
Circuit Implementations for High-Efficiency Video

Coding Tools

by

Mehul Tikekar

B.Tech., Indian Institute of Technology Bombay (2010)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

c© Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 22, 2012

Certified by. .
Anantha P. Chandrakasan

Joseph F. and Nancy P. Keithley Professor of Electrical Engineering
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9592474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Circuit Implementations for High-Efficiency Video Coding

Tools

by

Mehul Tikekar

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2012, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

High-Efficiency Video Coding (HEVC) is planned to be the successor video standard
to the popular Advanced Video Coding (H.264/AVC) with a targeted 2x improvement
in compression at the same quality. This improvement comes at the cost of increased
complexity through the addition of new coding tools and increased computation in
existing tools. The ever-increasing demand for higher resolution video further adds
to the computation cost. In this work, digital circuits for two HEVC tools - inverse
transform and deblocking filter are implemented to support Quad-Full HD (4K x 2K)
video decoding at 30fps. Techniques to reduce power and area cost are investigated
and synthesis results in 40nm CMOS technology and Virtex-6 FPGA platform are
presented.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Joseph F. and Nancy P. Keithley Professor of Electrical Engineering

3

4

Acknowledgments

I would like to thank

• Prof. Anantha Chandrakasan, my research advisor

• Vivienne Sze, a great project mentor

• Chao-Tsung Huang and Chiraag Juvekar, my colleagues on the project

• Masood Qazi, who “taught me everything I know”

• Sai Kulkarni, for her advice when everything seemed just another brick in the

wall

• The authors of LATEX, GNU/Linux, Eclipse, Python and countless other pro-

grams I have freely used and taken for granted

5

6

Contents

1 Introduction 13

1.1 High-Efficiency Video Coding . 14

1.2 HEVC Hardware Decoder . 17

1.3 Contributions of this work . 18

2 Inverse Transform 21

2.1 HEVC Inverse Transform . 23

2.2 Inverse Transform Architecture . 29

2.2.1 Dequantizer . 31

2.2.2 Transpose Memory . 32

2.2.3 Transform Block . 34

2.3 Results . 37

3 Deblocking Filter 41

3.1 HEVC Deblocking Filter . 42

3.2 Deblocking Filter Architecture . 44

3.2.1 Pipeline buffer . 45

3.2.2 Prediction Info . 47

3.2.3 Transform Info . 48

3.2.4 Top-row buffer . 48

3.2.5 Boundary Strength . 49

3.2.6 Edge Params . 53

3.2.7 Transpose RegFile . 53

7

3.2.8 Last LPU buffer . 54

3.2.9 Filter Process . 55

3.3 Results . 59

4 Conclusion 61

A Transform Optimizations 65

A.1 Partial butterfly structure . 66

A.2 Multiple Constant Multiplication for 32-pt IDCT 67

A.3 Multiple Constant Multiplication for 16-pt IDCT 68

B Deblocking timeline 69

8

List of Figures

1-1 CU and PU partitions in HEVC . 15

1-2 Typical video decoding scheme . 15

1-3 Top-level architecture of HEVC decoder 18

2-1 Residue coding and decoding . 22

2-2 Histogram of non-zero transform coefficients 22

2-3 Distribution of TU sizes . 24

2-4 Normalized mean-square coefficient energy 25

2-5 Possible high-level architectures for inverse transform 31

2-6 Mapping a TU32×32 to 4 SRAM banks for transpose operation 33

2-7 Enabling full concurrency with register + SRAM transpose memory . 34

2-8 Location of pixels cached in registers for all TU cases 35

2-9 Recursive decomposition of 32-pt IDCT using smaller IDCT’s 36

2-10 4 × 4 matrix multiplication with and without unique operations . . . 38

2-11 Architecture of inverse transform . 39

3-1 Need for deblocking filter in video coding 41

3-2 Deblocking filters in HEVC . 43

3-3 Pipelining scheme for prediction, deblocking and writeback 45

3-4 Top-level architecture of deblocking filter 46

3-5 Double-Z order mapping for prediction info 47

3-6 Block4 and edge indices in a block8 51

3-7 Pixels for edge parameters . 53

3-8 Deblocking Transpose RegFile . 54

9

3-9 Deblocking processing order . 56

3-10 Pixel locations before and after filtering 57

3-11 Processing timeline for block8 deblocking from RTL simulation 59

B-1 Processing timeline for special cases in deblocking (from RTL simulation) 70

10

List of Tables

1.1 Comparison of HEVC HM-4.0 and H.264 features. *CAVLC removed

from later version of HEVC. 16

1.2 Pipeline buffer size for all LCU’s . 17

2.1 Luma TU sizes for different PU Sizes 26

2.2 Area reduction by exploiting unique operations 37

2.3 Area breakdown for inverse transform 39

2.4 Area for different transforms . 39

3.1 Pipelining scheme for deblocking . 44

3.2 Address map for top-row buffer . 49

3.3 Area breakdown for deblocking filter 60

4.1 Comparison of Inverse Transform and Deblocking Filter designs . . . 61

11

12

Chapter 1

Introduction

The ever-increasing demand for richer video content and explosion in use of inter-

net video have motivated work on algorithms that achieve higher video compression

without sacrificing visual quality. Experts from the Moving Picture Experts Group

(MPEG) and Video Coding Experts Group (VCEG) formed the Joint Collaborative

Team on Video Coding (JCT-VC) that first met in April 2010 to evaluate proposals

that achieve twice the video compression of the popular H.264/AVC standard at the

same quality. Following two years of extensive research involving 9 meetings and over

4000 contributions, High-Efficiency Video Coding (HEVC) has developed as a succes-

sor video compression standard to H.264/AVC [1]. HEVC Test Model HM-4.0 [2], the

reference software version used in this work achieves 1.5× to 2× bitrate improvement

over AVC High Profile [3].

In video conferencing and video streaming over ethernet, this would result in lower

latencies and shorter buffering times. However, this coding efficiency is achieved at

the cost of increased computational complexity. Even a decoder targeting the Low

Complexity mode is 61% more complexity compared to a baseline H.264 decoder.

[4]. In mobile applications, the energy cost for downlink over wireless networks like

3G, WiFi, LTE is ≈ 100nJ/bit [5]. Compared to that, an H.264 hardware decoder

with external DDR2 memory requires ≈ 1.5 nJ/decoded pixel[6] or 10 nJ/compressed

bit for a typical compression ratio of 50. In these applications, reducing power con-

sumption clearly requires higher compression even at the cost of increased decoder

13

complexity. These factors motivate more complicated algorithms to achieve lower

bitrates and work on hardware implementations to mitigate the processing cost and

enable real-time decoding.

This work focuses on the hardware design of two coding tools in HEVC - inverse

transform and deblocking filter. A short explanation of HEVC and its improvements

over H.264 are presented in this chapter followed by a description of the HEVC

hardware decoder and the key contributions of this work. The next two chapters

focus on the design of the two coding tools and synthesis results. The results are

summarized in the concluding chapter and future research directions are proposed.

1.1 High-Efficiency Video Coding

HEVC targets a wide range of picture resolutions from 320×480 up to 7680×4320.

A decoder may choose to support a subset of these resolutions specified as a ”level”

in the standard. Similarly, the decoder may support a subset of all the coding tools

defined as a profile. The supported pixel format is 8-bit YUV420. HEVC works by

breaking the picture into blocks called Largest Coding Units (LCU). These LCU’s

are processed in a horizontal raster scan order. The allowed LCU sizes are 64×64

(LCU64), 32×32 (LCU32) and 16×16 (LCU16) though the LCU size is fixed for a

video sequence and manually specified as an encoding parameter.

Each LCU can be recursively split into four equal squares as shown in Figure 1-

1. The leaf nodes in this quad-tree are called Coding Units (CU). HEVC supports

CU64, CU32, CU16 and CU8. By allowing a wide range of Coding Unit sizes, the

standard enables an encoder to effectively adapt to video content. Uniform regions

of the picture, typically in the background, can be encoded as larger CU’s while

regions with more detail and more motion can use smaller CU’s. It should be noted

that the standard dictates only the format of the compressed video and the decoding

process for it. The encoder is free to make optimizations and trade-offs as long as it

generates a compliant bitstream. The HM-4.0 reference encoder is computationally

very complex as it uses all LCU and CU configurations. Practical encoders can be

14

LCU64

CU32

CU16

CU8

PU2N×2N PUN×2N PU2N×N PUN×N

PUnL×2N PUnR×2N PU2N×nU PU2N×nD

One possible CU quad-tree
for LCU64

All allowed PU partitions for a CU

Figure 1-1: CU and PU partitions in HEVC

Entropy
Decoder

Prediction

Inverse
Transform

Loop
Filter

Frame
Buffer

On chip

Bitstream

Display decoded
video

coefficients

motion vectors
intra-modes

residue

intra-frameinter-frame

Figure 1-2: Typical video decoding scheme

expected to use only a subset of configurations.

Each CU is partitioned into 1, 2, or 4 prediction units (PU) shown in Figure 1-1.

The CU can use inter-frame or intra-frame prediction. Inter-frame prediction can use

uni-prediction or bi-prediction while 36 intra-prediction modes are available. For the

purpose of residue coding, each CU is further divided into a residue quad-tree. The

leaf-nodes of the residue quad-tree are called Transform Units (TU). Unlike the CU

quad-tree, the TU quad-tree can use non-square partitions. HEVC uses 4 square and

4 non-square TU sizes. TU size depends on the PU partition and CU size as listed

in Table 2.1.

Figure 1-2 shows the block diagram of a typical HEVC decoder. The entropy

15

Feature HEVC H.264/AVC
Processing block LCU64, LCU32, LCU16 MB 16 × 16
Entropy decoder CABAC, CAVLC* CABAC, CAVLC
Prediction unit 8 types for each CU 8 types
Transform unit 8 sizes: 4 × 4 to 32 × 32 2 sizes: 4 × 4, 8 × 8
Intra-prediction 36 modes 10 modes

Loop filter Deblocking, ALF, SAO Deblocking

Table 1.1: Comparison of HEVC HM-4.0 and H.264 features. *CAVLC removed from
later version of HEVC.

decoder parses the compressed bitstream for information such as CU, PU, and TU

sizes, motion vectors, intra-modes and residue coefficients. The prediction block

generates a prediction for each PU based on its motion vector (inter-prediction) or

intra-mode (intra-prediction). The residue coefficients for each TU are scaled by

a quantization parameter and transformed, typically using a 2-dimensional inverse

DCT, to generate the residue. Residue is added to prediction to reconstruct the

video. The reconstructed pixels are filtered before writing back to the decoded frame

buffer. Typical video sequences have large spatial correlation within the frame and

temporal correlation across frames. So, the decoded video can be used to generate

predictions for the new pixels.

The loop filter acts on edges of the CU. As a result, it requires pixels from CU’s

after the current CU. To avoid a chicken-and-egg problem, intra-prediction uses ref-

erence pixels prior to the loop filtering. HEVC uses three concatenated loop filters

- deblocking filter, adaptive loop filter (ALF) and sample adaptive offset (SAO).

Deblocking is used to smoothen blocking artifacts added to the video by the lossy

decoding process. The others are adaptive filters which allow the encoder to compare

the deblocked pixels with the raw input pixels and adapt the filter parameters to

achieve lowest error.

The differences between HEVC and H.264 are summarized in Table 1.1.

16

LCU LPU size No. of LCU’s No. of pixels
LCU64 64 × 64 1 6144
LCU32 64 × 32 2 3072
LCU16 64 × 16 4 1536

Table 1.2: Pipeline buffer size for all LCU’s

1.2 HEVC Hardware Decoder

The inverse transform and deblocking filter designed in this work are used in an de-

coder capable of real-time Quad-Full HD (3840×2160) decoding at 30 fps. The HEVC

standard was in flux throughout this project and decoder profiles have not been fixed

by the JCT-VC. So the choice of coding features supported by this decoder was based

on what may be most interesting for a first implementation. We chose to implement

features that would have most impact on the architecture as compared to a H.264

video decoder. As a result, all LCU and CU configurations are supported. Similarly,

the prediction supports all PU configurations and all intra and inter-prediction modes.

The tranform also supports all the square and non-square TU sizes. Among the loop

filters, only the deblocking filter could be implemented due to time limitations.

The chip interfaces with a Xilinx FPGA which interfaces with a 256 MB DDR3

SDRAM and the display. The DRAM access latency was identified as a key issue

affecting the architecture of the decoder and several design decisions were based on

simulation with real DRAM models to determine which option achieves the best

throughput. A read-only cache is used for inter-prediction and separate pipeline stages

is used to write back decoded pixels to the DRAM. The block of pixels processed in

one pipeline stage is called largest pipeline unit (LPU). LPU size depends on LCU

size as shown in Table 1.2.

Intra-prediction within an LPU requires reconstruction (prediction + residue) of

previous pixels in the same LPU. This creates a dependency between prediction and

inverse transform because of which, the inverse transform runs one pipeline stage

before prediction. The entropy decoder generates motion vectors and sends requests

to the cache/DRAM while the response is read by the prediction block. The variable

17

Entropy
Decoder

Prediction

MV
Dispatch

Loop
Filter

Rigid Pipeline

MC
Cache

DRAM

Writeback
Inverse

Transform

Rigid Pipeline

coeffs

variable
latency

MV
Context

DRAM Access Arbiter

FPGA Display

On chip

Figure 1-3: Simplified architecture of HEVC decoder with two rigid pipelines

DRAM latency is thus manifest in the interface between entropy decoder and predic-

tion. To account for this variable latency, the decoder architecture is divided into two

rigid pipeline groups that connect to each other through elastic links. This is shown

in Figure 1-3. The latency between the two pipelines is dictated by the cache hit-rate

and DRAM latency.

1.3 Contributions of this work

The key contributions in this work are in identifying challenges in hardware implemen-

tation for the HEVC inverse transform and deblocking filter and in providing solutions

for them. For the inverse tranform, the major challenges are the high computation

cost of large transforms, large transpose memory and varying processing latencies for

different transform unit sizes. These are effectively addressed in this work through

architecture and circuit techniques. In deblocking filter, complex dependencies make

it very difficult to achieve the required throughout and an architecture is described to

handle that. Bluespec SystemVerilog (BSV) [7] is used as the hardware description

18

language and the BSV methodology of guarded atomic actions is found to be very

useful in generating a concise, easy-to-debug hardware description.

We now describe the architecture of the inverse transform and deblocking filter

blocks.

19

20

Chapter 2

Inverse Transform

The inverse transform block in the decoder computes the prediction error (residue)

from its quantized transform values. In the encoder, the difference between the input

pixels and their predicted values computed through inter-frame or intra-frame pre-

diction is the residue. A two-dimensional transform of the residue is computed, then

the transform values (coefficients) are quantized and then entropy encoded. The de-

coder performs the reverse operation. The quantized coefficients are parsed from the

bitstream by the entropy decoder and then scaled back (dequantized). The residue

is then computed from the inverse transform of the dequantized coefficients. This

process is shown in Figure 2-1.

The two-dimensional transform is usually a DCT operation as it concentrates most

of the signal energy in the low index DC coefficients. After the quantization, most

of the small AC coefficients become zero, resulting in a sparse matrix of quantized

coefficients. The 2-D matrix is reordered into a 1-D vector with a zig-zag mapping

so that the vector has all the non-zero coefficients at the beginning followed by a

long tail of zero coefficients. The entropy encoder can then efficiently compress this

information. Figure 2-2 shows a histogram of the fraction of non-zero coefficients

present in a typical video sequence encoded by HEVC. We see that most of the

transforms have close to zero coefficients.

It should be noted that although entropy coding is a lossless compression, quan-

tization is inherently lossy. So the coefficients, and consequently the residues, at the

21

Encoder

Prediction

Quantizer
Entropy
Encoder

Entropy
Decoder

Dequantizer

Transform

Inverse
Transform

Bitstream

- yENC xENC xQ

xDEC xQ

Input
Video

yDEC

Decoder

Figure 2-1: Residue coding and decoding (y = residues, x = coefficients)

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of non-zero coefficients

0

5

10

15

20

25

30

35

40

N
o
rm

a
liz

e
d
 n

u
m

b
e
r

o
f

T
ra

n
fo

rm
 U

n
it

s

Figure 2-2: Normalized histogram of fraction of non-zero coefficients in HEVC trans-
form units

22

encoder and decoder side are not equal, i.e. xENC 6= xDEC ⇒ yENC 6= yDEC .

Section 2.1 describes the HEVC Inverse Transform specification in detail. The

main considerations for circuit implementation of the transform are also described.

Section 2.2 elaborates on the system requirements for the inverse transform block and

the architecture used to meet them.

2.1 HEVC Inverse Transform

Starting from the Coding Unit (CU), the residual quad-tree is signalled using split

flags similar to the CU quad-tree. However, unlike the CU quad-tree, a node in the

residual quad-tree can have non-square child nodes. For example, a 2N × 2N node

may be split into four square N × N child nodes or four 2N × 0.5N nodes or four

0.5N × 2N nodes depending upon the prediction unit shape. The non-square nodes

may also be split into square or non-square nodes.

HEVC HM-4.0 uses 8 Transform Unit (TU) sizes - TU32×32, TU16×16, TU8×8,

TU4×4, TU32×8, TU8×32, TU16×4, and TU4×16. The TU size depends on TUDepth,

CUSize and PUSize as shown in Table 2.1. The corresponding chroma TU sizes can

be obtained from the same tables assuming half the CU size, except when the luma

TU is TU4×4 in which case chroma is also TU4×4 equivalent to merging 4 luma TU’s

into an 8×8 block. For CU8, TU4×4 is the only valid chroma TU size. The distribution

of TU sizes observed in a test video sequence for all three LCU configurations is shown

in Figure 2-3. Also, for LCU64, the mean-square energy in all coefficient positions for

TU’s is shown in Figure 2-4. The energy is normalized to the the maximum energy in

the TU. We can see that most of the energy is concentrated around the DC coefficient.

HEVC uses the orthogonal type-2 Discrete Cosine Transform with signed 8-bit

23

0

0.1

0.2

0.3

0.4

0.5

0.6

Luma Inter

Chroma Inter

Luma Intra

Chroma Intra

TU32×32 TU8×32TU16×16 TU16×4TU32×8TU8×8 TU4×16TU4×4

(a) LCU64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Luma Inter

Chroma Inter

Luma Intra

Chroma Intra

TU32×32 TU8×32TU16×16 TU16×4TU32×8TU8×8 TU4×16TU4×4

(b) LCU32

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Luma Inter

Chroma Inter

Luma Intra

Chroma Intra

TU32×32 TU8×32TU16×16 TU16×4TU32×8TU8×8 TU4×16TU4×4

(c) LCU16

Figure 2-3: Normalized distribution of TU sizes for OldTownCross (3840× 2160) for
all LCU configurations. Intra CU’s do not use non-square TU’s.

24

(a) TU32×32 (b) TU16×16 (c) TU8×8 (d)
TU4×4

(e) TU32×8 (f) TU16×4 (g)
TU8×32

(h)
TU4×16

Figure 2-4: Normalized mean-square energy for coefficients in all TU’s for OldTown-
Cross (3840 × 2160) encoded with LCU64. Darker pixels denote more signal energy.
The energy is concentrated around the origin and most of the energy is in the DC
coefficient.

25

TUDepth CU8 CU16 CU32 CU64

0 TU8×8 TU16×16 TU32×32 -
1 TU4×4 TU8×8 TU16×16 TU32×32

2 - TU4×4 TU8×8 TU16×16

(a) PUN×N , PU2N×2N

TUDepth CU8 CU16 CU32 CU64

0 TU8×8 TU16×16 TU32×32 -
1 TU4×4 TU4×16 TU8×32 TU32×32

2 - TU4×4 TU4×16 TU8×32

(b) PUN×2N , PUnL×2N , PUnR×2N

TUDepth CU8 CU16 CU32 CU64

0 TU8×8 TU16×16 TU32×32 -
1 TU4×4 TU16×4 TU32×8 TU32×32

2 - TU4×4 TU16×4 TU32×8

(c) PU2N×N , PU2N×nU , PU2N×nD

Table 2.1: Luma TU sizes for different PU Sizes

coefficients. The 32-pt inverse DCT (IDCT) operation is given by [8]

yDEC [m] =
∑

n

xDEC [n] · g aiT32[m][n] (2.1)

g aiT32[m][n] = round

(

128 km cos

(

m
(

n + 1

2

)

π

32

))

(2.2)

m, n = 0, 1, . . . , 31

km =











1/2 if m = 0

1/
√

2 if m 6= 0

The round() function is chosen so as to keep the matrix orthogonal. This ensures

that the DCT and IDCT matrices are just transposes of each other enabling an en-

coder, which must perform DCT in the forward path and IDCT in the reconstruction

path, to reuse the same hardware for both. The complete 32-pt DCT matrix is at [9].

The 16-pt, 8-pt and 4-pt DCT matrices are subsampled from the 32-pt matrix.

26

g aiT16[m][n] = g aiT32[m][2n] m, n = 0, 1, . . . , 15 (2.3)

g aiT8[m][n] = g aiT32[m][4n] m, n = 0, 1, . . . , 7 (2.4)

g aiT4[m][n] = g aiT32[m][8n] m, n = 0, 1, . . . , 3 (2.5)

For certain intra-prediction modes, HEVC has adopted Discrete Sine Transform

(DST) for compressing the residue. Intra-prediction essentially extrapolates the pre-

viously decoded pixels on the edge of the current Prediction Unit (PU) to generate

a prediction. This results in a prediction error that increase from the edge of the PU

which is better modeled as a sine function rather than co-sine [10]. So, DST is used

for column transforms with vertical intra modes and for row transforms with hori-

zontal intra modes. A simplified 4-pt DST matrix has been adopted by the standard

and so, only 4 × 4 TU’s in intra-predicted CU’s may use the DST.

As compared to H.264/AVC, the HEVC inverse transform is highly compute in-

tensive. This is the result of two factors:

1. Large transform sizes: The largest transform in H.264 is an 8-pt DCT whereas

HEVC can have up to a 32-pt DCT. A brute force matrix multiplication for

an 8-pt DCT requires 8 multiplies per input or output pixel as compared to 32

multiples for a 32-pt DCT - a 4× complexity increase.

2. Higher precision transform: This is best seen in (2.6) and (2.7) which compare

the 8-pt DCT matrices for H.264 and HEVC. The H.264 matrix uses 5-bit

precision as compared to 8-bit precision for HEVC. The 5-bit constant multiplies

can be implemented with 2 shift and adds, while the HEVC coefficients would

require 4 of them with a canonical signed digit multiplication.

Together, both these factors result in 8× computational complexity of the HEVC

transforms compared to H.264.

27

DCT8,H.264 =









































8 8 8 8 8 8 8 8

12 10 6 3 −3 −6 −10 −12

8 4 −4 −8 −8 −4 4 8

10 −3 −12 −6 6 12 3 −10

8 −8 −8 8 8 −8 −8 8

6 −12 3 10 −10 −3 12 −6

4 −8 8 −4 −4 8 −8 4

3 −6 10 −12 12 −10 6 −3









































(2.6)

DCT8,HEVC = g aiT8 =









































64 64 64 64 64 64 64 64

89 75 50 18 −18 −50 −75 −89

83 36 −36 −83 −83 −36 36 83

75 −18 −89 −50 50 89 18 −75

64 −64 −64 64 64 −64 −64 64

50 −89 18 75 −75 −18 89 −50

36 −83 83 −36 −36 83 −83 36

18 −50 75 −89 89 −75 50 −18









































(2.7)

The complete inverse transform operation (“Scaling, transformation and array

construction process prior to deblocking filter process” [2]) for each TU is as follows:

1. Inverse scanning: Reorder the 1-D transform coefficients into 2-D matrix

2. Scaling: Dequantize the coefficients depending on the quantization parameter

QP to get a scaled TU matrix

3. Inverse Transform:

• Column transform: Perform 1-D inverse transform along all columns of

the scaled TU matrix to get an intermediate TU matrix

• Row transform: Perform 1-D inverse transform along all rows of the inter-

mediate TU matrix to get the residue

28

As specific profiles and levels have not been decided for the HEVC standard, we chose

the following requirements for our implementation:

1. All transform sizes and types: We chose to support all the square and non-

square transform sizes and both DCT and DST.

2. Quad-Full HD at 200 MHz: This translates to a throughput requirement of 2

pixels/cycle from (2.10) with fW = 3840, fH = 2160, fR = 30Hz, FCLK =

200MHz.

Also, the inverse scanning process is performed by the entropy decoder block, so the

transform block only performs the scaling and the actual transform.

Pixels per picture = Y pixels + Cb pixels + Cr pixels

= fW · fH + fW/2 · fH/2 + fW/2 · fH/2

= 1.5fW · fH (2.8)

Pixels per second = Pixels per picture · Frame rate

= 1.5fW · fH · fR (2.9)

Pixels per cycle = Pixels per second/Clock frequency

= 1.5fW · fH · fR/FCLK (2.10)

2.2 Inverse Transform Architecture

The main challenges in designing a HEVC inverse transform block are listed below.

1. Increased computational complexity as detailed in Section 2.1 result in large

circuit area. A brute-force single cycle 32-pt IDCT was implemented with all

multiplications as Booth encoded shift-and-add and found to require 145 kgates

on synthesis in the target technology. Hence, aggressive optimizations that ex-

ploit various properties of the transform matrix are a must to achieve a reason-

able area. A solution is presented that performs partial matrix multiplication

29

to compute the DCT over multiple cycles. Also, large generic mutipliers are

avoided by using some interesting properties of the matrix.

2. A 16 kbit transpose memory is needed for the 32 × 32 transform. In H.264

decoders, transpose memory for inverse transform are usually implemented as

a register array as they are small. For HEVC, a 16 kbit register array with

column-write and row-read requires about 125 kgates on synthesis. To reduce

area, SRAM’s which are denser than registers are used in this work. However,

they are slower than registers and not as flexible in read-write patterns and so,

a small register-based cache is used to get the maximum throughput.

3. TU’s of different sizes take different number of cycles to finish processing. A

pipelined implementation that manages full concurrency with multiple TU’s

in the pipeline having varying latencies is very challenging to design. The

transpose operation is not amenable to an elastic FIFO-based pipeline which

would normally be ideal for varying latencies. Designing for the worst case

latency of the 32×32 transform would result in a lot of wasted cycles or wasted

buffer size.

The presented solution meets all the above challenges and can be extended to larger

transforms, different non-square TU sizes and higher throughputs.

In general, two high-level architectures are possible for a 2 pixel/cycle inverse

transform [11]. The first one, shown in Figure 2-5a uses separate blocks for row

and column transforms. Each one has a throughput of 2 pixel/cycle and operates

concurrently. The dependency between the row and column transforms (all columns

of the TU must be processed before the row transform) means that the two must

process different TU’s at the same time. The transpose memory must have one read

and one write port and hold two TU’s - in the worst case, two TU32×32’s. Also, the

two TU’s would take different number of cycles to finish processing. For example, if

a TU8×8 follows TU16×16, the column transform must remain idle after processing the

smaller TU as it waits for the row transform to finish the larger one. It can begin

processing the next TU but managing several TU’s in the pipeline at the same time

30

Column
Transform

Transpose
Memory

Row
Transform

Dequantize ResidueCoeffs
2 2 2 22

(a) Separate row and column transforms

Transform

Transpose
Memory

Dequantize
Residue

Coeffs

row/column
select

4 4

4

4

(b) Shared transform block

Figure 2-5: Possible high-level architectures for inverse transform. Bus-widths are in
pixels.

will require careful management to avoid overwriting and ensure full concurrency (no

stalls in the pipeline).

With these considerations, the second architecture, shown in Figure 2-5b is pre-

ferred. This uses a single transform block capable of 4 pixels per cycle for both row

and column transform. The block works on a single TU at a time, processing all the

columns first and then the rows. Hence, the transpose memory needs to hold only

one TU and can be implemented with a single port SRAM since row and column

transforms do not occur concurrently.

The next three sections describe the micro-architecture of each of the blocks -

dequantizer, transpose memory and transform - in detail.

2.2.1 Dequantizer

HEVC HM-4.0 adopts a flat quantization matrix i.e. all coefficients in the TU are

scaled equally. The scaling operation for each quantized parameter xQ to get the

scaled coefficient x depends on the quantization parameter QP and TU size TUW ·TUH

as follows:

31

nS =
√

TUW · TUH

g auIQ[6] = [40, 45, 51, 57, 64, 72]

QPSCALE = g auIQ[QP mod 6]

QPSHIFT = QP/6

x =
(

xQ · QPSCALE · 2QPSHIFT + (nS/2)
)

/nS

For chroma pixels, a higher value of QP is used as higher compression is possible

with less perceived distortion. The scaling with QPSCALE is implemented using a

generic multiplier while scaling with 2QPSHIFT and nS are simple shift left and shift

right respectively.

2.2.2 Transpose Memory

The transform block uses a 16-bit precision input for both row and column trans-

forms. The transpose memory must be sized for TU32×32 which means a total size

of 16 × 32 × 32 = 16.4 kbits. In comparison, H.264 decoder designs require a much

smaller transpose memory - 16× 8× 8 = 1 kbit. A 16.4 kbit memory with the neces-

sary read circuit for the transpose operation is prohibitively large (125 kgates) when

implemented with registers and muxes. Hence, an SRAM implementation is needed.

The main disadvantage of the SRAM is that it is less flexible than registers. A

register array allows reading and writing to arbitrary number of bits at arbitrary

locations, although very complicated read(write) patterns would lead to a large out-

put(input) mux size. The SRAM read or write operation is limited by the bit-width

of its port. A single-port SRAM allows only one operation, read or write, every cycle.

Adding extra ports is possible at the expense of significant area increase in advanced

technology nodes such as 45nm.

The proposed solution uses a 4 pixel wide SRAM implemented as 4 single-port

banks of 4096 bits each with a port-width of 1 pixel. The pixels in TU32×32 are

32

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

0 0 0 0 1 1 1 0

8 8 8 8 9 9 9 0

16

0

0

1

9

0

0

0

0

0

0

2

10

24

32

016

24

32

016

24

32

016

24

32

017

25

33

017

25

33

017

25

33

017

25

33

018

26

34

32
 p

ix
el

s

32 pixels

0

0

0

Bank 0

Bank 1

Bank 2

Bank 3

0

0

7

15

023

31

39

120 120 120 120 121 121 121 121 122

Figure 2-6: Mapping a TU32×32 to 4 SRAM banks for transpose operation. The color
of each pixel denotes the bank and the number denotes the bank address.

mapped to locations in the 4 banks as shown in Figure 2-6. By ensuring that 4

adjacent pixels in any row or column sit in different SRAM banks, it is possible to

write along columns and read along rows by supplying different addresses to the 4

banks.

After a 32-pt column transform is computed, it takes 8 cycles for the result to be

written to the transpose SRAM, during which time the transform block processes the

next column. This is shown in cycles 0−7 in Figure 2-7a where result of column 30 is

written to the SRAM while the transpose block works on column 31. However, when

the last column is processed, the transform block must wait for it to be written to the

SRAM before it can begin processing the row. This results in a delay of 9 cycles for

TU32×32. In general, for a TUW × TUH TU, this delay is equal to TUW /4 + 1 cycles.

This delay is avoided through the use of a row cache that stores the first TUW + 4

pixels in registers. This enables full concurrency as shown in Figure 2-7b. The first

pixel in each column is saved to the row cache so that the first row can be read from

33

0 4 8 12 16 20

Transform

Transpose
SRAM

Column 31

Write Column 31 Read Row 0

Row 0Empty cycles

Write Column 30

24

Read
latency

Cycle

(a) Pipeline stall due to transpose SRAM delay for TU32×32

0 4 8 12 16 20

Transform

Transpose
SRAM

Column 31

Write Column 31 Read Row 1

Row 0

Write Column 30

24
Cycle

Row 1

Row cache
Read Row 0 R

W W

(b) Row caching to avoid stall

Figure 2-7: Enabling full concurrency with register + SRAM transpose memory

the cache while the last column is being stored in the SRAM. The pixel locations that

need to be cached for different TU’s is shown in Figure 2-8.

2.2.3 Transform Block

As mentioned in Section 2.1, the HEVC DCT is 8× more complex than the H.264

DCT. Two interesting properties of the DCT matrix are used to derive an area-

efficient implementation.

1. As seen in (2.7) even and odd rows of the matrix are symmetric and anti-

symmetric. For the 8-pt DCT

g aiT8[m][2n] = g aiT8[7 − m][2n]

g aiT8[m][2n + 1] = −g aiT8[7 − m][2n + 1] m, n = 0 . . . 3

For a general N -pt DCT

g aiTN [m][n] =











g aiTN [N − 1 − m][n] if n even

−g aiTN [N − 1 − m][n] if n odd

(2.11)

34

Row Cache

Transpose
SRAM

TU32×32 TU8×32 TU16×16

TU16×4

TU32×8 TU8×8

TU4×16 TU4×4

Figure 2-8: Location of pixels cached in registers for all TU cases. For TU4×4, the
row cache is itself used as a transpose memory.

35

2×2 2×2
4×4

8×8
matrix mult. 16×16

matrix mult.

x[2n+1]x[4n+2]x[8n+4]x[16n+8]x[16n]

y[m]

o[m]e[m]

eo[m]ee[m]

IDCT32 add-sub

IDCT16 add-sub

IDCT8 add-sub

IDCT4 add-sub

1616

88

44

2 2

32

eeo[m]eee[m]

Figure 2-9: Recursive decomposition of 32-pt IDCT using smaller IDCT’s (A pictur-
ization of partial-butterfly transform in the reference software)

2. The N -pt DCT matrix has only less than N unique coefficients differing only

in sign. For example, the 8-pt matrix has only 7 unique coefficients - 18, 36, 50,

64, 75, 83 and 89.

The first property is used to decompose the matrix into even and odd parts to

create the partial butterfly structure shown in Figure 2-9 used in HM-4.0 reference

software. The decomposition is derived for the 32-pt transform in Appendix A.

The second property can now be used to further optimize the odd matrix multi-

plications in Figure 2-9. The 16 × 16 matrix multiplication takes the odd numbered

inputs x[2n + 1]. In a 4-pixel per cycle case, only 2 of these inputs are available per

cycle. So, it is enough to perform a partial 2 × 16 matrix multiplication every cycle

and accumulate the outputs over 8 cycles. In general, this would require 32 multipli-

ers each with one input from one of x[2n + 1] and the other input from an 8-entry

look-up table (one entry per cycle). The second property allows us to use 32 constant

multipliers and simply multiplex their outputs. This is demonstrated for the 4 × 4

even-even-odd(eeo) matrix multiplication with 1 input pixel per cycle throughput.

36

Matrix Area for generic Area exploiting Area
multiplication implementation unique operations savings

(kgates) (kgates)
4 × 4 for eeo 10.7 7.3 32%
8 × 8 for eo 23.2 13.5 42%
16 × 16 for o 46.7 34.4 26%

Table 2.2: Area reduction by exploiting unique operations

The matrix multiplication with input u = x[8n + 4] and output y = eeo[m] in

Figure 2-9 to be implemented is:

[

y0 y1 y2 y3

]

=
[

u0 u1 u2 u3

]

















89 75 50 18

75 −18 −89 −50

50 −89 18 75

18 −50 75 −89

















(2.12)

For a generic matrix, each column would be stored in a 4-entry look-up table.

The ith entries of the 4 column LUT’s are read every cycle and multiplied with ui

and the products accumulated as shown in Figure 2-10a. However, observing that

the matrix has only 4 unique coefficients - 89, 75, 50 and 18, these multipliers can

be implemented as shift-and-adds and the outputs permuted as per the row index.

This is shown in Figure 2-10b. The 4 multipliers can be further optimized using

Multiple Constant Multiplication, a problem studied extensively in [12], [13], [14].

For this implementation, an online MCM tool [15] was used to generate optimized

multipliers. The 16 × 16 odd (o) matrix multiplication requires only 13 adders in all

and the 8 × 8 even-odd (eo) matrix requires only 8 adders as shown in Appendix A.

This enables more than 25% area reduction as listed in Table 2.2.

2.3 Results

The complete architecture of the inverse transform block is shown in Figure 2-11. The

partial transform block includes the 4-pixel per cycle IDCT and IDST blocks. The

transform coefficients along with TU information such as size, quantization parameter

37

y0 y1 y2 y3

i

18
50
75
89

-50
-89
-18
75

75
18
-89
50

-89
75
-50
18

ui

LUT

MAC

(a) Generic implementation

Permute and
Negate

y0 y1 y2 y3

89 75 50 18

ui

i

ACC

MCM

(b) Exploiting unique operations

Figure 2-10: 4 × 4 matrix multiplication (2.12) with and without unique operations

and luma/chroma are input from the entropy decoder and the output is written to a

residue SRAM to be read by the prediction module. Single-element FIFO’s are used

for pipelining. A TU4×4 immediately after a TU32×32 would result in a pipeline stall

as it takes 8 cycles to write out the last row of TU32x32 to the residue SRAM while

the first row of the TU4×4 would be ready in 4 cycles itself. A stall is avoided by

using a separate 4-pixel 4-entry FIFO to writeback all TU4×4’s.

Breakdown of the synthesis area at 200MHz clock in TSMC 40nm technology is

given in Table 2.3. Post-layout power estimation by the place-and-route tool using

simulation waveforms for 3 LCU’s of real video is 12.6 mW. This includes dynamic

power (6.1 mW), clock network power (5 mW) and leakage (1.5mW). The author

thanks Chao-Tsung for providing these numbers. On a Virtex-6 FPGA running at

25MHz, this design takes 12k LUT’s, 3k registers and 4 BlockRAM’s.

38

1 Dequant
4

Coeffs

1
4

Partial
Transform

Transpose
Memory

1
4

Residue

4

Row cache

32

44

4

32

1

Accumulator

Row Transform

Column Transform

Registers

Logic

SRAM

4
4

first row

TU4x4

32

1

1

Info

Control row/column

TU4x4

qP

Figure 2-11: Architecture of inverse transform

Module Logic area SRAM size
(kgates) (kbits)

Partial transform 71 0
Accumulator 5 0
Row cache 4 0
Transpose Memory 0 16.4
FIFO’s 5 0
Dequant + Control 19 0
Total 104 16.4

Table 2.3: Area breakdown for inverse transform

Module Logic area
(kgates)

4-pt IDCT 3
Partial 8-pt IDCT 10
Partial 16-pt IDCT 24
Partial 32-pt IDCT 57
4-pt IDST + misc. 14

Table 2.4: Area for different transforms. Partial 32-pt IDCT contains all the smaller
IDCT’s

39

40

Chapter 3

Deblocking Filter

Quantization of transform coefficients in the encoder means that the decoder can

perform only a lossy reconstruction. The quantization of the DC coefficient is partic-

ularly visible as blocking artifacts as seen in Figure 3-1. The block edges correspond

to TU edges and this effect is worst in intra-frames which have a large prediction

error. A deblocking filter was introduced in H.264 to overcome these problems. By

smoothening the edges, the deblocking filter makes these artifacts less objectionable.

Also, by providing a more accurate reconstruction of the original image, it improves

coding efficiency [16].

The HEVC deblocking process works on a 8 × 8 pixel grid. First, all the vertical

edges in the picture are processed followed by all the horizontal edges. Implementing

this process in hardware would require a full-frame buffer which is too large for an

on-chip memory (12MB for Quad-Full HD resolution). In order to avoid excessive

(a) Input picture (b) Blocking artifacts (c) After deblocking

Figure 3-1: Need for deblocking filter in video coding

41

latencies due to off-chip memory accesses and to fit deblocking in the system pipeline,

the process is modified to operate in a horizontal raster scanned Largest Coding Unit

(LCU) order. The dependencies across LCU boundaries are maintained through pixel

buffers which enables an implementation that is bit-exact with the software reference.

3.1 HEVC Deblocking Filter

HEVC employs three types of deblocking filters - strong luma, weak luma and a

chroma filter shown in Figure 3-2. The luma filters are 8-tap filters with the strong

filter modifying 3 pixels on either side of the edge and the weak filter modifying 2 on

either side. The chroma filter is a 4-tap filter that acts on 1 pixel on either side. For

luma pixels, the choice between strong, weak and no filtering depends on two factors.

1. Coding decision - Intra-coded blocks and TU edges use strong filtering. For

inter-coded blocks, the difference of motion vectors and reference frames on

either side of the edge are used to choose the filter. The coding decision infor-

mation is represented as a parameter called boundary strength from 0 to 4. A

higher boundary strength results in stronger filtering.

2. Blocking artifact - The pixel values around the edge and quantization parameter

(QP) are used to estimate if the edge has blocking that is a coding artifact or

a feature in the original image. If the second derivative of pixel values across

the edge is greater than a threshold, it is deemed to be a feature that must

be preserved by not filtering the edge. The threshold increases with QP i.e. a

higher QP results in more edges being filtered.

The decision for chroma filtering is taken similarly. The filtering process can then

be described as follows:

• For all 8-pixel vertical edges in the picture on an 8 × 8 grid,

1. Check if edge is PU, TU or CU edge

2. If edge, compute boundary strength (bS). Else, exit loop.

42

0

0.5

1

1.5

2

2.5

3

3.5

p
3

p
1

p
0

p
2

q
0

q
1

q
2

q
3

p
2

p
1

p
0

q
0

q
1

q
2

p
0

p
1

p
2

p
3

q
0

q
1

q
2

q
3

Block Edge

Luma pixels

Pixel position

Filter
weights

(a) Strong Luma

-3

-2

-1

0

1

2

3

4

5

p

3
p

2
p

1
p

0
q

0
q

1
q

2
q

3

p
1

p
0

q
0

q
1

Pixel position

Filter
weights

(b) Weak Luma

-2

-1

0

1

2

3

4

5

p
1 p

0
q

0
q

1

p
0

q
0

Filter
weights

Pixel position

(c) Chroma

Figure 3-2: Deblocking filters weights (scaled by 8) for all pixels around block edge

43

LPU count Prediction Deblocking Writeback
LPU SRAM LPU SRAM LPU SRAM

0 0 C
1 1 B 0 C
2 2 A 1 B 0 C
3 3 C 2 A 1 B
4 4 B 3 C 2 A
5 5 A 4 B 3 C

Table 3.1: Pipelining scheme for deblocking

3. If bS > 0, compute per-edge filter parameters. Else, exit loop.

4. Filter luma and chroma edges

• Repeat for all 8-pixel horizontal edges on 8 × 8 grid.

The luma and chroma filtering processes are independent of each other and can be

parallelized.

3.2 Deblocking Filter Architecture

The deblocking filter block is part of a rigid pipeline consisting of prediction and

DRAM writeback blocks. The size of pipeline buffers, called Largest Pipeline Unit

(LPU) depends on LCU size as listed in Table 1.2. The pipeline is operated using

three SRAM’s connected to the processing block in a rotary fashion. For example,

when prediction is processing LPU2 in SRAMA, deblocking is working on LPU1 in

SRAMB and LPU0 is being transferred from SRAMC to the DRAM. Once all the

blocks are done processing their respective LPU’s, prediction moves to a new LPU3

in SRAMC , LPU2 in SRAMA is deblocked and LPU1 in SRAMB is written back.

This process is shown in Table 3.1.

At any point of time, each processing block is connected to only one pipeline

SRAM. All three blocks need to access pixels from the previous LPU and each block

must maintain a buffer within itself for them. The buffer for pixels from LPU in

the previous row is proportional to the picture width. Deblocking filter needs pixels

from four rows above and so this top-row buffer needs to store 15K luma pixels and

44

SRAM
C

SRAM
B

SRAM
A

Prediction
MC

Cache
Deblocking Writeback

SRAM Arbiter

DRAM
Read

DRAM
Write

Intra pixels Bottom 4 rows in picture

Top-row buffer

Pipeline Buffers

4 4 4

16

Figure 3-3: Pipelining scheme for prediction, deblocking and writeback with rotated
pipeline buffers and shared top-row buffer

corresponding chroma pixels. This being a very large SRAM, the top-row buffer is

shared between all three blocks as shown in Figure 3-3.

The top-level architecture of the deblocking filter is shown in Figure 3-4. Each of

the blocks is described in detail in the subsequent subsections.

3.2.1 Pipeline buffer

The pipeline buffer in Figure 3-4 corresponds to one SRAM block of the pipeline

buffer in Figure 3-3. The largest LPU corresponds to LCU64 and contains 64 × 64 +

32 × 32 + 32 × 32 = 6144 pixels. The pipeline buffer stores this data as 1536 32-bit

entries, each entry consisting of 4 pixels. The prediction block stores 4 pixels along

the rows to each entry in the SRAM while the deblocking writes back 4 pixels along

the columns.

In the worst case of filtering all edges in the LPU, each pixel needs to be read and

written at least once. Hence, achieving a throughput of 2 pixel/cycle would require

a throughput of 4 pixel/cycle from the pipeline SRAM, which means that they must

45

Last
LPU
buffer

Pipeline
buffer

Transpose
RegFile

Prediction
Info

Transform
Info

Boundary
Strength

Edge
Params

Filter
Process

Top-row buffer

EP
HFilt

VFilt

dPixels
EP Pixels

bS

dPixels

Logic

Registers

SRAM

Pixels

Params

Deblocking Filter

: Horizontal-edge filtered pixels
: Vertical-edge filtered pixels
: Edge parameter
: Boundary Strength
: Pixels for edge parameters

HFilt
VFilt
EP
bS
dPixels

Figure 3-4: Top-level architecture of deblocking filter

46

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

4×4 Block

64×64 Block

255

Figure 3-5: Double-Z order mapping for prediction info

be busy with a read or write every cycle. This being the most stringent constraint,

it dictates most of the architecture decisions of the deblocking filter.

For the better code readability, the address to the SRAM is abstracted into posi-

tion of 8 × 8 block, texture type (Y/Cb/Cr) and position of the 4-pixel lines within

the block. The conversion to the physical address is a trivial bit-level manipulation

that is accomplished inside a wrapper for the SRAM.

3.2.2 Prediction Info

This SRAM stores information such as prediction type (intra/inter), CU and PU

size, intra-prediction direction, reference frame indices and motion vectors, etc. for

the present LPU. Since the smallest PU is 4 × 4 pixels, this information is stored on

a 4 × 4 basis in a double-Z order as shown in Figure 3-5. For the largest 64 × 64

LPU, the SRAM needs to store 16 × 16 = 256 entries. The double-Z index of each

entry can be easily computed from its vertical and horizontal position using bit-level

manipulations.

47

Vertical position = y[3 : 0]

Horizontal posistion = x[3 : 0]

Double-Z order index = {y[3], x[3], y[2], x[2], y[1], x[1], y[0], x[0]}

Prediction information for one row of 4 × 4 blocks above the current LPU is also

required for boundary strength computation. This is also stored in this buffer making

a total of 278 entries in the SRAM each entry containing 78 bits of information. This

buffer is written to by the entropy decoder block and read by deblocking two stages

later in the pipeline. So, this buffer is implemented using three rotated SRAM blocks

similar to the pipeline buffer.

3.2.3 Transform Info

This SRAM stores transform information for the current LPU in a raster-scan order

on a 4×4 basis. A total of 256 9-bit entries are stored in this buffer by the transform

block. Each entry includes quantization parameter, coded block flag and two bits to

indicate whether the left and top edges are TU edges. Since the transform block is

two stages behind deblocking in the pipeline, the transform info buffer is implemented

using three rotated SRAM blocks.

3.2.4 Top-row buffer

This buffer stores the last 4 rows of luma and chroma pixels from the LPU row

above the current row. The size of this buffer is dictated by the maximum picture

width supported by the design. For Quad Full HD video, this buffer must store

3840× 4 + 1920× 4 + 1920× 4 = 30720 pixels. This is stored as 1920 128-bit entries

with each entry containing 16 pixels. The SRAM also contains 120 entries for 480

edge parameters (EP) that are passed on to the next LPU row. The address map of

the buffer is shown in Table 3.2. The 16-pixel entries store 4 × 4 pixel blocks.

48

Data type Addresses
Y [0, 959]
Cb [960, 1439]
Cr [1439, 1919]
EP [1920, 2039]

Table 3.2: Address map for top-row buffer

3.2.5 Boundary Strength

The standard specifies the boundary strength (bS) of each 8-pixel edge as the maxi-

mum of the boundary strengths of each pixel on the edge. In the reference software,

bS can take values from 0 to 4. However, it was found that some of these values

are redundant. Values 3 and 4 lead to the same amount of filtering and so do values

1 and 2. So, only 3 bS values are needed which simplifies the boundary strength

computation. The modified bS computation for an edge E with pixels P and Q on

either side is described as follows:

• If E is neither CU nor PU edge, bS = 0.

• Else if either P or Q or both are intra-coded, bS = 2

• Else if E is TU edge and either P or Q or both contain non-zero transform

coefficients, bS = 1

• Else, both P and Q are inter-coded. Read two motion vectors (mvP0,mvP1)

and corresponding reference frames (refP0, refP1) for P if P uses bi-prediction.

If P uses uni-prediction, set one motion vector to 0 and its reference frame as

invalid. Similarly, read mvQ0,mvQ1, refQ0 and refQ1 for block Q. Define

absolute difference of two motion vectors mv1 = (mv1x, mv1y) and mv2 =

(mv2x, mv2y) to be greater than 4 as

|mv1 − mv2| > 4 = (|mv1x − mv2x| > 4) ‖ (|mv1y − mv2y| > 4)

49

– If all four refP0, refP1, refQ0 and refQ1 are equal,

bS = (|mvP0 − mvQ0| > 4 ‖ |mvP1 − mvQ1| > 4) &&

(|mvP1 − mvQ0| > 4 ‖ |mvP0 − mvQ1| > 4)

– Else if refP0 = refQ0 and refP1 = refQ1,

bS = |mvP0 − mvQ0| > 4 ‖ |mvP1 − mvQ1| > 4

– Else if refP1 = refQ0 and refP0 = refQ1,

bS = |mvP1 − mvQ0| > 4 ‖ |mvP0 − mvQ1| > 4

– Else, bS = 1

Since all the parameters required to compute bS of an edge change at most on a

4 × 4 pixel block basis, the reference software computes the bS of an 8-pixel edge as

the maximum of the two 4-pixel boundary strengths. We now describe the design for

the boundary strength computation block.

This processing block computes bS for the top and left edges for 8×8 pixel blocks,

henceforth called block8. The TU and PU information is available on a 4 × 4 block

(block4) basis. The left-most and top-most edges in an LPU need TU and PU info

for blocks outside the LPU. For blocks to the left of the LPU, this info is stored in a

16-entry register file. For blocks to the top of the LPU, the PU info is in the PU info

SRAM itself, while the TU info is taken from the top-row buffer.

Computing the boundary strength of any 4-pixel edge requires knowing if the

edge is a PU and/or TU edge. The TU edge bits in TU info are written by the

transform unit to signal a TU edge. For PU edges however, the PU info SRAM only

signals the CU size and PU partition type. So, the location of the CU in the LPU is

first determined by rounding-off the location of the current block4 in the LPU to the

nearest lower multiple of CU size. For example, if the current block4 starts at (44,

50

LB1

LB0

Top block4's

Current
block8

Top Edge

Left Edge

CB2

CB0

CB3

CB1

TB1TB0

TE0 TE1

L
E

0
L
E

1

L
ef

t
b
lo

ck
4'

s

Figure 3-6: Block4 and edge indices in a block8

12) in the LPU and is part of CU16, the CU starts at (32, 0). This determines the

relative location of the current block in its CU. From this and the PU partition type,

the PU edge is determined.

A 6-state FSM is used to compute the four 4-pixel boundary strengths - 2 each

for the top and left edges. The actions in each state are described below with respect

to block and edge indices shown in Figure 3-6.

1. State = 0:

• Read LB1 TU and PU info from register file.

• Read CB2 TU and PU info from Info SRAMs.

• Compute and save bS for LE1.

• If current block is at bottom of LPU, save CB2 TU info to top-row buffer.

• Increment State.

2. State = 1:

• Read LB0 TU and PU info from register file.

• Read CB0 TU and PU info from Info SRAMs.

• Compute bS for LE0.

51

• Write out bS for left edge as maximum of bS’s of LE0 and LE1.

• Save CB0 TU and PU info to temporary register.

• Increment State.

3. State = 2:

• Read TB0 TU info from top-row buffer if edge is at top of LPU. Read from

TU Info SRAM otherwise. Read TB0 PU info from PU Info SRAM.

• Read CB0 TU and PU info from temporary register.

• Compute and save bS for TE0.

• Increment State.

4. State = 3:

• Read TB1 TU info from top-row buffer if edge is at top of LPU. Read from

TU Info SRAM otherwise. Read TB1 PU info from PU Info SRAM.

• Save TB1 TU and PU info to temporary register.

• Increment State.

5. State = 4:

• Read CB1 TU and PU info from Info SRAMs.

• Read TB1 TU and PU info from temporary register.

• Compute bS for TE1.

• Write out bS for top edge as maximum of bS’s of TE0 and TE1.

• Write CB1 TU and PU info to register file.

• Increment State.

6. State = 5:

• Read CB3 TU and PU info from Info SRAMs.

• Write CB3 TU and PU info to register file.

52

(0,0) (7,0)

(7,7)(0,7)

Edge

Pixels used to
compute d

Figure 3-7: Pixels for edge parameters

• If current block is at bottom of LPU, save CB3 TU info to top-row buffer.

• Reset State to 0.

3.2.6 Edge Params

The Edge Params block determines if the top and left edges of a block8 contain a

blocking artifact and thus decides if the edges are to be filtered or not. It reads pixels

on each side of the edge and computes an absolute second derivative d. From bS and

QP, it computes two parameters β and tC. Filtering is performed only if bS > 0 and

d < β. tC is used for per-pixel decision of strong and weak filtering.

Figure 3-7 shows the pixels used to compute the edge parameter d.

dP = |p2,1 − 2p2,2 + p2,3| + |p5,1 − 2p5,2 + p5,3|

dQ = |p2,4 − 2p2,5 + p2,6| + |p5,4 − 2p5,5 + p5,6|

d = dP + dQ

β and tC are computed from look-up tables with QP as the index for luma filtering

and scaled QP for chroma. If bS > 1, the index is incremented by 4.

3.2.7 Transpose RegFile

The transpose register file stores one block8 in one 8 × 8 luma pixel and two 4 × 4

chroma pixel transpose memories implemented using registers. For luma filtering, 8

53

4 4

Left Right

Filtered

Luma Out

8×8
registers

row idx

col idx

row/col

8

4 4

8

1 1

Left Right

Filtered

Chroma Out

4×4
registers

row idx

col idx

row/col

4

4 4

4

8
2 2

4

Figure 3-8: Deblocking Transpose RegFile. Both luma and chroma have 4-pixel wide
inputs, Left and Right to match the widths of the last LPU buffer and pipeline buffer
respectively.

rows of new pixels are written to the regfile from the pipeline buffer. The rows are

read out for filtering the vertical edges and the partly filtered pixels are written back

to the transpose memory. Once the vertical edge is filtered, the pixels are read out

along the columns for horizontal edge filtering. 4 luma rows and 2 chroma rows from

the next block8 can be prefetched and stored in input FIFO’s as shown in Figure 3-8.

3.2.8 Last LPU buffer

The last LPU buffer contains the right-most column of block4’s from the previous

LPU. At the end of processing of the current LPU, it is updated with the unfiltered

right-most column from the current LPU. For LCU64, this buffer contains 4×64 luma

pixels, 2 × 2 × 32 chroma pixels and 16 edge parameters.

This buffer is also used as temporary storage within the LPU as shown in Figure 3-

9. The LPU is processed on a block8 basis with the blocks processed in a vertical

raster scan order. When processing the current block8, the last LPU buffer contains

two block4’s (LB0 and LB1) from the block8 to its left. At the end of the processing,

54

it is updated with the two right block4’s (CB1 and CB3) from the current block8.

3.2.9 Filter Process

The filter process operates on block8’s in a vertical scan order. Because of dependen-

cies in the vertical and horizontal edge filters, the processing is delayed by 4 luma

rows and 4 luma columns. Thus, for the current block8 shown in Figure 3-9, the

block4’s labelled TLB, TB0, LB0 and CB0 are processed by filtering the 4-pixel edges

LE−1, LE0, TE−1 and TE0.

At the start of processing the current block8, the block4’s TLB and TB0 have

been prefetched into the transpose regfile while processing the previous block8. The

block4’s LB0 and LB1 are in the last LPU buffer and the current block8 (CB0 to CB3)

is in the pipeline SRAM. Edges LE−1 and TE−1 belong to the block8’s to the top and

left of the current block8 and their edge parameters have been computed when those

block8’s were processed.

When processing the current block8, the luma pixels are read from the pipeline

SRAM, the edge parameters of the top and left edge are computed and the edges

are filtered in the order LE−1, LE0, TE−1 and TE0. As shown in Figure 3-10 The

filtered blocks TLB, TB0, LB0 and CB0 are written back to the pipeline SRAM and

unfiltered blocks CB1 and CB3 are saved to the last LPU buffer. Unfiltered block4’s

LB1 and CB2 are saved in the transpose memory for the next block8 in the LPU. If

the present block8 is at the bottom of the LPU, these block4’s are instead written to

the top-row buffer. Furthermore, if the present block8 happens to be at the bottom

of the frame, the block4’s are written to the top-row buffer after filtering.

The process is similar for chroma pixels except that the processing is delayed by

2 rows and 2 columns. Luma and chroma filtering is performed in parallel to hide

the latency of the processing which is necessary to avoid idle cycles on the pipeline

SRAM. As explained subsection 3.2.1, the pipeline buffer must be always busy to

achieve a 2-pixel per cycle throughput.

Pixel storage in the DRAM uses a mapping based on 8×4 luma blocks and packed

4 × 4 chroma blocks. Since luma processing is delayed by 4 rows and 4 columns, an

55

Out of picture

L

L

L

L

L

L

L

L

block4 8×8 grid

processed
block8's

unprocessed
block8's

L
block4 in Last
LPU Buffer

Processing
order

TLB

LB1

LB0

Current
block8

Top Edge

Left Edge

CB2

CB0

CB3

CB1

TB1TB0

TE0 TE1

L
E

0
L
E

1

TE-1

L
E

-1

Picture Width = 192

P
ic

tu
re

 H
ei

g
h
t

=
 8

8

LPU = 64×32 Current LPU

Edge processing order:
LE-1,LE0,TE-1,TE0

Figure 3-9: Deblocking processing order for a 192 × 88 picture coded with LCU32.
Note the anomalous order in the bottom LPU row and the last LPU required to filter
the last LPU buffer.

56

TLB

LB1

LB0

CB2

CB0

CB3

CB1

TB1TB0

LB1

LB0

CB2

CB0

CB3

CB1

TB1TB0

Luma before filtering Luma after filtering

TLB

Transpose RegFile

Last LPU Buffer

Pipeline Buffer

Filtered EdgeChroma before filtering Chroma after filtering

Filtered Chroma Buffer

Figure 3-10: Pixel locations before and after filtering

extra 4 columns delay is added before writeback to DRAM using another last LPU

buffer. Chroma requires an extra delay of 2 rows and 2 columns. The 2 column-delay

can use the last LPU buffer, but the 2 row delay needs a 2 × 2 × 1920 pixel buffer.

This buffer is merged with the deblocking top-row buffer by delaying the writeback

of 2 chroma rows with a filtered chroma buffer shown in Figure 3-10.

The order in which processing is performed is designed with the following concerns

in mind:

1. Correctness: Apart from respecting dependencies such as filtering vertical edges

before the horizontal edges, it is also necessary to avoid overwriting unread

pixels or uncommitted pixels. This was found to necessitate reading all the

pixels in the block8 before the writing back the filtered pixels. This is seen in

timeline for the pipeline buffer in Figure 3-11.

2. Throughput: Maintaining a throughput of 2 pixels per cycle implies that each

block8 containing 64 luma and 32 chroma pixels complete processing in 48

57

cycles. A key requirement is that the pipeline buffer be kept busy with read or

write for all cycles.Figure 3-11 shows the simulated timeline for processing one

block8 that meets the cycle budget.

3. Simplicity: This requires reducing the number of special cases. Only the left-

most and right most block8’s in an LPU need to access the last LPU buffer.

But, by performing a vertical block8 raster scan within the LPU and using the

last LPU buffer for all block8’s, this special case was eliminated. The special

case of top-most and bottom-most block8’s which require access to the top-row

buffer can similarly be eliminated. However, system requirements for sharing

the top-row buffer with intra-prediction make it difficult to use it for all block8’s

in deblocking. Three more special cases remain.

(a) The last LPU in the frame must put filtered pixels in the last LPU buffer

as opposed to the usual. This is achieved by adding a dummy column to

the last LPU.

(b) Similarly, the bottom-most block8’s in the frame must filter pixels before

storing them in the top-row buffer. The timeline for this is shown in

Figure B-1.

(c) Also, when the picture height is not a multiple of LPU height, the last LPU

row has smaller LPU’s as pictured in Figure 3-9. A few dummy block8’s

must be added to process pixels in the last LPU buffer from the previous

LPU row.

Appendix B explains the special cases of top-most and bottom-most block8 in

LPU and bottom-most block8 in frame in more detail. These require modi-

fications to the normal block8 timeline of Figure 3-11 which are also shown

there.

FIFO-based pixel and information passing is extensively used in the design to en-

sure correctness. Local state machines are used to generate SRAM requests, receive

responses and handle special cases. A global state machine is used only to reset these

58

0 8 16 24 32 40 48

Boundary Str. LE TE
Edge Param LE TE

Pipeline buffer
Last LPU buffer

CB0 CB2 CB1 CB3 chr TLB, LB0 TB0, CB0 chr
LB0 LB1 CB1 CB3e e chr chr

Luma filter LE-1 LE0 TE-1 TE0

Chroma filter LE-1 LE0 TE-1 TE0

read
writee: edge params

chr: chroma

Figure 3-11: Processing timeline for block8 deblocking from RTL simulation

state machines. By avoiding a complex global state machine that manages every-

thing in a rigid manner, a modular easy-to-modify design is achieved. A significant

amount of scheduling is also handled by the Bluespec compiler guided by user-defined

directives.

3.3 Results

The complete deblocking filter shown in Figure 3-4 requires 44 kgates of logic and

3.3 kbits of SRAM in TSMC 40nm technology. The breakdown of area is listed in

Table 3.3. A significant portion of the area is taken by register arrays in transpose

memory and boundary strength blocks. The state machine for scheduling the timeline

and handling special cases explained in the previous section also take up a significant

area. Post place-and-route power estimate is 2.4 mW including 1.3 mW of dynamic

power, 0.7 mW clock network power and 0.4 mW leakage. The author thanks Chao-

Tsung for the power numbers. The Virtex-6 FPGA implementation takes 6k LUT’s,

2.7k registers and 2 BlockRAM’s.

59

Module Logic area SRAM size
(kgates) (kbits)

Transpose RegFile 11 0
Filter Process 6.1 0
Boundary Strength 12.6 0
Edge Params 3.0 0
Last LPU buffer 0 3.3
FIFOs 3.4 0
Scheduling and state 7.9 0
Total 44 3.3

Table 3.3: Area breakdown for deblocking filter

60

Chapter 4

Conclusion

Circuit implementations for inverse transform and deblocking filter blocks supporting

all features of HEVC HM-4.0 have been described. The throughput of both the blocks

support Quad-Full HD (3840× 2160) decoding at 30fps when running at 200MHz. A

25MHz FPGA prototype was developed to demonstrate real-time HD (720p) decod-

ing.

The two blocks present different design challenges. The inverse transform algo-

rithm can be easily described as a matrix multiplication but the design is complicated

by the large matrices (32 × 32 × 16-bit) involved. Techniques to share computations

by identifying common factors in matrices are shown to be useful in generating an

area-efficient design. The deblocking filter uses complicated algorithms to determine

filtering parameters which result in complex data dependencies. However, the actual

computation works on small data sets of 8 pixels which results in a low area im-

plementation. The challenge then, is to respect the dependencies while maintaining

the required throughput. These differences are best seen in Table 4.1 which compare

lines-of-code (in Bluespec SystemVerilog, excluding test-benches) and area of the two

blocks.

Module Lines of code Area
Inverse Transform 1826 104 kgates
Deblocking Filter 3639 44 kgates

Table 4.1: Comparison of Inverse Transform and Deblocking Filter designs

61

For both blocks, Bluespec SystemVerilog proved to be an invaluable tool as it

abstracts away many wire-level details. For example, the designer does not have to

write logic to check if a FIFO is full before pushing to it. As a result, debugging can

be done in a software-like manner with printf ’s. The powerful type system results

in a more readable code as the design is described as operations on meaningful video

coding parameters and vectors of pixels rather than on bit-vectors.

The Bluespec library has several FIFO modules with different behaviors. For

example, the pipeline FIFO is a single-element FIFO which can be simultaneously

pushed and popped only when it is full. The bypass FIFO is a single-element FIFO

which can bypass the input to output so that push and pop can occur in the same

cycle when the FIFO is empty. It is found that intelligently using these primitives

in place of registers greatly simplifies the design. At the end of the deblocking filter

design, a standard approach to designing complex digital architectures was found to

evolve. The steps in this approach are described as follows:

1. Make a list of all interfaces to the module. Make sure the interfaces do not

have implicit conditions such as latencies. For example, the multicycle read

interface to SRAM should be split into two zero-latency sub-interfaces - request

and response.

2. Devise a processing timeline that meets all dependencies and throughout re-

quirements. At this stage, important state variables such as amount of scratch-

pad memory to store prefetched and intermediate data should be fixed. Also

add pipelining for complex logic that is expected to generate long critical paths.

If area is a concern, a rough estimate in terms of adders, multipliers, registers

and muxes can be computed.

3. Describe the processing timeline using the least number of guarded atomic ac-

tions (rules). Determine rules that interact with each other through registers

(rules for FSM’s, rigid pipelines) and rules that interact through FIFOs (rules for

elastic pipelines, request-response rules). If rules interact through both FIFO’s

62

and register, they are effectively rigidly connected i.e. the register based inter-

action takes precedence.

4. Tweak the FIFO sizes and types to get the required throughout with the smallest

size. Note that bypass FIFO’s can increase the critical path due to the bypass

path.

Key lessons learned in complex circuit architecture design are summarized below.

1. Using FIFO interfaces allows modules to remain weakly coupled. As a result

changes in the internal design of one module do not affect the design of other

modules. For example, SRAM’s can be encapsulated to present a request-

response FIFO interface to other modules. Now, if the SRAM is pipelined to

reduce critical path, the design of other modules is unaffected. The circuit

overhead to achieve this is minimal.

2. Elastic pipelines which use FIFO’s as pipeline buffers are easier to design and

verify than rigid pipelines controlled by state machines. It can be shown that

the two methods are logically equivalent - instead of a globally stored state, the

state is distributed among FIFO pointers. The advantage of a localised state is

again weak coupling and ease of debug.

3. Little’s law (number of elements in flight equals throughput times latency) is

surprisingly useful in taking many design decisions such as FIFO depths and

amount of prefetching.

Future work on coding tools for HEVC could explore several directions:

1. Scalable design: Scaling can be utilized on various levels to provide power sav-

ings.

• Voltage scaling: A low-voltage design would enable the chip to efficiently

decode smaller picture sizes and frame rates in mobile application. This de-

sign is especially challenging in scaled technology nodes (40nm and smaller)

due to process variation and lack of low-voltage SRAM libraries.

63

• Gating: Parts of the processing blocks can be turned off for long periods of

time depending on the video content. For example, when decoding a video

with LCU16, the 32-pt transform logic can be power gated for a period

of time much longer than the break-even threshold [17] for power gating.

Leakage is seen to be a significant power draw in the current design which

makes power gating very attractive.

2. Circuit optimizations: Multiple-constant Multiplication (MCM) was used to

optimize the transform matrix multiplications in this work. Distributed arith-

metic is an alternate method that has been previously explored for MPEG-2

DCT[18]. It would be interesting to compare the areas of these two approaches

for the large HEVC transforms. Other techniques such as multiple voltage and

clock domains, multi-threshold CMOS can also be explored.

3. New coding tools: HEVC has introduced two new filters called Adaptive Loop

Filter and Sample Adaptive Offset. Circuit implementations for these filters is

definitely an exciting research direction.

64

65

Appendix A

Transform Optimizations

A.1 Partial butterfly structure

Rename g aiT32 = g, yDEC = y, xDEC = x in (2.1) (A.1)

For m = 0 . . . 31,

y[m] =
31
∑

n=0

x[n] · g[m][n]

=
15
∑

n=0

x[2n] · g[m][2n] +
15
∑

n=0

x[2n + 1] · g[m][2n + 1] (A.2)

y[31 − m] =
31
∑

n=0

x[n] · g[31 − m][n]

=
15
∑

n=0

x[2n] · g[31 − m][2n] +
15
∑

n=0

x[2n + 1] · g[31 − m][2n + 1]

=
15
∑

n=0

x[2n] · g[m][2n] −
15
∑

n=0

x[2n + 1] · g[m][2n + 1] from (2.11) (A.3)

Let e[m] =
15
∑

n=0

x[2n] · g[m][2n] (A.4)

and o[m] =
15
∑

n=0

x[2n + 1] · g[m][2n + 1] (A.5)

From (A.2), (A.3), (A.4), (A.5),

y[m] = e[m] + o[m] (A.6)

y[31 − m] = e[m] − o[m] (A.7)66

e[m] is simply the 16-pt IDCT of the even-numbered inputs and can be also

be decomposed into even and odd parts ee[m] and eo[m] respectively. ee[m] can

be further decomposed. This recursive decomposition leads to a partial butterfly

structure as shown in Figure 2-9.

e[m] = ee[m] + eo[m]

e[15 − m] = ee[m] − eo[m]

ee[m] = eee[m] + eeo[m]

ee[7 − m] = eee[m] − eeo[m]

eee[m] = eeee[m] + eeeo[m]

eee[3 − m] = eeee[m] − eee0[m]

A.2 Multiple Constant Multiplication for 32-pt IDCT

The 32-pt IDCT block contains a 16×16 matrix multiplication with the odd-indexed

input coefficients. The matrix contains 15 unique coefficients: 90, 88, 85, 82, 78,

73, 67, 61, 54, 46, 38, 31, 22, 13, 4. The Spiral-generated MCM uses 13 adders to

implement these 15 multiplications.

67

a32 = a1 << 5 a31 = a32 − a1 a8 = a1 << 3 a23 = a31 − a8

a4 = a1 << 2 a27 = a31 − a4 a39 = a31 + a8 a62 = a31 << 1

a61 = a62 − a1 a22 = a23 − a1 a11 = a22 >> 1 a26 = a27 − a1

a13 = a26 >> 1 a19 = a23 − a4 a64 = a1 << 6 a41 = a64 − a23

a46 = a23 << 1 a45 = a46 − a1 a128 = a1 << 7 a67 = a128 − a61

a73 = a27 + a46 a108 = a27 << 2 a85 = a108 − a23 a90 = a45 << 1

a88 = a11 << 3 a82 = a41 << 1 a78 = a39 << 1 a54 = a27 << 1

a38 = a19 << 1

A.3 Multiple Constant Multiplication for 16-pt IDCT

The 32-pt IDCT block contains a 8 × 8 matrix multiplication with the even-odd-

indexed (2(2n + 1)) input coefficients. The matrix contains 8 unique coefficients: 90,

87, 80, 70, 57, 43, 25, 9 which are implemented with 8 adders as shown:

b4 = b1 << 2 b5 = b1 + b4 b8 = b1 << 3 b9 = b1 + b8

b16 = b1 << 4 b25 = b9 + b16 b36 = b9 << 2 b35 = b36 − b1

b40 = b5 << 3 b45 = b5 + b40 b43 = b35 + b8 b32 = b1 << 5

b57 = b25 + b32 b86 = b43 << 1 b87 = b1 + b86 b90 = b45 << 1

b80 = b5 << 4 b70 = b35 << 1

68

Appendix B

Deblocking timeline

The simulated timelines for two special cases in deblocking are shown Figure B-1.

When the block8 being processed is at the bottom of the LPU, the bottom-most

block4’s LB1 and CB2 must be written to the top-row buffer. The top block4’s TLB

and TB0 for the next block8 must be fetched from the top-row buffer. In this case,

to avoid overwriting in the local register storage, the writes to the top-row buffer are

done before the reads. Overwriting in the top-row buffer is not a concern as the reads

and writes go to different addresses. It is seen that reading and writing the chroma

pixels to the top-row buffer is causes the 48 cycle budget to be exceeded. However,

throughput is maintained by starting the processing of the next block8 at the end of

48 cycles itself.

For the block8’s at the bottom of the picture, the block4’s being written to the

top-row buffer must be filtered. This can be seen in the extra processing of the L1

edge in cycles 17-20 for luma filter and 48-51 for the chroma filter. As these blocks

are actually processing more pixels, the cycle budget can be relaxed.

69

0

8

16

24

32

40

48

Bo
un

da
ry
 S
tr.

LE

TE

Ed
ge

 P
ar
am

LE

TE

Pi
pe

lin
e
bu

f.

La
st
 L
PU

 b
uf
.

CB0

CB2

CB1

CB3

chr

TLB
 LB0

TB0

CB0

chr

LB0

LB1 LB1

CB3

e

chr

chr

Lu
m
a
fil
te
r

LE-1

LE0

TE-1

TE0

Ch
ro
m
a
fil
te
r

LE-1

LE0

TE-1

TE0

read
writee: edge params

chr: chroma

56

e

To
p-
ro
w

bu
f.

e

TLB

CB2

TB0

TB1

e

chr

chr

chr

chr

Bo
un

da
ry
 S
tr.

LE

TE

Ed
ge

 P
ar
am

LE

TE

Pi
pe

lin
e
bu

f.

La
st
 L
PU

 b
uf
.

CB0

CB2

CB1

CB3

chr

TB0

CB0

chr

LB0

LB1

LB1

CB3

e

chr

chr

Lu
m
a
fil
te
r

LE-1

LE0

TE-1

TE0

Ch
ro
m
a
fil
te
r

LE-1

LE0

TE-1

TE0

e

To
p-
ro
w

bu
f.

e

TLB

CB2

TB0

TB1

e

chr

chr

chr

chr

64

LE1

LE1

Block8 at bottom of LPU Block8 at bottom of picture

TLB
 LB0

Figure B-1: Processing timeline for special cases in deblocking (from RTL simulation)

70

Bibliography

[1] T. Wiegand, G. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the
H.264/AVC Video Coding Standard,” Circuits and Systems for Video Technol-
ogy, IEEE Transactions on, vol. 13, no. 7, pp. 560 –576, july 2003.

[2] B. Bross, W.-J. Han, O. Jens-Raimer, G. J. Sullivan, and W. Thomas, “WD4:
Working Draft 4 of High-Efficiency Video Coding,” Joint Collaborative Team on
Video Coding JCTVC-F802, Tech. Rep., 2011.

[3] B. Li, G. J. Sullivan, and X. Jizheng, “Comparison of Compression Performance
of HEVC Working Draft 4 with AVC High Profile,” Joint Collaborative Team
on Video Coding JCTVC-G399, Tech. Rep., 2011.

[4] M. Viitanen, J. Vanne, T. Hmlinen, and M. Gabbouj, “Complexity Analysis of
Next-Generation HEVC Decoder,” 2012, accepted as Lecture in International
Symposium on Circuits and Systems.
Available: http://iscas2012.e-papers.org/.

[5] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A Close
Examination of Performance and Power Characteristics of 4G LTE Networks,”
ACM Mobisys, 2012.

[6] D. Zhou, J. Zhou, J. Zhu, P. Liu, and S. Goto, “A 2Gpixel/s H.264/AVC
HP/MVC video decoder chip for Super Hi-vision and 3dtv/ftv applications,”
in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012
IEEE International, feb. 2012, pp. 224 –226.

[7] “Bluespec Inc.” www.bluespec.com.

[8] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages and
Applications. Academic Press, Inc., 1990.

[9] A. Fuldseth, G. Bjøntegaard, M. Sadafale, and M. Budagavi, “Transform Design
for HEVC with 16-bit Intermediate Data Representation,” Joint Collaborative
Team on Video Coding JCTVC-E243, Tech. Rep., 2011.

[10] A. Saxena and F. C. Fernandes, “CE7: Mode-dependent DCT/DST for In-
tra Prediction in Video Coding,” Joint Collaborative Team on Video Coding
JCTVC-D033, Tech. Rep., 2011.

71

[11] D. F. Finchelstein, “Low-power Techniques for Video Decoding,” Thesis,
Massachusetts Institute of Technology, 2009. [Online]. Available: http:
//dspace.mit.edu/handle/1721.1/52794

[12] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementa-
tion. Wiley, NY, 1999.

[13] M. Potkonjak, M. Srivastava, and A. Chandrakasan, “Efficient Substitution of
Multiple Constant Multiplications by Shifts and Additions using Iterative Pair-
wise Matching,” in Design Automation, 1994. 31st Conference on, june 1994,
pp. 189 – 194.

[14] M. Chen, J.-Y. Jou, and H.-M. Lin, “An Efficient Algorithm for the Multiple
Constant Multiplication Problem,” in VLSI Technology, Systems, and Applica-
tions, 1999. International Symposium on, 1999, pp. 119 –122.

[15] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson,
and N. Rizzolo, “SPIRAL: Code Generation for DSP Transforms,” Proceedings
of the IEEE, special issue on “Program Generation, Optimization, and Adapta-
tion”, vol. 93, no. 2, pp. 232– 275, 2005.

[16] I. E. G. Richardson, H.264 and MPEG-4 Video Compression. Wiley, 2003.

[17] N. J. Ickes, “A Micropower DSP for Sensor Applications,” Thesis, Massachusetts
Institute of Technology, 2008.

[18] T. Xanthopoulos, “Low Power Data-Dependent Transform Video and Still Image
Coding,” Thesis, Massachusetts Institute of Technology, 1999.

72

http://dspace.mit.edu/handle/1721.1/52794
http://dspace.mit.edu/handle/1721.1/52794

	Introduction
	High-Efficiency Video Coding
	HEVC Hardware Decoder
	Contributions of this work

	Inverse Transform
	HEVC Inverse Transform
	Inverse Transform Architecture
	Dequantizer
	Transpose Memory
	Transform Block

	Results

	Deblocking Filter
	HEVC Deblocking Filter
	Deblocking Filter Architecture
	Pipeline buffer
	Prediction Info
	Transform Info
	Top-row buffer
	Boundary Strength
	Edge Params
	Transpose RegFile
	Last LPU buffer
	Filter Process

	Results

	Conclusion
	Transform Optimizations
	Partial butterfly structure
	Multiple Constant Multiplication for 32-pt IDCT
	Multiple Constant Multiplication for 16-pt IDCT

	Deblocking timeline

