
CarSpeak: A Content-Centric Network for
Autonomous Driving

by

Swarun Suresh Kumar

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

ARCHNIES
CAHUSTTS INSTITUTE

U TSCHOLOGy

J U L ' 21?1

R

© Massachusetts Institute of Technology 2012. All rights reserved.

A u th or ................. .............................................
Department of Electrical Engineering and Computer Science

May 23, 2012

Certified by

Associate

.... ... .... ..............
Dina Katabi

ofessor of Computer Science and Engineering
Thesis Supervisor

Accepted by .. .... . . ... .......... . .

A e bOL lie A. Kolodziejski
Chairman, Department Committee on Graduate Students

---,I





CarSpeak: A Content-Centric Network for

Autonomous Driving

by

Swarun Suresh Kumar

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2012, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

We introduce CarSpeak, a communication system for autonomous driving. CarSpeak
enables a car to query and access sensory information captured by other cars in a
manner similar to how it accesses information from its local sensors. CarSpeak adopts
a content-centric approach where information objects - i.e., regions along the road
- are first class citizens. It names and accesses road regions using a multi-resolution
system, which allows it to scale the amount of transmitted data with the available
bandwidth. CarSpeak also changes the MAC protocol so that, instead of having nodes
contend for the medium, contention is between road regions, and the medium share
assigned to any region depends on the number of cars interested in that region.

CarSpeak is implemented in a state-of-the-art autonomous driving system and
tested on indoor and outdoor hardware testbeds including an autonomous golf car
and 10 iRobot Create robots. In comparison with a baseline that directly uses 802.11,
CarSpeak reduces the time for navigating around obstacles by 2.4x, and reduces the
probability of a collision due to limited visibility by 14 x.

Thesis Supervisor: Dina Katabi
Title: Associate Professor of Computer Science and Engineering
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Chapter 1

Introduction

Autonomous vehicles have been the topic of much recent research [5, 34, 19]. The

goal of these systems is to drive from point A to point B in an efficient and safe

manner, while dealing with continuous changes in the environment due to pedestrian

and object movements, and the potential of unexpected events, such as road-work

and accidents. To achieve their goal, autonomous vehicles need detailed real-time

information about their surroundings [24]. They typically use laser rangefinder sensors

to discover the surfaces of nearby objects and represent this information as a 3D-point

cloud similar to that shown in Fig. 1-1. Using only the car's on-board sensors, however,

prevents autonomous vehicles from uncovering hidden objects that are not directly

in their line-of-sight, e.g., a kid running around the corner, or a car pulling out of an

occluded driveway. These sensors also cannot deliver long-range data with sufficient

accuracy, which limits the car's ability to plan ahead [34]. Further, they are costly

(e.g., the sensors alone on an autonomous vehicle can cost several hundred thousand

US dollars [18, 19]). For these reasons, the report from the recent DARPA Urban

Challenge identifies the need for information sharing between autonomous vehicles

as a key lesson learned from the contest [4]. However, 802.11 is ill-suited for this

application. Navigation sensors can generate real-time streams at Gb/s from each

car, leading to a scenario where there is always more data than bandwidth to send

it. Furthermore, a communication protocol that cannot capture the importance of

different pieces of information for the application will end up inundating the medium

15
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Figure 1-1: Example of sensory information used in autonomous driving.

The figure shows a 3D-point cloud of a road obtained by a Velodyne laser sensor,

where colors refer to elevation from the ground. Note that a 3D-point cloud provides

the (x, y, z) coordinates of points lying on the surface of obstacles.

with irrelevant or stale data, and potentially denying access to important and urgent

information.

This thesis introduces CarSpeak, a communication system that addresses the

needs of autonomous vehicles. CarSpeak enables cars to request and access sensory

information from other cars, as well as static infrastructure sensors, in a manner sim-

ilar to how they access their own sensory information. To achieve its goal, CarSpeak

adopts a content-centric design, where information objects are first class citizens.

CarSpeak's information objects are regions in the car's environment (e.g., a cube of

1 m 3 ). In CarSpeak, a car can request a real-time stream of a 3D-point cloud data

from a particular region along the road. It can also zoom in to get a more detailed

description, or zoom out for a wider view.

16
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1.1 CarSpeak's Design

CarSpeak delivers its design via three components that address the main challenges

in sharing navigation sensor data:

" How does a car describe the information it wants, at a particular resolution, if

that information describes a region along the road?

In order to name and find road regions, CarSpeak divides the world recursively

into cubes; smaller cubes provide a finer description of the encompassing cube.

Each cube refers to a region. To efficiently represent this data, CarSpeak uses

an Octree, a data structure commonly used in graphics to represent 3D ob-

jects [30, 11]. Each node in the Octree refers to a cube, and the sub-tree rooted

at that node refers to finer details inside that cube, as shown in Fig. 1-2. The

Octree representation allows CarSpeak to name regions at different resolution

and according to their location in the world. Specifically CarSpeak names a re-

gion by referring to the root of the region's sub-tree; it expresses the resolution

of the region using the depth from the root of the region's sub-tree. The Octree

also enables a car to store its data efficiently because, though the world is huge,

each car needs to only expand the part of the Octree in its neighborhood.

" How does the system allocate the wireless bandwidth to the most recent data

from the region, given that multiple cars may sense the same region and each

car does not know what information other cars know?

CarSpeak adopts a content-centric MAC where information objects, as opposed

to senders, contend for medium access. Further, each information object (i.e.,

3D-point cloud stream) obtains a share of the medium proportional to the num-

ber of requests it receives.

CarSpeak implements this abstraction using a distributed protocol, where nodes

that sense a region contend on its behalf. Requests for region data are broad-

cast on the medium. Nodes compute a summary value of the quality of the

information they have of each region (which is a measure of the timeliness and

completeness of this information). CarSpeak uses a low overhead protocol to

17



share this information among the nodes as annotations on their transmitted

data packets. Each car uses these annotations to compute how much sensory

data it should transmit so that its contribution to each stream is proportional

to the completeness and freshness of the data it has from the corresponding re-

gion. CarSpeak then enforces this allocation by controlling the 802.11 contention

window appropriately.

e How does the system compress the redundancy in the transmitted sensor data

while being resilient to packet loss?

CarSpeak makes each packet self-contained by assigning it an independent set

of branches in the Octree that are derived from the root. As a result, each

received packet can be correctly inserted into the tree independent of other

packets. CarSpeak also reduces the overlap between data transmitted by cars

that sense the same region. Recall that each region is a cube that encompasses

many smaller cubes, whose values keep changing in real-time due to the arrival

of new sensor data. In CarSpeak even if multiple cars receive a request for

the same region (i.e., the same encompassing cube), each of them will pick a

different permutation according to which they transmit the sub-cubes in the

region. Thus, if only one car has sensor data about the region, it will eventually

transmit all the sub-cubes from the region. However, if multiple cars have data

about the same region, then they are likely to cover all sub-cubes in the region,

while limiting the overlap in their transmissions.

1.2 Implementation and Results

We built a prototype of CarSpeak in ROS, the Robot OS [28] and integrated it with

a state of the art path planner, whose earlier version was used in the DARPA Urban

Challenge. We evaluated CarSpeak on two testbeds: 1) an indoor testbed of iRobot

Create programmable robots connected to netbooks with Atheros AR9285 cards and

gathering sensor data from Xbox 360 Kinects, and 2) an outdoor testbed composed

of an autonomous Yamaha G22E golf car mounted with Hokuyo laser range sensors,

18



Building an Octree Octree

Figure 1-2: Representation of regions using Octree.

and exchanging sensory information with the Create robots. We compared CarSpeak

with a baseline inter-vehicle communication protocol that directly uses the existing

802.11 protocol.

Experiments from the indoor testbed show that compared to the 802.11 baseline,

CarSpeak reduces the time taken to navigate an environment with obstacles by 2.4 x,

and the probability of a collision due to limited visibility by 14 x.

Outdoor experiments with the a Yamaha golf car tests the role of communication

in enabling cars to react safely to pedestrians who suddenly exit a blind spot and cross

the car's path. Empirical results show that use of CarSpeak allows for the receiver on

the golf car to issue a stop command with a maximum average delay of 0.45 seconds

which is 4.75x smaller than the minimum delay of 2.14 seconds using 802.11. These

relatively small delays using CarSpeak allow the vehicle to safely stop before the

crosswalk if the pedestrian appears at distances as small as 1.4 meters on average,

even when the vehicle is traveling at its maximum velocity of 2 meters per second. In

contrast, using 802.11 the vehicle is unable to stop before reaching the crosswalk if

the pedestrian appears when the vehicle is closer than four meters from the crosswalk

on average.

19



1.3 Contributions

To our knowledge, CarSpeak is the first communication system for multiple au-

tonomous vehicles that focuses on maximizing the utility of information for this

application, and that is fully integrated with autonomous vehicle systems. It is eval-

uated on a testbed of autonomous vehicles, and demonstrated to reduce path length

and the probability of collisions. Its content-centric design that operates on real-time

rich sensory data sets it apart from past work on VANET. This design is delivered

via three components including a multi-resolution naming and addressing scheme, a

content-centric MAC, and a new approach to compressing rich sensory data that is

suitable for lossy and dynamic environments.

20



Chapter 2

Related Work

Related work falls broadly in the following four categories:

2.1 Autonomous Vehicles

Recent years have witnessed major advances in designing and building autonomous

vehicles, spurred by research in sensing and computation technologies. Many advances

have been made in the past decade, as evidenced, for example, by the series of contests

sponsored by the US Department of Defense (Defense Advanced Research Projects

Agency (DARPA)). The DARPA Urban challenge (2007) promoted research and de-

velopment of several autonomous vehicles capable of navigation in an urban setting

in the presence of other such vehicles [5, 34, 19]. Initiatives from the industry such

as Google's driverless car [1] aim to further develop this technology.

Research in this domain focus on various issues pertaining to the navigation sys-

tem in a single autonomous vehicle. Research on autonomous path planning [15, 8]

focuses on robust algorithms that chart obstacle-free trajectories for vehicles to fol-

low towards their destination. Past work has also dealt with recognizing obstacles in

the environment based on sensor data through advanced perception algorithms [18]

including pedestrian detection [21, 351.

Campbell et al. [4] cite the key approaches, lessons and challenges from the

DARPA Urban challenge. Among the lessons learned from the contest was that there
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was a need for information sharing between autonomous vehicles. To this end, CarS-

peak focuses on designing a communication protocol that is most suitable for sharing

sensory data between autonomous vehicles.

2.2 Robotic Networks

Our work is related to a broad area in robotics that studies networks of robots. Past

work in this area can be divided into two categories:

The first category uses communication as a black-box, and focuses on algorithms

that enable robots to collaborate on a desired task. Cooperative exploration [25]

involves a team of mobile robots collaboratively building and updating a map or

representation of an indoor environment. Pursuit evasion [16, 31] enables a large

team of robots that are used to detect intruders and conduct surveillance. The robots

communicate with each other to coordinate their movement to span the environment

and guarantee complete coverage.

The second category considers the application as a black-box and focuses on har-

vesting robot mobility to improve network connectivity or throughput. For instance,

Le Ny et al. [26] In contrast, deploy rultiple robots to form an ad-hoc wireless

communication network, while guaranteeing reliable communication between these

agents, and possibly with some fixed base stations. Gil et al. [9] dynamically position

a team of aerial vehicles that maintain communication-link quality to support a team

of ground robots which are performing a collaborative task.

In contrast with these designs, our work is based on designing the communication

protocols around the needs of the application, and takes neither as a black box.

2.3 Vehicular Ad-hoc Networks

A large number of research papers have focused on the problem of Vehicular ad-hoc

networks (VANETs). Some of the work in this area focuses on designing efficient

routing protocols to achieve minimum communication time between vehicles with
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minimum consumption of network resources [20, 29, 33]. Huang et al. approach the

problem of VANETs using the Delay-Tolerant network (DTN) model since [22] to

account for rapid changes in network topology. tolerant networks [22]. Some sys-

tems [3, 6] focus on designing a MAC protocol to reliably broadcast emergency mes-

sages with minimum delay. Jiang et al. [14] focus specifically on detecting accidents

with minimum probability of false alarm.

None of these papers, however, present a content-centric architecture or design

a MAC protocol where information objects contend for the medium. Also, none of

them present a solution that is particularly suitable for autonomous driving.

2.4 Content Centric Networking

Our work builds on past work on content-centric networking. Content-centric net-

working is an alternative networking architecture that is based on the principle that

a communication network must allow a user to focus on the data he or she needs,

rather than having to reference a specific, physical location where that data is to be

retrieved from. Past work in this domain is mostly focused on the Internet [12, 17].

Jacobson et al. [12] allow users on the Internet to retrieve content by name, and de-

couples identity from location. Some papers apply this concept in the wireless domain,

with primary focus on storage or routing information content [27, 32]. For instance,

Oh et al. [27] focus on routing emergency information in a mobile ad-hoc network

using the principles of content centric networking.

Our work differs from these papers in that it is focused on resource sharing at the

MAC layer. Also, it is fully integrated with an autonomous driving system in terms

of design, implementation and evaluation.
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Chapter 3

Primer on Autonomous Vehicles

In this section, we provide a quick background of autonomous driving software so

that it is clearer how CarSpeak interfaces with these systems. Successful performance

of autonomous vehicles relies on their ability to sense and process information about

the environment around them. To obtain this information, autonomous vehicles and

robots are typically equipped with ranging sensors, which deliver real-time measure-

ments of the distance of the vehicle to the surrounding 3D objects. The vehicle may

use laser scanners, ultrasonic range finders for outdoor settings and kinect for indoor

settings [34, 5, 19, 10]. Other sensors like cameras and light detectors are also used

for additional information.

Most autonomous vehicles use the Robot Operating System (ROS) framework

[28]. ROS provides a publish/subscribe architecture, where a module (e.g., sensor)

publishes a topic (e.g., /sensor-data) that can be subscribed to by multiple modules.

We discuss the commonly defined high-level modules below (Figure 3-1):

3.1 Sensor Infrastructure

Each sensor attached to the autonomous vehicle has an associated module which

converts raw sensor information obtained from the driver into a generic sensor format.

The most widely used format is a 3D-point cloud which provides the 3-D (x, y, z)

coordinates of points lying on the surface of obstacles. The point cloud, along with a
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Figure 3-1: High-Level Architecture of Autonomous Vehicular Systems. The

path planner module uses information from various sensors to compute a safe path

for the vehicle.

timestamp t denoting the time of retrieval of sensor data, is published by each sensor

module.

3.2 Planner

The planner's goal is to use sensory information to plan an obstacle-free path for the

vehicle to navigate along. The planner typically has access to a detailed global map

of the environment. The planner is sub-divided into four modules:

" Perception module subscribes to point cloud information from the sensors

and applies complex obstacle detection algorithms to recognize obstacles in the

frame of reference of the vehicle. It publishes a map of these obstacles.

" Localization module publishes the vehicle's position within the global map

based on GPS, odometry or more advanced sensory infrastructure, some of

which can be as accurate as a few centimeters [19].

" Mapper subscribes to information from the localization and perception mod-

ules and publishes a global map incorporated with locations of obstacles.

" Path planner subscribes to the vehicle's location and the global obstacle map

and publishes a path for the vehicle to travel along.
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3.3 Controller

The controller subscribes to the vehicle's path and issues steering and velocity-control

commands to the vehicle, so that it navigates along the computed path. In many cases,

the controller may execute emergency maneuvers if there is substantial change in the

obstacle map due to moving obstacles.
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Chapter 4

CarSpeak's Architecture

CarSpeak's design aims to interface effectively with the ROS (Robotic Operating Sys-

tem) architecture for autonomous vehicles. From the perspective of the ROS planner,

CarSpeak looks like a local sensor that streams sensory information obtained from

other vehicles. 1 CarSpeak receives requests from the car's planner by subscribing

to /query..region topic. It propagates these requests over the network to CarSpeak

modules on other vehicles to direct them to transmit information from the requested

region. When it receives sensory data in response to requests it sent, like other sensors,

CarSpeak publishes this data as a stream of 3D point-cloud data (under the topic

/car-speak). The planner may now subscribe to the information from the requested

regions. Unless refreshed, a subscription (as well as the corresponding requests broad-

cast on the medium) expires after one minute. Timing out subscriptions is done for

efficient use of bandwidth as cars are expected to lose interest in some regions and

gain interest in others, as they move around.

CarSpeak's guarantees are best effort, i.e. CarSpeak aims to best use of available

bandwidth to send as much relevant information as possible, in a loss-resilient man-

ner. CarSpeak has three components: A Content-Centric MAC, a Multi-Resolution

Naming and Addressing system, and a Loss-Resilient Compression system.

I Sharing information requires a notion of trust. One option is to use the IEEE 1609.2 security
standard for inter-vehicular networks to digitally sign and verify all messages. However, further
details are beyond the scope of this paper.
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Figure 4-1: Information Flow in CarSpeak. CarSpeak has three components:

A Multi-Resolution Naming and Addressing system, A Loss-Resilient Compression

system and a Content-Centric MAC

Fig. 4-1 illustrates how these components interact with each other, the planner, and

the wireless channel.

4.1 Content-Centric MAC

The MAC receives region requests from the planner and broadcasts these requests on

the medium. It also keeps track of requests received from other cars over the wireless

medium. It evaluates the importance of different regions based on how many requests

they have recently received and tries to satisfy these requests by working with the

other CarSpeak components.

4.2 Multi-Resolution Naming and Addressing

The multi-resolution naming and addressing system subscribes to 3D-point cloud

information published by local sensors and builds an Octree-representation of this

data. The Octree is read by the compression module whenever CarSpeak sends data

packets in response to outside requests, and is written by the compression module
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whenever CarSpeak receives data packets in response to requests generated by the

car. The multi-resolution naming and addressing system also publishes updates to

the Octree caused by the arrival of external data as a 3D-point cloud under the topic

/car.speak, which is subscribed to by the planning system of the autonomous vehicle.

4.3 Loss-Resilient Compression system

The loss-resilient compression is triggered by the MAC to generate compressed data

packets for transmission on the medium or to decode received data packets and insert

them in the Octree.

In the following chapters, we discuss the design and functioning of each of these

modules in more detail.
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Chapter 5

Multi-Resolution Naming

In autonomous vehicles, sensory information is typically represented as a 3D-point

cloud. The point-cloud representation however is unstructured, and hence does not

facilitate requesting information about a specific region. It is also inefficient because

it does not compress the information by leveraging the fact that points close to each

other tend to have similar labels: empty or occupied. Sharing information across

vehicles requires a naming scheme in which a car can name a specific region of interest.

It also requires an efficient representation that compresses the exchanged data and

reduces bandwidth consumption.

5.1 Information Naming and Representation

CarSpeak uses the Octree naming system to identify and represent sensor information

from the environment. Specifically, CarSpeak divides the world recursively to cubes. It

starts with a known bounding cube that encompasses all points observed by vehicles

in the environment. This root cube is known and agreed upon by all vehicles and is

uniquely determined by the vehicle's location. Each cube is then recursively divided

into 8 smaller cubes as shown in Figure 5-1. A cube is set to be either: (1) occupied, if

the point cloud representation has points within it (i.e., the cube has some object and

the car should not drive through it); (2) unoccupied, if there are no points within it

(i.e., the cube is vacant and the car may drive through it); and (3) unknown if there
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is no sufficient sensory information about it (i.e., the cube may have some object

but the car does not yet have sensor data to identify it). We note that a parent is

occupied if any of its descendants are occupied. A parent is unoccupied only if all of

its descendants are unoccupied. Otherwise the parent is unknown.

CarSpeak maintains this recursive structure in an Octree, where each vertex in

the Octree represents a cube, and the sub-tree rooted at that vertex refers to the

recursive divisions of the cube. The Octree representation allows CarSpeak to name

road regions at different resolutions and according to their locations in the world.

Specifically, in CarSpeak a region is an encompassing cube, which is nothing but

a sub-tree in the Octree, truncated to L levels, where L is the resolution at which

the region is described. In principle, one can allow regions of any size to have any

resolution. This would allow a car to request the whole world at the finest resolution.

Such a design is both inefficient and unnecessary.

Thus, CarSpeak expresses large regions at high resolutions and smaller regions at

finer resolutions. Specifically, CarSpeak partitions the Octree into mutually disjoint

sub-trees, where each sub-tree is truncated to L levels. Each of these truncated sub-

trees denotes a region and forms a hierarchy, as shown in Fig. 5-1. All regions are

described completely by their corresponding truncated sub-tree, which contain up

to 8 L - 1 vertices, labeled either "occupied", "unoccupied", or "unknown". Regions

at a higher-level in the hierarchy provide a zoom-out view and are represented at a

coarser spatial granularity, whereas regions at a lower level in the hierarchy provide

a zoom-in view and are represented at a finer spatial granularity. A key point to note

is that truncated sub-trees corresponding to any pair of regions, regardless of their

hierarchy, do not overlap.

To assign regions globally unique names, we number them in ascending order in

a top-down, breadth-first manner starting from the region containing the root of the

Octree (that provides a coarse view of the entire environment). The number of regions

and the parameter L can be chosen by the designer based on the size of the vehicles

and their mobility.
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Figure 5-1: Naming Regions in CarSpeak. The figure on the left shows four

different regions at different hierarchies with L = 2. The figure on the right depicts

the truncated sub-trees corresponding to these regions in the Octree.

5.1.1 Benefits

CarSpeak Octree-based naming system has two advantages. First, it facilitates re-

questing and accessing sensory data at different resolutions. Second, it compresses

the data both for storage and transmission. In particular, while the world may be

huge, each node need not expand regions that are far from its location. Further, when

exchanging information, a large sub-tree can be sent as one node if all nodes in the

sub-tree have the same value (e.g., if a whole sub-tree has occupied nodes, CarSpeak

sends a single value expressing the fact that the whole sub-tree is occupied).

5.2 Information Retrieval and Maintenance

The multi-resolution naming and addressing module subscribes to information from

local sensors and incorporates this data into its Octree. It also populates its Octree

using sensor data received from other vehicles over the wireless medium. This allows

it to provide this information to other nodes that may failed to obtain it from the

original sender due to packet loss or disconnectivity. Further, it publishes the data it

receives from other vehicles through the topic ./car-speak after converting it to the 3D
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point cloud representation. (Note that data from local sensors is already published

by the sensors themselves.)

5.2.1 Garbage Collection

Each vertex of the the Octree data-structure is annotated with a time-stamp field

that is set to the timestamp of the most recent sensor information stored in this cube.

CarSpeak runs a thread to periodically traverse the Octree and removes vertices which

are outdated. If time-stamp is older than the current time by over a fixed threshold,

then the entire sub-tree is dropped. We note that in CarSpeak, all cars use NTP

to synchronize their time to within tens of milliseconds, which is sufficient for the

purpose of the application.

5.3 Information Quality

The 3D stream of a region contains data from multiple nodes that sense that region.

On average, for each region, CarSpeak aims to provide each node a share of the

medium proportional to the quality of information it possesses about that region.

Let Q(i, r) denotes the quality of information that node i has regarding region r.

CarSpeak evaluates this function based on the following metrics:

" Time: Sensor information gathered more recently is of greater value, than sen-

sor information gathered in the past. CarSpeak decreases the quality of sensor

information Q(i, r) based on delay, by a factor of p -(tcurr;tsense) where t,. is the

current timestamp, tsense denotes the timestamp at which sensor information

was last obtained from the region and 0 < p < 1 is a constant.

* Completeness: The more complete the information a node has about a region,

the higher the value of its information. Hence, CarSpeak linearly increases the

quality of sensor information based on its completeness, i.e., Q(i, r) ca C(i, r),

where C(i, r) is a measure of completeness of information that node i possesses

about region r. The Octree presents an effective metric for measuring C(i, r).
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Let C(i, r) denote the number of vertices not labeled unknown in the section of

the Octree, possessed by node i, representing region r divided by the number

of possible vertices in region r. Hence, C(i, r) represents the fraction of region

r that node i has sensed.

Thus, CarSpeak's multi-resolution naming and addressing system on node i keeps

track of the quality of sensor information, Q(i, r), possessed by its node for each

region r, as:

Q(i, r) = C(i, r)p(t-cu-t"se), (5.1)

where tsense, tem, and C(i, r) are as defined above and 0 < p- < 1 is a constant

(pt = 0.5 in our implementation).
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Chapter 6

Loss-Resilient Compression

3D streams of region data are highly redundant. The information at each node is

correlated because occupied cubes tend to be co-located. The same applies to un-

occupied and unknown cubes. Further, different nodes that sense the same region

may have overlapping information (though the overlap is typically not complete due

to differences in perspective and viewing distances). Thus, efficient transmission re-

quires compressing the data. A good compression scheme however should deal with

the following issues:

" The compression algorithm should have a low computational overhead to main-

tain the real-time nature of the data.

" It should not require the cars to track how their information relate to each

other.

" It should be resilient to packet loss.

We describe how CarSpeak meets these requirements below.

State-of-the-art compression schemes in the graphics community for 3D-point

clouds leverage the fact that the corresponding Octrees can be efficiently encoded

to provide a compressed high-entropy representation [30, 11]. Similarly, CarSpeak

exploits this compression capability of the Octree.
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Figure 6-1: Octree Representation Representation of 3D-point cloud using a 2-level

Octree. Vertices that are unoccupied are not expanded; vertices that are completely

occupied or unknown are terminated by special leaf vertices; these have been omitted

for clarity.

6.1 Octree Encoding

The standard Octree encoding technique is as follows: Let each vertex in the Octree

be represented by a tuple of length 8 representing the occupancy of each of its chil-

dren. We traverse the tree in a top-down and breadth-first fashion and read off the

corresponding tuples to obtain the compressed data. The root vertex can always be

assumed to be occupied. Then, for each vertex, its occupied and unknown children

are recursively encoded. In contrast, no further information needs to be encoded for

unoccupied vertices (as they are assumed to be entirely unoccupied). Additionally,

vertices whose descendants are entirely occupied or unknown are terminated by a

special 8-tuple (with all entries marked occupied or unknown respectively) and are

not further encoded, as shown in Fig. 6-1. The decoder can then faithfully recover

the Octree by following the same traversal rules as the encoder.

This algorithm is very efficient since it simply walks the Octree representation. The

problem however with using traditional Octree compression is that the loss of even a

single byte in the Octree representation affects the correctness of all data following

that byte. Consequently, Octree based compression frameworks are highly sensitive to

packet loss. Furthermore, the above algorithm cannot deal with data overlap across

nodes that sense the same region.
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Figure 6-2: Picking tree T for compression Tree T picked with j initialized to 0

is highlighted by red contours.

6.2 Loss Resilient Compression Scheme

We introduce a new algorithm that leverages the above standard Octree compression,

but deals with packet loss and overlap. Specifically: Let r be the region from which a

packet is requested by the Content-Centric MAC. Let 0, denote the truncated sub-

tree in the Octree corresponding to this region. Let , v1, ... , vK-1 denote the leaf

vertices of this sub-tree. The algorithm to generate a packet proceeds as follows: Let

variable j be set to a random integer between 0 and K - 1, and variable T be set to

an empty tree.

(1) Add vertex vj to the tree T as well as all its ancestors tracing all the way up

to the root of 0,.

(2) Set j +- j + 1 and repeat step (1), while the encoding of T fits within the

maximum size of a packet.

The algorithm writes the Octree encoding of T to a packet and transmits it. Note

that all packets are not generated in one shot, i.e. even if two packets are describe the

same region, the later one will have more recent information. As nodes pick different

random seeds, it is highly probable that different nodes that sense the same region

do not transmit overlapping information, at any point in time.

The compression algorithm can be further improved by using predictive coding

techniques [30, 11] as the sub-graph T preserves edges between parents and children
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in the original Octree 0,.

6.3 Properties

The resulting compression algorithm has the following desirable properties:

" It is computationally efficient because it is linear in the size of the region's

Octree.

" It is robust to losses because each packet is self-contained.

" Packets received from different cars that sense the same region have minimal

overlap because at any point in time, they transmit different parts of the region's

Octree.

" It supports a form of unequal error protection because the transmitted subtrees

contain paths of all vertices to the root of the region. Hence, vertices at higher

levels in the tree are less likely to be lost than vertices at lower levels. Thus, the

loss of a packet typically results in the loss of resolution as opposed to complete

loss of information.
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Chapter 7

Content Centric MAC

CarSpeak adopts a content-centric MAC that focuses on the application's goals and

requirements. In CarSpeak, regions, as opposed to senders, contend for the medium.

The MAC tracks region requests and allocates to each region a medium share propor-

tional to how often it is requested. Further, it ensures that the number of transmissions

each node makes on behalf of a region is proportional to the quality of information

that the node has about the region as measured by the function Q(i, r). In the fol-

lowing sections, we describe how the MAC performs these functions.

7.1 Tracking Region Requests

The content-centric MAC handles requests for different regions both from its own

vehicle and other vehicles. The module records REQ, a measure of requests made

for each region s by various nodes. In our implementation, REQ, is set to one plus

the number of requests made for region s. This is to ensure that in the absence of

requests all regions get equal share of the medium.

Requests can be from two sources: Internal Requests, when the request is from its

own car and External Requests, when the request is obtained from another car. We

explain how the MAC handles the two kinds of requests below:
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Symbol Meaning

Si Node i's desirable share of the medium

CWmin,i Contention window of node i

Rr Region r's desirable share of the medium

Pi,r Probability of transmitting packets from region r at node i

Q(i, r) The quality-function at node i for region r

pos(x) Equals 1 if x > 0 and 0 otherwise

Table 7.1: Table of Notations. We use i to iterate over nodes, and r to iterate

over regions

7.1.1 Internal Requests

When the MAC receives requests from its own car, it broadcasts them to other vehicles

over the wireless medium. It also keeps track of past requests and time them out

after a minute. When packets with region data arrive, the module checks whether

they answer a request that has not timed out, in which case it passes them to the

compression module for decoding.

7.1.2 External Requests

The MAC actively listens on the medium to track the requests made for various

regions, and to identify which regions are observed by vehicles in the network. When

a vehicle receives a request for region s, it updates REQ, accordingly, which biases it

to transmit more information about region s, if available.

7.2 Region Contention

CarSpeak aims to share the medium among regions proportionally to the number of

requests they receive.
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7.2.1 Sharing the Medium Among Regions

Let R, be region's r share of the wireless medium, i.e., the percentage of transmissions

that should describe region r. We can write:

R = pos(EZ Q(i, r))REQr (7.1)
E, pos(E Q(i, s))REQ'(

where REQ, is a measure of requests made for region s, and pos(x) = 1 if x > 0 and

0 otherwise. The function pos(E 1 Q(i, r)) ensures that only regions for which some

node has information acquire a share of the medium. Regions that no node has sensed

(i.e., Q(i, r) = 0, Vi) do not get a share of the medium.

But how does a node obtain the information it needs to substitute in the above

equation in order to compute Rr? CarSpeak disseminates this information as anno-

tation on the data packets transmitted by each node. Specifically, every CarSpeak

packet sent by node j includes a list of region ids for which node j has information

and their corresponding Q(j, r)'s. By default this list has 5 entries for a total of 40

bytes (6 bytes for region ids and 2 bytes for Q(j, r)).

CarSpeak nodes listen on the medium and collects information about the different

regions and quality of information that other nodes have for these regions. They use

this information to populate a table of region ids, and the quality of information the

various nodes have for each region. A garbage collection thread that runs every 10

seconds multiplies Q(i, r) values by a factor p, (0 < p < 1) in order to age-out quality

information that is outdated it also timeout requests that have not been refreshed in

the past minute.

7.2.2 Controlling Medium Access

Using its estimate of the share of the various regions of the medium, Rr's, a node can

estimate how often it should transmit, i.e., its own share of the medium. Let Si be the

medium share of node i. Node i's share of the medium is the sum of its contribution

to the transmissions related to all regions for which i has data. This contribution

is also proportional to the quality of information the node has about each of these
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regions. Thus:

Si = E R, '~i r . (T.2)
r Q(j, r)

Conceptually, once a node knows its share of the wireless medium, it should be

able to transmit according to that share. At first, it seems that the node can achieve

this goal by simply waiting for a transmission opportunity - i.e., the medium being

idle - and using such opportunities as often as its share permits. For example, if its

share is 20% of the medium time, it then transmits once every five times it senses

the medium to be idle. Unfortunately, this approach does not work in practice. In

practice, the decision to transmit upon the detection of an idle medium is performed

in the card itself and cannot be controlled in software.

Thus, we will enforce the node share indirectly by controlling its contention win-

dow CWmin. The relation between the contention window and the resulting share of

the wireless medium is given in [2] as:

CWmd,i = 2 *- S (7.3)
Si

The above relation is derived from a detailed Markov chain model of the progression

of the contention window in 802.11 [2]. Intuitively, however, one can understand it

as follows: In 802.11 a node picks a random value between 0 and CWmin. Thus, the

average contention value is Cw .+1. Thus, on average the node accesses the medium

once every CW 2+1 and hence its share of the medium S = 2

7.2.3 Partitioning a Node's Transmissions Among Regions

While the above ensures that the node gets the proper share of the medium, the node

still has to divide this share between various regions depending on: 1) each region's

share of the medium, and 2) the quality of information the node has about the region.

To achieve this goal, whenever the node has an opportunity to transmit a packet, it
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picks the packet from region r with the following probability:

R, x Q(i,r)
P = R - x X Qr (7.4)

ER, x Si E, i Q(j, r)Ej Q&,s)

Clearly Zr Pi,r = 1, for every wireless node i.

The above is implemented using a non-blocking UDP socket. Whenever the socket

has space for new packets, the node picks those packets from the regions according

to the probabilities Pi,r's.

7.3 Scaling

The above design has an important side benefit: it provides congestion control for

802.11 broadcast mode. Specifically, the presence of many 802.11 senders can lead to

excessive collisions and a congestion collapse. This effect is countered in 802.11 unicast

mode by the fact that a node that does not receive an ACK for its packet, backs off

and doubles its contention window. Hence, during congestion, nodes tend to back off

and reduce the number of collisions. In contrast, 802.11 broadcast mode does not have

ACKs and hence it cannot use the lack of ACK as a signal of congestion to which

it reacts by backing off. This leaves the broadcast mode with no protection against

medium congestion. The resulting problem is typically referred to as a broadcast

storm [20, 33]. In contrast, CarSpeak scales with a large number of senders because

senders do not contend for the medium. It also scales with a large number of regions

because as the number of regions increases the share of each region decreases because

Rr depends on a region's share of the total number of requests.

47



48



Chapter 8

Discussion

In this chapter, we discuss some design considerations in implementing CarSpeak:

8.1 Communicating Processed Information.

An important design decision is whether CarSpeak nodes should send processed sen-

sor information, such as locations of pedestrians or whether a road is congested,

instead of raw sensor information. While this approach may be sufficient for spe-

cialized scenarios, they are not suitable for general-purpose communication between

autonomous vehicles. In the most general applications, transmitting nodes in networks

of autonomous vehicles need not know how receivers plan to process this information.

Furthermore, different receivers may process the same sensor information to achieve

different objectives. Native sensor information, available at different resolutions, is the

only representation generic enough to cater to varied objectives, such as evaluating

road congestion, detecting pedestrians, avoiding vehicles, enabling better localization,

route planning, and curb-detection amongst others.

8.2 One Hop vs. Multi-Hops.

One design decision is whether CarSpeak nodes should relay requests, in an attempt

to find the relevant information at vehicles that are multiple hops away from the
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originator. We chose not to do so, i.e., we do not make vehicles forward region re-

quests. Our reasoning is based on the trade off between bandwidth consumption and

the value of information about relatively distant locations. CarSpeak targets urban

environments and speeds lower than 20 miles per hour. For autonomous driving ap-

plications, and even with a conservative estimate, a car should not need information

from locations that are farther than half to one minute away. At the above speeds,

this translates into locations that are 100 to 200 meters away, which are typically

within radio range.' Hence, we believe that limiting access to only information that is

within the radio range of the requester is a reasonable design choice that enables each

region to expend its wireless bandwidth on serving its local, and hence most urgent,

requests.

8.3 Regular Traffic.

CarSpeak can support 802.11 traffic unrelated to autonomous driving as well. Such

traffic can be represented simply as a virtual region in space. The designer can decide

how to weigh this region in comparison to autonomous driving regions. For example,

one may want to divide the medium equally between autonomous driving and other

applications by setting Raiwa = 0.5, in which case the autonomous driving applica-

tion can use half the medium share (as well as any resource unused by the virtual

region).

'For example, the Dedicated Short Range Communication (DSRC) technology, which was
adopted by the intelligent transportation system (ITS) has a radio range of up to 1000 meters [23].
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Chapter 9

Implementation

We implement CarSpeak's multi-resolution naming, addressing, and information shar-

ing system as a module ("ROS node") in the Robot Operating System. We operate

ROS on the Ubuntu 11.04 distribution (with linux kernel version 2.6.38-8-generic),

that runs on the ASUS netbooks attached to the iRobot Create robots.

9.1 Multi Resolution Naming

Our implementation of CarSpeak's multi-resolution naming system maintains the Oc-

tree data structure with L = 8 and three levels of region sub-trees. We also implement

CarSpeak's garbage collection as a ROS timer thread with a threshold of 10 seconds

for the freshness of sensor information.

Our implementation of CarSpeak's multi-resolution naming system subscribes to

multiple topics containing sensor information in ROS's PointCloud format. It pub-

lishes the /car..speak topic, in ROS's PointCloud format, based on UDP packets re-

ceived from the MAC layer. In this sense, CarSpeak behaves as any other sensor

module in ROS.
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9.2 Loss Resilient Compression

We implement CarSpeak's Octree-based compression framework to sub-sample the

Octree and generate UDP packets to be forwarded to the MAC module. Our imple-

mentation does not include predictive coding.

9.3 Content Centric MAC

CarSpeak's content centric MAC implementation has two key requirements: 1) The

ability to modify channel access parameters such as the contention window size and,

2) Accurate timing to ensure packets are transmitted by the driver with minimum

queuing delay. We chose the open-source ath9k driver+firmware for Atheros 802.11n

based chip-sets because it met our requirements. In our implementation, whenever the

driver receives a packet (over-the-air or from user space), it searches for a CarSpeak

header within the payload of the packet to identify it as a CarSpeak packet. If the

packet is from user space, the driver places it in a queue corresponding to the region

for which the packet contains information. The driver does not directly transmit the

packet because the next packet to transmit (based on region sampling probabilities)

may not correspond to the region for which the packet contains information. For

actual transmission, we create a separate high priority thread within the driver to

schedule packets based on the region sampling probabilities discussed in Section §7.2.

Once a region is chosen for transmission, the thread dequeues the packet from the

region's queue, sets the CWMin for the hardware's queue, and writes the packet into

the hardware's queue. To minimize waisted airtime, we schedule this thread as fast

as possible with the help of High-Resolution Timers available in the 2.6.x version of

the Linux kernel. HR Timers are very accurate, with scheduling errors as low as 10us.
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Chapter 10

Evaluation Environment

Below we describe the testing environment and the evaluated schemes.

10.1 Testbed

We evaluate CarSpeak in both indoor and outdoor settings. Our indoor testbed

contains 10 iRobot Create robots equipped with Xbox 360 Kinect sensors. Asus

EEPC 1015PX netbooks equipped with Atheros AR9285 wireless network adapters

are mounted on each robot. Our testbed includes several large and small obstacles

as shown in Fig. 10-1. The testbed is divided to 40 high resolution regions. Low

resolution regions are specified per experiment.

Our outdoor testbed contains an autonomous Yamaha G22E golf car mounted with

various sensors, such as cameras, SICK and Hokuyo range finders. The autonomous

car navigates in a campus-like environment and needs to detect pedestrians as well as

other vehicles. We implement CarSpeak on the golf car and on several iRobot Create

robots equipped with Kinect sensors situated in multiple locations. The robots assist

the golf car's navigation system by providing sensor information useful in detecting

pedestrians in the environment. An image of the actual pedestrian crosswalk can be

found in Figure 10-2. This image demonstrates the lobby adjacent to the crosswalk

which poses a blind spot for the vehicle.
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Figure 10-1: CarSpeak's Indoor Testbed. The blue circles denote candidate loca-

tions for robots and gray boxes denote obstacle locations.

Figure 10-2: CarSpeak's Outdoor Setup. Image of the actual golf car route demon-

strating the lobby area that poses a hazardous blind-spot for the golf car and makes

visual confirmation of a pedestrian difficult before he enters the road.
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10.2 Compared Schemes

We evaluate CarSpeak with all its components along with the following two baseline

implementations:

10.2.1 802.11

An 802.11 based inter-vehicle communication system, which allows vehicles to make

requests for regions, Responses are in the form of UDP/broadcast packets and are

provided by all wireless nodes which possess any information about the given set of

regions. The system uses the standard 802.11 MAC protocol to transmit information.

The protocol keeps track of requests and causes requests older than one minute to

expire. It also discards sensor data older than 10 seconds. The system however does

not implement Octree-based naming or compression and instead transmits raw 3D-

point cloud information. It also does not implement any of the functionalities of the

content centric MAC.

10.2.2 802.11+Naming

This baseline includes CarSpeak's Octree based naming and compression modules. It

tracks requests and transmits packets from each region proportionally to the number

of requests it received for that region, i.e., REQ.. It also times out requests after one

minute and discards sensor data older than 10 seconds. However it does not implement

region-based contention or other CarSpeak MAC functions.

10.3 Metric

We compare CarSpeak against these baseline implementations based on a utility

function, which computes the rate of useful sensor information, received per second.

A 3D point cloud is considered useful, if it contains sensor information only from

the requested region(s), at the right resolution. For example, if a region is requested

at a coarse resolution, fine grained high resolution information from that region are
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aggregated into the requested resolution and then their contribution to the useful

information is computed. If all the fine grained information ends up covering only one

point in the requested coarse resolution, their contribution to the utility metric will

be one point.
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Chapter 11

Results

We evaluate CarSpeak in both indoor and outdoor environments. Our indoor testbed

contains several obstacles that create blind-spots for the robots. Figure 10-1 depicts

candidate robot locations in the test-bed. Experiments are repeated with robots as-

signed to different randomly chosen locations and moving towards different randomly

chosen destinations. Our experiments allow robots to obtain sensor information from

a diverse set of regions at various points in time.

11.1 Region Contention

CarSpeak's key goal is to enable regions to share the medium efficiently, regardless

of the location or number of nodes. We verify if CarSpeak delivers on that promise.

11.1.1 Method

We place robots in randomly chosen locations in the indoor testbed. We issue an equal

number of requests for two different regions in the environment at regular intervals

from two wireless nodes in the testbed(5 requests/sec). We measure the variance of

the rate of 3D-points received from the two regions by both robots, by CarSpeak the

standard 802.11 MAC protocol, and a hybrid approach 802.11+Naming. We repeat

the experiment for 20 different topologies, with requests generated from different pairs
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of robots.

11.1.2 Results

Figure 11-1 shows the cumulative distribution function (CDF) of the variance (nor-

malized by the average square) of the rate of points received from the two regions by

the robots. The mean variance obtained using CarSpeak is 0.0015, while that of the

standard 802.11 protocol and 802.11+Naming are 0.101 and 0.081 respectively. The

higher 802.11 variance is due to the fact that 802.11 allocates bandwidth to senders

not regions. Hence, the region that was observed by more robots received a greater

share of the medium compared to the other region. The exact difference in the shares

of the two regions varied from one experiment to another depending on the topology

and mobility pattern. 802.11+Naming had a slightly lower variance. This is because

the protocol enforces the desired region rates locally - i.e., if one robot has informa-

tion from both regions the amount of data it transmits is balanced between the two

regions - but cannot guarantee the desired medium allocation across different nodes.

In contrast, CarSpeak's region based contention mechanism ensures that the medium

is shared equally between the two requested regions, across a variety of topologies

and mobility patterns.

11.2 Region Requests

In this experiment, we test CarSpeak's region request module and verify an increased

number of requests for a given region leads to a proportional increase in the number

of 3D points received from that region.

11.2.1 Method

We place robots in randomly chosen locations in the indoor testbed. We issue queries

for two regions in the environment. We fix the query rate for the first region (5 re-

quests/sec) and vary the query rate for the second region across experiments. We mea-
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Figure 11-1: Region Contention. CDFs of variance in rate of points received from

two regions. The variance obtained using CarSpeak is significantly smaller, across a

variety of topologies and in the presence of mobile robots.

sure the ratio of the number of points received from the two regions at the requesting

robots, when the experiments are carried using CarSpeak, 802.11 and 802.11+Nam-

ing. We repeat the experiment for 20 different topologies, with requests generated

from different pairs of robots.

11.2.2 Results

Figure 11-2 plots the ratio of the number of 3D points received from the two requested

regions as a function of the ratio of the number of requests made for the two regions.

The figure shows that, for CarSpeak, the ratio of received points is roughly equal to

the ratio of requests. This holds across a variety of topologies and mobility patterns. In

contrast, for 802.11, the ratio of points is totally independent of the ratio of requests.

802.11+Naming performs slightly better showing some correlation between the ratio

of points from the two regions and the ratio of their requests.
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Figure 11-2: Region Requests. Ratio of the number of points received from two

requested regions plotted against ratio of the number of requests made for the two

regions. CarSpeak ensures the wireless bandwidth is allocated to region proportionally

to the number of requests they receive.

11.3 Scaling

In this experiment, we demonstrate that CarSpeak scales to environments with a

large number of vehicles.

11.3.1 Method

We conduct the experiment with two regions that have equal request rates. However,

we increase the number of transmitters and explore the impact on the protocols.

We measure the number of points received by the requesting receivers for CarSpeak

and the two baselines. We repeat the experiment for different topologies and pairs of

regions.

11.3.2 Results

Figure 11-3 plots the number of received 3D points, with CarSpeak, 802.11, and

802.11+Naming as a function of the number of contending nodes. While CarSpeak's
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Figure 11-3: Scaling. Number of 3D points received at a receiver by CarSpeak, 802.11

and 802.11+Naming as a function of the number of contending nodes. We observe

that while CarSpeak scales gracefully, 802.11's performance deteriorates when there

are over 6 nodes, due to an excessive number of collisions and the lack of a back off

mechanism in the broadcast mode.

performance scales gracefully, the performance of both the 802.11 baselines deteri-

orates when there are over 6 nodes. This is due to the large number of collisions

that occur when multiple nodes transmit using the 802.11 broadcast mode, causing

a broadcast storm. CarSpeak's content centric MAC protocol solves this problem by

adapting the nodes' contention window so that it stays independent of the number

of transmitters.

11.4 Compression

In this experiment, we evaluate the performance of CarSpeak's compression module.

We verify if our compression scheme is robust to packet loss while providing significant

compression over sending uncompressed point cloud data.
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11.4.1 Method

Since the level of possible compression depends on the scene, we place the robots in a a

typical outdoor setting containing several buildings and obstacles, with Kinect sensors

receiving depth information.1 We vary the distance between the robots to achieve a

wide range of loss rates. We evaluate CarSpeak's compression module against the

following two compression schemes:

" No Compression: 3D-point cloud information is transmitted directly without

any compression but with random sub-sampling.

" Standard Octree Compression: 3D-point cloud data from the environment ob-

tained from the sensor at regular intervals is compressed using the standard

Octree compression algorithm described in §6. The resultant data is packetized

and broadcast on the medium.

We repeat the experiment for different locations of the robots in an outdoor setting.

11.4.2 Results

Figure 11-4 plots the number of received 3D points divided by the number of trans-

mitted packets, as a function of the packet loss rate. CarSpeak's compression module

provides a consistent gain of 4x over sending uncompressed data. While packetizing

compressed point cloud data achieves a greater compression at very low loss rates, the

scheme deteriorates to poorer than sending uncompressed data at a packet loss rate

of 10% (which we found to be typical in our mobile outdoor scenarios). Since point

cloud data is sought by several receivers whose channel to the transmitter varies with

time due to mobility, a practical compression scheme must be robust to a wide range

of packet loss. CarSpeak delivers on this promise.

1Kinect does not work in sunny outdoor settings. Hence, we pick afternoon hours and locations
a lot of shades.
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Figure 11-4: Compression module. Ratio of the number of points received over

the number of transmitted points measured across packet loss rates when packetizing

compressed point cloud data, using CarSpeak's compression module and without us-

ing compression. CarSpeak's compression module provides a consistent gain of 4.5x

over sending uncompressed data, while packetizing compressed point cloud data per-

forms poorer than CarSpeak for packet loss rates as low as 2%.

63



11.5 Resolution

In this experiment, we evaluate the performance of CarSpeak when observing regions

at different resolutions. We verify if CarSpeak responds with high quality information

at the appropriate resolution, when a region is requested.

11.5.1 Method

We experiment with a scenario in which a robot requests a region at a low resolution.

The environment has one robot who has the region at the proper resolution and many

other robots that have incomplete and higher resolution information of the region. We

measure the number of the 3D points received from the large region at the requester,

in each of the three compared schemes. Note that fine grained high resolution infor-

mation from within the requested region are aggregated into the requested resolution

and then their contribution to the useful information is computed. For example, if all

the fine grained information ends up covering only one point in the requested coarse

resolution, their contribution to the utility metric will be one point. We repeat the

experiment 20 times under different topologies.

11.5.2 Results

Figure 11-5 plots the rate at which the requester receives points from the desired

resolution. The figure shows that adding robots observing smaller regions does not

reduce CarSpeak's performance, as it recognizes that the robot observing the entire

region has a greater quality of sensor information and deserves greater access to

the medium. However, 802.11's performance is reduced as the medium is increasingly

shared by wireless nodes observing only a small fragment of the requested region. Note

that as the 802.11 baseline does not implement Octree-based compression, its rate

of received sensor information is lower, compared to 802.11+Naming or CarSpeak.

Overall, across experiments, CarSpeak delivery rate of the desired data is 4.5 x higher

than 802.11+Naming and over 29x higher than 802.11.

64



~W 700000
C,,
c 600000 .
-5
a. 500000
0

-2 400000 CarSpeak -
- 80211 +Naming -
n 300000 80211

!! 200000
0

o 100000 -

CU 0
1 2 3 4 5 6 7 8 9

Number of transmitters

Figure 11-5: Resolution. The figure shows the rate at which information is received

from a requested low-resolution region, for different schemes. Increasing the number

of robots that do not have the requested resolution can dramatically impact the

performance of 802.11 and 802.11+Naming. In contrast, CarSpeak maintains high

rate of information from the desired region.

11.6 Planning Efficiency

In this experiment, we demonstrate CarSpeak's capability to provide the path planner

with more efficient routes in an environment with obstacles.

11.6.1 Method

Consider a topology of the robots as shown in figure 11-6(a). Robot A seeks to nav-

igate to location X, via the shortest possible path. However, the road ahead of X

is blocked, and this information is available only with Robot B. Robot A does not

have a line-of-sight view of the road block. The environment also has several other

robots positioned at various other locations with sensor information of lower impor-

tance, also contending for the medium. Robot A makes several requests for regions

close to X, for which its own sensors have no information. In the presence of timely

sensor information from Robot B, Robot A can make a detour at the intersection to
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Figure 11-6: Experiment setup for (a), The shortest path 1 from A to destination

is blocked, efficient communication from sensor B should enable A to take path 2; for

(b), There is a potential collision of A with B when A tries to merge into the traffic

in another road at the T intersection. The collision can be avoided if A can hear from

C about the other side of the road.

reach its destination via a marginally longer route. However, without this informa-

tion, Robot A reaches the road-block and must U-turn to take the detour. We repeat

the experiment with a different number of vehicles contending for the medium in the

environment.

11.6.2 Results

Figure 11-7 plots the time taken by robot A to navigate to location X vs. the number of

contending nodes when running CarSpeak as well as the two 802.11 benchmarks. We

observe that in a network of over 6 contending wireless transmitters, CarSpeak per-

forms, on average, 2.4x better than the 802.11 baseline and 2.1 x better than 802.11's

MAC with CarSpeak's multi-resolution naming system. In this network, 802.11 pre-

dominantly picks the incorrect path to the destination, while CarSpeak correctly picks

the detour at the intersection, with high probability. While, 802.11+Naming performs

marginally better than 802.11 due to a more effective compression scheme, its per-
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Figure 11-7: Planning Efficiency. Time taken by the robot to navigate an obstacle

ridden environment across number of contending wireless nodes. CarSpeak performs

2.4x better, on average, than the baseline 802.11 implementation in a network of over

6 robots.

formance remains poor as much of the available wireless bandwidth is used by other

nodes, with sensor information of much lower importance.

11.7 Safety

In this experiment, we evaluate CarSpeak's effectiveness in improving the safety of

autonomous driving by detecting obstacles outside the field of view of the vehicle.

11.7.1 Method

Consider a topology of the robots as shown in figure 11-6(b) emulating the common

scenario of vehicles at an intersection. Robot A is navigating towards a T-intersection

and seeks to merge with other traffic on the main roadway. Ideally, Robot A must

yield to Robot B (emulating a human-driven car without sensors), which is currently

traveling on the main road. However, Robot A's sensors have a limited field of view and

cannot detect Robot B. Negotiating such intersections is one of the most challenging
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Figure 11-8: Safety. Percentage of successful detection of Robot B across number

of wireless nodes contending for the medium. For a network of over 6 contending

transmitters, CarSpeak's probability of successfully detecting Robot B is 14x that of

802.11 and 6.5x that of 802.11+Naming.

problems in designing autonomous vehicles, often requiring human intervention or

additional information regarding obstacles on the road [7]. In this topology, Robot C

has access to sensor information capturing Robot B. The network has several other

robots contending for the wireless medium, placed in randomly chosen locations.

We evaluate the ability of Robot A to detect Robot B, while implementing CarSpeak

against the 802.11 baseline implementations. We repeat the experiment with different

numbers of vehicles contending for the medium in the environment.

11.7.2 Results

Figure 11-8 plots the percentage of successful detection of Robot B vs. the number

of wireless nodes contending for the medium. While the performance of 802.11 and

802.11+Naming deteriorate to as low as 6.1% and 11.9% as the number of robots

increases, CarSpeak successfully detects Robot B with 91% probability. In a network

of over 6 transmitters, CarSpeak's probability of detecting Robot B is 14x that of

802.11 and 6.5x that of 802.11+Naming.
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11.8 Outdoor Experiments on an Autonomous Ve-

hicle

CarSpeak was implemented in an outdoor setting at a pedestrian crosswalk in a

campus-like environment. This pedestrian crosswalk presents a hazardous setting

where the two buildings on either side of the crosswalk completely block the view

such that vehicles on the road are not aware of pedestrians before they emerge onto

the street. See Figure 10-2. We present empirical results demonstrating CarSpeak's

capability of improving the stopping time of an autonomous Yamaha G22E golf car

over 802.11 when point cloud sensor data for pedestrians in the vehicle's blind spot is

transmitted to the vehicle. In particular, our results show that CarSpeak enables the

vehicle to make a stop decision before the crosswalk even at full speeds, if a pedestrian

appears when the vehicle is one to two meters away from from the crosswalk.

11.8.1 Method

Our setup consists of a total of six Kinect sensors placed adjacent to the pedestrian

crosswalk, i.e., the vehicle blind spot. Five out of six of these Kinects are monitor-

ing a different section of the environment and thus are inconsequential for detecting

pedestrians entering the crosswalk. Note that the experiments were conducted in the

presence of multiple collision domains, and hidden terminals. Only one of the Kinect

sensors is strategically placed to monitor the pedestrian crosswalk blind spot and

thus obtains information relevant for the vehicle. Each Kinect broadcasts its point

cloud sensor information using the Asus netbook described in §10. A receiver node on

the autonomous golf car, a Vaio VPCF23BFX laptop with an Intel Core 17-2670QM

processor, processes the sensor data that it receives from the Kinects to infer the pres-

ence of a pedestrian in the critical region (i.e., vehicle blind spot) viewed by the high

priority Kinect. The pedestrian detection module issues a positive reading if the num-

ber of point cloud data points within the critical region is above a threshold of 1000

points. Upon detecting the presence of the pedestrian, the receiver node immediately
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publishes a stop command to the golf car through a ROS publish/subscribe interface.

We compare CarSpeak against the benchmark of the traditional 802.11 protocol for

data transmission.

For the purposes of obtaining our performance metric, we make the node attached

to the Kinect log the sensor data to detect the exact time when the pedestrian appears

in the lobby in front of the transmitting Kinect. This time is then compared against

the timestamp of when the receiver issues a stop command to the vehicle. Using

the vehicle's on-board localization paired with the two timestamps recorded, we also

compare the distance of the vehicle from the crosswalk when the pedestrian enters

the crosswalk and when the golf car is issued a stop command by the receiver. We

note however, that processing is not necessary at the transmitter and is only done for

computing our performance metrics.

We perform the experiment by allowing the pedestrian to enter the crosswalk's

blind spot when the golf car is traveling at a full speed of two meters per second at

distances of roughly ten meters, eight meters, six meters, four meters, and two meters

from the crosswalk. For all of our results we assume the pedestrian takes an additional

0.5 seconds to enter the crosswalk from the time he is detected at the Kinect in the

lobby and this is the time value we use on the x-axis of our plots. The results of

these experiments are averaged over five runs for each of these distances using both

CarSpeak and the traditional 802.11 protocols and are compared in the next section.

11.8.2 Results

Our results, in Figure 11-9, show a clear improvement in the vehicle's ability to

safely stop before the crosswalk using CarSpeak as compared to 802.11. In particular

CarSpeak allows for the receiver to issue a stop command with a minimum average

delay of as little as 0.3 seconds from when the pedestrian appears in the field of view

of the Kinect and a maximum average delay of 0.45 seconds. The maximum average

delay of a positive pedestrian detection using CarSpeak is 4.75 times smaller than the

minimum delay of 2.14s using 802.11.

These relatively small delays using CarSpeak allow the vehicle to safely stop before
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Figure 11-9: Time Delay Averages for CarSpeak and 802.11. Distances on the

x-axis are grouped into bins of two meters representing distances of the golf car from
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Figure 11-10: Comparison of golf car distance from the crosswalk when the

pedestrian enters the crosswalk to the distance from the crosswalk at which

the receiver issues a stop command to the vehicle. Distances on the x-axis are

grouped into bins of two meters.
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the crosswalk even when it is one to two meters away and traveling at a speed of two

meters per second when the pedestrian appears. Use of the traditional 802.11 protocol,

however, fails to stop the car before the crosswalk if a pedestrian appears when the

vehicle is closer than four meters from the crosswalk, on average. See Figure 11-10. The

use of CarSpeak allows for a larger portion of critical information requested by the golf

car from the priority Kinect sensor to reach the receiver, whereas an 802.11 protocol

floods the receiver with proportionally more data from the five irrelevant Kinect

sensors, inhibiting the receiver's ability to process a positive pedestrian detection.

In particular, using CarSpeak the receiver obtains 7.5 x as many pedestrian critical

3D points as 802.11, averaged over twenty runs. In summary, using CarSpeak allows

the receiver to gain several folds more information about regions of the environment

that it labels as important, even in the presence of several contending non-relevant

transmitters, allowing for more timely usage of prioritized data for making critical

decisions on actual autonomous driving systems.
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Chapter 12

Conclusion and Future Work

This thesis introduces CarSpeak, a content-centric communication system for au-

tonomous driving, enabling cars to query and access sensory information captured by

other cars in a manner similar to how they access information from their local sen-

sors. Field tests using a combination of iRobot robots and a Yamaha instrumented

car show that, in comparison with a baseline that directly uses 802.11, CarSpeak im-

proves safety, increases information throughput, and provides several folds reduction

in the time to navigate an obstacle-ridden environment.

12.1 Future Work

CarSpeak opens up several possibilities for enabling more efficient communication

and collaboration between autonomous vehicles and robots.

12.1.1 Cloud-based Designs

CarSpeak's principles can be used to design communication systems between au-

tonomous vehicles to the cloud. The cloud could assist autonomous vehicles, by pro-

viding information about obstacles, such as pedestrians and road-block. The advan-

tage of such a system, is that the cloud can aid a vehicle by providing it information

from other vehicles which may not be directly within its communication range. The
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challenges though, are to ensure that vehicles make optimal use of available bandwidth

to the cloud, with minimum latency.

Another opportunity is that the cloud can perform some of the tasks, such as

long-term path planning normally performed on autonomous vehicles themselves.

The advantage here is that this minimizes the amount of computing power needed on

each autonomous vehicle, leading to a greener system. The cloud has greater access

to resources such as energy and computing power, and can potentially perform these

tasks more effectively. The challenge is to provide the cloud with sufficient information

to perform these tasks within available bandwidth, and to ensure low latency of such

a system.

12.1.2 Cross-Layer Designs

CarSpeak uses the Octree data structure to provide loss resilient compression for

communication between vehicles. One might expect that CarSpeak could benefit ad-

ditionally from network coding, by making vehicles transmit linear combinations of

packets to achieve loss-resilience. But network coding is all-or-nothing, i.e. the re-

ceiver can decode only on receiving a predefined number of coded packets. As cars

move in-and-out of range, one cannot guarantee the number of received packets. Thus,

several received packets become undecodable.

However, there are opportunities to optimize communication further by imple-

menting cross-layer designs which involve modifying the physical layer of 802.11. For

example, Jakubczak et al. [13] design a cross-layer communication system for video

data transmitted over a wireless network. Such a design gracefully degrades the qual-

ity of received information in the presence of increased packet loss. It provides for a

soft network code that does not suffer from the all-or-nothing property. The challenge

is to design such a system for transmitting compressed 3D sensor information, in a

loss resilient manner, exploiting the natural sparsity of such data.
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