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Abstract

The field of infrastructureless wireless networks (IWNs) is a broad and varied research area with a

history of different assumption sets and methods of analysis. Much of the focus in the area of IWNs has

been on connectivity and throughput/energy/delay (T/E/D) tradeoffs, which are important and valuable

metrics. When specific IWN routing protocols are developed, they are often difficult to characterize

analytically. In this thesis we review some of the important results in IWNs, in the process providing a

comparison of wideband (power-limited) versus narrowband (interference-limited) networks. We show

that the use of geographic location and geographic prediction (GL/GP) can dramatically increase the

performance of IWNs. We compare past results in the context of GL/GP and develop new results in this

area. We also develop the idea of throughput burden and scaling for the distribution of topology and

routing information in IWNs and we hope that this work provides a context in which further research

can be performed.
We primarily focus our work on wideband networks while also reviewing some narrowband

results. In particular, we focus on wideband networks with non-zero processing energy at the nodes,

which combines with distance-dependent transmission energy as the other main source of power

consumption in the network. Often the research in this area does not take into account processing

energy, but there is previous work which shows that processing energy is an important consideration.

The consideration of processing energy is the determining factor in whether a whisper to the nearest

neighbor (WtNN) or characteristic hop distance routing scheme is optimal. Whisper to the nearest

neighbor routing involves taking a large number of short hops, while characteristic hop distance routing

is the scheme by which the optimal hop distance is based on the distance dependent transmission

energy and the processing energy, as well as the attenuation exponent.

For a one-dimensional network, we use a uniform all-to-all traffic model to determine the total

hop count and achievable throughput for three routing types: WtNN without GL/GP, WtNN with GL/GP,

and characteristic hop distance with GL/GP. We assume a fixed rate system and a random and uniform

node distribution. The uniform all-to-all traffic model is the model where every node communicates

with every other node at a specified rate. The achievable throughput is the achievable rate at which

each source can send data to each of its destinations. The results we develop show that the

performance difference between WtNN with and without GL/GP is minimal for one-dimensional

networks. We show the reduction in hop count of characteristic hop distance routing compared to

WtNN routing is significant. Further, the achievable throughput of characteristic hop distance routing is

significantly better than that of WtNN networks.
We present a method to determine the link rate scaling necessary for link state distribution to

maintain topology and routing information in mobile IWNs. We developed several results, with the main
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result of rate scaling for two-dimensional networks where every node is mobile. We use a random chord
mobility model to represent independent node movement. Our results show that in the absence of
GL/GP, there is a significant network burden for maintaining topology and routing information at the
network nodes. We also derive real world scaling results using the general analytic results and these
results show the poor scaling of networks without GL/GP. For networks of 100 to 1000 nodes, the rate
scaling for maintaining topology in mobile wireless networks is on the order of hundreds of megabits to
gigabits per second. It is infeasible to use such significant amounts of data rate for the sole purpose of
maintaining topology and routing information, and thus some other method of maintaining this
information will need to be utilized.

Given the growing number of devices connected to the Internet, in the future it is likely that
IWNs will become more prevalent in society. Despite the significant amount of research to date, there is
still much work to be done to determine the attributes of a realistic and scalable system. In order to
ensure the scalability of future systems and decrease the amount of throughput necessary for network
maintenance, it will be necessary for such systems to use geographic location and geographic prediction
information.

Thesis Supervisor: Vincent W. S. Chan
Title: Joan and Irwin Jacobs Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Christopher C. Yu
Title: Group Leader - Sensors and Networks Group - Charles Stark Draper Laboratory
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Chapter 1

Introduction

When the development of the Internet first began, it would have been difficult to imagine its use in the

many tasks we now perform online every day such as checking the weather, reading the news, and

executing financial transactions. It would have been even more of a stretch to predict the vast quantity

of devices that would eventually interconnect with one another via the Internet or private networks.

This explains modern networking problems such as the exhaustion of the address space in IPv4 [1]. The

Internet evolved from connecting researchers and government organizations with the initial assumption

of a fixed, wired infrastructure. Today, the network has broadened to personal computers, wireless

devices such as mobile phones, and other devices as wide-ranging as ovens, cars and televisions.

Throughout all of these changes in the use of communication networks, the predominant transport and

networking protocols have for some time been Transmission Control Protocol (TCP) and Internet

Protocol (IP) addressing and routing. The TCP/IP protocol suite will likely continue to serve most end-

user networking needs for the foreseeable future. Most successful and widely adopted uses of

networking today involve a predominantly fixed wire line infrastructure. When wireless connections are

used, they mostly consist of one hop wireless architectures with base station infrastructures, such as in

the IEEE 802.11 protocol family. These wireless protocols are primarily designed for and work best in

environments where the router is connected to the wire line infrastructure and serves as an access point

to the wired Internet.
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The research area of multi-hop wireless networking is broad, though recently considerable focus has

been placed on so-called mobile ad-hoc networks (MANETs), or wirelessly linked networks of mobile

users. This thesis uses the more general term infrastructureless wireless network (IWN) to describe both

MANETs and non-mobile ad-hoc networks. While both MANET and IWN could be used to describe this

area of research, IWN more accurately describes a wider range of networks, including those without

mobility. We define an IWN as a network of wirelessly communicating homogeneous nodes with no

fixed infrastructure, prearranged hierarchy, or deployment strategy. In many cases, such networks will

be mobile. However, in other cases, such as sensor networks, the nodes may be predominantly

stationary or mobile at fixed intervals of time or for periods of time. Further, the dynamic nature of links

in an IWN may not necessarily be due to mobility and instead could be due to changes in the radio

frequency (RF) environment, either from obstructions or interference.

The work in this thesis analyzes the performance benefits of geographic location and geographic

prediction (GL/GP) information in IWNs, as compared to the traditional method of utilizing routing

tables stored at networks nodes. In an obstruction-free environment, the network topology could be

determined from knowledge of the location of every node in the network. We note that in an

environment with obstructions, the network will likely not be able to rely completely on GL/GP

information for determining the topology. We propose that the ability of IWNs to operate as functional

standalone networks necessitates the use of network geographic information stored at the nodes of the

network. This includes both geographic location information and geographic prediction information

about the other nodes in the network. Using routing tables without geographic information', as in the

case of the Internet, is neither bandwidth efficient nor scalable for the number of nodes expected to be

operating in future IWNs, on the scale of 10 to 1000 nodes.

I That is, tables maintained at the nodes and updated with traditional link-state routing protocol via flood routing
when the network topology changes.
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1.1 Existing Infrastructureless Wireless Network Research

Current IWN research is primarily focused on two areas: bounds on throughput/energy/delay (T/E/D) in

networks (e.g., [2], [3], [4]) and particular topology and routing algorithms (e.g., [5], [6]). Thus there

exist both bounds on performance and algorithms which attempt to achieve those bounds. The work in

this thesis focuses on these bounds as well as the expense of distributing topology and routing

information in IWNs, particularly in terms of throughput. Thus we aim to show that in order to come

close to achieving the T/E/D bounds in the analytic research, IWNs must have some way of maintaining

the network topology and appropriate routing solutions without overusing the valuable network

bandwidth for link-state routing protocol (LSRP).

Traditional topology-based IWN routing protocol research can be broken down into three areas (see

[5]): proactive (e.g., [7] and [8]), reactive (e.g., [9] and [10]) and hybrid proactive-reactive (e.g., [11] and

[12]). In traditional IWN research, nodes communicate topology and route information by sending

messages to one another at regular intervals or due to trigger events. The network topology is based on

a number of physical factors and Chapter 2 of [3] provides a summary of how real-world RF

environments are analyzed. Most analytic IWN research focuses on easily described RF environments, as

is explored in this thesis. Once the topology information is determined, routing can then be performed

using a number of algorithms, including velocity-aided routing (VAR), predictive mobility and location-

aware routing (PMLAR), dynamic source routing (DSR), distance routing effect algorithm for mobility

(DREAM) and greedy perimeter stateless routing (GPSR) [5].

1.2 The Geographic Location and Prediction Assumption

At present it is difficult to compare the performance of networks with and without GL/GP for several

reasons. First, much of IWN research focuses on network performance bounds. In general, when dealing
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with bounds, one assumes that the network has whatever information is necessary to meet that bound.

IWN performance is traditionally analyzed in the context of limitations based on interference or power

(that is, energy use) and the rest of the system is not defined. Second, much of the work in this area

assumes that nodes have the necessary information to perform forwarding of packets in the network to

their destinations. Often no mention is made of exactly how that information is collected in the first

place. Taken to its conclusion, this question of which comes first, the information to route or the routing

of that information, one arrives at the cold start problem of IWNs. Further, even if the cold start

problem is solved, there still exists the issue of maintaining links in a network which by its dynamic

nature will not always know how to send information between every source-destination (S-D) pair in the

network. In summary, the use of GL/GP at the nodes is often assumed and may be necessary to achieve

performance close to the bounds in the literature.

1.3 Thesis Scope and Organization

The following is a brief description of the scope and organization of this thesis, by chapter:

Chapter 2 reviews some key analytical concepts related to IWNs, including graph theory, mobility and

traffic models, common IWN performance evaluation criteria, and narrowband and wideband systems.

Particular focus is given to the development of the wideband model as derived from the Shannon

capacity. While most of the results in this thesis apply to both narrowband and wideband systems, we

develop the wideband model to a greater extent as it provides some important insights into the

networking problem. This chapter also reviews the prior work which motivated the work in this thesis.

Chapter 3 explores a one-dimensional IWN by way of determining the total hop count and achievable

throughput for three routing types: WtNN without GL/GP, WtNN with GL/GP, and characteristic hop
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distance with GL/GP. In this chapter we look at nodes communicating only with their nearest right and

left neighbors and compare throughput with networks where nodes communicate over a characteristic

hop distance.

Chapter 4 provides an analysis of the network capacity burden of distributing protocol information in

IWNs using a simple velocity model. First we look at the burden of exchanging protocol information for

common routing schemes with a single mobile node and then use a more general approach where every

node in the network is mobile. We show that given some simple assumptions about node mobility, the

link coherence time across the network scales poorly with the number of nodes and consequently so too

does the burden of exchanging routing protocol information.

Chapter 5 summarizes the main results of the thesis and addresses the future of IWN research and

applications. Here we qualitatively provide several application-side GL/GP methods for ensuring

connectivity in future wireless networks.
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Chapter 2

Modeling Infrastructureless Wireless Networks

As compared to wired networks, which have a fixed infrastructure, IWNs have a number of additional

degrees of freedom which must be accounted for in modeling. Some examples include dynamic links,

stochastic node distribution and node mobility. Furthermore, there are important modeling distinctions

and assumptions to be made relating to power-limited versus interference-limited networks, as well as

considering processing energy and transmission energy consumption. Finally, power usage is often a

limiting factor in IWNs that must be optimized.

2.1 Modeling using Graph Theory

Graph theory represents an important aspect of IWN research, particularly as it relates to modeling the

ad-hoc nature of the node distribution in such networks. We previously defined IWNs as having no fixed

infrastructure, prearranged hierarchy, or deployment strategy. In other words, an IWN is a random,

pseudo random or arbitrary network as compared with wired networks. Further, unlike wired networks,

IWNs are not assumed to be hierarchical in nature. These two assumptions lead to stark differences

between an IWN and a traditional infrastructure-based network (IBN). Thus while both IWNs and IBNs

can be modeled and analyzed using graph theory, IWN modeling encounters limits of stochastic graph

theory that are not an issue in IBNs, which are not generally assumed to have randomly generated

27



topologies. As part of our research in this area, we look at the two main areas of random graph theory:

random geometric graphs (see [13]) and Erd6s-Rdnyi graphs (see [14]).

Perhaps the most important difference in modeling these two types of networks is the lack of hierarchy

in an IWN as compared to an IBN, making it generally necessary to model all nodes in an IWN

simultaneously. In an IBN, it is possible to break the modeling process into parts based on the hierarchy.

Each level of the hierarchy can often be analyzed separately, such as the wide area network (WAN),

metropolitan area network (MAN), and local area network (LAN). Whereas in an IWN certain nodes may

serve the function of a backbone, not every IWN is organized in this fashion and thus for many

applications it is necessary to simultaneously model the entire network

Another important difference between IWNs and IBNs is that IBNs are generally formed almost

exclusively from wired links, which are relatively easier to model because their placement is

deterministic, not random. In the case where there are wireless links in IBNs, such links are usually one-

hop wireless links (that is, access point links). Thus the modeling of wireless links in IBNs is generally

simpler because the wireless nodes do not usually communicate with one another over a series of links

via other wireless nodes. While wired links and nodes may fail with some probability, this can be

incorporated into the modeling. A graph theory based reliability analysis of network architectures is

available in [15].

2 Due to the wireless nature of the network, each node in an IWN is in principle connected to all other nodes with
some non-zero rate. In contrast to wired networks, the wireless network is technically fully connected. This makes
routing more complicated because of the richness of connectivity and the possibility of much more fluid routing.
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2.1.1 Erdos-Renyi Graphs

An introduction to Erd6s-Renyi graphs can be found in [14], and we present some of the basic concepts

from that work in this section. Erd6s-Renyi graphs are described by a set of vertices and a set of edges,

where the edges are formed in a probabilistic manner. Unlike random geometric graphs, which are

discussed in the next section, Erd6s-Renyi graphs are not typically well suited for the study of IWNs in

free space environments. In general, random geometric graphs more accurately model IWNs, while

Erd6s-Renyi graphs are well suited to the study of wired networks.

The work in [14] considers graphs where n is the number of vertices and V = {1,2,...,n} is the set of

vertices. The set of all graphs with vertices V = {1,2, ... ,n} is given by gn. The two basic models of

Erd6s-Renyi graphs are represented by 9(n, M) and g{n, Pr(edge) = p}. In the first model, g(n, M),

each graph with M edges is equally probable. Thus given that the maximum number of undirected edges

is N = (n, then we have 0 M N and there are (N) equally probable graphs of type 9(n, M), each

occurring with probability (N). In the second model, g{n, Pr(edge) = p}, edges are chosen

independently and with probability p. Thus the number of vertices m is binomially distributed with

parameters n and p. Finally, in order to relate the two types of graphs, we note as in [14] that

9 {n, Pr(edge) = is the set of all graphs gn where every graph is equally probable.

2.1.2 Random Geometric Graphs

Random geometric graphs are formed by placing a set of points over a region of space according to

some probability distribution and then forming an edge between any two points separated by a distance

less than or equal to a specified value. As compared to Erd6s-Renyi graphs, random geometric graphs

are much better suited to the modeling of IWNs. In particular, random geometric graphs are suitable for
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modeling two-dimensional IWNs in free space environments. However, similar to Erd6s-Renyi graphs,

the author in [13] notes that precise computation of probabilities for a random geometric graph of size

n is unfeasible except for small values of n. Thus, most of the results in this work focus on large finite

graphs. The study of random geometric graphs began with [16]. An in depth analysis of random

geometric graphs can be found in [13], while [17] takes a broad look at mathematical modeling of

wireless networks. In this section we briefly introduce some of the major tenets of random geometric

graph theory found in these works.

As in [13], let f be some specified probability density function on the d-dimensional space Rd. We have

some sequence X 1 ,X 2,... of d-dimensional independent and identically distributed (lID) random

variables, distributed according to f. We defined the random geometric graph G(X; r) as the graph of

vertex set Xn = {X 1 ,X 2, ...,Xn} with undirected edges connecting all nodes separated by a distance

not more than r. This is known as Gilbert's random disk model and was first proposed in [16]. An

overview of the model is given in [17]. As in [17], a random geometric graph can also be described in

terms of a Poisson point process <b. A point process can be visually described as a random collection of

points in space. We direct the reader to [17] for the formal definition of a point process and further

exploration of random graphs modeled as Poisson point processes. The precise calculation of properties

of random geometric graphs is difficult and as a result most research in this area focuses on asymptotic

results and thus sequences asymptotic in n. That is, given some sequence of parameters (rn), one

considers the properties of G(X;rn), often as the sequence (rn) approaches zero. It is noted in [13]

that questions concerning connected components of G(X; r) can be studied in terms of the coverage

process of balls of equal radius r/2 centered at the points Xn.
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Unlike in Erd6s-R6nyi graphs, where edges are independent or nearly independent, edges in random

geometric graphs are not independent. That is, an edge between nodes Xi and X implies that nodes Xi

and X are close to one another (specifically, within some distance r). The existence of another edge

between X and Xk implies that nodes Xi and Xk are also close to one another. Given these two edges,

we can say that node Xi is also close to Xk (that is, node Xi is located at most at a distance 2r from

node Xk). The author in [13] argues that the lack of independence between node distances, given the

existence of some edges, makes random geometric graphs often more realistic than Erd6s-Renyi

graphs. This lack of independence is termed the triangle property in [13]. That is, given three nodes Xj,

Xi and Xk, and given edges exist between two of them, the third edge (the hypotenuse of the triangle)

is at most length 2r and this virtual edge forms a triangle with the other two edges.

2.2 Mobility Models in IWNs

One of the open problems in IWN research is developing an appropriate model for mobility in a

network. Given a bounded space in which the nodes operate, there are many ways to model mobility

within the network and the choice of a particular model has a large impact on simulation results. The

mobility model that is applicable in a given situation may be entirely unrealistic in another. Further, a

routing or topology algorithm optimized for one mobility model may perform very poorly for another.

Given some small assumption set about mobility, it is often possible to derive results about IWNs,

particularly results related to link coherence time. Such results, while dependent on the particular

mobility model chosen, nonetheless can be helpful in the analysis of network scaling.

Three popular mobility model classes in current research are: random waypoint model (RWP),

Manhattan mobility model (MH), and some form of grouped mobility model such as reference point

group mobility model (RPGM) [18]. Mobility model selection has a tremendous impact on simulation
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results, as one would expect. Variables such as velocity, acceleration and degrees of freedom in

movement are extremely important when analyzing the metrics of a given system. While we intend to

address the issue of mobility models in IWNs, we aim to develop results that are as general as possible

and do not rely on a particular mobility model for correctness.

2.3 Throughput, Energy, and Delay

One of the main differences in terms of end-user metrics for analyzing wireless networks, compared to

wired networks, is the inclusion of energy as a metric. In general, wired networks are characterized in

terms of throughput and delay (or latency). While energy is also an important metric for wired systems,

it is not often appreciably noticed by the end user. There is literature focusing on minimizing energy

consumption in the WAN and MAN, as in [19]. However, such minimization work is mostly aimed at

service providers and not the end user of the system. Furthermore, as is shown in more detail in later

chapters, the optimization of T/E/D involves competing objectives. For instance, utilizing mobility to

increase throughput is shown in [20] to greatly increase delay. Throughout the work presented here, we

explore the T/E/D tradeoff and its effect on the design of future IWNs.

2.4 Routing Tables in IWNs

The predominant method of internetworking in the Internet today is Border Gateway Protocol (BGP).

For intranetworking, the primary methods of routing today are link-state routing protocols (for example,

open shortest path first (OSPF) and intermediate system to intermediate system (IS-IS), which both use

the Dijkstra algorithm) and distance vector routing protocols (for example, routing information protocol

(RIP), which uses the Bellman-Ford algorithm). These methods of internetworking and intranetworking

use a hierarchical structure wherein network devices maintain tables to determine next hops for

routing. These tables are utilized to make routing decisions in the network, either by passing to a higher
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hierarchy level any destinations not found, or routing as appropriate for those destinations that are

found. Such protocols work well for wired networks that have slow dynamics in terms of link changes,

but perform poorly when used in systems with fast dynamics, such as IWNs.

2.5 Connectivity

A connected network is the precursor for sending information, and in fact the assumption of a

connected two-dimensional network lays the groundwork for most of the analysis in this thesis. Thus, it

is important to note the difficulty of the issue of connectivity, as well as the contribution of GL/GP

information to connectivity improvements. While connectivity in IWNs is not the focus of our work,

connectivity analysis is an important area of study for IWNs and has been addressed in works such as

[21], [3] and [22]. [22] provides analytic connectivity bounds while also exploring node degree in IWNs

and phase transition (that is, the transition region for increasing node degree as a function of

transmission distance and number of nodes). The work in [22] and [23] focuses on k-connectivity and

the phase transition width of k-connectivity in IWNs. Both of these works assume a fixed transmission

range and a finite number of nodes, n, which differentiates them from the asymptotic results often

found in this area. The results in [23] are for one, two and three dimensions, while [22] focuses on two

dimensions, which is our focus here.

A summary of much of the work in the area of IWN connectivity is found in Chapter 3 of [3], which looks

at the main results for stationary and mobile nodes, as well as networks with and without helper nodes,

among other distinctions. This work also notes those areas where results do not exist, particularly for

networks with helper nodes. The impact of beam forming on IWN connectivity is explored in [21], which

shows significant improvements in connectivity using beam forming at user nodes. For a fixed rate

system, beam forming effectively increases the transmission range of each node based on the directivity
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of the antenna array or aperture. As both beam forming and helper nodes benefit from some form of

GL/GP in IWNs, it is important to address the method by which GL/GP can improve connectivity in IWNs.

Thus we have seen there is previous research which shows that beam forming and helper nodes both

dramatically increase the probability of connectivity of a network. In summary, there exists a wide body

of literature on connectivity in IWNs for many different types of networks. Here we have provided a

brief overview of some of these works and note that while we assume connectivity for many of our

results, the issue of connectivity is important and non-trivial for this area of research.

2.6 Traffic Models

The analyses in this work focus on one of three traffic models: uniform and symmetric, uniform, and

uniform all-to-all. In the uniform and symmetric traffic model, each node selects another node and both

send data to one another at an average rate of A [bits/sec] and the routing path is assumed to be the

same in both directions (see [3]). For this model there are n/2 S-D pairs in a network of n nodes,

assuming n is even. In the uniform traffic model, each node arbitrarily chooses a destination and sends

data to that destination at an average rate of A [bits/sec] (see [21] and [2]). Under this model there are

n S-D pairs in a network of n nodes. In the uniform all-to-all model, each node sends data to every other

node at an average rate of A [bits/sec]. Under this model there are n(n - 1)/2 S-D pairs in a network

of n nodes3. Arguments can be made for the validity of any of these models or some other model.

Ultimately, the choice of a traffic model is driven by both application and the analytic results to be

obtained and thus in some cases one model is advantageous over another.

3 We note that the scaled expectation of the uniform traffic model over all possible S-D pairings is equivalent to the
uniform all-to-all model.
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2.7 Network Types

Throughout much of the research in IWNs, there exists a well-developed method of describing the

network under consideration in terms of certain characteristics. In this thesis we focus more on

networks with certain characteristics over others but in this section we explain the differences in order

to provide the basis for our selections. The purpose of this section is also to provide a brief overview of

the main distinctive network characteristics in IWN research.

2.7.1 Random Versus Arbitrary

A random network consists of nodes placed according to some distribution or process (such as a PDF or

a Poisson process). An arbitrary network is one where nodes are specifically placed; such networks are

often used to bound performance by finding the best or worst possible topology for a given network.

For example, in [3] and [21] arbitrary networks are used to find upper and lower bounds on throughput,

given a specific traffic pattern. Both random and arbitrary network configurations are useful for deriving

IWN results. Often random networks can be analyzed using well-developed mathematical tools, and

provide general results. Aside from providing bounds, arbitrary networks can be used to analyze a

network with a known a priori configuration. Thus, while useful for bounding, for more general uses

each arbitrary configuration must be analyzed on a case by case basis, which is infeasible due to the

dynamics from mobility and the RF environment.

2.7.2 Power-Limited Versus Interference-Limited

There exist two distinct areas under which most current IWN research is classified: interference-limited

(or narrowband) and power-limited (or wideband). In Section 2.8 we address the common modeling

methods which allow for analytic results for these two network types. Perhaps the most well-known

work in narrowband IWNs is [2], from which much IWN research followed. This work utilized both a
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protocol model and a physical model (see Section 2.8.1) for modeling a narrowband, fixed IWN with

random node placement. The work in [3] provides a framework for power-limited IWNs; the

contribution we present here is based on that framework. Such wideband systems are limited not by

interference at nodes but by both transmission energy and processing energy for each hop approaching

the power constraints at the nodes.

2.7.3 Mobile Versus Stationary Nodes

It is important in IWN research to differentiate between mobile and stationary nodes. While mobility is

realistic, it increases the complexity of the analysis. Mobility can be used to increase throughput in

networks, as in [24], though often at the expense of increased delay. In some cases it may not be

necessary to model mobility explicitly, but instead assume some random distribution at every fixed

instance of time. As noted qualitatively in [22], a uniformly random distribution does not remain

uniformly random under the random waypoint model (as in [25], [26], [27], and [28]). In contrast, [22]

asserts that nodes moving according to a random direction model as in [29] and [30] do maintain a

uniformly random distribution, but this is also not analytically proven. Maintaining a random uniform

distribution while modeling mobility is important because much of the research on the performance of

IWNs, even when modeling static networks, assumes a random uniform node distribution (e.g., [2], [31],

[23]).

2.7.4 Fixed Versus Variable Rate

Regardless of whether a network is modeled as interference-limited or power-limited, there is also the

question of whether the nodes transmit at fixed rate or variable rate. That is, whether the nodes always

transmit at the same rate or whether they adapt their rate, limited by the maximum rate at which they

can transmit based on the Shannon limit (see [32]). In a free-space or homogenously attenuated
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environment that is obstacle-free, a wireless network is always connected at some possibly arbitrarily

low rate (see [3]). In contrast, a fixed rate system is either connected at the fixed rate or it is not, noting

that fixed rate systems are often easier to analyze. We also note that, for analysis purposes, a fixed rate

system could have a rate that is dynamically determined by the lowest rate link in the system. While we

do not explore it further here, multiple-input and multiple-output (MIMO) systems and/or beamforming

could in theory be used together with coding to give an approximately equal rate for all nodes. In

general, fixed rate systems are more easily analyzed while variable rate systems are more general,

though more difficult to analyze (see [3] for a discussion of this multi-commodity flow problem). Often

both analytical approaches yield the same performance results in terms of scaling.

2.7.5 Networks with and without Helper Nodes

Given that maintaining connectivity in a wireless network is an important goal, there has been

significant research in the area of helper nodes to maintain connectivity and improve performance. The

throughput benefits of helper nodes in interference-limited networks have been studied for randomly

deployed helper nodes in [2] and fixed base stations in [33]. The T/E/D tradeoff benefits of helper nodes

are explored in [3] for strategically deployed helper nodes. This work also analyzes the connectivity

benefits of helper nodes for different deployment strategies (e.g., random, deterministic, strategic). In

this work we focus on networks with n user nodes, though many of the results may also hold in or be

easily modified for networks with helper nodes.

2.8 Narrowband and Wideband Modeling

As previously discussed, power-limited networks are networks where it is assumed that every node

wishing to transmit at a given time may do so. Such networks are limited by the power necessary to

transmit and, in the case of nonzero processing energy, the power necessary for processing. An
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interference-limited network is one where interference between nodes is the limiting factor in the

network (see [2] for one of the most well-known works on interference-limited networks). In this section

we first address two ways that narrowband systems are commonly modeled. Following that, we derive

the common method by which wideband systems are modeled. As this thesis focuses on wideband

systems, we spend more time developing the power-limited approach to IWNs in order to provide a

better foundation for the work in later chapters.

2.8.1 Narrowband Systems

There are a number of ways to model interference in narrowband IWNs and in this section we discuss

the two models used in [2]. These two models are defined below.

Definition 1 - Protocol Model: a transmission from node Xi to Xi over the mth sub channel is

successful if IXk - Xj > (1 + A)jXi - X| for all simultaneously transmitting k on the same sub

channel.

In Definition 1, A> 0 comes from the specification in the protocol of a guard zone to prevent

interference by a neighboring node transmitting simultaneously on the same sub-channel. Thus this

protocol model definition in [2] uses the idea of a guard band around a receiving node to model

interference and deals primarily with distance-dependent interference. It implicitly assumes that nodes

have a transmission range (which is appropriate given a homogenous RF environment) and that the

interference radius of nodes is a linear multiple of the transmission range.
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Definition 2 - Physical Model: given a set {Xi, 1 E T} of nodes simultaneously transmitting at

some time instant over a sub channel, and {Pi, E ( T} is the set of power levels chosen by the

transmitting nodes, then the transmission from node Xi to Xi over the mth sub channel is

successful if ( Nk)/( + ZLiE r 1 k) >
|xj-x;| } i1i Ixi-x|}

In Definition 2, k is the path loss exponent and ( is the minimum signal-to-interference-plus-noise

power ratio (SINR) for successful receptions. The physical model assumes that signal power decays with

distance from the transmitter d as d-k where k > 2 and that there exists ambient noise of power level

N. Thus the physical model is in some sense a slightly more sophisticated model that takes into account

both the path loss exponent and the ambient environmental noise. We note that the physical model can

be viewed as a special case of (16.1) in [34], which is the SINR model shown below:

yi = , V i,j E {1,2, ... , N}. (2.1)
ni + p ,lj, gi;P

In (2.1), gkj > 0 is the channel power gain from the transmitter of the jth link to the receiver of the kth

link, Pk is the power of the transmitter on the kth link, nk is the noise power of the receiver on the kth

link, and p is the interference reduction due to signal processing (e.g., p ~ 1/G for code division

multiple access (CDMA) with processing gain G and p = 1 for time division multiple access (TDMA)). We

see that the physical model in Definition 2 is the special case where the gain is given by the distance

between the sender and receiver (and the path loss exponent), and p = 1.

Both of these models are used in [2] to develop scaling results for IWNs. The specifics of these two

models provide a point of comparison with power-limited networks. However, we note that there exist
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other methods for modeling narrowband systems and that neither model here is necessarily better than

the other.

2.8.2 Wideband Systems

Based on the work in [3], [34] and [35], in this section we develop the method we predominantly use for

modeling transmissions in power-limited networks. We begin with the well known Shannon capacity

given by

C = B log 2 1+ b) [ts (2.2)

where C is the channel capacity, B is bandwidth in Hz, and S/N is the signal-to-noise ratio (SNR).

Now we let S be the receiver power (that is, S = PrUs]) and N = N 0BU/s], where No is the noise

power spectral density in [W/Hz]. Then we rewrite the Shannon capacity as

C = B log 2 1 + PB) []. (2.3)
NOB s

As in [34] we define the normalized Shannon capacity as Cb = C/B [bps/Hz] and the received energy

per bit as Eb = Pr /R U/bit], where R is the rate in bits per second (bps). Finally, we have limR-c Eb =

Pr/C U/bit], noting that it is possible to transmit at rates arbitrarily close to the Shannon capacity but

not at the Shannon capacity. Then we again rewrite the Shannon capacity and, as in [34] and [35], we

solve for the minimum ratio of energy per bit to noise power spectral density in the wideband limit and,

taking the limit, we have the following:
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Eb 1
lim -=n2 (2.4)
Cb-0 No bitl

Thus we have re-derived the well known minimum ratio of energy per bit to noise power spectral

density in the wideband limit. We use this result and parts of the derivation in order to solve for the

received power constraint for a successful transmission at a fixed rate.

2.8.2.1 Shannon Capacity Power Constraint

Now we assume the wideband limit and let Eb/NO = In 2 [1/bit], where Eb = Pr /R U/bit]. We note

that we previously used limR-c Eb and now return to the case of arbitrary R. Then for a given rate R,

the received power must satisfy

P, > RNO In 2 . (2.5)

Per (2.7) in [34], and modifying that equation to include a variable path loss coefficient, we have the

following:

Pr _ [AFr-1 k (2.6)
Pt 4wrd '

where Pr is the received power, Pt is the transmitted power, A is the signal wavelength, [G-1 is the

product of the transmit and receive antenna field radiation patterns in the line-of-sight (LOS) direction,

d is the distance between the transmit and receive antennas, and k is the variable path loss coefficient.

Then combining (2.5) with (2.6), we have
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Pt >RNO in 2 (2.7)
4wd secn

Now as in [3], we loosen the constraint on Pt and let Pt = Pavg. That is, we assume that nodes have a

time-average power constraint $avg. We note that given a total amount of energy available to a node,

and assuming the transmission system has no upper power limit, it is possible to transmit at arbitrarily

high rates for arbitrarily short periods of time. However, for a realistic network this would not be a

feasible method of operation. For a network which is transmitting at some average rate, we use the

time-average power constraint and we have

Pavg G1 /z R No In 2 .( 2.8)

We let y = 1/(4w) [m] and simplify as

$avg G k/2 Rdk k o . (2.9)

Returning to the term (No in 2 /yk), we see that it has units of [J/(bit - [m]k)]. We note that if we let

S= (No In 2/yk)[JI/(bit - [m]k)] and G1 = 1, we have

$avg = R d k,(2.10 )

where f# is the distance-dependent transmission energy. Given zero processing energy, this is the same

as (4.9), the predominant maximum transmission range equation in [3]. It is important to note that

there are two competing assumptions. We assume that Cb -> 0 (that is, we are operating with infinite
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bandwidth). However, we also assume that we can assign a value y = -. We note that for fixed G1,47r

y = f(A), and thus the value is dependent on the transmission wavelength. In real systems the actual

bandwidth used is not infinite and the rate is based on the aggregate rate for the entire frequency band

used. We also note that the far field assumption, that is d >> A, means that d would grow without

bound as A approaches 0. However, if we assume we do not use some finite frequency band around 0

then we can effectively ignore this issue while maintaining the assumption of infinite bandwidth.

2.8.2.2 Shannon Capacity Maximum Hop Distance

We now look at (4.9) from [3], which is

P !!; pmax (Pe - a4l (2.11)

where p is the transmission distance, Pmax is the maximum transmission distance, and a is the

processing energy in U/bit]. To determine the maximum transmission range, we let a = 0. That is, we

solve for the maximum hop distance by ignoring the processing energy and letting the transmission

energy be the only factor in energy use approaching the power constraint Pavg. Then we have

P 5 Pmax -P;g (2.12)

We note that this is (2.10) written in a different form. For the case where Pavg < fR, the maximum

transmission range increases with increasing k; we show why this condition is not possible. We

rearrange (2.9) to obtain
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1

Ai (Pv G1 k/ 2  (2.13)
4W RNo n 2)

Then we see that the condition Pavg < fR from [3] is equivalent to PavgGjk/2 < RNO In 2 in (2.13). Now

given that

kagGk/2 RNo 1n2 [ , (2.14)
[4lrd Lec]

we see that the condition PaVgGi12 < RN, In 2 requires [A/(4wd)]k > 1 in order to satisfy this

inequality. The far field assumption means that d >> A and therefore, given that k 2, [A/(4wd)]k < 1.

Then we can state the following:

PavgfGlk/2 > RNO in 2. (2.15)

We note that given [L/(4wd)]k < 1, the case where PavgGlk/2 = RNo In 2 is not possible. This makes

intuitive sense since a higher attenuation exponent requires greater power to transmit at the same rate

over the same distance. Thus we see that it is not possible for the maximum transmission range to

increase with increasing k because we assume far field operation.

Given the per node average power constraint Pavg, a transmission at a distance d is correctly received if

PavG k/2yk
dk < [avg k] (2.16)

~ RN, In 2
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Solving for d and substituting in for y, we have

1

A PavgG1 /2 k (2.17)
d 4 -7 RNd In 2 = Pmax [m],

k

Because of the importance of ensuring PavgG1 /2 > RN, In 2, we express the maximum transmission

range as above. We note that because Pavg G1k/2 > RNO In 2, we can take the kth root of both sides of

the inequality without affecting the inequality. In order to find the maximum hop distance possible in a

network, we have ignored processing energy and only focused on distance-dependent transmission

energy.

2.9 Sparse Versus Dense Networks

A key question to answer in IWN research is whether networks should be assumed to be sparse or

dense4 . The answer to this question determines whether routing solutions can be locally updated due to

a change in topology (for the case of dense networks) or whether they must be globally updated (for the

case of sparse networks). That is, it determines whether the network can route around link state

changes or whether the entire routing solution must be recomputed. Thus for a dense network, given a

topology change, the network can avoid generating topology and routing update traffic for all nodes by

only generating updates for nodes in the vicinity of the change. For a sparse network, information about

a topology change must be propagated to every node in the network. In some sense, one can view a

dense network as divided into sub-graphs, where a local change in a particular sub-graph does not

affect, or minimally affects, the optimal routing solution. A sparse network, by contrast, cannot be

divided into sub-graphs for the purposes of topology change propagation.

4 Sparse versus dense networks are further discussed in a graph theory context in [13].
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2.10 Geographic Location and Geographic Prediction Information

In order to determine the benefits of GL/GP information in lWNs, we provide a general definition which

can be applied in a number of different types of networks. First, we use GL/GP information as a single

idea because of the relationship between geographic location and geographic prediction. That is, given

perfect geographic information, a network would have no need for geographic prediction because the

location information would never be "stale", or incorrect. Likewise, given a starting location and perfect

geographic prediction, there would be no need for additional geographic information. Putting the two

together, some combination of regular location updates and appropriate metrics for prediction would

allow for the nodes in a network to maintain correct information about the location of all other nodes in

the network. Combined with an accurate view of the network RF topology', the goal of geographic

location and geographic prediction information is to reduce or eliminate the need for additional

signaling among nodes for the purpose of maintaining an accurate network topology.

The distribution of GL/GP information in an IWN is an important challenge to which there is likely no

single best solution. The GL/GP information could be distributed by the nodes in the network, using the

links between the nodes or, for example, a separate low rate channel with longer transmission ranges.

Another method is to use, for instance, an airborne node to keep track of and provide updates for the

network topology, which reduces the load on the network for distributing this information. Regardless

the method used, the important concept is to reduce the network burden of maintaining an accurate

network topology view at the nodes in the network. We focus on the advantages of utilizing such

information in a network while noting that the method of information distribution will likely be

application-specific. What we have not yet quantified is the gain in network throughput using

s See [3] for a discussion of methods for calculating, modeling and estimating the RF topology.
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geographic information. While significant LSRP signaling capacity via flood routing is saved, there is still a

network burden for passing GL/GP information that reduces this gain.

2.11 Prior Motivating Work

In this section we summarize some of the previous work in the area of IWNs in order to compare

performance between networks with and without GL/GP. We primarily focus on power-limited

networks, as we do in other chapters, while also addressing interference-limited networks. The goal of

this section is to analyze the performance gain of GL/GP in networks; we address the issue of protocol

distribution in Chapter 4. Thus in this section we assume the a priori distribution of topology and routing

information in the networks. In Chapter 4 we show the scaling issues posed by the distribution of this

information. In this section we do not provide an exhaustive review of connectivity and T/E/D tradeoffs

in IWNS, as such a review is provided in Chapter 3 and Chapter 4 of [3], respectively. However, we

review some of the important results of the works in this area.

2.11.1 Narrowband Throughput Scaling

In this section we look at previous results in narrowband network scaling, both from the perspective of

zero processing energy and non-zero processing energy. We also look at the validity of certain

assumptions in order to compare the work in these areas. In this section and others, it is important to

note how scaling results change based on the network assumptions. The optimal scaling results in

narrowband systems are not the same as those in wideband systems, nor are the results the same for

zero and non-zero processing energy, and thus it is important to differentiate among the network types.
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2.11.1.1 Stationary Nodes and Zero Processing Energy

For stationary, randomly distributed nodes with the zero processing energy assumption, we use the

results of what is considered by many to be the seminal work in IWNs. In [2], the authors explore the

scaling results of fixed random and arbitrary networks, where random networks are the focus here.

First, as discussed in Section 2.8.1, there are two main models of narrowband systems used in [2]: the

protocol model in Definition 1 and the physical model in Definition 2. The main results of this work hold

for random networks on S2, which is the surface of a three-dimensional sphere of area one square

meter. Note that i is the mean distance between two points independently and uniformly distributed

on the unit area sphere. The following results also hold on a planar disk of unit area, where in the planar

disk case L is the mean distance between two points independently and uniformly distributed on the

planar disk of unit area. In the case of random networks, each node has a randomly chosen destination

to which it wishes to send data at a rate of A(n) bits per second (that is, the uniform model discussed in

Section 2.6). For both the protocol model and the physical model, the throughput capacity scales as6

R
(n) E ) [bits/second], (2.18)

Thus we see that for interference-limited networks, the need to share the channel causes a reduction in

per-node throughput as the number of nodes in the network increases. This means that for the

interference-limited case, the throughput per node, R, must scale as 0( nlogn) in order to maintain

constant data rate between every source-destination pair.

6 We define big 0 notation terms used in this paper and in previous works, using the conventional notation:
Asymptotic upper bound: f(n) E O(g(n)) -+ 3k > 0,no: f(n) g(n) - k Vn > no
Asymptotic lower bound: f(n) E C(g(n)) -3 Bk > 0,no: g(n) -k f(n) Vn > no
Asymptotic upper and lower bound (tight bound): f(n) E G(g(n)) -+ 3k1, k2 > 0, no: g(n) - k1  f(n) g(n)-
k 2 Vn > no
We also adopt the convention of using set notation for Big 0 notation, that is f(x) E {-}, instead of the notation
f(x) = {-}. Thus, for example, we write T(n) E O(D(n)/n) instead of T(n) = O(D(n)/n).
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We now look at the results in [31] (which was later published in [36] as Part II, or the constant-size

packets model), which gives the throughput-delay scaling in static wireless networks with constant size

packets. This work is based on previous work in [4] (which was later published in [20] as Part I, or the

fluid model). The authors of [31] use what is referred to as the relaxed protocol model, which is the

protocol model from [2], as in Definition 1. This work shows the following for a static random network:

T (n) E E) , for T(n) E O .nlo (2.19)

This scaling holds for the entire range of achievable throughputs, which is lower bounded by 1/n and

upper bounded by 1/ nlogn. Then for the highest achievable per node throughput in a fixed network

of e(1/ nlogn), as in [2], the average delay is given by D(n) E G( n/logn). This also shows that in

order to achieve throughput of 0(1) as in [24] (see Section 2.11.1.2), the delay scales as 0(n).

2.11.1.2 Mobile Nodes and Zero Processing Energy

In this section with look at the scaling of networks with mobile nodes and zero processing energy. We

note that in the previous section on static networks, the scaling does not take into account the generally

dynamic nature of infrastructureless wireless networks. Thus such scaling results are applicable in

certain cases, such as sensor networks which, absent periodic node failures, behave in a static manner.

However, for many applications the users are mobile and thus it is important to characterize the scaling

in the case of dynamic networks.

In [24], the authors utilize the mobility of nodes to enable routing which results in better throughput

scaling than in the case of fixed nodes, as in [2]. The authors show that direct communication achieves

poor throughput scaling and that two-hop routes achieve the maximum throughput capacity of an

49



interference-limited network. In this work the authors show that it is possible to schedule O(n)

concurrent successful transmissions per time slot with local communication between nodes. With a two-

hop relay (that is, source to random relay to destination) the total throughput achieved is O(n) and thus

the per-node throughput achieved is E(1). The authors note that the mobility model of IID node

trajectories is idealized. However, later work in [37] shows the same 0(1) scaling with a mobility model

where each node moves randomly on a single-dimensional great circle on the unit sphere, instead of the

entire two-dimensional area. As noted in [24], routing using mobility has the drawback of greatly

increasing delay. We now review the results in [20] for the throughput-delay tradeoffs in mobile

networks. The first range of T(n) is the same as that in (2.19) and the results are also the same. Thus we

have

T(n) E 0  (n), for T(n) E ). (2.20)

For the increased range of throughput provided for my mobility, that is T(n) E o(1/ nlogn) and

T(n) E 0(1/logn), the optimal throughput-delay tradeoff is

11
T(n) E 0 ,an D(n) E 0 n log -(2.21)

(n log n)an

The optimal throughput-delay tradeoff is parameterized by a(n), where da(n) corresponds to the

average distance traveled in one hop; it is bounded as a(n) E fl(logn/n) and a(n) s; 1. The authors

note that when mobility is used to increase throughput beyond 0(1/ n log n), that is to o(1/Vh), the

delay immediately jumps to O(nloglog n). For the constant throughput of 0(1), the delay is 0(nlog n).
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2.11.1.3 Stationary Nodes and Non-Zero Processing Energy

Based on this throughput-delay tradeoff work, [38] explores the T/E/D tradeoff in wireless networks,

using the physical model from Section 2.8.1. This work also takes into account processing energy in the

narrowband scaling case. It is thus a work that bridges some of the differences between interference-

limited networks, which generally do not focus on power, and power-limited networks, which generally

assume unlimited bandwidth. This analysis is for fixed random networks and the key results are

reviewed in [3]. For networks operating in a bounded region, taking 0(1) number of hops achieves the

optimal packet delay D(n) and energy per bit k(n) scaling of 0(1), with throughput of 0(1/n). That is,

we have the following for T(n) E 0(1/n):

D(n) E O(nT(n)), k(n) E O(D(n)). (2.22)

Using whisper to the nearest neighbor (WtNN), or increasing the number of hops with n, achieves the

maximum throughput scaling at the expense of delay and energy as follows:

D(n), k(n) E F , for T(n) E n g. (2.23)
log n) nlog n)

Thus, per [3], [38] shows that for interference-limited networks, taking fewer hops improves delay and

energy scaling at the expense of worse pairwise throughput scaling.

2.11.2 Wideband Network Scaling

In this section we review the results for wideband throughput scaling. The purpose of this section is to

compare the scaling results for WtNN routing and optimal routing in power-limited IWNs. Section

51



2.11.1.3 reviewed the scaling results for narrowband systems with non-zero processing energy. Here we

see how the assumption of zero versus non-zero processing energy affects the optimal routing scheme

and the resulting network scaling. While previous work has shown that WtNN is the optimal scheme in

narrowband networks with zero processing energy, we review work that shows WtNN is suboptimal for

wideband networks with the non-zero processing energy assumption.

2.11.2.1 Optimal Throughput with Non-Zero Processing Energy

In [39], the authors derive the optimal capacity scaling for power-limited wireless networks. This work

shows that taking G(1) number of hops is throughput, energy, and delay optimal and such a scheme

achieves E(1) uniform capacity with high probability under uniform and symmetric traffic. The

definition of with high probability is as follows:

Definition 3 - An event is said to occur with high probability (whp) if the probability of the event

satisfies Pr{-} > 1 - .
n

Direct transmission routing achieves 0(1) throughput scaling with probability 1 (WP1), but it is not

energy optimal. The uniform traffic model is also found in [2] and, per Section 2.6, is the model where

each node arbitrarily selects a destination node and sends data to it at an average rate of A. The uniform

capacity, A, is the maximum A that every SD pair can sustain over all routing strategies. The achievable

maximum A for a specific routing scheme is termed uniform throughput. Then we can define uniform

throughput asA A maxA{Achievable A). The uniform throughput for several routing strategies is shown

in [3]. The results from this work for WtNN routing are shown in Section 2.11.2.2. This can be compared

to the uniform capacity (that is, the maximum uniform throughput over all routing strategies) which is

0(1). The authors also showed that for fixed transmission rate, if signal processing energy is non-zero,
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there exists a rate R* = Pavg(k - 1)/(ka) that maximizes the upper bound. There is a corresponding

characteristic hop distance defined as follows:

Pnax = (fl(k - 1)) dchar- (2.24)

Thus, for a fixed rate R, taking a smaller number of long hops achieves a higher throughput in general

because pass-through traffic constrains the pairwise throughput (see [3]).

2.11.2.2 Whisper to the Nearest Neighbor Throughput

We review the results for the throughput scaling of the WtNN routing approach. While the term WtNN

has been used in various works on the topic of IWNs, there is often the implicit assumption of some

form of GL/GP or a complete topology map at every node. WtNN is the routing scheme where one takes

a larger number of short hops in order to decrease interference and power consumption in interference-

limited and power-limited networks, respectively (see [39], [2], [40]). At each hop in the network the

shortest distance hop is selected and therefore, as node density increases, the number of hops

increases. A comparison of WtNN with and without the zero processing energy assumption is provided

in [3], noting it was shown in [40] that if signal processing energy is zero, as n increases network capacity

increases when taking shorter hops. In the next section, we review the results from [39] in a power-

limited network with non-zero processing energy, which show that it is sub optimal. Per [39], whisper to

the nearest neighbor is shown to be optimal for interference-limited networks in [2] and for power-

limited networks with zero processing energy in [40].

The work in [40] provides an analysis of the throughput scaling of wideband random networks with the

assumption of zero signal processing energy. This work utilizes the protocol model from Section 2.8.1,
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while noting that the scaling results of the physical model are the same. Further, [40] allows for variable

transmission rate based on distance, given some fixed maximum transmission power. In order to show

the throughput scaling, it is assumed that each node is constrained to a maximum transmit power PO

and the bandwidth is arbitrarily large. Thus we note that this work implicitly assumes that signal

processing energy is negligible, as was assumed in [2], which dealt with interference-limited networks.

In the limit of large bandwidth, [40] shows that the scaling for uniform throughput capacity is

r(n) E 0 ( nlogn) ),r(n) E fl k+1 (2.25)

Thus it was shown in this work that the throughput in an IWN increases with increasing number of

nodes, in contrast to [2].

2.11.2.3 WtNN Throughput with Non-Zero Processing Energy

In [3] and [39], the throughput scaling results are developed for the network in Section 2.11.2.2', while

taking into account processing energy at the nodes. In this section we summarize those results and

some of the key parts of the derivation of those results. We now begin with the following Lemma, which

is Lemma 6 in Appendix B.3 of [3]:

The authors in [39] also reference [44] as a point of comparison for wideband IWN throughput results without
the consideration of processing energy.
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Lemma 1 - Consider a random network with n nodes independently and randomly distributed

on a unit torus according to a uniform distribution. The torus is divided into square cells of area

a(n).

(i) If the cell size a(n) > 2 n, then each cell has at least one node whp [4].

(n
(ii) If a(n) = A, then each cell has at least ln nodes whp.

(iii) if a(n) = 2 Inthen each cell has at most 6 In n nodes whp.
n

(iv) The number of SD lines passing through any cell is O (n a(n)), whp [4].

The derivation in [3] of the pairwise throughput of random, power-limited networks uses the scaling

results of S-D lines passing through a cell from [4]. We note that in Part (i) of Lemma 1, the lower bound

results from the case where routing between cells is performed optimally, in the sense that if a line is

drawn between an S-D pair, traffic moves from cell to cell along that line. That is, for every cell through

which the line connecting an S-D pair passes, the S-D pair traffic passes through that cell. Using this, [39]

shows that the uniform throughput scaling for a random network using WtNN routing isO (inn/n)

with high probability. Thus we see that when processing energy is taken into account, the throughput

scales poorly with n as compared to the 0(1) throughput scaling, which occurs with high probability for

any scheme with 0(1) hops.

2.11.2.4 Processing Energy Considerations

As seen in the previous sections, whether or not processing energy is taken into account has a large

impact on the scaling of a wireless network. For a power-limited network, we note that it is the

difference between uniform throughput scaling and throughput scaling that increases with an increasing

number of nodes. The question of whether or not to consider processing energy is one which can be
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addressed from first principles. In [3], the author compares the fundamental limit for the energy

required for a binary switch transition in electronic signal processing and the fundamental limit for

transmitted energy per bit. The result is that, due to thermal noise inherent in any physical system,

neither signal processing energy nor transmission energy is negligible. As the consideration is the

difference between unbounded scaling and uniform scaling, as well as between WtNN routing and

routing using a characteristic hop distance, it is vital to consider processing energy.

2.12 The Case for GL/GP Information

We saw in Section 2.11.2 that WtNN networks have poor throughput scaling when processing energy is

considered, while networks with characteristic distance hopping have better throughput scaling (that is,

uniform throughput scaling whp). This difference in throughput scaling is important for showing one of

the advantages of GL/GP information in IWN. In the absence of such information, using characteristic

distance hopping is not an option because nodes do not know the distances to their neighbors. Thus

either WtNN or another, less optimal approach will be utilized for routing. This does not mean that

WtNN is the only viable routing option in the absence of GL/GP information. However, it is among a set

of available suboptimal routing schemes in the absence of such information. Thus even if another

routing scheme with 0(1) hops is used, which results in 0(1) throughput scaling whp, such a scheme

will not be energy and delay optimal. Therefore, we see that GL/GP allows the use of characteristic

distance hopping, which is throughput optimal, while without such information the network must in

general use a suboptimal routing scheme.

2.13 Summary

In this chapter we described some of the basic areas of IWN modeling, network performance, and

network types. Section 2.1 provided a review of the major tenets of graph theory, which forms the basis

56



for much of IWN research, particularly as it relates to node distribution. We also introduced the concept

of mobility models and the metrics of throughput, energy, and delay for measuring network

performance. In Section 2.6 we looked at three traffic models for IWNs and in Section 2.7 we provided

descriptions of five of the main network descriptors: random versus arbitrary node distribution, power-

limited versus interference-limited modeling, mobile versus stationary nodes, fixed versus variable rate,

and networks with and without helper nodes. We further developed the idea of power-limited

(narrowband) versus interference-limited (wideband) networks as this is one of the most important

differentiators in IWN research. Finally, we looked at some of the prior work in this area which

motivates the work in this thesis, including results which can be used to compare the performance of

two-dimensional networks with and without GL/GP. In summary, this chapter provides a background on

IWNs and serves as the basis for the chapters to follow.
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Chapter 3

One-Dimensional Network Throughput Scaling

Our first analytic results come from a one-dimensional, or line network. Such a network allows the

development of results that are less tractable in higher dimensions. We develop throughput scaling

results for three network types: WtNN without GL/GP information, WtNN with GL/GP information, and

characteristic hop distance routing with GL/GP information. We use the term GL/GP to denote that

every node in the network knows the location of every other node in the network. While we deal with a

static network in this analysis, the results can be extended to networks with mobile nodes. This work

differs from much of the work in the area of IWNs because we provide deterministic throughput scaling

results.

3.1 Probability Distribution and Order Statistics

We define a line network to be n end-user nodes randomly and uniformly distributed along a line

bounded by [0,1]. Each node's location is selected independently of all other nodes and distributed

according to a continuous uniform distribution. We denote the ith unordered node, and its location, as

Xi and we note that the locations {X1 , ...,X,} are lID random variables. We call this unordered set X,

such that X = {X1, ... ,X4}. We further define the ordered set of node locations as {X(1 ), ... ,X(n)} such

that X(1) X( 2) < --- < X(n_1) 5 X(n). We call this set X0 such that Xo = {X(1),...,X(n)j. For the
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remainder of this chapter, we use (i) to denote the sorted index and i to denote the unsorted index.

That is, when random variables are labeled with indices, we differentiate between the sorted and

unsorted indices by using the two types of labels. We also use X(i) and Xi to refer to both the node and

its location. Finally, for the remainder of this work, we assume the following when referring to node

location X(j):

i, n E Z, i E [1, n]. (3.1)

Next we define a set of random variables representing the distance between neighboring nodes, {YihB,

where B E {1,...,n - 1} and Y = X(i+)- X(). We denote left and right to be the directions of

decreasing and increasing distance from the origin, respectively, in the line network. Thus each Y is the

distance from each node to its nearest neighbor to the right. Per [21] we note that each Y is identically

distributed but that they are not independent. To see their interdependence, consider the case of one

very large Y, which implies shorter spacing between other pairs on the bounded line.

We next define X(n) as X(n) = max(X1 ,X 2, -. ,Xn) and analyze its convergence. We show that X(n)

converges in probability to 1. Noting that X(i) 5 1, we take the limit over n of Pr{IX(n) - 1| > c} for

any e > 0. Given (X(,) - 1) 5 0, we can write

lim Pr{IX(nl) - II > E} = lim Prtmax(X1 , X2 , ... ,Xn) < 1 - E}. (3.2)

Then given that the positions {X1,X 2, ... ,Xn} are all independent, we have the following:
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n

lim Pr{IX(n) - 1| > E} = lim Pr{Xi < 1 - e}. (3.3)
n-4m n0

Finally, due to the uniform distribution, we note that PrtXi < 1 - E} = (1 - E). Then we have

lim Pr{IX() - 1| > c} = im (1 - )n = 0. (3.4)
n-+o n-+-4o

P

Thus we have proved that X(n) - 1. This effectively says that, in the limit of large number of nodes n,

one of the n nodes is arbitrarily close to the value of 1. We also note that due to the distribution being

continuous, Pr{Xj = 1} = 0 Vj and therefore limna Pr{X(n) = 1} = 0.

3.2 Maxima and Their Application to the Analysis

P
Having shown that X(n) -4 1, we can further analyze this convergence by looking at how the new

maxima occur (see Chapter 1 of [41]). The following analysis is undertaken because it is helpful to

understand whether there are a finite number of maxima in the limit as n approaches infinity or

whether new maxima continue to occur. We again note that {X1,X 2, ... ,Xnj are lID continuous random

variables with a common PDF fx(x). Because of this, Pr{Xi = a} = 0 V a E [0,1] and PrtXi = Xj} =

OVi :#j.

We define Xn as a record-to-date of the sequence X1 ,X2, ... ,Xn} if Xn > Xi V i < n. We wish to find

the probability that X, is a record-to-date for n > 1. We define an indicator random variable such that

ffn -1, X, is a record - to - date,

0, otherwise.
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Then the probability that X, is a record-to-date is given as

Pr{llf = 1} = Pr{X1 < Xn,X 2 < Xn, ...,X,_ 1 < Xnj = 1/n. (3.5)

The result is obtained via an argument by symmetry. That is, each Xj has an equal probability of being

the record-to-date, given that the set of values X = {X 1 ,X 2, -.. ,Xn} is a set of IID random variables.

This argument shows that the probability of any given Xj in the set X of size n being a record-to-date is

equal to that of any other, for a given value of n. Finally, we wish to find an expression for the expected

number of records-to-date that occur over the first m trials (that is, the first m nodes to be added to the

network) for any given integer m. We solve for the expected number of records-to-date over the first m

trials:

E ln = E[1] = Pr{I = 1}. (3.6)
n=1 n=1 n=1

Taking this expectation in the limit of m we have

lim Pr{ll = 1) = lim -=o0. (3.7)
mm-00.oi0 n

n=1 n=1

We note that the harmonic series is divergent and thus there are an infinite number of maxima in the

limit of m. We have thus shown that the probability of the nh node to be placed being the record-to-

date is 1/n. However, we have also shown that the expected number of times a newly added node

becomes a record-to-date is infinite. This analysis tells us that in some cases, if we wish to analyze the

network, we should not do so in the sense of adding nodes one at a time to the network but rather by
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considering the network as a set of nodes already placed. We also note that the analysis may be simpler

when viewing the network as a set of n nodes rather than adding one node after another.

3.3 Ordering, Neighbors, and Assumptions

Given n > 3, i E [2, n - 1], we know that the node located at X(i) has exactly two neighbors: one to the

left and one to the right. We further note that each of the n! orderings of the n nodes in the network is

equally probable. That is, in the case of n = 3:

Pr{X 1 < X2 < X3} PrtX 3 < X 2 < X1J . (3.8)

This argument can be extended to n nodes. If we let Ok be the arbitrarily labeled ktfh ordering of the n

nodes where k E {1,2, ..., n!}, then

1
Prt0} = Pr{O2} = --- = Pr{o!} = - (3.9)

ni nn .i)

We can also calculate the number of nodes to the right, N (, and number of nodes to the left, NMM , of

the node located at X(i). By inspection, we see that for i E [1, n],

X 0 = n -i, (3.10)

il = n - d i - 1 = i - 1. (3.11)

Finally, we define the following index sets:
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(3.12)

N = {, .., i 1}.(3.13)

For the remainder of this chapter, we assume that n > 2. A scenario where n = 1 is not really a network

at all and therefore this assumption does not result in any loss of generality.

3.3.1 Nearest Neighbors

Now that we have looked at some of the basic distribution statistics, we define the nearest neighbor as

the node that is closest to a given node location X(i). Formally:

Definition 4 - D(i) is a random variable that takes the value of the direction of the nearest

n R, nearest neighbor is to the right,
neighbor from node location (i) such that D~ = L, nearest neighbor is to the left.

The end nodes in a one-dimensional line network only have one nearest neighbor and the direction of

that neighbor is deterministic (see Part (i) of Lemma 2). The lemma, proved in Appendix A.1, is as

follows:
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Lemma 2 - Given a one-dimensional network of independent and uniformly distributed nodes

where n > 3, we have the following:

(i) D(j) = R and D(n) = L occur surely.

(ii) Pr{D(j) = L} = Pr{D(i) = R} = 0.5, Vi E [2, n - 1].

In the sections to follow, we will use this lemma in determining the hop count and throughput for

networks without GL/GP.

3.3.2 One-Dimensional Assumptions

In order to compare the performance of networks with and without GL/GP, we make some assumptions

about the particular networks in question, most notably with regards to connectivity. The assumption of

a connected graph may at first appear to be an unrealistic assumption due to the fact that establishing

and maintaining connectivity in IWNs is not trivial (see [21] and [3]). However, the purpose of this work

is not to analyze IWN connectivity. Rather, given a connected network, the purpose of our work is to

show how GL/GP improves network performance. While it is clear that GL/GP can enable other

techniques that improve connectivity, noting that it enables beamforming (as in [21]) and strategic

helper node deployment (as in [3]), we aim to show that GL/GP also offers advantages beyond

improvement of connectivity performance.

3.3.2.1 Connectivity and Topology

We assume that for all three networks types (WtNN routing without GL/GP, WtNN routing with GL/GP,

and characteristic hop distance routing) the network is connected. We define connectivity using the

characteristic hop distance, where this also means that WtNN networks are connected, by the definition

of the WtNN routing protocol. We define connectivity as
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Y dchar Vi E {1, ..., n - 1),

where dchar is the characteristic hop distance defined in (2.24). In all networks we assume a fixed

communication rate R. We further assume that for networks with characteristic hop distance routing,

the nodes in the network can communicate with any of their one hop neighbors that are within a hop

distance dchar. For networks with WtNN routing, we assume that all neighbor nodes are able to

communicate with a rate R. However, given the WtNN routing protocol, we assume that nodes only

communicate with their closest left and right neighbors and the end nodes (located at X(1 ) and X(n))

only communicate with one other node. That is, we assume that nodes can increment their transmission

range, via transmission power control, in steps of 8 such that

Pr{IY - Y_1| S} = 0 Vi E [2, n - 1]. (3.14)

Thus when incrementing the transmission range in steps of size 6, the probability of finding more than

one new neighbor in a given step is zero. These assumptions mean that the nodes in the network

increase transmission range, starting from 0, until the topology formed is a line network and each node

then transmits at rate R.

We note that the topology resulting from these assumptions is a unique line network where each node

located at XMi i E [2, n - 1], only communicates with its left and right nearest neighbors. That is, given

a set of node locations {X1, ... ,Xnj, the network topology created by these assumptions is deterministic.

We neither assert that creating a network utilizing these assumptions is optimally efficient, nor that the

resulting network is optimal for any particular metric. However, these assumptions result in a one-

dimensional network topology that is useful for evaluating the whisper to the nearest neighbor routing

scheme.
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3.3.2.2 Routing in Networks without GL/GP

We assume that, for networks without GL/GP, routing is performed by sending packets to a node's

nearest neighbor. That is, nodes do not have any information about the location of their destinations

and there is no distributed sharing of topology information in the network. In addition, we assume that

packets can be uniquely labeled and identified such that if a node receives a packet it had previously

sent to its nearest neighbor, it then sends it to its other neighbor. A node only communicates with its

neighbors to the left and right (per the topology creation described previously) and does not send a

packet to the node from which it just received the packet, unless it is an end node. Thus if a packet

reaches one end node of the network and it is not destined for that end node, then the end node sends

the packet back the way it came. Intermediate nodes follow the same rules and do not send a packet

back to the node from which they received it, and in this way the packet traverses the network. That is,

given a first hop in a particular direction, the traffic continues to flow in that direction until it reaches

the end of the network, at which point it travels back in the opposite direction if it has not yet reached

the intended destination. Per Lemma 2, we note that in the one-dimensional case, the a priori

probabilities that a node's nearest neighbor is to the left or right are equal, for nodes which are not end

nodes.

3.3.2.3 Routing in Networks with GL/GP

For networks with GL/GP, we assume that each node knows the relative direction (left or right) of every

other node in the network and thus can determine whether to send packets to its left or right neighbor

to reach destinations with the minimum number of hops. This contrasts with the non- GL/GP case,

where the nodes do not know the relative direction of the destination. For the WtNN case, networks

with GL/GP route packets in the correct direction to the closest node in that direction. For the

characteristic hop distance case defined in (2.24), networks with GL/GP route in the correct direction
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over a hop of length approximately equal to the characteristic distance. We assume for the remainder of

this chapter that networks utilizing characteristic hop distance routing also have GL/GP. For the upper

bounds on characteristic hop distance routing, we do not address the issue of when there is not a node

a characteristic hop distance away because we assume that the network is connected at the

characteristic distance with rate R. For the tight bound on throughput whp, we show that whp there is

a node a characteristic hop distance away. In both the WtNN and characteristic hop distance cases, the

nodes know whether to send a packet to the left or right; the only difference is whether the packet is

sent to the nearest neighbor or to a node a characteristic hop distance away.

3.3.2.4 Communication Links and System Bandwidth

We assume that each node is capable of full duplex communication and can therefore simultaneously

transmit and receive. Further, the network is operating in the wideband (or power-limited) regime such

that there are as many channels as necessary for the number of nodes wishing to communicate at a

given time. Thus we assume that there is no interference. These assumptions allow us to ignore issues of

transmission scheduling and frequency allocation in the analysis. While these are important and non-

trivial issues, they are not the main focus of this work. Our focus is on the development of performance

bounds of the three network types.

3.4 Uniform All-to-All Traffic First Hop Analysis

To begin our analysis of one-dimensional networks, we start with an analysis of the first hop in a one-

dimensional network with uniform all-to-all traffic. Let H be the indicator random variable for the first

hop from a source node location (i) to a destination node location (j), noting the use of sorted node

indices (i.e., H(j) refers to source node X(j) and destination node X(j)). We then define H(j) in the

following way:
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0, direction of first hop is correct in a network of n nodes,
H() (n) 1, direction of first hop is incorrect in a network of n nodes.

In subsequent sections we solve for Pr H j)(n) = 0} and Pr H j)(n) = 1} in networks with and

without GL/GP. This first hop analysis sheds light on the differences between the network types

(networks with and without GL/GP) and enables analysis of full traffic patterns, both in terms of total

hop count and throughput.

3.4.1 WtNN Networks without GL/GP

In the non-GL/GP case, there is substantial analytic work required to show the probabilities of correct

versus incorrect first hops. The probability of a node making a correct first hop is based on the

probability of its nearest neighbor being to the left or the right, as well as the relative direction of the

node with which it is communicating. The proof of the results to follow is found in Appendix A.2. We

show that in the non-GL/GP case, for any n, the probability of a correct first hop is:

1
Pr H&(n) = 01 = 0.5 + -, n 2. (3.15)

The reason this probability is strictly greater than 1/2 is because the first hops for the end nodes are

always in the correct direction (a corollary of Lemma 2).

The probability of an incorrect first hop is given by

Pr H&(n) = 11 = 0.5 - - n > 2. (3.16)
t M n
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This probability is strictly less than 1/2 for the same reason that the probability of a correct first hop is

strictly greater than 1/2.

Combining these two results, we have the following:

lim Pr H .)(n) = 01 = lim Pr H.) (n) = 11 = 0.5. (3.17)
n-oo JG n-oo J0

Thus the probability of a correct or incorrect first hop approaches 0.5 asymptotically with increasing n.

3.4.2 Networks with GL/GP

Per our assumptions, the first hop is always in the correct direction in the GL/GP case, regardless of

whether the routing type is WtNN or characteristic hop distance. Given a packet of data to send from

node (i) to node (j), node (i) sends the packet to a neighbor that is in the direction of node (j),

whether that node is (j) or some intermediate node. Thus in the GL/GP case there are no incorrect first

hops and we make the following conclusions:

Pr {H) (n) = 01 = 1, (3.18)

Pr H U)(n) = 1 = 0. (3.19)

3.5 Uniform All-to-All Traffic Complete Path Hop Analysis

Now that we have looked at the first hop case and compared networks without GL/GP to those with

GL/GP, we continue the line network analysis by looking at the full traffic paths for uniform all-to-all

traffic. We note that the analysis is heavily dependent on the assumptions about the operation of the
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networks, and in particular network topology and routing control. For the results to follow, the

assumptions used are described in Section 3.3.2.

3.5.1 WtNN Networks without GL/GP

We begin the complete path hop analysis with the non-GL/GP case, where nodes communicate with

their nearest neighbors, per the assumptions. We note that, given a set of nodes X, there is a

deterministic path starting at every source and ending at every destination. We define the notation

Ton GLGP, which takes the value of the total number of hops in a non-GL/GP network. We have the

following lemma, proven in Appendix A.3:

Lemma 3 - In a network of n nodes without GL/GP and using WtNN routing, the total number of

hops in the network for uniform all-to-all traffic is H non-GL/GP 3 _ 2 n.

Thus we see that the total number of hops in such a network is independent of the node deployment for

a scheme where nodes only communicate with their left and right nearest neighbors.

3.5.2 WtNN Networks with GL/GP

In the GL/GP case, we note that nodes always send packets in the correct direction from the source to

the destination. Thus if a destination is to the right, the route from the source goes to the right. If a

destination is to the left, the route from the source goes to the left. Unlike the non-GL/GP case, the

paths do not have the same first hop direction. This differs from the non-GL/GP case where packets are

sent to nearest neighbors and the relative direction of the destination is unknown. We define the term

H GLGP which takes the value of the total number of hops in a non-GL/GP network. We have the

following lemma, proven in Appendix A.4:
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Lemma 4 - In a network of n nodes with GL/GP and using WtNN routing, the total number of

hops in the network for uniform all-to-all traffic is HJGL/GP = 1n3 _1
T 3 3

Thus, as in the non-GL/GP case, we see that the total number of hops is independent of the node

deployment.

3.5.3 Characteristic Hop Distance Networks with GL/GP

In the case where nodes transmit at characteristic hop distances, we develop bounds on the total

number of hops in the network, HT ". We note that the number of hops under characteristic hop

distance routing can never exceed that under WtNN network with GL/GP, given the previously defined

routing rules. Characteristic hop distance is defined as follows (see [39]):

dchar = (fl-k ) (3.20)

In (3.20), a is the processing energy in U/bit], fl is the distance-dependent transmission energy in

[J/(bit - [m]k)], and k is the variable path loss coefficient. The optimal transmission distance, dchar, is

the result of taking into account both processing energy and distance-dependent transmission energy.

We assume that a > 0 and f# > 0 and therefore it is never more energy efficient to hop in the wrong

direction. Thus we can upper bound H char as H c ,ar I HGL/GP. We develop a lower bound on the

number of hops in a one-dimensional characteristic hop distance network, which is given in Lemma 5

and proven in Appendix A.5.
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We note that we previously dealt with a one-dimensional network with a normalized length of 1. Now

we let L be the network length and we assume L is some integer multiple of dchar such that8

L = (1 - 1) - dchar where (1 - 1) E Z+ and we further assume that n/l E Z+. Now we define the

characteristic hop distance normalized with respect to L as dchar = dchar/L = (1 - 1)-1. The optimal

network for minimum hop count is where nodes are clustered at integer multiples of dchar, that is at

the locations to, (1 - 1)-1, 2(1 - 1)1, ... ,1}, with an equal number of nodes at each cluster. Thus we

can view the network as essentially subdivided into 1 clusters with n/1 nodes at each cluster. Finally, we

view the entire network as n/1 sub-networks, where each sub-network consists of one node at each

cluster and thus consists of 1 nodes. We have the following lemma for the bounds on H rcTar.

Lemma 5 - In a line network of n nodes with GL/GP and using characteristic hop distance

routing, the total number of hops in the network for uniform all-to-all traffic is bounded as

(2n - 12 + 1)(2n + n12 - 31) <_ Hdchar < 2 _ 1).

3.5.4 Network Comparison

In this section we compare the total hop count results among the three network types we analyzed. As

hop count is a proxy for both energy use and network delay, this comparison is valuable for determining

the benefits of GL/GP and characteristic distance hopping. We have the following comparing HGL/GP to

non-GL/GP,
HT'

H non-GL/GP 3
2 T =2- >1. (3.21)

- HIGLIGP n+ -

HTn+

8 We use l - 1 in order to use l for the number of network clusters.
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In the limit, we can see that

Hnon-GL/GP

]JGL/GP
HT

While it is not surprising that the GL/GP case has a deterministic result, it is interesting that the non-

GL/GP case also does. Although the first hop is asymptotically correct with probability 1/2, this

correctness condition does affect the total number of hops taken in the network under uniform all-to-all

traffic. For this traffic pattern, the network layout is arbitrary with respect to calculating the total

number of hops. It should be noted that this is only true for this traffic pattern and for these routing

rules. If the topology creation was such that a node could communicate with more than its two closest

neighbors, then our analysis would need to be modified to reflect this.

Now we determine the benefits of characteristic distance routing in one-dimensional networks as

compared to WtNN routing with and without GL/GP. For the case of WtNN routing without GL/GP, we

have the following:

3 H.non-GL/GP 21n(n - 1)(2n - 1)
1 :!; 2 - -< < car1 (3.23)

n + 1 H char ~ (2n - 12 + 1)(2n + n12 - 3l)"

The lower bound is the ratio HT /on-GLIGP GL/GP from (3.21). For the upper bound, given some 1, we

have the following:

74



Bnon-GL/GP
Tdchar E O(n). (3.24)

HT

We see that the upper bound on the improvement of characteristic distance hopping for the total hop

count in a network is of the order n. For the case of WtNN routing with GL/GP, we have the following:

<< 21n(n + 1)(n - 1)(3.25)
H dchar (2n - 12 + 1)(2n + n12 - 31)(

T

We see that because HLchar is upper bounded by HGL/GP, the lower bound on the ratio of HGL/GP to

T char is 1. For the upper bound we have the following:

HGL/GPT O (n). (3.26)
H dchar

T

We see that the upper bound on the improvement of characteristic distance hopping for the total hop

count in a network is again of the order n. Given H Ton GL/GP/H GL/GP E 0(1), we expect the upper

bound on the performance improvement of characteristic distance hopping to be of the same order for

the GL/GP WtNN case as for the non-GL/GP WtNN case.

3.6 Uniform All-to-All Traffic Throughput

Having analyzed the hop count in one-dimensional networks with uniform all-to-all traffic, we now

determine the throughput of such networks. In the uniform all-to-all traffic model each node sends data

to every other node at an average rate of A [bits/sec]. We use arbitrary network configurations to

develop bounds on the throughput for the cases of WtNN routing without GL/GP and characteristic
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distance routing with GL/GP. We define a new term called the achievable uniform all-to-all steady-state

throughput, A [bits/sec], in a manner similar to [39], [3] and [21]. We express A as

4 AmaxfAchievable A}, Vt > tss, (3.27)A

where achievable means it can be sustained between every S-D pair and tss is the first time instance at

which the network is in steady state with respect to traffic flow. We note that we are considering the

maximization over all achievable throughputs because, regardless of the network type, it is always

possible to obtain worse performance given a poor enough scheduling or power control scheme.

Now we let L(1_.)(t) be the number of traffic streams at time t on the link from node X(t) to node X(j).

We note that due to the full duplex communication assumption there exists another, not necessarily

identical term L(1j0) (t). We can quantify the link traffic in terms of the number of data streams because

each data stream has the same rate A under our traffic model. Now we formally define tss as follows9 :

tSA Aarg min{L(isj)(t) = L(isg)(t + to), Vto > 01. (3.28)

There could exist a transient A when t < tsS, which may not be achievable in the steady state and

therefore the condition on t in (3.28) is required. Because we are dealing with steady state throughput,

we define the following:

9 We define ts, as the time after which the number of streams on any given link is a constant. At network startup,
there may be some transient traffic load that could be sustained for a period of time before all of the pass-through
traffic is accounted for on every link.
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LU) L(isj (t),Vt ;> tsS. (3.29)

(I))

LU is the steady state throughput in terms of number of streams on the link from node X(j) to node

X(j). Finally, we note that in the case where only nearest neighbors communicate, the following is true:

L( = 0 V i E [2,n - 1],j 0 {i + 1, i - 1}. (3.30)

Thus we are only concerned with the non-zero terms LM and L . We again note that due to the

M((0

full duplex communication assumption there are also non-zero terms L(l) and L _ (i.e., the

receiving links for node (i) in the full duplex system). Because the traffic pattern in question is uniform

all-to-all, each node is a sink (receiver) for the same number of streams as for which it is a source

(transmitter). Further, given that a node relays a pass through traffic stream destined for some other

node, it both sends and receives that stream the same number of times. Whether a given stream is sent

once or twice depends on whether that stream took a correct or incorrect first hop, respectively.

Therefore, it makes no difference whether we analyze the set of transmitting or receiving links for a

given node; the results are the same. We arbitrarily choose to analyze the steady state throughput in

terms of the sending links of node X(j), those being L and L(1 1 ) With a fixed rate system, we know

that each link10 is rate limited such that

A (Lv') + L R. (3.31)

We are concerned with the bound on transmitted traffic data rate, noting that the bound is the same for

receiving. Given that some links may be more highly loaded than others, we define the following:

10 Noting that L~') =0 and L() = 0.
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L(n) max{L (i+L) + L (i1) (3.32)

Finally, we see that

= R

L (n)

In order to develop bounds or solve for A (depending on the network case), we determine the maximum

number of traffic streams L9j) on any link in steady state. By bounding L(n) we are then able to bound

A. In the analysis to follow, we differentiate between networks using WtNN routing with and without

GL/GP by using the terms LGL/GP(n) or Lno-GL/GP(n) and AGL/GP or Anon-GL/GP respectively. For

GL/GP networks using characteristic distance hopping, we denote these quantities as Ldchar(n) and

Adchar,

3.6.1 WtNN Networks without GL/GP

In WtNN networks without GL/GP, we find upper and lower bounds on the achievable throughput,

Anon-GL/GP in the network. Thus we find the best and worst case results for arbitrary network

deployments. We continue to assume connectivity and therefore we are not concerned with the

absolute distances between neighboring nodes. Rather, we are concerned with the relative distances

between nodes, since this determines whether a node's nearest neighbor is to its right or its left.

Given the ordered set of nodes X 0 = {X(l), ... ,X(n)}, there are a total of n nodes in the network and

thus a total of n(n - 1) S-D pairs under uniform all-to-all traffic. We solve for upper and lower bounds
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on Znon-GL/GP. The lower bound on throughput is proven in Appendix A.6 and the upper bound is

proven in Appendix A.7. Summarizing these results, we have the following lemma:

Lemma 6 - In a network of n nodes using WtNN routing without GL/GP, the maximum

achievable throughput per S-D pair under uniform all-to-all traffic is bounded as R <

non-GL/GP < 2R
n 2 +n-2

3.6.2 WtNN Networks with GL/GP

In networks with GL/GP, while the throughput is again determined by the most highly loaded link, the

load on that link is deterministic. Thus it does not depend on the values of D(k), due to the deterministic

nature of a one-dimensional network using GL/GP. Specifically, the first hop is not dependent on the

nearest neighbors of the nodes in the network. Thus, there are no upper and lower bounds because the

traffic only moves in a deterministic manner.

We prove Lemma 7 in Appendix A.8 and we note that other methods exist to solve for the throughput

given the network assumptions. In particular, the GL/GP case can be solved using a min cut/max flow

analysis, which would take a vastly different approach and require a shorter derivation". However,

because such an analysis does not easily extend to the non-GL/GP case, we do not use it here. By

following the same approach as in the non-GL/GP case, it is easier to identify where and how the two

cases differ. We have the following result:

1 The max cut/min flow approach is used in Appendix A.9 to derive the upper bound on Zdchar in Section 3.6.3.
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Lemma 7 - In a of network of n nodes using WtNN routing with GL/GP, the maximum achievable

throughput per S-D pair under uniform all-to-all traffic is bounded as 2R/(n2 _ 1) 5 AGL/GP <

2R/(n 2 - 2).

3.6.3 Characteristic Hop Distance Networks

In the case where nodes transmit at characteristic hop distances, we bound the maximum number of

traffic streams on a link in a similar manner to the hop count bounding in Section 3.5.3. As noted in

Section 3.3.2.3, we assume that such networks utilize GL/GP. The lower bound on Zdchar is the same as

the result for the WtNN network with GL/GP. We note that given the routing rules for WtNN networks

with GL/GP, every node handles all pass through traffic intersecting it in the network and thus its

throughput represents a lower bound for GL/GP networks. The upper bound on Adchar is derived from a

max-flow min-cut argument (see Appendix A.9). We have the following lemma, using the notation from

Section 3.5.3:

Lemma 8 - In a network of n nodes using characteristic hop distance routing with GL/GP, the

maximum achievable throughput per S-D pair under uniform all-to-all traffic is bounded as

2R/(n 2 _ 1) < Adchar 2R/(nl - 2).

Thus we see that Zdchar E fl(1/n 2 ) and Adchar E 0(1/n).

3.6.4 Network Comparison

In this section we compare the achievable throughput results for one-dimensional networks among the

three network types in order to determine the benefits of GL/GP and characteristic hop distance
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routing. First, we define AGL/GP which represents the performance benefit achieved by using GL/GP-

enabled nodes in a network using WtNN routing:

GL GP _ GL/GP
A - Anon-GL/GP'

(3.34)

Next we define Adchar,GL/GP which represents the performance benefit achieved by using both

characteristic distance hopping and GL/GP over a WtNN network without GL/GP:

dcharGL/GP A -dchar

A - Anon-GL/GP'
(3.35)

Finally, we define A char, which represents the performance benefit achieved by using characteristic

distance hopping over a WtNN network with GL/GP:

dchar _ Adchar
A - AGL/GP

(3.36)

3.6.4.1 Comparison of WtNN with and without GL/GP

We first consider the benefit of a network

and no GL/GP, and we see the following for

using WtNN and GL/GP over a network using WtNN routing

the one-dimensional case:

(3.37)1 < AGL/GP <2.A

Thus in the case of uniform all-to-all traffic, the performance benefit achieved by a network with GL/GP

is fl(1) and 0(1) and therefore AGL/GP E E(1). In Section 3.5.4 we showed that HT1 on-GL/GP GL/GP E

81



O(1) and thus it is not surprising that the throughput benefit of GL/GP in WtNN networks is also 0(1).

We also note here that what we mean by WtNN without GL/GP is a network where there is no routing

information available to the nodes; nodes simply forward to their nearest neighbor until a packet

reaches the destination. For one-dimensional networks, throughput scaling for a "random walk" routing

method (that is, whispering to the nearest neighbor with no destination information) scales the same as

when nodes have perfect knowledge of their destinations. This is an interesting result both because the

result does not depend on the network configuration and because, as we show in Chapter 4, the

distribution of topology and routing information in IWNs requires significant throughput per node.

3.6.4.2 Benefits of Characteristic Distance Hopping

Next we compare the throughput benefits of characteristic distance hopping to networks using WtNN

routing with and without GL/GP. We begin with the comparison to networks without GL/GP by looking

at ,4dchar,GL/GP. We have the following:

1 < AcharGL/GP <( 2 _ n (18)
A- n1 - 2

We note that AdcharGL/GP E O(n) and thus the achievable throughput gain is proportional to theA

reduction in hop count calculated in Section 3.5.4.

Finally, we calculate the throughput benefits of characteristic distance hopping over WtNN networks

with GL/GP and obtain the following12:

1 We note that the inequality in Lemma 7 is due to the odd/even cases for n. Thus the lower bound in (3.39) can
be satisfied with equality because we assume that n is the same for the networks we are comparing.
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1 A dc2ar 2 _ 1 (3.39)
- n1 - 2

We note that A cha E O(n), where again the results are as expected given the hop count comparison

results in Section 3.5.4. Given that the achievable throughput of WtNN networks with GL/GP is 0(1)

compared to WtNN networks without GL/GP, we expect that A char and jdchar,GL/GP are of the same

order. That is, because the achievable throughput of WtNN networks with and without GL/GP is of the

same order, we expect the performance improvement of characteristic hop distance networks over

either WtNN network to be the same.

3.7 A Tight Bound on Throughput Scaling

Given the bounds in Section 3.6.4 for throughput scaling for characteristic hop distance routing, we

develop a tight upper bound on Adcfar to show that the upper bounds on A char,GL/GP and A dchar are

tight. We following a similar method as used in [3] to derive Lemma 1. In Appendix A.10, we show that

the throughput scaling upper bound for characteristic distance hopping is tight with high probability (see

Definition 3), that is Adcfar E 0(1/n) whp. Given this, the upper bounds on the benefits of

characteristic distance hopping are tight whp. Thus we have the following Lemma:

Lemma 9 - Consider a random one-dimensional network with n nodes independently and

randomly distributed on a line of unit length according to a uniform distribution. Under uniform

all-to-all traffic, the maximum achievable throughput of a network using characteristic hop

distance routing over a network using WtNN routing is O(n) whp.

Lemma 9 summarizes the performance improvement of characteristic hop distance routing over the

WtNN protocol for one-dimensional networks. Per Section 2.12, GL/GP enables the use of characteristic
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distance hopping by allowing nodes to determine the locations of neighbors in the network. Thus GL/GP

enables this throughput performance improvement. While direct transmissions between sources and

destinations would also allow for 0(1/n) throughput (noting that every node needs to transmit to every

other node under our traffic model), such a scheme is not energy efficient.

3.8 Summary

In this chapter we have compared three different types of one-dimensional networks: WtNN routing

without GL/GP, WtNN routing with GL/GP, and characteristic hop distance routing with GL/GP. In

particular, we looked at a total hop count comparison and a throughput comparison, where the total

hop count can be seen as a proxy for energy and delay in the network. We showed that, compared to a

network using characteristic hop distance routing, the total number of hops in a one-dimensional

network using WtNN routing, either with or without GL/GP, scales as fl(1) and O(n). We also showed

that the achievable throughput of a network using characteristic hop distance routing is fl(1) and O(n)

greater than that of a network using WtNN with or without GL/GP. Finally, we showed that, with high

probability, the achievable throughput of a network using characteristic hop distance routing is O(n)

greater than that under WtNN routing. Thus we have shown the performance benefits of characteristic

hop distance routing combined with GL/GP, compared to WtNN routing. Characteristic distance hopping

is one way to ensure that the hop distance is constant as the number of nodes increases; these results

could be extended for other constant hop distance routing schemes. GL/GP enables significant

performance improvements in terms of throughput for one-dimensional networks. While often the

research in IWNs focuses on two-dimensional networks, the one-dimensional results in this chapter do

have real world applications, such as a network of vehicles traveling on a road.
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Chapter 4

Rate Scaling in Two-Dimensional Power-Limited Networks

In this chapter we continue our analysis of two-dimensional IWNs by looking at the rate scaling

necessary for the distribution of topology and routing information. While considerable work has been

done to analyze throughput, energy consumption, and delay scaling and tradeoffs in IWNs, there is less

attention dedicated to affect the distribution of topology and routing information in these networks. In

Section 4.1, we define and differentiate between network topology and network routing, terms which

are sometimes used interchangeably in the literature. Further, assumptions are often made concerning

what information is available at nodes for routing decisions without addressing the equally important

question of the requirements and costs of collecting, distributing, and maintaining that information.

Related work was performed in [3] for the period until a local topology change, both for new links

connecting and old links disconnecting, in terms of "on the order of" results13 . These results in [3] used a

mobility model where nodes move in a random direction with a velocity v for a random duration of time

before changing direction. In this chapter we use a specific mobility model to develop lower bounds on

the rate scaling due to link state distribution for maintaining topology and routing information in IWNs.

That is, results using the "~" notation.
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4.1 Assumptions and Definitions

The following is a list of important assumptions and definitions for analysis of rate scaling due to the

distribution of topology and routing information in two-dimensional IWNs.

4.1.1 Connectivity

We assume for the purposes of this chapter that we are dealing with a network that is connected. That

is, we assume that a path exists from every node to every other node, where a path could be a single

hop from the source to the destination or a series of hops through intermediate nodes. In addition to

this, to ensure packet delivery given a connected network, it is necessary for the network to distribute

updated topology and routing information in order to route a packet from any source node to any

destination node.

4.1.2 Transmission Rate

We assume that when nodes transmit, they do so at a fixed rate R [bits/s]. In this chapter R represents

the transmission rate as a random variable and the lowercase r represents the value taken by R. Given

the per node average power constraint Pavg, per Section 2.8.2.2, a transmission over a hop distance of p

is correctly received if

1
k k

A (avgG1 /2
P Pmax= - RN0 n [units], (4.1)

47r R N, In 2

where A is the signal wavelength, Pavg is time-average power constraint, \fGj is the product of the

transmit and receive antenna field radiation patterns in the LOS direction, R is the transmission rate, No

is the noise power spectral density in [W/Hz], and k is the path loss exponent. We set the units to be
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arbitrary for a more general result. We note that we assume a = 0, as in Section 2.8.2.2. That is, we

assume zero processing energy because we wish to find an upper bound on the maximum possible

transmission distance.

For the remainder of this chapter, we will use pmax as it is defined in (4.1), and we note that it is a

function of both R and Pavg. We also note that the connectivity of a fixed-rate network is dependent on

Pmax. The purpose of the work in this chapter is not to address connectivity, but rather to address the

required transmission rate for the distribution of protocol information. In the sections to follow, we

develop bounds on the rate R necessary for the propagation of protocol (topology and routing)

information. One may naturally ask how Pmax can appear in such a bound if it is also a function of R. We

can view Pmax as a function of the ratio Pavg/R. Then if we assume there exists a Pmax necessary to

ensure connectivity (noting that connectivity is a condition for the work in this chapter) then Pavg must

scale as R in order to maintain connectivity and ensure enough rate exists to propagate protocol

information. Given some Pmax necessary for connectivity and some Pavy, the bound on R necessary for

the distribution of protocol information may be unachievable and thus the network will not be able to

ensure the distribution of the protocol information.

4.1.3 Network Topology

We define network topology as a description of the network from which it is possible to make routing

decisions. We assume for the purposes of this chapter that, given a connected network, the network

topology can be used to make routing decisions for the communication of information from any node in

the network to any other node in the network. Some examples of network topology include: a square

matrix of O's (disconnected) and 1's (connected), a list of neighbor nodes, and a square matrix of link
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connection rates. We adopt the topology of a square matrix of O's and 1's. We define a topology change

event for a fixed rate system as follows:

Definition 5 - A topology change event in a fixed rate system is defined as the action of a node

entering or leaving the transmission range Pmax of another node in the network.

For cell routing, as in Section 4.2, we define a topology change event as follows:

Definition 6 - A topology change event for cell routing with a fixed transmission rate is defined

as the action of a node leaving (or entering) a cell.

We note that in order to leave a cell, a node must enter a new cell. Thus the definition can be written for

a node leaving or entering a cell.

As in the one-dimensional case, we again assume a network of n nodes while initially not specifying the

area in which they are distributed (such as a plane). We denote the ith arbitrarily labeled node and its

location, as Wi and we denote the set of nodes and locations as

W = {W1 , W2, ... , WO}= f(x 1, y1), (x 2 ,Y2), ---, (Xn, Yn)1- (4.2)

4.1.4 Network Routing

We define routing as the use of the network topology information to forward information from one

node in a network to another node in a network. There are many examples of network routing

protocols. For packet-switched networks, as mentioned in Section 2.4, the two primary routing types are

link-state routing protocols and distance vector routing protocols. In Section 4.2 we analyze cell routing,
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where the analysis is a particular case of the more general and routing-agnostic topology approach of

Section 4.3. Likewise, Section 4.4 is also a routing-agnostic topology approach. In general, the aim of this

chapter is to develop results that do not depend on the particular routing scheme selected.

4.1.5 Protocol Burden

In order to maintain a connected network and ensure packet delivery, the following are necessary: the

entire network must be able to have current topology and routing information and then be able to

forward a packet from any source node to any destination node. We also assume that the network is

always connected. That is, it should always be possible for any node to communicate with any other

node, either directly or through one or more intermediate nodes. For now, we assume that given some

network topology, each node must receive 0 bits of topology and routing data in order to configure the

network for connectivity. In Section 4.5 we make assumptions about the value of 0 and use those

assumptions to develop real world bounds on network scaling as a function of V). Based on this protocol

burden, we provide the following definition of the probability of successful protocol distribution:

Definition 7 - Given an IWN with fixed rate r, a change in topology at time ti, and a subsequent

change in topology at time t 2 (where t 2 - ti > 0 WP1), the probability of successful protocol

distribution is defined as the probability that the rate r is sufficient for every node in the

network to receive V) bits of data to in a time less than or equal to t 2 - t1 .

In the sections to follow, this definition will allow us to solve for bounds on R for protocol distribution,

as well as the distribution of R for the successful distribution of protocol information.
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4.2 Rate Scaling for Cell Routing

In this section we look at a particular routing scheme in two-dimensional networks called cell routing.

We consider cell routing as it appears in [39], where the cell geometry lends itself to tractable analytic

bounds. Cell routing divides the network into a fixed number of cells and then routes traffic from source

to destination by traveling through cells (see Fig. 1, derived from [3], [21], and [39]). A line is drawn from

source to destination and the traffic moves through the cells that the line intersects. Traffic is divided

among the nodes in a cell, which forward it to the next cell in the path. We note that cell routing is not

necessarily implementable but it helps provide bounds on the achievable performance of IWNs. Cell

routing is used in various ways to derive results in [2], where Voronoi regions are used as cells on the

surface of a sphere. The surface of a torus is considered for the cell routing analysis in [4] and in later

work by the same authors in [20]. The work in [39] builds on some of the analysis in [4]. In [39], the

authors show that taking 0(1) hops achieves the pair-wise throughput scaling of 0(1) and the optimal

delay and energy per bit scaling. The work in [39] did not assume that the dominant energy use in IWNs

is from transmission energy.
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4.2.1 Network Structure and Constraints

As in [3], we assume a unit torus operating region, where we can view the network as a unit area square

grid. For a simpler representation, we view the unit torus as a unit square grid of cells with size 1 x 1. We

have the following bound on the grid size:

T2 Pmaxn <
fl 2V-2

(4.3)

The lower bound is due to the requirement that there is at least one node in every cell with high

probability, and the upper bound ensures that nodes in adjacent cells can communicate with one
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another, including diagonal connectivity. See Section 2.11.2.3 for a review of these results. Examining

(4.3), we note that this also bounds the number of cells, m = (12)-i, as follows:

8 n
2m < -. (4.4)

Pmax 2

We briefly look at the conditions under which (4.3) cannot be met (that is, conditions when the upper

bound is less than the lower bound). In this case it is not possible for the cells to be simultaneously large

enough to ensure there is one node in each cell with high probability and small enough to ensure

connectivity amongst nodes in adjacent cells. Rearranging the upper and lower bounds in (4.3), we see

that this occurs for

16
n < Pmax2. (4.5)

Thus in order to meet the bounds in (4.3), we must simultaneously satisfy the following bound:

16
n f Pmax2. (4.6)

4.2.2 Node Mobility and Protocol Burden

We now look at node mobility in a random network of n nodes and its effect on transmission rate

scaling in networks without GL/GP information. We assume a fixed rate system for the purposes of this

analysis. We assume that for every time period T, each node i has a starting position given as (x, yt)

and an ending location (xt+T,7 +r), and we assume that the nodes travel in a straight line at a constant

velocity. Then the nodes have velocity and speed given by:
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(xl+ - x4 IA )+ ) - (dx dy) [units (47)
= Mi y d t d t s

lunits

i= | | i l s]. (4.8)

Given the straight line movement assumption, we note that this means all higher derivatives are zero.

For the analysis to follow, we assume that only one node is mobile and that connectivity is to be

maintained with every other node in the network, in terms of distributing topology and routing

information. Any given node can be the one mobile node, where the speed is the same and thus we let

si = s and |vg| = [vi V i E [1,n].

Given the grid structure for cell routing, let us assume that the mobile node begins and ends on the

edge of a given cell, traveling in a straight line. Thus we assume that a mobile node completely traverses

a given cell. We can define the time taken by node Wi to traverse a given cell as the random variable

Ttraverse [seconds] and we bound it as follows:

0 < Ttraverse S -2. (4.9)

Note that in the above bound, we define traversing a cell as entering and then exiting a cell, and thus

the time necessary to do so must be non-zero. Given our assumptions about node velocity, the longest

distance a node can traverse in a straight line is the diagonal of a cell. We note that if a node traverses

the diagonal of a cell in a straight line, then vi = vi.

In order to maintain a connected network and ensure packet delivery, it is necessary for every node in

the network to have current topology and routing information and then be able to forward a packet
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from any source node to any destination node. Between the time a destination node enters and exits a

given cell, the topology and routing information of the network must be updated and the source

information forwarded to the destination node. Both of these must occur in a time bounded by

Ttraverse. Once a node enters a new cell, we assume that the topology and routing information must be

re-created.

For a node to receive a given packet in cell routing, the packet must arrive at the cell where the node is

located. We assume that there exists an algorithm in the network that allows nodes within a cell to

determine the optimal cell routing paths for all S-D pairs. We also assume that the network is always

connected. That is, it is always possible for any node to communicate with any other node, assuming

that the topology and routing information is current. Finally, we assume that the network routing does

not take advantage of geographic prediction information. In other words, if a node moves from one cell

to another, it is necessary to run the routing algorithm again to determine routes to the node.

As previously stated, each node must receive a total of 4 bits to update topology and routing

information, which for a fixed rate system of rate R requires a total time of Tupdate = ip/R [seconds].

We require that the network remain connected, and therefore the mobile node must be able to

communicate with every other node in the network. Thus it is necessary that the mobile node receive

the routing update information from every other node. For a single mobile node traversing the diagonal

of a cell, the time remaining to receive transaction data (as opposed to topology and routing update

information) is given as

TA, = Traverse - Tupdate | R'- (4.10)
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where TR, is the time available for receiving transactions for node W. During this time traversing a cell,

the rate available for receiving transaction data, or the effective rate, Rej , is given by the following:

T'~
Reff = R TRx (4.11)

traverse

That is, given a network with a fixed transmission rate R, some of that rate is consumed by receiving

topology and routing update information in a mobile network, leaving only some fraction of the rate

available for receiving transaction data from other nodes. Before moving on, we look at the boundary

cases in order to provide some insight. The boundary cases are as follows:

Ref = 0, Tupdate = Ttiraverse(4.12)
R, Tupdate = 0.

Thus we see that if Tupdate is equal to Ttiraverse, then all of the receiving rate is used to provide the

topology and routing update to the mobile node. If Tupdate is 0, then the effective receiving rate is R

because no information is sent to update the network topology and routing information at the mobile

node.

4.2.3 Rate Scaling Bound

In order to achieve non-zero effective transmission rate, Reff 2 0, we must satisfy T', > 0, which is

equivalent to Ttraverse Tupdate. Given that Ttraverse V-Zl/Iv and Tupdate = i/R, we have the

following inequality:
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-2 -. (4.13)
IvI R

We can rearrange (4.13) to get

R -1V, (4.14)

where, from (4.3) we know that 1-1 must satisfy

2,Fn

Pmax 2

We use the lower bound on 1-1 to find the lower bound on R. Substituting the lower bound on 1-1 into

(4.14), we then have the following:

R 2nvl (4.15)
Pmax

Per [39], cell routing, which uses 0(1) hops, achieves the pair-wise throughput scaling of 0(1) and the

optimal delay and energy per bit scaling in a static network. The rate scaling in this case is a function of

the amount of information each node must receive due to a change in topology, which is 4 bits. In

Section 4.5.2 we examine the value of 4 and the scaling for each of the approaches considered in this

chapter. We note that, per (4.15), networks without GL/GP information require R to scale linearly with

velocity. Finally, we note that smaller cell sizes (that is, smaller Pmax) require higher transmission rates

in order to achieve non-zero throughput.
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4.3 Fixed Rate Scaling - Topology Approach

Having analyzed the rate scaling in cell routing, we now take a routing-agnostic look at rate scaling in

power-limited, fixed transmission rate networks. Both [3] and [21] looked at fixed as well as variable

rate systems. We analyze fixed rate systems, which provide a more simple analysis framework. For the

purposes of the rate scaling analyses in this chapter, cell routing is a specific case of the topology

approach. The upper bound on cell size is a function of maximum transmission range and the lower

bound is a function of the number of nodes. Both bounds give a deterministic number of cells in the

network. In this section we view a node's transmission area as the area to be traversed by a mobile node

and, like the cell routing upper bound, this area is a function of the transmission range.

4.3.1 Network Structure and Constraints

In this section, we also continue to assume a unit torus14 operating region, as in Section 4.2, to avoid

edge effects in the network. We label the analysis to follow as the topology approach, noting that we

are not concerned with the routing method used in the network. We are only concerned with changes in

topology. Given Definition 5 and our assumptions regarding the protocol burden for updating topology

information at all the nodes in the network, it is necessary for every node to receive 7p bits for every

change in topology.

4.3.2 Node Mobility and Protocol Burden

We begin by looking at a simple mobility model that is very similar to that of Section 4.2. We use the

same notation as in Section 4.2.2 to describe a node's starting location, ending location, velocity, and

speed. Due to the straight line movement assumption, we note that this means all higher derivatives are

14 We use a unit torus operating region in order to simplify the math for the case where part of a node's

transmission area (that is, the circle swept by the maximum transmission range) is located outside of the network.
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zero. Given our assumption of a fixed rate system, nodes can communicate at a rate R up to a maximum

distance of pmax. We similarly define the time node Wi spends within the communication range of

another node as Ttraverse- Since the maximum distance that a node can travel within the

communication range of another node is the diameter of the circle with radius pmax, we have the

following bounds on the random variable Ttraverse:

0 < Tiraverse ! 2pmax. (4.16)

Between the time a destination node enters the transmission range of another node and before it leaves

that transmission range, the topology and routing information at each node in the network must be

updated and then the source information transmitted to the destination node. Both of these must occur

in a time bounded by Ttraverse.

As previously stated, each node must receive a total of ip bits to update its topology and routing

information, which for a fixed rate system of rate R requires a total time of Tupdate > 4i/R. It is

necessary that every node receive the topology and routing update information from every other node

within the time limit Ttraverse. For any given node W traversing the transmission range of another

node, the time remaining to receive transaction data, after completing the topology and routing

information update, is given as

2Pmax (417TR' = Traverse - Tupdate 2pmax R_

The effective rate, Reff, is again given by the following:
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Reff = R TR . (4.18)
traverse

4.3.3 Rate Scaling Bound - Single Mobile Node

We now look at the situation where only a single node in the network is mobile and we bound the

transmission rate of the system. In order to achieve non-zero effective transmission rate, TAi 0 must

be satisfied. This is equivalent to requiring Ttraverse > Tupdate- Given (4.17), we can substitute and

rearrange the expression to get

ip~v|
R .(4.19)

2 Pmax

Thus we see that for the case of a single mobile node in the routing-agnostic topology approach, the

rate scaling is of the same order as in the cell routing case. This results from the fact that we are simply

analyzing the geometry of a particular region determined by some multiple of Pmax. The only difference

between the topology approach and the cell routing approach is the coefficient in front of Pmax.

4.4 Fixed Rate Scaling - Topology Coherence Time Approach

In the previous two sections, we developed a transmission rate scaling bound for a single mobile node

that moves at a constant velocity over some geometric area. Now we look at a more realistic model of

topology coherence time by incorporating a random mobility model. We begin by considering the link

coherence time distribution for a single mobile node using the topology approach. Then, we allow all

nodes to be mobile, together with some assumptions that allow the derivation of tractable analytical

results.
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4.4.1 Network Structure and Constraints

As in Section 4.2 and Section 4.3, we assume a unit torus operating region. One necessary but not

sufficient condition for a connected network is that each node is within a distance pmax of at least one

other node in the network. Thus given that we assume the network is connected, we can assume that

each node is within the maximum transmission distance of at least one other node in the network.

4.4.2 Single Node Mobility Model

As before, we continue to assume constant node velocity. For the analysis in this section, we consider

the starting position of a given node W, that is (pmax, E)), in polar coordinate notation. This location is

distributed randomly and uniformly on the circumference of the circle formed by the transmission range

of some other node with which Wi is connected. Similarly, the ending location of node W, that is

(Pmax, ei+1), is also distributed randomly and uniformly on the circumference of the circle formed by

the maximum transmission range circle of this node. Thus the path of the mobile node in this mobility

model is defined as a randomly distributed chord on the circle of radius pmax (see Fig. 2). We assume

that all nodes travel at a constant speed st = Ivg| = IvI where vi = vTr + Vi (that is, the velocity is the

sum of its tangential velocity, vr, and its radial velocity, vR). Thus the amount of time necessary for the

given node Wi to traverse the transmission range of a node with which it is connected is dependent on

the length of the randomly distributed chord.

(Pmax, E)

(Pmax, et+r)

Fig. 2. Diagram of the random chord mobility model
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We again define the time a node spends within the communication range of another node as Ttraverse-

If we let Ci be the length of the chord along which node Wi travels, then we can define the traversal

time for node W as follows:

Ttraverse = (4.20)

4.4.2.1 Chord Length Probability Distribution

We now determine the probability distribution of Ci. We consider one half of the circle in our analysis,

noting that by symmetry the distribution on the other half of the circle is the same. We assume that

(Rt, E)) = (Pmax, 0), where again by symmetry any other starting angle has the same distribution. We

see that, per the previously stated assumptions, we begin on the circumference of the circle. Given that

we assume that the path ends on the circumference of the circle, we let (Rt+T, Oi+T) = (Pmax, 6)

where 6 is the stochastic ending angle of mobile node Wi. The problem of determining a definition for a

random chord on a circle is known as Bertrand's Paradox. The derivation to follow for the distribution of

a random chord on a circle was confirmed by but developed independently from [42]. The authors in

[42] also look at a number of other probabilistic models for the random chord problem. See Fig. 3 for a

diagram of the mobility model.

(Pmax, )
Ci

(Pmax, 0)

Fig. 3. Diagram of the random chord mobility model
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We let Ot+r be uniformly distributed over [0,r] and we have the following function for the chord

length:

0  ag
Cj = 2 Pmaxsi +A9t2 ~ (E~+T).

(4.21)

That is, Ci is a function of the random variable O'+T and thus is itself a random variable. For its

cumulative distribution function (CDF) we have the following (see Appendix B.1):

-2 sin- '( 
,Fc, (c) = 2max

0,

0 : C 5 2 Pmax,
(4.22)2 Pmax < C,

otherwise.

4.4.2.2 Traversal Time Probability Distribution

We now derive the CDF for the time to traverse another node's transmission range by noting that

. eC-
Ttraverse = =V h(Ci). (4.23)

Thus Ttraverse is a function of the random variable Ci and is itself a random variable. We have the

following CDF (see Appendix B.2):

FTiraverse (t) =

2 .in_'
it

1,

0,

( t- |V|2Pmax)
0 t 2 Pmax

2 Pmax <

otherwise.
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Thus we have derived the distribution for the traversal time of a single mobile node moving along a

random chord on the circle formed by the transmission range of another node.

4.4.2.3 Rate Scaling Bound

In this section we derive the rate scaling bound for a single mobile node in a manner similar to Section

4.3. We have an update time of Tupdate ip/R and for any given node Wi we have the following for the

time remaining to receive data:

TAR = Ttraverse - Tupdate- (4.25)

In order to have a non-zero effective transmission rate, Reff, it is necessary that Tx 0. Thus we note

that R P/Ttraverse. Now, we state the following definition:

R'n - -T- (4.26)
Ttraverse

That is, for a given node Wi, we define the minimum rate, R'in, to provide sufficient time for

transmission of topology and routing information to the node. For a single mobile node we require that

R i R We note that we have defined this new quantity R'ig as a random variable. We derive the

CDF for the minimum rate necessary to ensure that the topology and routing update information can be

sent in an amount of time equal to the Ttraverse. We have the following (see Appendix B.3):
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0, r< ,
2pmax"

F~ r 2 j lI, N iPVI (4.27)
Rmin 1 -- sin ,' 0< r,

S 2rpmax/ 2 Pmax
1, otherwise.

Equation (4.27) provides an expression for the CDF of the of the minimum transmission rate to ensure

that topology information is communicated within the link coherence time of a single mobile node. That

is, for some rate r, F (r) is the probability that this rate will be sufficient to maintain connectivity in

the network, given the random chord mobility model. For example, if r = 4)Iv/(2pmax), then

FR i (r) = 0. This value of r is the rate necessary if the randomly selected chord is of length equal to

the diameter of the circle of radius pmax- Given the continuous distribution of chord length, WP1 a

chord of length other than the diameter is selected.

The range of the inverse sine function is [0,7r/2] and it is decreasing in r; then given the expression in

(4.27), FRi .(r) is increasing in r. This makes intuitive sense because one would expect that a higherRmi

rate gives a higher probability of sufficient rate for the distribution of topology and routing information.

By the same reasoning, FRi .(r) is increasing in pmax and thus a larger value of pmax results in a higher

probability of a rate r being sufficient for the distribution of topology and routing information.

Equivalently, given some fixed r and assuming we maintain r > 1PIV|/(2pmax), then F i (r) is

decreasing in 0 and |v|. Thus given an increase in the amount of topology and routing information

distributed, or an increase in velocity, the probability of a r being sufficient for the network decreases.

4.4.3 Multiple Mobile Nodes

In Section 4.4.2 we developed an expression for the rate scaling for the single node case. In this section

we build on the single node mobility model and incorporate the mobility of all nodes in the network. We
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begin with the complementary CDF (CCDF) of the minimum transmission rate for a single node, where

the CDF is given in (4.27):

2 Pmax

Fcr)= 2_@ P | (4.28)

m 2rpmax 0 2 Pmax

0, otherwise.

We apply this CCDF to multiple mobile nodes. We assume that each node moves independently of every

other node. Further, we simplify our analysis by ignoring the fact that the relationship between one

node's movement and another node's movement can effectively increase or decrease Tjraverse. We

note that in a network with highly correlated movement (that is, nodes in general move in the same

direction), the minimum transmission rate necessary decreases due to a corresponding increase in

Tt raverse. We assume that nodes do not move in cooperation, which would increase Ttiraverse, in order

to obtain a more general bound for networks where node locations and velocities are not controlled.

Further, if the network topology is centrally controlled, then distributing network topology and routing

information becomes less of an issue. This is because the nodes would have direct information (from the

controller) as well as indirect information (the fact that the future topology will be similar to the current

topology). In the case where one node's movement decreases Ttiraverse of another node, the

transmission rate would have to increase to accommodate more frequent topology changes. Our

assumption of independent movement thus provides a lower bound that would still hold in the case of

node movement that decreases Ttraverse, and this bound is analytically tractable.
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4.4.3.1 Distribution of Minimum Rate

Given a fixed transmission rate network, we find the distribution on the maximum of the minimum per-

node rate of transmission. We define the minimum rate for the network as Rmin A maxi{R' g}. We

require that the entire network maintain connectivity in the sense of nodes being able to communicate

with one another, which requires the distribution of updated topology and routing information. We

begin by solving for the probability that Rmin is greater than some value r. We ignore the otherwise

case in the CDF FR i (r), because the chord length cannot take other values, and we have the following
Rmi

(see Appendix B.4):

0, < IVIf 2Pmax'
FJR. (r) = [ 2 / VI\)In pIV (4.29)

1 - 1 - -sin 1  
, 05 - <r.

I~ 7 2rpmax 2pmax

Equation (4.29) is the CCDF for the rate necessary for successful protocol (topology and routing

information) distribution. Thus Fcm.(r) is the probability that a rate r will not be sufficient for

successful protocol distribution, given the random chord mobility model. In the next section we solve for

the rate necessary given some specified probability of insufficient rate for successful protocol

distribution.

4.4.3.2 Rate Scaling for Successful Protocol Distribution

We now use F .(r) to consider the rate scaling for the successful distribution of protocol information

(see Definition 7). From (4.19) in Section 4.3.3, we have the following bound on R:
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R > 2 Pmax
(4.30)

We let X = O|v|/(2Pmax) to aid in the tractability of the following results. We normalize Fmi . (r) with

respect to this lower bound on R. Substitution of X results in the following:

0,
Fc (r) = -2 M n

Rmin 1--in-1 ilI IT (-
(4.31)

r < X,

0 :5 X s r

We solve for the rate such that the probability of insufficient rate for connectivity is less than or equal to

some specified value #P. That is, PrtRmin > r) # or Fc . (r) #P. We solve this for two ranges of 4:

0 # 1 and 0 #P 5 1/2, where the more restrictive range allows for a tighter bound. These results

are proved in Appendix B.5. For the first range of 0 5 #P 5 1, we have

a fFCmrf > 4, n|IvlPl(1 -4),V0 ! 1,argmin{FR- (r) !5 #,P
r min 7pmax

(4.32)

The result in (4.32) is the minimum r such that

distribution is greater than or equal to 1 - #P.

the probability of sufficient rate for successful protocol

For the case where 0 5 # 5 1/2, we have

6nf)Iv| 1
arg min{Fj . (r) f, #} 2 V 0 (4.33)

r mi #7 3 Pmax 2(

We primarily focus on (4.33) because probabilities less than 1/2 for successful probability of protocol

distribution are less interesting due to the low probability. We see that the minimum rate scaling is
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increasing with n, V) and |vl and decreasing in 4 and Pmax. Thus higher values of # (that is, lower

probabilities of successful protocol distribution) require lower rates. Likewise, a larger transmission

range causes a linear decrease in the minimum rate scaling. Of particular note, the rate scaling is linearly

dependent on the velocity, which means that systems with higher velocities require higher rates. In the

sections to follow we develop a bound on V) and use that to develop real world results for rate scaling

for a given packet size.

4.5 Rate Scaling for All-to-All Topology Updates

In the previous sections, we have used the variable 4 to denote the number of bits each node must

receive per topology update. We now make assumptions about how much information each node needs

to describe its topology and routing information and use that to develop a bound on the amount of new

topology and routing information every node in the network must receive. We note that we are

operating under the assumption that nodes do not use any predictive elements in their protocol

communication. Thus each time the network topology changes, we assume that every node must be

notified of the entire network topology. That is, in order for routes to exist between every S-D node

pairing in a connected network, it is necessary for the entire network to update its topology and routing.

If we assume that each node requires no less than b bits to describe its topology and routing

information, then every node must receive at least (n - 1)b bits for every change in topology. Then we

have the bound$ V (n-1)b.

We note that to uniquely identify every node in the network, we must have b [log2 n]. However, here

we focus on the bound of (n - 1)b . We make no assumption about the process by which routing is

performed, which may require the transmission of additional information. We only assume that in order
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ensure communication is possible between all nodes, each node must send b bits of information to

every other node in the network.

4.5.1 Rate Scaling for Lower Bounded Update Size

In this section we present each of the rate scaling bounds from this chapter under the assumption of the

bound V) (n - 1)b. We let RCR represent the minimum rate for cell routing, RTA-SN represent the

minimum rate for the topology approach with a single mobile node, and RTCTA represent the minimum

rate for the topology coherence time approach. Then we have the following:

RCR E f(n),

RTA-SN E fl(n),

arg min {Fc .(r) #} E fl(n2 ).
rTCTA m

Thus we see that the minimum rate for the single mobile node cases scale with n and for the multiple

mobile node case the minimum rate scales with n 2 . Given the independence assumption for the

multiple mobile node case, it makes intuitive sense that the scaling would add another factor of n. Thus

for the single mobile node cases, the scaling is due to the bound b - (n - 1)b. For multiple mobile

nodes, the additional factor of n comes from the independent movement of the nodes.

4.5.2 Distributed Link Coherence Time Rate Scaling for IP Packets

We now use an actual value for b and present plots for the distributed link coherence time rate scaling

for various values of P. We let b = 12000 [bits] (noting that standard IP Ethernet packets are 1.5 kB, or
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12000 bits). Thus we make the assumption here that each node describes its local topology and routing

information using one IP packet. We select values for #P of 0.05, 0.01 and 0.001, corresponding to

probabilities of successful protocol distribution of 95%, 99% and 99.1%, respectively. The lower bound

on rate is plotted for specific ratios of transmission range to velocity, that is pmax/|v|. For ratios other

than those plotted, the results can be scaled by a factor of |vI/pmax, noting that the figures are log-log

plots. We define rrm (P A g inr , #)} and we have the following bounds, which we

plot as a function of n for 10 5 n 5 1000:

1.44n(n - 1)IvI
rmcA0.05) 3 Pmax [Mbps]

rT (001 7.2n(n - 1)IvI
cA0.01) 3 Pmax [Mbps]

rTCTA _72n(n - 1)IvI
cTA(0.001) > 3 [Mbps]

T(3 max

We plot the minimum rates for Pmax/|vl ratios of 1, 10 and 100 (see Figs. 4-6) and a scaling

comparison for Pmax/IVI = 100 (see Fig. 7).
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4.6 Summary

In this chapter we have looked at the rate scaling required for the distribution of protocol information in

IWNs after topology changes resulting from node mobility. We have not addressed the issue of new

links in the topology, which was discussed in [3] in terms of the order of time until a new connected link.

In this chapter we presented lower bounds on rate scaling for simple mobility models and two different

network views: the topology approach for a single mobile node (of which cell routing is a special case)

and the topology coherence time approach. We showed that under our mobility model, and assuming

every node must transmit some minimum amount of information for each topology change, the

transmission rate for a fixed rate network must scale as fl(n 2 ). Thus we have shown that significant

node transmission rates are necessary for the distribution of topology and routing information under

the assumptions considered in this chapter. Given the large amount of throughput necessary for

distributing this information, we propose the use of GL/GP information for maintaining topology and

routing information at the nodes in the network. GL/GP information can be used to lessen this burden

by reducing the amount of signaling necessary to maintain this information at the nodes in the network.

It is clear from this chapter that, absent a predictive element in the maintenance of protocol

information, the throughput scaling necessary in IWNs is significant and poses a problem for network

scalability. Note that we have not addressed the network burden of disseminating GL/GP information. It

may seem that the network burden is equivalent to that of LSRP without GL, but with GP the need for

updating GL is greatly reduced and thus less burden will be imposed on the network.
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Chapter 5

Conclusion

In the time since the publishing of [2], which is considered by many to be the seminal work in IWNs,

significant research has been directed at the characterization of such networks. While certain

assumptions differ among the works in this area, the research primarily focuses on connectivity,

throughput, energy, and delay. These are very important metrics to characterize in IWNs, whether

narrowband or wideband. Such analyses are extremely useful in determining the types of protocols that

are optimal for network design. For instance, it is important to determine the optimality of a concept

such as WtNN before setting out to design an implementable protocol for topology distribution and

routing in IWNs. Further, the analytic work in this area is useful for determining how well a design

performs compared to the theoretical bounds on performance.

We began this work with an overview of the field of IWNs and, in particular, the characteristics which

differentiate IWNs. We also reviewed and compared the scaling results for two-dimensional IWNs, as

well as the assumptions for these results, in order to build a picture of the current landscape in this area.

In Chapter 2 we reviewed some of the important results in connectivity and T/E/D tradeoffs and scaling.

Further, in Chapter 3 we looked at the scaling of one-dimensional networks using a slightly different

approach than the current body of research. We developed results for comparing three types of one-

dimensional networks and, in particular, for comparing networks with and without GL/GP information.
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Finally, we looked at the burden of distributing topology and routing information in networks in order

show how GL/GP information can improve network performance.

In addition to connectivity and T/E/D scaling and tradeoffs, it is important to determine other

characteristics of an implementable system, such as the burden of distributing topology and routing

information in the network as explored in Chapter 4. The impact of this burden is useful both in terms of

ensuring a network is implementable and adjusting the bounds on performance to take into account this

additional requirement. Further, quantizing this burden is also useful as it relates to implementable

networks. For instance, we showed in Chapter 3 that one-dimensional WtNN networks experience a

minimal benefit from GL/GP information. Such results are helpful in evaluating the features of a system

for implementation.

The use of GL/GP is one method we propose for maintaining topology and routing information in IWNs

in order to enable forwarding of packets between nodes in the network. As compared to the node-to-

node distribution of topology and routing information, the use GL/GP offers the ability to reduce the

network burden of maintaining this information. One method of distributing GL/GP information is via

node-to-node communication, such as how topology and routing information is distributed. Another

method is to use, for instance, an airborne node to keep track of the nodes in the network and provide

updates of the network topology via signaling. Regardless of the method used to reduce the protocol

burden, GL/GP can improve throughput via directional antennas, user helper nodes and characteristic

distance hopping, in addition to reducing the protocol burden. The use of such information will help to

improve the performance of networks as IWNs become more prevalent. Moreover, with GP the need for

GL updates is greatly reduced, further decreasing the need for capacity to distribute network protocol

information.
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We propose that future IWN research take into account the burden of maintaining topology information

at every node, particularly when simulating or emulating networking protocols. In addition, we have laid

the groundwork for analytic results on the protocol burden of IWNs. Some possible next steps in this

area of research are to determine the rate scaling for different mobility schemes or to develop a general

approach to protocol scaling in IWNs. Another area of research is to develop methods to quantify the

costs and benefits of GL/GP information. For example, this could involve determining the performance

tradeoffs of better information versus the cost of distributing that information. Finally, an important

area of research is to determine the effect of error in geographic prediction and the relationship

between that error and how often geographic location updates are required.

The analysis of IWNs presents a number of challenges, from the well-researched area of connectivity to

the impact of protocol distribution on network throughput. As IWNs move from concept to reality, this

work helps to lay the foundation for understanding the burden of maintaining topology and routing

information at the nodes in the network. Given the use of GL/GP information, much research remains to

determine both the amount of information and the accuracy of the information to be distributed. We

hope that this work motivates continued GL/GP research in IWNs and lays the foundation for future

results. Despite the differences in the assumptions of the various works in this field, a clearer vision

continues to emerge regarding what future IWNs will look like. We hope that the results we have

presented here will make that vision a little sharper.

117



118



Appendix A

Derivations for Equations in Chapter 3

A.1 Proof for Results in Section 3.3

In Section 3.3 we defined the nearest neighbor as the node that is closest to a given node location X(1).

That is, we let D(j) be a random variable that takes the value of the direction of the nearest neighbor

from node (i) such that

D(j) = R ,
nearest neighbor is to the right,
nearest neighbor is to the left.

We noted that the following occur surely:

D(1) = R,

D(n) = L.

That is, the end nodes in a one-dimensional line network only have one nearest neighbor and the

location of that neighbor is deterministic. Now D(i), i E [2, n - 1], can be expressed as follows:

{D(j) = R} = {IYi_1I > |Y|},
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{D(j) = L} = {|i_ 1 | < IYjj}.

We have used the following:

Pr{|X(i) - Xu 1| = IX(o - X(i+1) 1} = 0.

Next we prove that

Pr(D(i) = L} = Pr(D() = R} = 0.5 V i E [2,n - 1].

We start by looking at the ordered set Xo and we consider any X(j) as the arrival epoch in a Poisson

process conditioned on n arrivals by time 1 (per [43]). We use Chapter 2 [41] to define arrival processes

and Poisson processes. An arrival process is a sequence of increasing random variables, 0 < S, < S2 <

---, where the random variables Si are arrival epochs. These arrival epochs can also be specified using

the sequence of inter-arrival times Z1 ,Z 2 , ..., where these are positive random variables defined such

that Z1 = Si and Zi = Si - Si_ 1 . Further, these inter-arrival times are usually lID. Given the set of Z,

the arrival epochs can be specified as

n

Sn =Zi.
i=1

A second alternative for specifying the arrival process is by the counting process N(t), where for each

t > 0, the random variable N(t) is the number of arrivals up to and including time t (that is, the number

of arrivals on the interval (Ot]). We note that the set of all N(t) is uncountably infinite. Then the

following events are equivalent (see (2.3) in [41]):
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tSn > t} = {N(t) < n}.

Then the arrival process can be specified by the joint distributions of either the arrival epochs Si, the

inter-arrival intervals Zi, or the counting random variables N(t). A Poisson process is an arrival process

that is most conveniently described by its inter-arrival times, where each Zi has the PDF given by

fz(z) = Xe-az,z 0,

where A is the rate of the process.

Per [43], we can view the node locations X0 as the arrival epochs in a Poisson process conditioned on n

arrivals by time 1, noting that an arrival process is a sequence of increasing random variables. As

previously derived, X(i) < X(i+1) implies that X(i+1) - X(i) is a positive random variable Y. The process

is considered to start at time 0 and multiple arrivals cannot occur simultaneously. We look at any X(i)

conditioned on n and all the other arrival epochs, that is {X(i)I|X(j),Vj # i},X(n) < 1}. Given the

uniform distribution, X(i) conditioned on n and all the other node locations is then uniformly distributed

between X(i+1) and X(i_ 1). In the case of X(l), it is uniformly distributed between 0 and X( 2) and, in the

case of X(n), it is uniformly distributed between X(,_-) and 1. Since the distribution is uniform, we see

that the events {D(i) = R} and tD() = L} are equally probable. Given this, we state

Pr{IX(i) - X(i_ 1) I IX(o - X(i+1)|} = Pr{|X() - X(i_1| < X(i) - X(i+1 ) } = 0.5,

which allows us to make the following equivalent statement:

Pr{D(i) = L} = PrfD() = R} = 0.5,Vi E [2,n - 1].
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Thus we have proved that for i E [2,n - 1], the probability of having a nearest neighbor to the left is

equal to the probability of having a nearest neighbor to the right.

A.2 Proof for Results in Section 3.4.1

In the non- GL/GP case, we show that, for any n,

limPr H(n) = 0 lim Pr H ()n) =0.5.
n-+oo tJG n-+oo M

In addition, we obtain results which can be used to calculate these probabilities for any value of n. We

define two additional variables for the number of correct and "error" first hops, respectively, from node

(i) as C(j) and IE(j). We define 1
fH)N as the indicator random variable for whether the first hop from

node X(1 ) to X(j) is correct or incorrect. Then we can write C(o and IE(1) in terms of HU as follows:

j(ii

C(j = l{(j) (n)=o1'

IE (j) z I {Hw)(n)=i}1
Jt

In this case we are using the uniform all-to-all traffic model and thus there are n(n - 1) S-D traffic pairs.

We assume that the network is fully connected (i.e., a path exists from each node to every other node,

possibly through some number of intermediate nodes).
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We first look at the two extreme cases for the non-GL/GP network, those being H (n) andH (n). In

both of these cases, the first hop is always in the correct direction because all nodes lie to the right and

left, respectively, of node locations X(1) and X(n). Thus, by this argument we have:

Pr tHj(n) = 0 = 1 Vj E [2, n],

Pr H (n) = 1} = 1 Vj E [1,n - 1].

We now prove the following for the non- GL/GP case:

lim Pr H j(n) = 0 = lim Pr H()(n) = 0} = 0.5.
n--oo t 0n-oo (

To do this we return to the ordered set Xo. We have shown that the probabilities of a nearest neighbor

being left or right of a given node are equally likely events. We have also calculated the number of right

and left neighbors for a given node X(i) as

S= n - N - 1 =i-1.

We begin the proof by first looking at the case of the middle node in a network where n is odd and

n > 3, that is the node of index 2. We can see that for such a node NR= -

(n - 1)/2.
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We see that for the middle node, X ,

n++) 1)

n+1) (n+1)
C12 N 2

(n+1)
XL 2

E 1 = R +

if D(n+l=R.

ifD (n+1 = R,2)

ifD(n+1) =,
2f )

, ifD n+1) =LR
\a 2 )

Then we can plug in the values previously calculated and we obtain

n - 1

2

IE n+1)=n

2 ,-
2

n -1

2
E -n 1) = -

12 ,

ifDin+1 = R
( 2)

if D(n+1 = L,
2)

ifD n+1 = R,
( 2 L

if D n~ = L.

Finally, we make use of C(j) and IE(i) and use these values to calculate the probability of selecting a path

with a correct versus an error first hop using the law of total probability as follows:

Pr H +)1 (n) = 0 =
f(n 2)

I
d=[L,R)

Pr H +) (n) = 0 D n+1 = d Pr D(n+1) = d.
(112 ) 2 2
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We assume that the probability of selecting any particular path is equal to that of any other path. Then

substituting in we get

Pr Hn+1(n) = 0 Dn+1 =d
+2) 2 )

t C(nl+1)C(n+ 1)
2 2

(n +En

D(n+1 =R,
( =

D nI+ 1) L,
2)

I0.5,
0.5,

D (n+1 R

D (n+ 1)= L.

This simplifies to

Pr Hj+1 (n) = 0 =Pr D n = d=
2 d={L,R}

Then likewise we see that

Pr D n+1)(n) = 1 =
2 )2'

Thus we proved that the probabilities of the first hop being correct or incorrect are equal in a randomly

selected path from the middle node X(n+) in a network where n is odd. Now we expand the proof to

take into account all nodes X(i) in the network for i E [1,n], where n is either even or odd. First, we

again develop expressions for correct and error first hops for i E [1, n] as:
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C(i) , v~
N(i)

(i)(

IE~j)0

NRJY( 0

ifD(i)

ifD(i)

=R,

= L,

ifD(i) = R,

ifD(i) = L.

We then obtain the following:

n -i,
C(ni =

IE (j) =

if D() = R,
if D(i) = L,

ifD(i) = R,
if D(i) = L.

Now we wish to calculate the probability that a randomly selected path takes a correct first hop versus

an error first hop. We again use the law of total probability and, assuming each path is equally likely to

be selected, for a given i E [1, n]:

Pr H /)(n) = 0 =
I

dE[L,R}

Pr H j)(n) = OID(i) = di Pr(D() = d}.

Now substituting we obtain the following:

()P r tH(j) (n)

Then plugging back in we solve as follows:
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(i)E = n -i
C(i) + Egg n -1'

O I D~~~ j) ~ = jC i

IC(0)+ Egg) n -1'

D( =) R,

D(j) =L.



n i i-1
Pr{H U)(n) =0 = nPr{Dk = R} + Pr{Dk = L}

tMn-i1 n-i1

n-i

n-1

1 i-i 1

Sn-1 2

1

By extension, we note that

Pr 1Hj) (n) 1=2

Now we must take into account the end nodes (which have no incorrect first hops), as well as the

probability of selecting a particular path. We calculate the probability of any randomly selected path

taking a correct first hop as follows:

i=1 ji

01 Pr fH~j) (n)

n1

2(n - 1) +
n(n - 1) (IY

Pr Hj (n) = 0|1 k, )

1

n(n - 1)
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n
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1
= 0.5 +-,n 2.

n

Thus the probability of selecting a path with a correct first hop approaches 1/2 asymptotically with

increasing n. Using the same method, we can calculate the probability of an error first hop as

n

Pr HG) (n) = 11 Pr fH )(n) = 1|k, 1 Prk, 11
i1 j~i

n0PrH(H(n) = 1|kI
i=1 j*i
n-

1

Pr (H ()(n) = 1k, 1)

n(n - 1)

1
= 0.5 - -, n 2.

n

Thus the probability of selecting a path with an error first hop approaches 1/2 asymptotically with

increasing n. We have therefore also shown that in the non-GL/GP case, for any n,

lim Pr 1H~ (n) = 0= imn Pr {H (n) = 0) = 0.5.
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A.3 Proof for Results in Section 3.5.1

We recall the following:

R,
D EC L,

H (n) = ,

nearest neighbor is to the right,
nearest neighbor is to the left,

first hop correct in a network of n nodes,
first hop incorrect in a network of n nodes,

X O = n - i,R

NO = n - NM - 1 = i - 1.

In Section 3.5.1 we defined the term H non-GL/GP which takes the value of the total number of hops in a

non-GL/GP network. Here we also define the term H(i), which takes the value of the total number of

hops in the path from node X(j) to every other node in the network. We finally define the term HU,

which takes the value of the total number of hops on the path from node X(i) to some node X(j). Then

we have the following:

H non-GL/GP -

i i j*i

We start with a network where n = 3. Then we note the following by inspection:

H(j = (D = (3, = 13,

j~i
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We see that if D( 2 ) = R then H = 3 and H() = 1. If D( 2) = L then H( = 1 and H( = 3. We note

that if the nearest neighbor is to the right, the path to the left node is increased by 2 hops because the

path first hops right then back to the starting node, then to the destination to the left. A symmetric

argument is true for the case when the nearest neighbor is to the left. We then see that in a network of

n = 3,

H onGL/GP / =1 0

Now we extend our analysis to a network of n nodes. We note that paths are once again deterministic

based on our traffic routing scheme. We prove this by noting the following, where P(i) is the path from

X(i) to all other nodes:

{D(i)= R} * {|X(i) - X(i+1)| IX(i) - X(i_ 1) |, vi e [2, n - 1],

D(i) = R) P(i) = {X(i+1),X(i+2 ), --- ,X(n), X(n_1), ... ,X(2),X(1)}.

We see the following from this proof:

{D(k) = RI -* P(i) = {X(i+1),X(i+2 ), --.-

We note that tD(k) = R} +-- P(i) = {X(i+1),X(i), ... } is not possible. This is a result of our assumption of

how packets are routed in the network. We assume that a node only communicates with its two nearest

neighbors and does not send a packet to the node from which the packet was just received (except for

the end nodes). This means that once a packet is routed in one direction it continues to travel in that
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direction until it reaches its destination or the end of the network. If a packet reaches one of the ends of

the network and that particular end node is not the destination, then the packet is routed back toward

the other end of the network.

From before we know that the total number of hops for uniform all-to-all traffic for path P(j- from node

X() is given by

Hg =j H U)H U)+ HU)3

j*i E j EfL()

We see that we have separated the sums over left and right neighbor nodes, noting one set is on the

direct path, and the other set of nodes requires the path to reach the end of the network before

returning in the correct direction. Then we solve:

n i-1

(j- i)+ (2(n - i) + (i - j)),
H j=i+1 j=1

( i-1 n

(i -j) + (2(i - 1) + 0 - ,
j=1 j=i+1

1 1
(i - 1)(i - n) + (4n - 3i)(i - 1),

1 2

{2(i2 - i) + 1(n - i)(3i + n - 3),
2 2

(123-ln 2 - - n + ni -i2 + i,
2 2

-1 31n 2 -n + ni -i 2 + i,2 2

(D(o = R),

{D(o = L},

(D(k) = R},

(D(k) = LI,

(D(k) = R),

{D(k) = LI,
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1 3
= 2 2 n+ni - i 2 + i.2 2

Thus while the total number of hops in a path is dependent on the ordered node index (i) and the

direction of its first hop, the total number of hops for uniform all-to-all traffic is only dependent on the

ordered node index (i). Then given a node X(1), regardless of whether D(i) = R or D(i) = L, the number

of hops for uniform all-to-all traffic is the same.

Now we finally write

H ron-GL/GP Hlj)

n

nL(n2+ n+kn-k2 +k+1

2 1n3 _ 2 + -n.
3 3

A.4 Proof for Results in Section 3.5.2

In Section 3.5.2 we defined the term HJGL/GP which takes the value of the total number of hops in aT

GL/GP network. We also use the term H(i), defined in Appendix A.3. Now we can calculate HGL/GPa

follows:

H GL/GP _~ j
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i j*i

Hll& +

jE V 0 jE(N0

We note that the above is a sum over all nodes i E [1,n]. For each i there is a sum of the hops to the

right neighbors and a sum of the hops to the left neighbors of node X(i), noting that each path hops left

or right through all neighbors between the source and destination. Now we simplify as

n n i-1

GL/GP

i+1 j=1

S (i -n 1)(i - n) + 2 (i 2 _ g)

i=1

1 11-n 3--1n.
3 3

A.5 Proof for Results in Section 3.5.3

We again note that we are dealing with a normalized one-dimensional network length of 1 and, as in

Section 3.5.3, describe the optimal case for the lower bound on total hop count. We let L be the

network length and we assume L is some integer multiple of dchar such that L = (1 - 1) -dchar where

(1 - 1) E Z+ and we further assume that n/1 E Z+. Now we define the characteristic hop distance

normalized with respect to L as dchar = dchar/L = (I - 1)-1. The optimal network for minimum total

hop count is where nodes are clustered at integer multiples of dchar, that is at the locations
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fO, (1 - 1)-1, 2(1 - 1)~, ... ,1}. Thus we can view the network as essentially subdivided into l clusters

with n/1 nodes at each cluster. Finally, we view the entire network as n/I sub-networks, where each

sub-network consists of one node at each cluster and thus consists of l nodes.

We note that we cannot view each sub-network as an independent unit because the sub-networks need

to be able to communicate with one another. To calculate the total hop count, we sum over each cluster

and each node within each cluster. Once we have specified a cluster and a node in the sum, we then

must calculate all the hops for uniform all-to-all traffic. We now define the number of clusters to the

right and left of cluster (i), where i E [1, 1] as follows:

C =1l i,

C0 = 1 - C -0 1 = i - 1.

Then we lower bound H dchar including the term (n/I - 1) for hops within a cell, as follows:

in/I

H dctar > - 1) + n H(C + n H(dT (b) I1 .. (b)
a=1 b=1 cCb) dE{CLb))

L n/I 1 a-1

(n + (c - a)+ (a - d)
a=1b=1 c=a+1 d=1

n/

- 1) + (I - a)( - a + 1) + -(az _ a)
a=1 b=1
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1
=-(2n - 12 + 1)(2n + n12 - 31).

61

We combine this with the upper bound H rchar < H GL/GP from Section 3.5.3 and have the following

bounds:

1 dchar )n.
- (n - l2+ 1)(2n + nl2 - 31) :! HT acar _n

61 3

Then given that 1 = 1 + L/dchar, we have the following:

(2dcharn + Ldchar - L2)(2dcharn + nL2 - 3Ldchar) < dchar < n (n 2 _ 1)

6Ldchar

A.6 Proof for Results in Section 3.6.1 (Throughput Lower Bound)

In the uniform all-to-all traffic case, given the set of nodes X 0 = tX(1),...,X(n)}, there are a total of n

nodes in the network and thus a total of n(n - 1) S-D pairs. We solve for a lower bound on Zn""-GL/GP,

which means an upper bound on Lnon-GL/GP(n). We look at maximizing Lk+l) + L(k). Before

continuing, we define the variable TxJ' j [streams] as the transmission traffic in steady state for node

X(k) as generated by S-D pair X(j) and X(j). We also equivalently define a received traffic variable

Rx(k) We let Tx(k) be the total transmitted traffic in steady state for node X(k) and we define an

equivalent variable Rx(k). We write the following:

mnon-GLGP(n)TX(k} = max max TX(k-)
{Di)ie1,]} k {D(g),iE[1,n]} k Q~E[1,n],#j
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Given the symmetry of the network, and given the max-max argument, we see that

max (maxtTxtk)j} = max
{D(g),iE[1,n]) k (D(g),iE [1,n]) {max{Rx(k) 1,

where Rx(k) is the total traffic received by node (k). In other words, by symmetry

Tx"1 =
(k)max max

(D(g),iE[1,n]) k ij [,]ij

max max
(D(g),iE[1,n]) k

We know from previous arguments that the number of right and left neighbors, including the end

nodes, for node (k) are given, respectively, as

NI(k) = n - k,

(k) = n - X - 1 = k - 1.

Then given some node (k), we can calculate XijE[1,n Tx i as follows:(k)

n

Tx( - = Tx(i-i)
(k) (k)

T x (k+ T (ik) +
i*k

1 I<i (k)
1<i<k 1 5j<i

+ Tx + Tx + Tx W

1:5i<k i<j<k 1:5i<k k<jisn k<i<n i<j:5n
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+ Tx(-*) + T x(j).

k<is5n k<j<i k<is5n 1:5j<k

Now before moving on we check that all traffic pairs are accounted for in these summations. We have

1=n -1,
jtk

1 1 = n -1,
itk

I 1 1
1<i<k 1sj<i

k-1 i-1

= I = (
i=2 j=1

1si<k i<j<k

1

1si<k k<jsn

E 1 =
k<i<n i<jsn

I ]1 =
k<isn k<j<i

k-1

i=1i

k-

n-1

i=k+1

k-1

1 (k -1)(k -2),

j=i+1

1 n

1 E (k- 1)(n -k),
j=k+1

n

1=(n -k)(n - k - 1),
j=i+1

n i-1

i=k+1 j=k+1

1
1 =-(n -k) (n- k-i1),

2
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Y,1
k<isn 1sj<k

n k-1

I 1=(k-1)(n-k).
i=k+1 j=1

Taking the sum of all of the above terms, we get n(n - 1) and therefore we have accounted for all of

the traffic pairs in the network. We explain the terms as follows:

Tx (kj)
j (k)

j~k

traffic for which node k is a source,

Tx(k) traffic for which node k is a destination,
itk

Tx

1<i<k 1sj<i

Tx -

1ii<k i<j<k

(k)

T x Uj
kY. Ij (k)

k<i<n i<j~sn

' traffic from the left of k the left of i,

traffic from the left of k to the right of i,

traffic from the left of k to the right of k,

traffic from the right of k to the right of i,

Txi- traffic from the right of k to the left of i,
k<isn k<j<i

Tx traf fic from the right of k to the left of k.
k I (k)n1rajf

k<is5n 1:5]<k
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We recall the following:

( 0, first hop correct in a network of n nodes,
H n=1, f irst hop incorrect in a network of n nodes.

Now we look at the previous eight summations term by term. In the case where node X(k) is a traffic

source, the amount of transmitted traffic depends on whether the first hop is correct from node X(k) to

the destination node X(j). Thus we have:

Tx E = (n - 1) + H (n) = (n - 1) + E(k).
jtk jtk

We see that there is one deterministic transmission for each of the (n - 1) destinations of node X(k), as

well as one additional stochastic transmission for each incorrect first hop transmission from node X(k).

When X(k) is the destination of a given traffic stream, it never re-transmits the received traffic and thus

we have the following:

Tx'i") 0.

(k)

itk

When X(i) is to the left of X(k) and X(j) is to the left of X(i), whether or not transmission traffic is

generated for node X(k) depends on if the first hop is in the correct direction. If this is the case (i.e.,

H )(n) = 0) then there is no transmission traffic generated for node X(k). If the first hop is in the

incorrect direction, then there are two units of transmission traffic generated for node X(k). When

traffic is sent in the incorrect direction, it has to be transmitted by node X(k) twice: once toward one
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end of the network (the incorrect end) and again toward the other end of the network (the correct end).

This gives us the following term:

k-1 i-1

2 2H (n).
i=2 j=1

When X() is to the left of X(k) and X(j) is to the right of X(0) and j is less than k, no transmission traffic

is generated, regardless of the value of Hg;) (n). We therefore simplify as follows:

k-1 k-1

Txy ;j=Z4 0 = 0.
1s5i<k i<j<k i=1 j=i+1

When X(1) is to the left of X(k) and X(j) is to the right of X(k), regardless of the value of H (n) there is

one unit of transmission traffic generated for X(k) and we obtain:

k-1 n

Tx() 1 = (k - 1)(n - k).
1si<k k<jsn i=1 j=k+1

The following three terms have symmetric arguments to the previous three terms and are as follows:

Txin<]

k<i<n i<j5n

n-1

i=k+i

Tx i
I k (k)

k<i~sn k<j<i

n

2 2H (n),
j=i+1

n i-1

10 = 0,

i=k+1 j=k
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n k-i

Tx(i) = 1 = (k - 1)(n - k).

k<isn 1sj<k i=k+1 j=1

Then taking only the non-zero terms, we obtain:

n k -1 i-1 n-1

Tx('- = (n -1) + IE(k) + 2H (n) +

i=1 j*i i=2 j=1 i=k+1

From previous sections we know that, for any node X(i),

(1,)
N ,

if D(1) = R,

if D(1k) = L.

Now we have the following:

k -1 i-1

Tx(k) = 2H (n) +
i=2 j=1

n-1

i=k+1

2H) (n) + E(k) + (n - 1) + 2(k - 1)(n - k).

Now given

2H (n) = 2 iE()

j0,

2H ~/ (n) = 2 E(1 ,

j i1 ( ]~)

D(1) R,

D() = L,

D() =L,
D (j) =L,
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we see that the term max{D(i),ie[1,n]}maxk{Txk)}} is maximized for the following condition:

D(j) = R
2 i ! k - 1,
k + 1 5 i ! n-1.

Now looking only at the two summations, we can simplify as follows:

(k-1 i-1

(Dm ] 2H(j) (n) +
i=2 j=1

n

j 2H(
j=i+1i

(n)

k-1

- Z2N() +
i=2

k-1 n-1

= 2(i - 1) + I 2(n - i)
i=2 i=k+1

=2k 2 -2kn-2k+n 2 -n+2.

Combining with the previous work, we have the following:

max fmax{Tx(k =
{D(),iE[1,n]} ') k -I

max {maxtIEck{D(g),iE[1,n]) tm x k k
+ (n- 1)211

N(k)
max max (k)

tD(g)iE[1,n] k (k)

=(n - 1)2 + max my
{D(g),iE[1,n]

+ (n -1)2,

+ (n -1)2,

{D(k) = R}

fD(k) = LI JJ

ax N WD(k) = R}
k ,(k)-

=D L)

- (n - 1)2 + max iv, (fk)NX(k)
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We note that the nearest neighbors to nodes X(i) and X(,) are deterministic, thus we have

max fmaxtTx(k)P =
{D(i),iE [1,n]) k

(n - 1) + maxtk - 1,n - k}
k#1,n

(n- 1)2 + max tk-1,n-k}
kE[2,n-1]

=n 2 _ n _ 1

We can now lower bound the throughput in the non-GL/GP case as:

Anon-GL/GP >
Rfa L(k+l) L(k-1

max (max()',L
D(g)E[1,n] k (k)

R

~ - n -1-

A.7 Proof for Results in Section 3.6.1 (Throughput Upper Bound)

For the upper bound on throughput, we look at minimizing over all tD(o),i E [1,n]) such that we

maximize Znon-,GL/GP. That is, we solve for a lower bound on Lnon-GL/GP(n) by looking at the most

loaded node (in terms of transmissions) minimized over all possible nearest neighbor arrangements. We

use the variables Tx4J) and Tx(k) as defined in Appendix A.6. We have the following:

Lnon-GL/GP(n) > min tmaxtTx(k)j = min max Tx()
{D(),E[1,n]} k {D(0,iE[1,n]} k i(E[ ,],)
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We have the following from Section 3.8.1.1:

k-1

TX(k) = I
i=2

i-1n-1 n

2H (n) + 2H (n) + E(k) + (n - 1) + 2(k - 1)(n - k).

j=1 i=k+1 j=i+1

Now we have

Lnon-GL/GP(n) !

(k-1 i-1 n-1 n

= i{ max 2H)(n) + 2H)(n) + E k) + (n - 1) + 2(k - 1)(n - k)
i=2 j=1 i=k+1 j=i+1 1

mi max
tDi),iE[1,fl]} k

k-1 i-1

2H (n) +{ i=2 j=1

At this point we note that each of these terms is non-negative. We optimize over the terms individually.

We can do this because, as we show, the optimizations all result in the same selection for the set of

nearest neighbors (D(i), i E [1, n]} and the node (k). We thus have the following terms:

(n - 1),

min {max{2(k - 1)(n - k)},{D(t>,ie[1,n]} k

min max
{D(i>,iE[1,n]) k

k-1 i-1 n-1

2H) (n)+ 
i=2 j=1 i=k+1
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= (n - 1) +

n-I n

2H)(n) + IEck)
i=k+1 j=i+1

n

j=i+1

2H) (n)

mDjj i fmaXf TX(k)l

+ 2(k - 1)(n - k)II.



Min mxEk-
{D(t>,iE [1,n]] Im x k jl

The first term, (n - 1), is deterministic.

Now we look at the second term, mintD()iE[,n]{maXkt 2 (k - 1)(n - k))), and we have the following:

min max{2(k - 1)(n - k)}} = max{2(k - 1)(n - k)}.
(D(n c)E[1,n]t k d

Relaxing the integer constraint, we determine the maximum:

maxf2(k - 1)(n - k)}
k

= 2 max{(k - 1)(n - k)}
k

= 2max{-k 2 +kn+k -n)
k

= 2 max -(k
- 2

= 2(k - 1)(n - k)k n+1.
2

Returning to the integer constraint, we see that this term is maximized for

n +1

k ={2 nodd,

, n even.

Now solving for the maximum, we have:
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1
-(n - 1)2,
2max{2(k

k

n odd,

n even.

We see that the third term, min(D(g)iE[1,n]} maXk =X2H (n) + =+ i (n) , is

minimized for the following condition:

D L, 25 i ! k -1,
D R, = R, k+15 i n-1.

As in the previous section, we have the following:

2Hf (n) =

j=1

2H0
(0+

j=i+1

t 2IE(j),

(n) = 0,

D(j)= R,
D(j)= L,

D(1)
D(1)

NX ,0

N gE j) L(

Then we have

k-1 i-1

max 2H)(n) +
i=2 j=1

2H~j (n)

k-1 n-1

=max 10 + 1 0
li=2 i=k+1 I

n

j=i+1

= 0.
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if D(i) = L.
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Finally, we look at the fourth term:

mi[nf{ a{Ek)i -ax ] { (k),NX(k)}{D(oijE[1,n]} k {D(i),iE[1 ,n]} k

n odd,

n even,

n - 1
2

{n - 1n
max 2 2 2

(n -1
2

n
,

n odd,

n even,

n odd,

n even.

Now putting the results together, we have the following:

1
(n

2(n-1+
min (a{xk

tD(),iE[1,n] maxtTx(k) 1) +

1)

= -(n
2 + n -

2

n-1
2

1 n
-n(n - 2) + -,
2 2

2).

Now we arrive at the upper bound as:
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non-GL/GP<
R

tDi~~n] max {L~k 1), L (k 1 )jmin kma (k+) (k-)
{D(i),iE[1,n]) kfR R

2R

n2 + n - 2'

A.8 Proof for Results in Section 3.6.2

We again note that given the set of nodes Xo = {1,... ,X(n)}, there are a total of n nodes in the

network and thus a total of n(n - 1) traffic links. We solve for ZGL/GP by determining LGL/GPGAN(n)

noting that unlike the GL/GP case, there is a deterministic result. As in the non-GL/GP case, we look at

maximizing L + L(k and we write the following (using notation as defined in Appendix A.6):

LGL/GP (n) =
aD( X E[,n]} {max{Tx(k)j = max

(D(g),iE[1,n]}
maX

k i

Given the symmetry of the network, and given the max-max argument, we see that

max {max{Tx(k)) =
{D(i),iE[1,n]} k

max fmax{Rx(k)}.
(D(g),iE[1,n]} k

In other words, by symmetry we know that

max max Tx
(D(g),iE[1,n]} k iE[,]ij (k)

= max max
tD(g),tE[1,n]} k
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We again note that the number of right and left neighbors, including the end nodes, for node (k) are

given, respectively, as

(k)

Nv, k) =n -N X 1= _ -k -1.

L - R

(k))

(i-*j)
Then given some node (k), we can calculate in Tx as

E (() _ (k)

TxY + 'Tx~' + TY
j#k itk 1<i<k 1:5j<i

+ Tx ('j + Tx('j + Txii(k) (k) (k)

1:5i<k i<j<k li5i<k k<j:5n k<i<n i<j:5n

+ Tx'-j + Tx('f.j(k) (k)

k<is5n k<j<i k<isn is j<k

These terms are the same as those for the non-GL/GP case and Appendix A.6 provides an explanation of

the terms. We now look at each term individually, as in the non-GL/GP case. In the GL/GP case, the

value of H(O (n) plays no role because every hop is in the correct direction, in contrast to the non-GL/GP

case. When node X(k) is a traffic source, the amount of transmitted traffic is given as:
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Tx (k+) = (n-1)+ H ((n) = (n - 1).

jtk jtk

We see that there is one deterministic transmission for each of the (n - 1) destinations of node X(k)

and zero additional stochastic transmissions for each incorrect first hop transmission from node X(k),

noting that there are no incorrect first hops from node X(k).

When X(k) is the destination of a given traffic stream, it never re-transmits the received traffic and thus

we have the following:

Tx (ik) = 0.Z (k) -

itk

When X(i) is to the left of X(k) and X(j) is to the left of X(i), whether or not transmission traffic is

generated for node X(k) is dependent on whether or not the first hop is in the correct direction. In the

case of GL/GP, there are never incorrect first hops. This results in the following:

k -1 i-1

Tx i = 2H (n) = 0.
1<i<k 1s5j<i i=2 j=1

When X(j) is to the left of X(k) and X(j) is to the right of X(i) and j is less than k, as in the non-GL/GP

case no transmission traffic is generated, regardless of the value of H j;(n). We therefore simplify as

follows:

k-1 k-1

Tx(i-) 0 = 0.i (k) I j
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When X(j) is to the left of X(k) and X(j) is to the right of X(k), as in the non-GL/GP case there is one unit

of transmission traffic generated for X(k) and we obtain:

k-1 n

T (i-+j)
Tx(k) =

i=1 j=k+1

1 = (k - 1)(n - k).

The following three terms have symmetric arguments to the previous three terms and the results are as

follows:

T x 2H (n) = 0,
k<i<n i<jn i=k+1 j=i+1

Tx U) =

k<isn k<j<i

n i-1

0 = 0,

i=k+1 j=k

Tx Z 
I 1sj (k)

k<i~sn 1:sj<k

n k-1

. Y 1 = (k - 1)(n - k).
i=k+1 j=1

Then taking only the non-zero terms, we write

n

T x U-j
i1 Yi(k)
i=1 j~i

= (n - 1) + 2(k - 1)(n - k).

Now we maximize:

{maxtTx(k)}} = max
(D(g),iE[1,n]) Imax{(n - 1) + 2(k - 1)(n - k)}
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1 i<k k<jsn

max
{D(i),iE[1,n]}



= max{(n - 1) + 2(k - 1)(n - k)}
k

= (n - 1) + max{2(k - 1)(n - k)).
k

Now we look at the term maxk{2(k - 1)(n - k)} and, relaxing the integer constraint, we determine

the maximum as follows:

max{2(k - 1)(n - k)}
k

= 2 max{(k - 1)(n - k)}
k

= 2 max{-k 2 + kn + k - n}
k

= 2 max - (k
k (

n +1 2

-2) 2
2 1

+ +

= 2(k - 1)(n - k)| kn+1.
2

Returning to the integer constraint, we see that this term is maximized for

nodd,

n even.

Solving for the maximum, we have:

max{2 (k
k

1I (n -1)2,
2(n

-n(n - 2),
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Solving for the entire term, we have

I(n2 j 1, n odd,

max mxTt)-
{DJE[1,n] tm xtTx(k) - (n2  n even.

2

Finally, we can bound the throughput as

AGL/GP R
LGL/GP

2R

,1 n odd,

2R

n2 - 2' n even.

We note that this can also be written as 2R/(n 2 
- 1) !) GL/GP < 2R/(n2 - 2).

A.9 Proof for Results in Section 3.6.3 (Throughput Upper Bound)

We use the same network assumptions and notation as in Section 3.5.3 and Appendix A.5. We further

assume that there are 1 total clusters and each node in a cluster forwards the same amount of traffic,

which is throughput optimal. We use a max-flow min-cut argument for the derivation to follow, where

we develop a lower bound on Ldchar(n) to obtain an upper bound on Adchar. We use the optimal

network configuration, where we additionally assume the optimal condition that the traffic through any

cluster of nodes is equally divided among the nodes in that cluster. Using notation as defined in

Appendix A.6, the lower bound on streams for a given link is given by

Ldchar(n) > max{Txi)},
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where i E [1, 1] and the lower bound on Ldchar(n) gives an upper bound on Zdchar. For a given cluster

(i), the traffic served per node, that is Tx(j), is given by

Tx(s) = (n - 1) + [( +( (Cj )(C) ) .

We see that the traffic served per node is composed of three terms. This is very similar to the three

terms in the GL/GP throughput case of Section 3.6.2 and Appendix A.8. The main difference is that the

traffic passing through a given cluster is equally divided among the nodes in that cluster. We now solve

for the maximum number of streams per node in the best case scenario. We have the following:

Ldchar (n) max{(n - 1) + C C

= (n -) + max 2 (1 - i)(i - 1)}.

Where we have

r2n 2n
max (I - i)(i - 1) = - max{(I - i)(i - 1)}

2n
= -nmax{-i 2 + i . 1 + i - 11.

This is maximized for the same value of i as for the equivalent terms in Appendix A.7 and Appendix A.8,

noting that the expression to maximize is the same if we let i = k and 1 = n. This is expected because,
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ignoring the scaling term of n/1, we are looking at an identical network with clusters instead of nodes.

Then we have the following for the non-integer constrained case:

max t(l - i)(i - 1)1 = (1- i)(i -)I 1+1.

Returning to the integer constraint, this is maximized for

(1+1
.~),2

i =~ 1
2'

I odd,

I even.

Now solving for the maximum, we have

max f(L -(2 1

Now solving for the entire term, we have

max{Tx(ij

In n
- +_ 1,
2 21
1n
k2

Then we can bound the throughput as

Adchar < R
~max{Txcj)}
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I odd,

1 even.

n
- (1 - 1)z

21

2



21R

2R

, - 2,

, odd,

1 even.

Then noting the odd case is strictly upper bounded by the even case, we have

2R
Adchar < nR

~n1 - 2'

Substituting for 1 = 1 + L/dchar, we have the following:

2d R
Adchar < d

n(dchar + L) - 2 dchar

A.10 Proof for Results in Section 3.7

The following Lemma, based on Lemma 1 (which is itself based on Lemma 6 in Appendix B.3 of [3]), is

used to drive the 0(1/n) throughput scaling for uniform all-to-all traffic in a one-dimensional network

with characteristic distance hopping:

156



Lemma 10 - Consider a random one-dimensional network with n nodes independently and

randomly distributed on a line of unit length according to a uniform distribution. The line is

divided into cells of length e(n).

(i) If the cell size e(n) 2 y, then each cell has at least one node whp.
n

(ii) If -(n) = L, then each cell has at least -L nodes whp.

(iii) If e(n) = 2 , then each cell has at most 6 In n nodes whp.

(iv) The number of transmitted traffic streams for any cell is O(n 2).

The proof of (i) is derived from [4], which was also used to prove Part (i) of Lemma 1 in Section 2.11.2.3.

Given that the one-dimensional network is a special case of the two-dimensional network, we can

directly use this result from [4]. Parts (ii) and (iii) are derived in a similar manner from the two-

dimensional case of Lemma 1. Part (iv) is the only part of this Lemma that is not derived from previous

works. We determine the maximum number of outgoing (transmitted) or incoming (received) streams of

traffic. Per Appendix A.6, the number of transmitted or received streams for any cell is the same, given

that all pass through traffic is received and transmitted once, and the amount of source traffic and

destination traffic for a cell is the same. Then we note that the number of SD pairs in the network is

n(n - 1) and thus the maximum number of streams transmitted by any cell in network is O(n 2 ). As in

[3], we combine this with Part (ii) and see that each node needs to be able to transmit the following

whp:

n 2
0 nL = O(n) [streams].

Then we note that A = maxa{Achievable A} and Z = R/I(n), where
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L(n) = maxL (L) + L

= max{O(n)} whp
k

= O(n) whp.

Then we finally have the result Z = 0 whp.
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Appendix B

Derivations for Equations in Chapter 4

B.1 Proof for Results in Section 4.4.2.1

Given t$+, is uniformly distributed over [0,i1], we have the following CDF:

FE[ (8) =

I8

1,
0,

0 8 5 r,

It <8,
otherwise.

Given the function for the chord length

Cj = 2Pmax sin 2  g(9+T),

we note that Ci is a function of the random variable e'+, and thus is itself a random variable. Then we

have the following CDF:

Fc.(c) = Pr 2pmax sin t
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Given g(Ei+r) A 2 Pmax sin 2 we see that g~1 exists" and we simplify the CDF of Ci as:

Fc (c) = Pr + < 2 sin-' (2p )
2max

= F 2 sin-' 1S+1 (2p(max)

=F (g -'(c)).

Finally, we have the CDF of C1 :

- sin-' ,)
7 2pmax)

Fc, (c) =

10,

-2sin-' 
,

= r 2pmax

01,

0 < 2 sin-1 i ( n ,
2pmax)

7 < 2 sin' (2p ,
2max

otherwise,

0 5 c 5 2 Pmax,

2 Pmax < C,
otherwise.

B.2 Proof for Results in Section 4.4.2.2

We note that time to traverse another node's transmission range, Ttraverse, is given by

Ci
Ttraverse = = h(C).

is It is important to note that the reason g-1 exists is because the equation for the chord length includes the term
E9t+/2. Thus given the range of 0'+, is [0,7r], then the range of 0'+1/2 is [0,r/2], a range for which the sin
function is invertible.
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Thus Ttraverse is a function of the random variable C and is itself a random variable. Now we have the

following for its CDF:

FTLir (t) = Pr < t.
Taverse \1VI I

We see that this is a constant linear operation, noting that while \vi is a variable, it is not a random

variable. We further note that h-' exists and we simplify the CDF of Ttraverse as:

FTtraverse (t) = Pr{Ci tiv|)

= Fc(t - IvI)

= Fc (h-'(t)).

The CDF of Ttraverse is then:

F i (t) =
Teraverse

2
-sin-
r

1,
0,

t - V|
2 pmax)

0 ! t - |vI 5 2Pmax,

2 Pmax < t -lvi,
otherwise,

0 t 
2 P ,ax

2
Pmax <
|vi

otherwise.

2 s t - |vi
7T (2pmax)

10,
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B.3 Proof for Results in Section 4.4.2.3

We now derive the CDF for the minimum rate necessary to ensure that the topology update information

can be sent in an amount of time equal to the Ttraverse. We have the following:

Rmin= {(Ttraverse)-

The traversal time for a given node W be is given by the random variable Ttraverse. Now we have the

following CDF:

FRl (r) = PrtR'in < r}

= Pr { r.
fTe~raverse

Because ~' exists, we can simplify as follows:

FRi (r) = Pr Ttraverse

= 1 - Pr Ttraverse <r

-1-F

Ttraverse

=1 - F Ttraverse ( -()).
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The CDF of R'g1 is then:

F i (r) = 1
Rmin -FTtiraverse )

2
-sin
ir

1 ( P )
2rpmax

2 1  IPIVl

7r \2rpmaxl

o < < 2Pmax,r

2 Pmax ,r
otherwise,

0 < OV r,2 Pmax

r< ,IV
2 Pmax

otherwise,

r< ,V
2Pmax'

2 Pmax

otherwise.

We have now defined the CDF of the minimum transmission rate necessary for a single mobile node.

B.4 Proof for Results in Section 4.4.3.1

We start with the following:

F in(r) = Pr{Rmin > r}

= Pr (max{Rf ig > r}
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- sin-1
7r

1,

1'-
1,



Pr(Rign > r)

= 1 - Pr{Rinn < r}.

Now we ignore the otherwise case of the CDF F (r) in (4.27). By the independence of each value of

Ttraverse, and thus each value of Rmig, we get the following:

Fc (r) =

0,

11 - 11-- sin
7r

1 ipi , I
(2rpmax

r < ,)V
2Pmax'

0 < V 1 r.
2Pmax

B.5 Proof for Results in Section 4.4.3.2

Given the expression for FRjmtn (r) -5 , we have the following, for r > X:

F1S. (r) 5 #

1 -

x
< r.

We have the following Taylor series expansion:
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si x=: (- 1)' i 1= x 3sinx (2n + 1)! 3
i=O

5I

we can state

00

= I

i=0
(2n + 1)!

[!

12

We note that 7/2 - (7/2)(1 - #)n < 1. Thus we see that the term [/2 - (7/2)(1 - #)is

monotonically decreasing in i. For x = [7/2 - (w/2)(1 - P)n, we have

(-1) x
(2n + 1)!

+ (-1) + ( x2+ +11 < 0 Vi E Z
(2n + 1)!

We see that, after the first term, the sum of every following pair of terms is less than zero. The upper

bound for sin [w/2 - (w/2)(1 - #)nj is then given by

2

Now we have

r > x

sin - (1 - #)
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w 1 1 2i+1

is

sin 12- 2(1 - #P)n

7r 7r 1 R
sin - - - (1 - 0)n < -

12 2 1 - 2



X

2X 1
1 (1- )

We first note the following:

=0.

Thus we have

(1
lim = 00,
E-0O

urn 110.
\1- (1 -#)

We also note that the expression 1/(1 - (1 - #)4) for # = 1 is equal to 1. We see that when P

approaches 1, the rate is trivially lower bounded by 0. In the work to follow, we develop a lower bound

on - (1 - for all # and a tighter lower bound for 0 5 # 5 1/2. We begin with a bound

based on the Maclaurin series and applicable for all 0 E 1. We have the following Maclaurin series:

1

1 -(1 - )E i=O
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n

i=0

For 0 5 1 and 0 i n, we have the inequality

(1 - #)Y > (1 - P), Vi j.

Thus we note that (1 - P)n (1 - P) and we have:

no

Y,(1 -

i=0

.n

#P) >2 (1 - #P)
i=0

= n(1 - 0).

We can bound r as follows:

argmin{Fj(r) q#}
r

> x
sin - (1 - n

2Xn(1 - #P)

r

Now replacing with X - we have
2pmax'

arg min(Fk j.(r) #>
T mi

nV)Iv|(1 - #)
,Tm#x1,

T~pmax
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We proceed to develop a tighter bound on r for the case where 0 # 5 1/2. We note that it is

possible to develop a bound for any desired range. This particular range of # is selected for both its

applicability to real networks and for the method by which the bound can be developed. We lower

bound r, which means we want the following bounds, where a is a constant to be determined:

1

(1 - #)ii a ->

1

1 - (1 - #)$~ 1 - a ->

1 1

1(- 1a

We begin by writing (1 - ))n in series form as:

1 00 (ln(1 - #))k

(1 - #) =. ~~I(P~n I nk (k!)
k=O

log(1 - #) +I (n(1 -p))k
= 1+ + .

n k n(k!)
k=2

We note that ln(1 - P) < 0 and thus (ln(1 - p))k is positive for k even and negative for k odd. Thus

we have

(ln(1 - p))k + (In(1 - ))k+1 > 0,Vk 2.
nk (k!) nk+((k + 1)!)
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We have the following:

1 In(1 - #)
(1-)n 1+

n

Alternatively, we note

1 n(1 - #)
1h-a(1 -re)n -.

n

The Taylor series for - ln(1 - E) is as follows:

-1n(1 - #) = - = . (-#)

j=1

l(-1)+1 )
j=1

- _(~1)2j+ 1

j=1

j=1

We see that the Taylor series representation of - ln(1 - #) converges from below. That is, we cannot

upper bound directly using the Taylor series (e.g., by truncation of terms). Now we write the following:
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-lIn(1 - #) = #p + (
j=2

Given the restriction on # to 0 5 # 5 1/2, we then state the following:

#-1 < , Vj > 2.

Therefore, we can state:

- ln(1 - #)= # + # I
j=2

j2

Thus we have the following bound:

1 ER2

1 - (1 - ) 6n

We thus bound r as follows:

arg min{F (r) #}>
rsin R-Z (1 - E)n]
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>2X 1

1T - 1 -ni

12Xn

w3 E

Now replacing with X , 2' we have
2pmax"

argmin{Fc (r) p} 6nPma V 0 1
r Rmi I 3Pmax' 2'
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