailed lithology description at that location.
However, prior to this study there was no geology information and interpretation for
well U2. Figure 3 shows the wireline logs at well location Ul and its facies which are
determined from cores and cuttings data. Facies 1 and 2 correspond to dunal and inter
dunal aeolian deposits, respectively. Facies 3 and 4, on the other hand, correspond to
channel and flood-plain fluvial deposits, respectively. Figure 4 shows the wireline logs
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at well location V2 that need to be characterized.

APPROACH

Before attempting to analyze the data and solve the problem, we must establish a basic
understanding of both depositional environments from a sedimentology prospective.
The characteristics of the deposits for both environments have been discussed in many
publications (e.g., Pettijohn et al., 1987; Walker and James, 1992; Boggs, 1995; Emery
and Myers, 1996; Reading, 1996; Selley, 1996). It is obvious that these characteristics
will manifest some signatures on wireline logs that may allow us to distinguish between
the two environments from wireline logs.

In fluvial environments we expect the channel deposits to contain a wide range
of grain sizes, from fine to coarse or conglomerate, poorly sorted, with some cement,
silt and shales, and relatively small cross bedding with ununiform dips azimuths (i.e.,
paleocurrent). Flood-plain deposits should contain very fine grains with a relatively
large amount of shalyness or clay, and cementation. In aeolian environments, we expect
the dunal deposits to have well sorted grain sizes, from fine to medium grain size, with
no significant cementation or shalyness (clay), and large cross bedding with uniform
paleocurrent. Interdunal deposits should contain fine grains with some silt and small
cementation, and laminated bedding.

The above characteristics provide some differences in the responses of wireline logs
for both environments. For example, fluvial deposits will have higher gamma log re
sponses with more variability than aeolian deposits. Furthermore, we should expect
the log responses to indicate relatively higher density, higher velocity (lower sonic), and
lower porosity for fluvial deposits, compared to those for aeolian deposits. Finally, the
fact that both environments have different paleocurrent signatures, the response from
the dip-meter (micro-resistivity measure) would be an important signature to look for in
distinguishing between both environments. In fact, the responses from both the gamma
log and the dip-meter are often used to distinguish between fluvial and aeolian deposits
(Selley, 1996).

WHY NEURAL NETWORKS?

Several techniques have been implemented to conduct the analysis, starting by focusing
on simple statistical properties (e.g., mean and standard deviation), going through
Fourier-based methods (e.g., instantaneous frequency and phase), and ending with the
neural network via competitive learning.

Looking at the characteristics of both depositional environments, we notice that
there is no clear boundary between the two environments. They have a lot in common in
that some logs can easily produce similar responses for both environments (see Tables 1
and 2). Table 1 shows data statistics for aeolian deposits and Table 2 shows deposits
for fluvial at well location Vi. According to the log responses combined with data
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Measurement Mean St. Dev. Min Max
Sonic (ft/s) 83.26 8.25 69.01 97.12

Density (grnlcc) 2.34 0.07 2.23 2.48
Gamma (API) 39.7 5.47 29.31 49.27
Neutron (%) 15.92 3.28 8.5 22.23

Table 1: VI - Aeolian deposits stats.

Measurement Mean St. Dev. Min Max
Sonic (ft/s) 81.45 9.13 69.35 99.64

Density (gmlcc) 2.44 0.1 2.26 2.6
Gamma (API) 92.86 27.66 29.81 143.25
Neutron (%) 13.89 4.46 8.2 23.24

Table 2: VI - Fluvial deposits stats.

obtained from cores and cuttings, aeolian deposits exist in the first 50 ft of the Vnayzah
formation at well VI. Notice that beside the gamma log response, and to some extent
the density log, the rest of the logs show similar responses and a large amount of overlap
in the measurements that make the distinction between the two environments, based
on statistics only, at well VI unreliable.

Recall that the dip-meter log, which has been used as a key deposition discriminator
between those environments, is not available in this case. This makes our task more
challenging, especially considering the fact that the amount of our information (data)
to conduct the study is rather limited.

Because well logs are nonstationary, conventional methods that obtain the frequency
attributes (e.g., instantaneous frequency and phase) tend to fail in characterizing such
signals. In addition, the fact that we have no a priori knowledge about the second
well (V2), we need an intelligent method that can incorporate what we know about the
locality from well VI (the key well in this study). As a result, our main objective would
be to apply such automated methods to characterize the depositional environment from
the wireline logs at unknown location (V2). Obviously, looking at one log at a time (e.g.,
conventional interpretation) or two logs at a time (e.g., cross plots) is quite tedious and
time-consuming and should be avoided if possible.

Considering all the above factors, we would like a technique that is easy but smart,
fast, and most importantly can incorporate what we know about the locality. Neural
networking allows us to accomplish these characteristics. As we will see later, neural
networking uses all the logs simultaneously to perform discrimination efficiently.

Before discussing results from the data analysis, we next briefly discuss the idea and
implementation behind the neural network method.
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SUPERVISED NEURAL NETWORK VIA COMPETITIVE
LEARNING

Lithology classification using neural networks can be carried out by two different ways
of competitive learning: unsupervised and supervised. In this study, we apply the
supervised method. Figure 5 is a flow chart of the algorithm.

The objective of supervised competitive-network analysis is to identify the types of
lithologies present in a certain well by making use of lithologies identified in a nearby
well. This mode, often called guided or directed classification, is implemented by a
two-layer neural network. The first layer is a competitive network that preclassifies
the input into several distinct subclasses. It takes the various well logs as input and
classifies each depth interval into its corresponding facies category. This competitive
layer has a predetermined number of neurons that are mapped into the known number
of classes (facies). The size of the network is thus dictated by the number of classes.
The network is initialized by setting each neuron to be in the middle of the interval
spanned by the input. Individual neurons are considered class representatives, and they
compete for each input vector. Each input vector is compared to the neuron vectors by
computing the distance di between the input vector and the ith neuron. This distance
is usually computed as the h norm. The learning rule is modified such that the winning
neuron is moved closer to the input vector only if the subclass defined by that neuron
belongs to the target class of the input vector. Otherwise, the neuron is moved away
from the input vector. Thus, competitive neurons move closer to the input vectors
that belong to the classes of those neurons, and away from those that belong to other
target classes. After some iterations, the network stabilizes, with each neuron in the
competitive layer at the center of a cluster. The second layer is a linear network that
maps the subclasses produced by the competitive layer into the final target classes to
determine the target class where the input vector belongs. A more detailed information
about the methodology is given in Saggaf and Nebrija (1999).

DATA ANALYSIS

Let us apply the supervised technique to characterize the depositional environments
at well U2 (the logs are given in Figure 4). The training of the neural network is
accomplished by using the input in Figure 3. Notice that we incorporate the lithology
distribution we have learned from the local geology, cores, cutting, etc. Note that classes
1 and 2 (i.e., facies of Figure 3) correspond to the aeolian deposits, dunal and interdunal,
respectively. Fluvial deposits, on the other hand, are represented by classes 3 and 4,
which correspond to channel and flood-plain deposits, respectively. Figure 6 shows the
result of supervised analysis for the lithology distribution at well U2. The Unayzah
formation at well U2 consists mainly of fluvial deposits (i.e., about 90% fluvial and 10%
aeolian). This result is consistent with published information and what we see in the
seismic images (Figure 7), as given by Evans et al. (1997). We should realize, however,
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that 10% of aeolian deposits are not necessarily erroneous, especially considering the
seismic resolution that can easily mask the aeolian feature. It is important to emphasize
the fact that neural networking is data-size dependent. Hence, we should expect further
improvement in the results as the data volume increases.

POWER-LAW ANALYSIS

We next discuss an additional (and to some extent complementary) method which has
shown promising results in differentiating between the depositional systems. It is based
on ideas which are adopted from multi-fractal and multi-scale analyses (e.g., Wornell,
1996; Herrmann, 1999), which are yet to be incorporated in wireline log analysis.

An enormous and varied collection of natural phenomena exhibit a power-law re
lationship in their power spectra. Geophysical time series, such as variation in tem
perature and rainfall records, and flood level variation exhibit such behavior (Wornell,
1996). In sedimentary geology, recent research shows that sedimentation rate exhibits
a power-law relationship with respect to'the number of cycles (beds) (Grotzinger, per
s. comm.). Here, we attempt to study such phenomena in wireline logs and seek its
feasibility to discriminate between the depositional systems.

We start by computing the energy spectrum for the wireline log that corresponds to
a particular depositional system:

N

~(k) = Ifft[xU)W = IL xU) exp-21ri(j-l)(k-l)/N 12 ,

j=l

where xU) is the log data, k is the spatial frequency, and N is the number of data
points.

Wireline logs exhibit fractal phenomena in which the power spectra decay linearly
in the log-log domain (i.e., log~(logk) = odogk + 13). This indicates that the energy
spectrum is governed by a simple power law, as shown in the following, after recasting:

~(k) = ck" ,

where a is the power-law exponent (i.e., the slope of the power spectrum in the log-log
domain) and c is a constant.

As a result, we can estimate the power-law exponent (a) by measuring the slope
after fitting the power spectrum in a least-square sense to a straight line in the log-log
domain. The objective now is to apply this analysis to wireline logs for both depositional
environments.

Figure 8 shows the results of the power-law estimation for density logs at both
well locations and for both depositional systems. Notie that the aeolian section is
separated from the fluvial one of the Unayzah formation at well location UI. The
Unayzah formation at well location U2 is assumed to be exclusively fluvial deposits,
as neural network results (Figure 6) and seismic images (Figure 7) indicate. Table 3
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Measurement Ul-Eol Ul-Flv U2-Flv
Density -3.2 -2.6 -2.6
Neutron -2.1 -2.3 -2.3

Sonic -1.9 -2.0 -2.0
Shear -2.1 -1.8 NjA

Table 3: Power-law exponent estimation for aeolian and fluvial deposits at well Ul and
U2.

shows a summary of the results for the porosity logs at both well locations. Note that
the slopes in the log-log domain (Le., the power-law exponent) for the porosity logs is
about the same for fluvial deposits at both well locations, while it is different for aeolian
deposits.

It is important to mention that we need to be careful before generalizing such empir
ical observations to other geological settings. On the other hand, we should emphasize
the strength of the methodology and the fact that it shows promising results. Analyzing
more data will establish statistical measures for the slopes (Le., the mean and standard
deviation) for both, and perhaps other depositional environments.

DISCUSSION AND CONCLUSIONS

We have approached the problem of identifying both lithologic and depositional facies
of the Unayzah formation, Central Saudi Arabia, from well logs through the use of
neural networks that perform vector quantization of input data by competitive learning.
We have also discussed an additional (and to some extent complementary) method
which has shown promising results in differentiating between the depositional systems
by examining the power-law exponent that governs the power spectra in wireline logs.
This idea is adopted from multi-fractal and multi-scale analyses that are yet to be
studied in wireline log-interpretation (analysis).

Two sets of wire-line logs (field data): Density, sonic, gamma, and neutron, from
two vertical wells (Ul and U2), in Central Saudi Arabia, were used to conduct the
analysis. Our objective was to discriminate between the aeolian and fluvial deposits
of the Unayzah formation. Unlike well location U2, a detailed stratigraphy is already
in place at well location U1. Thus, our main goal was to discriminate between both
geological settings at the unknown location (U2). Conventionally, the gamma and dip
meter logs, supported by borehole images, core-sample analysis and seismic, are used
to perform such discrimination. To achieve our objective with limited data, we applied
an automated neural-network method which is well suited for data classification. Most
importantly, it allowed us to incorporate existing geologic information from well U1.
Results indicate that the lithology distribution of the Unayzah formation at well U2
consists mainly of fluvial deposits (Le., about 90% fluvial and 10% aeolian). This result is
quite consistent with the published information and is supported by the seismic images.

12-8

(



Depositional Systems Discrimination in Wireliine Logs

We discovered that wireline logs exhibit fractal phenomena in which the power spec
tra decay linearly in the log-log domain. This indicates that the energy spectrum of a
wireline log is governed by a simple power law in which the exponent may be used as
a parameter to distinguish between different depositional systems. The idea is adopted
from multi-fractal and multi-scale analyses that have not yet been applied to wire
line log-interpretation. In fact, the power-law exponent estimation has demonstrated
promising results in differentiating between both depositional environments. Analysis
on the porosity logs (density, neutron, sonic, and shear), which are highly influenced by
the deposition composition and texture, show that the slope (i.e., the power-law expo
nent) in the log-log domain is about the same for fluvial deposits at both well locations,
and different for the aeolian deposits. However, it is difficult to generalize such empiri
cal observations based on only two well locations. Further data analysis is necessary to
establish a statistical measure for the slopes (i.e., the mean and standard deviation) for
both and other depositional environments, as well. Both techniques, neural networking
and power-law exponent analysis, are data-size dependent. Hence, we should expect
improvement in the results as data volume increases. We recommend that further tests
be performed to consolidate the empirical results obtained by the power-law exponen
t analysis before incorporating such results into unconventional/automated methods,
such as the supervised neural network, to discriminate between different depositional
systems or lithology.
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lithology (facies). Depth is given in feet.
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Depositional Systems Discrimination in Wireliine Logs

U2 - Unayzah Formation - SupelVised - Input Data
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Figure 4: Wireline logs at well location U2 (Usaylah-2). Depth is given in feet.
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Supervised Competitive Learning

Load Training Data:
data prep.
load facies/classes

Training

Classification

Initialize:
number of classes/neurons
number of cycles/iterations
learning rate
distribute neurons per class

For each data vector:
compute distance to neurons
find dosist neuron
if dosist and data belong to

the same class:
make neuron closer

else
make neuron further

Load Data:
data prep.
load constraints

For each data vector:
compute distance to neurons
assign data vector to dosist

neuron
assign data vector to the

corresponding class

Figure 5: Flow chart of the algorithm for the supervised competitive networking.
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U2 - Unayzah Formation - Supervised (smoothed) - Facies Map
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4
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Figure 6: Data classification at well location U2 based on the supervised method and
using information from well U1.
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Figure 7: A South-North seismic profile f2i.!pgboth well locations overlain ("fter Evans
et al., 1997), It is obvious that well U2 (B) is located in an area that is characterized
by a channel feature at Unayzah formation.
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Density Log (gmlcc) Power-law Exponent Estimation at U1 and U2
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Figure 8: Power-law exponent estimation from the power spectra of the Density logs at
both Well locations. The slope in the log-log domain (Le., the power-law exponent) is
about the same for the fluvial deposits at both well locations, while it is different for
the aeolian deposits. Notice that the aeolian section is separated from the fluvial one at
well location Ul. Unayzah formation at 'Y~~ l~cationU2, on the other hand, is assumed
to be fluvial deposits. 1
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