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Abstract

Cloud storage provides a low-cost storage service with high efficiency and global

accessibility via the Internet, but it also introduces security risks. One major security

concern is the integrity and freshness of data stored on the cloud, that is, whether a

storage provider can guarantee that the data received by its clients is always correct

and up-to-date.

Recent studies have focused on data integrity and freshness guarantees. However,
systems that solely rely on cryptography are not able to immediately detect data

freshness violations, while systems using resource-constrained trusted hardware are

impractical due to long latency and low throughput.

In this thesis, we describe a prototype of a trusted cloud storage system that effi-

ciently ensures data integrity and freshness by attaching a piece of high-performance

trusted hardware to an untrusted server. We propose a write access control scheme

to prevent unauthorized writes and ensure all writes are fresh. We also introduce a

crash-recovery mechanism to protect our prototype system from crashes and power

loss events. In addition, we minimize the system overhead by (1) parallelizing and

pipelining the operations that are carried out on the server and the trusted hard-

ware and (2) judiciously partitioning the operations across the trusted and untrusted

components. The throughput and latency of our prototype system are analyzed to

provide customized solutions to performance-focused and budget-focused cloud stor-

age providers. We believe this work takes a major step in making trusted cloud

storage practical from an efficiency and cost standpoint.
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Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation

Cloud computing is an emerging web-based computing model that provides users

with storage, computational resources, and software applications as services. It of-

fers a cost-effective solution to satisfy cloud users' various computing needs through

cloud service platforms, such as Amazon Elastic Compute Cloud (EC2) [1], Google

App Engine [2], and Windows Azure [3]. Cloud users are able to access high com-

puting power and data storage on demand through the Internet using light-weight

portable devices, while cloud service providers can achieve better resource utilization

via multiplexing the workloads. This new computing model moves data and comput-

ing tasks from local computers and portable devices into large data centers, bringing

cloud users great cost reduction, scalability, and accessibility.

Cloud storage is one of the most prominent cloud-based services as it can be

used to not only store files but also support cloud-based applications. For example,

Amazon Simple Storage Service (S3) [4], Google Storage [5], and Azure Storage are

well known cloud storage providers offering scalable storage services to end users,

enterprises, web application developers, and other cloud services providers. Based on

these storage platforms, Dropbox (relying on S3) [6], Microsoft SkyDrive [7], Apple

iCloud [8], and the recently launched Google Drive [9] further provide file sharing

and synchronization services among multiple devices and multiple users. Figure 1-1

represents an overview of a cloud storage system. Cloud storage users are able to back
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Figure 1-1: Cloud storage overview

up their data remotely, access the data from any connected device, and collaborate

within groups to work on the shared data. This outsourced data storage service

offers great convenience and global data accessibility to the users at low cost, and the

users no longer need huge local data storage nor do they need to worry about data

maintenance.

However, outsourcing data introduces security risks, such as privacy and data in-

tegrity losses. These risks are primarily from resource sharing: hardware resources

are shared on the cloud among various users and thus vulnerable to intruder attacks.

Adversaries may penetrate the cloud storage provider and control the cloud server to

leak its users' confidential information, corrupt the stored data, or present inconsis-

tent data to different users. In addition, cloud servers may be attacked by malicious

insiders or experience some accidental failures due to software bugs, crashes, hard-

ware failures, or power loss events, and therefore cause data loss or inconsistency.

As a result, cloud users cannot trust cloud servers to store and manage their data,
especially when the data are used for sensitive computations, e.g., financial or medical

transactions.

The main security concerns about current cloud storage providers are guarantees

of confidentiality, availability, integrity, and freshness. Under these guarantees, the

data can only be accessed by authorized users, is accessible at all times, and is always

correct and up-to-date. Most of these concerns can be resolved by software: confi-

dentiality by encryption, availability by appropriate data replication, and integrity

14



by digital signatures together with message authentication codes (MACs). On the

other hand, freshness is difficult to ensure especially when multiple cloud clients are

involved.

Freshness is guaranteed if the data read from a cloud server has exactly the con-

tent that is written by the latest update. Recent studies have focused on freshness

guarantees. In a single-client situation, a malicious server can perform a replay attack

by answering a client's read request with properly authenticated but stale data. This

misbehavior can be detected if the client is aware of the last operation he or she has

performed [10]. In a group collaboration scenario, a malicious server can perform a

forking attack by showing the group members divergent histories to hide their up-

dates from each other. This misbehavior, however, cannot be immediately detected

by software-based schemes.

To ensure freshness by detecting forking attacks, while software-based solutions

[11, 12, 13, 14] require user-to-user communication and therefore cannot achieve im-

mediate detection, hardware-based solutions [15, 16, 17] add a small piece of trusted

hardware to the system. This piece of trusted hardware, which is also called the

trusted computing base (TCB), is used as a secure log device or a monotonic counter,

preventing a malicious server from reversing the system state to its previous value or

presenting different valid system states to different users.

However, today's trusted hardware is resource-constrained, and this makes the

TCB the system bottleneck in throughput and latency. To improve the performance

while keeping the overall cost low, Costan et al. in a position paper [18] proposed

high-level concepts of splitting the functionality of the TCB into two chips: a P

(processing) chip with high computing power, and an S (state) chip with secure non-

volatile memory (NVRAM). The P chip performs sensitive computations, and the

S chip securely stores the system state. Neither results nor implementation were

provided in [18].

1.2 Contribution

In this work, we propose a detailed design of an efficient trusted storage system to

prove that the concept of splitting the TCB into two chips is practical, in terms of

15



security and performance. In addition to adopting the existing memory authenti-

cation technique, we propose a write access control scheme to prevent unauthorized

writes and ensure that all writes are fresh. We also introduce a recovery mechanism

to ensure that we can recover the system state from crashes to be consistent with

the state stored on the S chip, making our storage system robust against power loss

events and accidental/malicious crashes.

We implement our prototype system using an FPGA board and a Linux server.

To maximize the performance of our prototype system, we parallelize and pipeline

the operations that are carried out on the server and the P chip, and we judiciously

partition the functionality across the trusted and untrusted components. We evaluate

the system performance with synthetic benchmarks, focusing on the throughput that

our system can support, the latency for processing each request, and the performance

overhead introduced by performing security checks on trusted hardware. Based on the

performance evaluation, we provide customized solutions to performance-focused and

budget-focused cloud storage providers by showing the performance that the system

can achieve given different hardware requirements. For performance-focused storage

providers, our solution can achieve 2.4 GB/s system throughput. For budget-focused

storage providers, we provide a single-chip solution that can achieve 377 MB/s system

throughput, which is much higher than that of other existing single-chip solutions such

as [17]. This single chip needs to run at around 125 MHz and requires some RAM and

a hash engine on top of secure NVRAM smart card chip functionality. We believe this

work takes a major step in making trusted cloud storage practical from an efficiency

and cost standpoint.

The main contributions of this work are summarized below:

" We prove that the concept of splitting the TCB into two chips is practical.

" We provide detailed design, implementation, and evaluation of an efficient

trusted storage system with integrity and freshness guarantees.

" We propose a write access control scheme to ensure that all writes are fresh and

from authorized writers.

" We propose a crash-recovery mechanism to protect the system from power loss

events or crashes.

16



* Finally, we arrive at a single-chip solution that achieves much higher throughput

than existing single-chip solutions.

1.3 Thesis Structure

The rest of this thesis is organized as follows. In Chapter 2, we discuss security

issues in cloud storage systems and summarize the related work. We also introduce

the related trusted hardware and the memory authentication techniques adopted in

our system. In Chapter 3, we describe our prototype system design, introducing the

functionality of each system component and explaining how we guarantee integrity

and freshness while maintaining high performance. In Chapter 4, we discuss the

implementation details,. different implementation options, and how we improve the

system performance. In Chapter 5, we evaluate the throughput and latency of our

prototype system and measure the system overhead using synthetic benchmarks. We

also provide customized solutions by showing hardware requirements and estimated

performance. In Chapter 6, we conclude our work by describing the objectives we

have achieved and discussing future work.
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Chapter 2

Background and Related Work

In this chapter, we provide the background information for the understanding of the

design and implementation presented in this thesis. We first discuss the desirable

security properties of cloud storage systems and the existing mechanisms to achieve

these properties. Then, we introduce different types of trusted hardware, including

smart cards, the Trusted Platform Module (TPM) [19], and the two-chip model pro-

posed in [181. Finally, we introduce the memory authentication techniques we adopt

in our system design.

2.1 Cloud Storage Security Requirements

Hardware resources on the cloud are shared between multiple users and thus vulner-

able to attacks from both outside and inside the cloud. Cloud users, ranging from

individuals to enterprises, outsource their data to storage providers and no longer have

physical possession of the data. To securely store data and run sensitive computations

on the cloud, a cloud storage system should provide following security guarantees:

" Confidentiality: Also known as privacy. The cloud storage provider and other

unauthorized users cannot identify the contents of the user's data.

" Availability: The data is accessible from any connected device at all times.

" Integrity: Only the data owner or the authorized users who share the data can

modify the data. The data read from the cloud server should be consistent

19



with an update from authorized users. Any unauthorized modification should

be detected by the user or the cloud storage provider.

e Freshness: The data read from the cloud server should have exactly the content

that is written by the latest update from the authorized users.

However, except for availability, current cloud storage services do not provide other

security guarantees in their Service Level Agreements (SLAs). For example, Amazon

S3's SLA [20] and Windows Azure's SLA [21] only guarantee that clients can receive

reimbursement when availability falls below 99.9%. This problem is addressed in [22],

where a proof-based system is proposed to enable security guarantees in the SLAs of

current storage providers.

In this section, we introduce existing schemes that provide each of these security

guarantees.

2.1.1 Confidentiality

Encryption is commonly used to preserve data confidentiality. The general concept

is that the data owner encrypts the data content before sending it to an untrusted

cloud server and discloses the decryption key only to the authorized users.

To make this concept practical in a current cloud storage system, performance

issues need to be addressed. One performance issue is how to manage access con-

trol and key distribution without introducing a high complexity on computation and

communication. There has been a lot of research focusing on developing efficient and

fine-grained access control schemes on an untrusted server [23, 24, 25, 26, 27, 28]. In

particular, Goyal et al. proposed the Key-Policy Attribute-Based Encryption (KP-

ABE) scheme, which is based on the concepts of Attribute-Based Encryption (ABE)

proposed in [29], for fine-grained sharing of encrypted data. In a KP-ABE system,

each ciphertext is labeled with a set of descriptive attributes, and each private key

is associated with an access structure. A user is able to decrypt a ciphertext only if

the attributes associated with the ciphertext satisfy the access structure of the user's

private key. Yu et al. [28] further combined KP-ABE with the techniques of proxy re-

encryption [30] and lazy re-encryption [31], and delegated most computations to cloud
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servers while preserving confidentiality, making a KP-ABE system more applicable

to cloud storage services.

Another performance issue is that storing encrypted data on the cloud introduces

more difficulty to keyword search. A naive solution is to download all the encrypted

data, decrypt it, and search locally. This solution is not practical because it in-

troduces a huge amount of bandwidth cost in a cloud storage system. Researchers

have been working on privacy-preserving and effective search services over encrypted

data and have proposed different types of searchable encryption schemes using sym-

metric searchable encryption (SSE) [32, 33, 34] or asymmetric searchable encryption

(ASE) [35, 36, 37]. Recent works are focusing on multi-keyword search that enables

conjunctive or disjunctive search formulas [37, 38, 39], and ranked search that sends

back only the most relevant data to eliminate unnecessary network traffic [40, 41].

In addition to the performance issues, there is another security concern. Although

having the users encrypt the data before sending to the cloud can prevent the cloud

from learning information from the encrypted data, the cloud can gain information

from the users' access patterns. This problem was first addressed in [42], where

Private Information Retrieval (PIR) was proposed as a primitive for accessing data

from a database without the database learning any information about the retrieved

item. However, PIR solutions introduce high computational complexity. Researchers

have been working on improving the communication complexity of PIR schemes [43,

44, 45, 46] but have not yet found efficient protocols that are applicable to current

cloud storage systems.

2.1.2 Availability

Current cloud storage systems are often implemented with complex, multi-tiered dis-

tributed systems on clusters of multiple commodity servers and disk drives. Data

unavailability can be caused by failures in any of these layers, such as software bugs,

crashes, system planned and unplanned reboots, hardware failures, and power loss

events [47]. For example, Amazon S3 experienced an over seven-hour downtime in

2008 [48]. Gmail outage [49] is another example.

Data backup, recovery, and some redundant data storage are needed to reduce the

probability of any type of data loss. In distributed file systems, data is divided into
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chunks and spread across servers with redundancy to tolerate a fraction of servers'

failures and support data recovery. Existing works use two types of redundancy

schemes: replication [50] and erasure encoding techniques [51, 52, 53].

A number of works focus on proving retrievability of outsourced data, allowing

storage servers to provide availability and integrity guarantees [54, 55, 56]. Juels

and Kaliski first proposed the notion of proofs of retrievability (POR) [54]. A POR

is a challenge-response protocol that enables a storage provider to prove to a client

that a target file is intact, i.e., recoverable without any loss or corruption, with high

probability. The basic idea is that a user first encodes some additional information

with the file before the file is sent to the server. Then, the user can verify the integrity

of the file by challenging the server for a set of data blocks within the file and checking

the encoded information from the server's response. In HAIL [52], the POR scheme

is combined with data replication and further extended to work on multiple servers.

Note that the POR scheme is used for verify the integrity of the user's own data and

is not suitable for a multi-client setting.

2.1.3 Integrity

Cloud users no longer have physical possession of data when they outsource the data

to storage providers. Therefore, an efficient scheme is required to assure the users

that their data stored at remote servers has not been corrupted. This scheme should

only allow the authorized users to modify the stored data. Any modification from

unauthorized users or storage providers should be detected.

To detect unauthorized data modification, cryptographic hashes, message authen-

tication codes (MACs), and digital signature schemes are commonly adopted in cur-

rent systems [23, 31, 22]. In addition, a fine-grained access control is needed to

separate the writers from the readers in the same file. For example, in Plutus [31],

each file is associated with a public/private key pair to differentiate read/write access.

For each file, a private key (referred as a file-sign key) is handed only to the writers,

while the readers have the corresponding public key (referred as a file-verify key).

When updating the file, an authorized writer recomputes the hash of the file (which

is the root hash calculated from the block hashes using the Merkle tree technique

[57]), signs the hash using the file-sign key, and places the signed hash in the header
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of the file. Then, readers can check the integrity of the file by using the file-verify key

to verify the signed hash.

2.1.4 Freshness

Freshness verification of outsourced storage is a challenging problem, especially when

serving a large number of clients. When a client issues a read request to a cloud

server, he or she cannot detect the server's misbehavior using the signature verification

scheme mentioned earlier if the server performs a replay attack by maliciously sending

the stale data with a valid signature from an authorized user. This kind of attack

can cause freshness violations.

In a single-client setting, a replay attack can be detected if the client is aware

of the latest operation he or she has performed. Cryptographic hashes can be used

to guarantee both integrity and freshness. A naYve approach is to store a hash for

each memory block in the client's local trusted memory and verify the retrieved data

against the corresponding hash value. For large amounts of data, tree-based struc-

tures [57, 58, 59] have been proposed to reduce the memory overhead of trusted

memory to a constant size. In tree-based approaches, the tree root represents the

current state of the entire memory, and it can be made tamper-resistant and guaran-

teed to be fresh if stored in trusted memory. The trusted memory can be the client's

local memory in this case. For example, the Merkle tree technique [57] is commonly

used in outsourced file systems, such as [60] and [61], to reduce the storage overhead

at the client-side to a constant. In our design, we also apply the Merkle tree technique

but store the root hash securely at the server-side.

In a multi-client system, ensuring freshness is more difficult. In a group collab-

oration scenario, a cloud server can maliciously prevent each group member from

finding out the other has updated the data by showing each member a separate copy

of data. This kind of replay attack is also called a forking attack, which was first

addressed by Mazi~res and Shasha in [62, 631. Figure 2-1 describes a simple forking

attack example. Suppose user A and user B are sharing a file and each modifies the

file in turn. The server stores a complete history of all operations performed by A

and B. Each operation is attached with a signature (o-) of this current operation and

the complete history of the previous operations. The signature is signed by the user

23



History of operations

Server's view: Write Read Write Read Write Read
(real history) aA CB GB CA CA A

User A's view: Write Read Write Read Write Read
CA 08 B CA CA CA

r B' Write Read Write Read
User B's view:

CA GB CB CA

Figure 2-1: A forking attack example

who performs this operation. The user first downloads the complete history from the

server, validates the latest signature for each user, and checks whether his or her last

operation is in the history. If the history is valid, the user appends the new oper-

ation to the history, signs the new history and sends it to the server. In this way,

each user is always aware of his or her own previous operations. However, the server

can still lie to the users. For example, in Fig. 2-1, the server hides A's second write

operation and sends an old history to B. B signs the new read and write operations

without detecting the server's misbehavior. After this, A requests a read operation.

The server cannot send A the history that contains the two new signatures from B,

because these signatures enable A to figure out that B did not see A's previous oper-

ation. Therefore, once the server starts to lie, it must ensure that the users can only

see divergent histories and cannot see each other's operations again; otherwise, the

users can detect this misbehavior.

Mazieres and Shasha introduced the forking consistency condition in [63], showing

that a forking attack can be detected unless clients cannot communicate with each

other and can never again see each other's updates. The SUNDR system [10] was

the first storage system using forking consistency techniques on an untrusted server,

and there were subsequent fork-based protocols, such as [64] and [65]. User-to-user

communication is required to detect server misbehavior: for example, FAUST [111 and

Venus [12] allowed clients to exchange messages among themselves. To improve the

efficiency, FAUST weakened the forking consistency guarantee, and Venus separated

the consistency mechanism from storage operations and operated it in the background.

Two recent systems, Depot [13] and SPORC [14], further supported disconnected
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operations and allowed clients to recover from malicious forks. In addition to storage

services, forking consistency has been recently applied to a more general computing

platform [66].

Software solutions mentioned above assured totally untrusted servers and relied

on end-to-end checks to guarantee integrity. Although some software solutions can

detect and even recover from servers' malicious forks, they require communication

among clients and cannot detect attacks immediately. Attaching an additional trusted

component to the system can solve this problem.

To ensure trustworthiness, critical functionality is moved to a Trusted Computing

Base (TCB). The Trusted Platform Module (TPM) [19], a low-cost tamper-resistant

cryptoprocessor introduced by the Trusted Computing Group (TCG), is an example

of such trusted hardware. Since the TPM became available in modern PCs, many

researchers have developed systems that use the TPM to improve security guarantees.

Attested append-only memory (A2M) proposed by Chun et al. [15] provided the

abstraction of a trusted log that can remove equivocation and improve the degree of

Byzantine fault tolerance. Van Dijk et al. used an online untrusted server together

with a trusted timestamp device (TTD) implemented on the TPM to immediately

detect forking and replay attacks [17]. Levin et al. proposed TrInc [16], which is a

simplified abstraction model and can be implemented on the TPM. In both TrInc

and TTD, monotonic counters were used to detect conflicting statements sent from

the untrusted sever to different clients. But, unlike TrInc, in which each user is asked

to attach a trusted component to his computer, TTD is at the server side to manage

counters for multiple clients.

In our system, we also placed the trusted components at the server side to imme-

diately detect forking attacks as well as to minimize the clients' workload. However,

today's trusted hardware is slow, which affects the throughput and latency of the

whole system. To solve this problem and enhance efficiency, as suggested in [18], we

split the TCB's functionality into a P chip with high throughput and an S chip with

secure NVRAM. As a result, we can significantly reduce overheads caused by secu-

rity checks on trusted hardware. More importantly, we can increase the capabilities

of trusted storage systems, e.g., the number of clients and bandwidth, significantly

beyond [17, 16].
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2.2 Trusted Hardware

Hardware-based security models use trusted hardware as root of trust, providing

stronger security guarantees compared to software-only approaches and simplifying

software authentication schemes. As mentioned in the previous section, in order to

guarantee data freshness and consistency when multiple cloud users are involved, a

piece of trusted hardware is required to immediately detect forking attacks. This

piece of trusted hardware is used as the trusted computing base (TCB). The concept

of a TCB is defined in [67]: the TCB consists of all system elements that are critical

for the security of the system and needed to be trusted to protect computation or

storage. System elements not included in the TCB need not be trusted to maintain

security guarantees. The TCB, which may include hardware, firmware, and software,

should be as simple as possible and consistent with the functions it is required to

perform. In this section, we introduce some related trusted hardware and the S-P

chip model [18] that can be used as a TCB for the system.

2.2.1 Smart Card

A smart card [681 is a microcontroller, embedded in a credit-card-sized plastic card

with a set of metal contacts or an antenna, which provides a secure platform for

storage, authentication, and cryptographic operations (e.g., encryption, decryption,

and digital signing) at low cost. Smart cards can be classified into two groups that

differ in both functionality and price: memory cards for storage and processor cards

for security applications. In addition, there are two data transmission methods: con-

tact smart cards accessed through smart card readers, and contactless smart cards

accessed through an RF interface. The ISO/IEC 7816 family of standards specify the

fundamental properties and functions of smart cards, such as the physical shape, num-

bers of electrical contacts, voltages accepted by the contact points, clock frequency

(1-5 MHz), and data transmission protocols. Due to chip-area and cost restrictions,

computational and storage resources in a smart card chip are limited. Therefore, it

is difficult to use a smart card chip for high-complexity applications.

The key component of a smart card is the embedded microcontroller under the

contacts. Figure 2-2 shows the architecture of a smart card microcontroller. It consists
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Figure 2-2: Smart card microcontroller architecture

of a processor (CPU) surrounded by data buses, functional blocks, and various types

of memory (RAM, ROM, and EEPROM/flash). The ROM stores the chip's operating

system fixed at manufacturing time, and the RAM is the processor's working mem-

ory. The EEPROM, the smart card's non-volatile memory, provides a small amount

of secure and tamper-resistant storage for the user's data such as certificates and

private keys, but it has some limitations such as a limited number of write/erase cy-

cles (around 10'-106) as well as relatively long write/erase times (around 1 ms/byte).

Some smart cards use flash memory (with 10' write/erase cycles) instead for their

non-volatile storage. In recent smart card standards, a USB interface is specified as

the new I/0 interface for high data transmission rates (12 Mbit/s for recent smart

cards). In addition, the smart card CPU ranges from a simple 8-bit CPU to a 32-bit

RISC architecture, depending on the application and the required processing power.

For example, SLE 88CFX4001P, a smart card design in 0.13 pm CMOS technology

and released in 2011 for highly secure applications, digital signatures, and access

control [69], has a 32-bit RISC CPU, 400 kByte flash, 16 kByte RAM, and a 1 MHz-

10 MHz clock, providing 3DES, RSA (up to 2048-bit), and ECC functionality. The

semiconductor technology currently used for the fabrication of smart card microcon-

trollers lies in the range of 0.18 pm to 90nm.

2.2.2 Trusted Platform Module (TPM)

The Trusted Platform Module (TPM) [19] is a widely available, low-cost, and tamper-

resistant cryptoprocessor that resides in most PCs. The TPM, specified by the
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Figure 2-3: TPM component architecture

Trusted Computing Group (TCG), is designed for secure key generation, crypto-

graphic operations, sealed storage, user authentication, and remote attestation of the

platform status. Figure 2-3 represents the architecture of a TPM chip, which is usu-

ally mounted on the motherboard of a computer and connected to the system via

the Low Pin Count (LPC) bus. A TPM chip consists of some non-volatile memory

storing cryptographic keys and authorization data, some volatile memory, some cryp-

tographic engines, the platform configuration registers (PCRs) recording the current

state values, and a small number of monotonic counters.

Trusting the TPM

During manufacturing time, an endorsement key pair (EK = (PubEK, PrivEK)) is

generated and stored in the TPM's non-volatile memory, and the endorsement pri-

vate key (PrivEK) is never exposed outside the TPM. The manufacturer gener-

ates the endorsement certificate to certify that EK is unique, securely generated

and stored in the TPM. A pair of asymmetric keys called attestation identity keys

(AIK = (PubAIK, PrivAIK)) is generated in the TPM and certified by the privacy

CA to represent EK. The attestation identity private key (PrivAIK) is protected by

the TPM and never exposed. Due to privacy concerns, PrivAIK instead of PrivEK

is used as the TPM's signing key to sign the messages that are generated inside the

TPM such as the PCR values or the keys generated inside the TPM. The signing key
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PrivAIK can be trusted because it is securely generated, verified, and stored inside

the TPM. The message signed by PrivAIK can be protected from tampering and

therefore can also be authenticated.

TPM Limitations

One primary goal of a TPM is to assure the integrity of the whole platform by

the authenticated boot process. The TPM, together with the BIOS, forms a root

of trust and proves to a third party that only an unaltered trusted OS is loaded

during the boot process and is running on the PC that the TPM is bound to. The

authenticated boot process has been used to allow web-servers [70] and peer-to-peer

systems [71] to provide stronger security guarantees. However, this authenticated

boot process cannot prevent bugs in the authenticated software and is vulnerable to

physical attacks because the LPC bus, which connects the TPM to the host computer,

is not completely secure. As a result, researchers have reduced the TCB to only a

single TPM chip without the trusted software [17, 16]. However, the TPM also

limits system performance, because it has limited computational capabilities and is

connected to the host computer via the slow LPC bus, which is a 4-bit wide bus

running at only 33.3 MHz clock frequency.

2.2.3 S-P Chip Model

Trusted hardware designed for secure storage applications requires NVRAM for long-

term storage as well as control logic, data transmission logic, and cryptographic en-

gines for encryption, decryption, or authentication. However, it is difficult to achieve

high-performance computation while keeping cost low by combining all the building

blocks on a single chip, because the process for the NVRAM and the process for

high-performance computational logic are different. Combining two processes on a

single chip is not practical due to high complexity and low wafer yield, while under an

NVRAM-only process, the transistors are much slower than that in the regular CMOS

process. To avoid this problem, Costan et al. proposed the concepts of splitting the

functionality of the TCB into two chips: a P (processing) chip with high computing

power but only volatile memory, and an S (state) chip with secure non-volatile mem-
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Figure 2-4: S and P chip functional units

ory (NVRAM) [18]. Figure 2-4 shows the functional units of a P chip and an S chip.

The P chip and S chip should be securely paired in order to serve as a single TCB.

A Physical Unclonable Function (PUF) is used to bind the P chip to the S chip. We

first introduce the PUF, and then describe the pairing scheme.

Physical Unclonable Function (PUF)

A Physical Unclonable Function (PUF) is a function that is embodied in a physical

structure and maps a set of challenges to a set of responses [72]. The mapping is

static but random, and it should not be replicable. PUFs can be easily implemented

with integrated circuits (ICs): no two ICs even with the same layouts have identical

timing and delay responses due to the manufacturing process variations.

Suh and Devadas discussed how to use PUFs for low-cost authentication of ICs

and for cryptographic key generation [73]. Figure 2-5 shows how to use PUFs to

generate volatile cryptographic keys. In the initialization step, an error correcting

syndrome is generated from the PUF circuit output, using functions such as a BCH

code. The syndrome is public information, and it needs to be saved, either on-chip or

off-chip. In the re-generation step, the syndrome is used to correct any changes in the

PUF circuit output so that the PUF can re-generate the same output as the output

generated in the initialization step. This output can be directly used as a symmetric

key, or it can be used as a static but random seed to an asymmetric key generation

algorithm.
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Figure 2-5: Cryptographic key generation with PUFs

S-P Pairing Scheme

The S and P chips are securely paired via an untrusted channel at manufacturing

time. The pairing relies on a PUF on the P chip to generate a symmetric key. The

key generation process is the same as Fig. 2-5. The symmetric key is shared and stored

in the S chip's NVRAM. The syndrome for re-generating the same PUF output (and

re-generating the P chip's symmetric key) is stored in plain text and requires an

integrity check during a future booting process.

The pairing scheme is described as follows:

1. The P chip uses its on-chip PUF to generate a symmetric key SK and a syn-

drome ECC.

2. The S chip generates an endorsement key pair (PubEK, PrivEK), stores the key

pair, and outputs PubEK.

3. The manufacturer signs PubEK, generates ECert, and sends ECert (containing

PubEK) to the P chip.

4. The P chip verifies ECert by checking the manufacturer's CA key against the

key in its ROM, then encrypts SK with PubEK.

5. The P chip outputs encrypted SK, ECC, and HMACsK(ECC).

6. The manufacturer stores ECC and provides the P chip's output to the S chip.

7. The S chip decrypts the encrypted SK with PrivEK and stores SK in its

NVRAM. Then, the S chip uses SK to verify HMA CSK(ECC), and outputs
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the signature of ECC, JPrivEK(ECC), if the verification is successful.

8. The manufacturer packages the S and P chips with the public state: ECert,

ECC, and UPrivEK(ECC).

Note that the manufacturing process requires integrity guarantees in the channel

between the S chip and the manufacturer for issuing the endorsement key certificate

ECert, similar to the TPM model. The channel between the S chip and P chip can

be completely untrusted.

During manufacturing time, the S chip generates (PubEK, PrivEK) and then

stores PrivEK as well as the P chip's symmetric key SK in its NVRAM. After the S

and P chip are securely paired, this chip pair can be attached to the cloud server and

serve as a single TCB to store the system state. When the cloud server boots, the P

chip re-generates its symmetric key SK, and the system state as well as PrivEK are

transmitted from the S chip to the P chip. The boot process is described as follows:

1. The server presents ECert, ECC, and UPrivEK(ECC) to the P chip.

2. The P chip verifies ECert against the key in its ROM, verifies ECC against

UPrivEK(ECC) using PubEK in ECert.

3. The P chip re-generates SK if the verification is successful.

4. The P chip generates a boot nonce n, outputs n and HMACSK(n).

5. The server provides the P chip's output to the S chip.

6. The S chip verifies n against HMACSK(n), then outputs the system state s,

PrivEK encrypted under SK, and HMACSK (s n).

7. The server presents ECert and the S chip's output to the P chip.

8. The P chip decrypts the encrypted PrivEK using SK, checks that PrivEK

corresponds to PubEK, checks s against HMA CSK (s n), and stores PrivEK

and system state s in its RAM.

32



2.3 Memory Authentication Techniques

Memory authentication can be defined as the ability to verify that the data read from

memory at a given address is the data written most recently at this address [74]. In

order words, memory authentication is used to verify integrity and freshness of the

data stored in the memory. Integrity trees are commonly used for memory authen-

tication [57, 58, 59]. The general concept of these tree-based methods is to split the

memory to be protected into multiple equal-sized blocks, then apply a function f
called the authentication primitive to each memory block to generate the leaf nodes

of a balanced A-ary integrity tree. The remaining tree levels are created by recursively

applying f to the A-sized groups of tree nodes starting from leaves until a single node,

the root of the tree, is generated. The root node captures the current state of the

memory space. The root node needs to be stored in the trusted memory to protect

against replay attacks or data corruption, while other tree nodes can be stored in

the untrusted memory, which is larger and cheaper. The root node is made tamper-

resistant by being stored in the trusted memory; therefore, any data corruption in

the memory space can be detected by the tree authentication procedure.

Tree Authentication Procedure. To authenticate a memory block fetched

from untrusted memory, the root node is recomputed by recursively applying f to

the tree nodes (stored in untrusted memory) on the path from the corresponding

leaf to the root together with their siblings. If the memory block and all the tree

nodes used in re-computation were not tampered with, the recomputed root node

must match the one stored in the trusted memory.

Tree Update Procedure. Each time a memory block is modified, the root node

should be updated to reflect the change in the state of the memory space. When the

memory block is modified, the tree nodes on the path from the corresponding leaf to

the root together with their siblings should be first verified by the tree authentication

procedure. Then, the leaf node is updated by applying f to the modified memory

block, and all the nodes on the path (including the root node) are also recomputed

using f. The root node is stored back in the trusted memory, and the rest of the

nodes that have been updated are stored back in the untrusted memory.
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Figure 2-6: A Merkle tree example for a disk with 8 blocks

2.3.1 Merkle Tree

In our prototype system, we built a Merkle tree [57] to authenticate the disk space.

Merkle trees were first introduced by Merkle [57], and Blum et al. used it to check

integrity of memory contents [75]. In a Merkle tree, the authentication primitive f is a

cryptographic hash function. Figure 2-6 gives an example of a binary Merkle tree over

8 memory blocks, whose leaves are hashes of memory blocks, and internal nodes are

hashes of their children. The Merkle tree authentication and update procedures follow

the general procedures described above. The Merkle tree's root hash represents the

current state of the memory space because of the hash function's collision resistance

property, i.e., any bit change in the memory space produces a different root hash in

practice.

2.3.2 Integrity Tree Caching

In the original tree-based schemes, only the root node is stored in trusted memory.

The direct implementation introduces large overhead in terms of memory bandwidth

and execution time, because each time a memory block is authenticated, all the tree

nodes on the path from the corresponding leaf to the root together with their siblings

need to be read from external memory and checked by recursively executing the

authentication primitive f. To improve efficiency, Gassend et al. proposed to cache

some tree nodes in trusted memory [76]. They demonstrated the concept by storing

some tree nodes of a binary Merkle tree in the on-chip L2 cache, assuming the on-chip
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cache is trusted. The main idea is that once a tree node is authenticated and cached

on-chip, it can be seen as a local tree root. Therefore, the authentication procedure

can be ended as soon as it reaches a cached tree node, reducing the original log N

overhead in terms of memory bandwidth and execution time, where N is the number

of memory blocks.
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Chapter 3

System Design

3.1 Design Goals

To build a practical cloud storage system that can immediately detect integrity and

freshness violations, our system design should achieve the following goals:

1. Integrity and freshness guarantees: any integrity or freshness violations such as

unauthorized writes or forking attacks should be immediately detected by our

system or by the clients.

2. Simple tasks done by clients: data checking and management done by clients

should be simple. Communication between clients is not required except for

initially sharing keys used for write access control.

3. Simple API: the API between the server and its clients should be simple. Each

read or write operation requires only one request /response transaction. The

clients should be separated from the back-end of the system so that any future

modification of the system will not change the API.

4. Minimal local storage: the storage requirement at the client side should be

minimal. This would be beneficial for thin clients.

5. Acceptable overhead: our system should maintain high performance despite

adding integrity and freshness guarantees. The performance overhead should

be acceptable compared to the cloud systems without these security guarantees.

37



6. Acceptable cost: to achieve above goals, our system should not add too much

cost to storage providers compared to the existing hardware-based solutions.

7. Customized solutions: based on our prototype system, storage providers should

be able to adjust their systems according to the performance and cost trade-off.

3.2 System Overview

To build a trusted cloud storage system that efficiently guarantees integrity and fresh-

ness of the data stored on the cloud, we attach a piece of trusted hardware to an un-

trusted server and use the S-P chip model mentioned in Section 2.2.3 as the trusted

hardware; that is, the functionality of the trusted hardware is split into S and P chips.

The P chip, which can be an FPGA board or an ASIC, has high computing power

but only volatile memory, while the S chip, which can be a smart card, has secure

NVRAM but only constrained resources.

Figure 3-1 represents the system model. For simplicity, we make the assumption

that a single-server system provides its clients with a block-oriented API to access a

single large virtual disk. The clients access the cloud storage service via the Internet;

the untrusted server is connected to the disk and the trusted S-P chip pair. To

access/modify the data stored on the cloud, the clients send read/write requests, wait

for the responses, and use the responses to check data integrity and freshness. The

untrusted server schedules requests from the clients, handles disk I/0, and controls the

communication between the P chip and S chip. On the other hand, the S-P chip pair

shares a unique and secret HMAC key with each client, and thus essentially becomes

an extension of the clients. The S-P chip pair is trusted to update and store the

system's state, manage write access control, verify data integrity, and authenticates

the responses sent to the client using the HMAC key. More specifically, the P chip

does all sensitive computations and verifications and stores the system's state when

the system is powered; the S chip is responsible for securely storing the system's state

across power cycles. This scheme simplifies the computation and verification that

need to be done by clients in software-based solutions, and abstracts away the design

and implementation details and complexity.
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Figure 3-1: System model

3.2.1 Threat Model

In our simplified system model shown in Fig. 3-1, there is one cloud server, one

large disk, one S-P chip pair, and multiple clients. The cloud server is untrusted;

it may answer the clients' read requests with stale or corrupted data. Furthermore,

the cloud server may pretend to be a client and overwrite the client's data. The

disk is vulnerable to attackers and hardware failures, so the data stored on the disk

may not be correct. The connections between the cloud server and the other system

components (the S-P chip pair, the disk, and the clients) as well as the communication

between the S and P chips are also untrusted. Any message traveling on these channels

may be altered to an arbitrary or stale value. A client is trusted with the data he/she

is authorized to access, but the client may try to modify the data outside the scope

of his/her access privilege.

3.2.2 Chain of Trust

The S chip and P chip are securely paired during manufacturing time and thus can

be seen as a single TCB. The details of the S-P chip pairing procedure is described

in Section 2.2.3. Similar to the TPM model described in Section 2.2.2, we use the

S-P chip pair as the root of trust and establish the chain of trust, allowing clients to

trust the computation and verification performed by our storage system.

During manufacturing time, the P chip generates a symmetric encryption key

SK; the S chip generates an endorsement key pair (PubEK, PrivEK) and stores the
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P chip's SK. The manufacturer, who can be seen as a CA, signs PubEK and produces

the endorsement certificate (ECert) to promise that PrivEK is only known to the

S-P pair. After the two chips are securely paired, the P chip re-generates SK, and the

S chip uses SK to share the system's state as well as PrivEK with the P chip. When

a client connects to the cloud server, (ECert) is presented to the client, and the CA

key is verified by the client's software against a list of trusted CAs. If the verification

is successful, which means PubEK can be trusted, the client can secretly share an

HMAC key with the S-P chip pair attached to the server by encrypting the HMAC

key under PubEK. The S-P chip pair can then use the HMAC key to authenticate

the response messages sent to the client.

In this work, we also provide a single chip solution where the S chip and P chip

can be integrated into an ASIC. This chip can be viewed as a smart card running at a

higher frequency with additional logic for data hashing. The detailed specification is

described in Section 5.3.2. In this solution, the S-P chip pair becomes a single chip, the

communication between the S and P chips becomes on-chip and thus can be trusted.

Therefore, the pairing scheme is not required. This single chip also generates an

endorsement key pair (PubEK, PrivEK) and a symmetric encryption key SK during

manufacturing time, and follows the same chain of trust model described above.

3.3 Notation

Table 3.1 lists the symbols used to describe our design concepts and protocols.

3.4 System Essentials

We implement a prototype system to prove practicality of the concept of splitting

the TCB into two chips, to analyze performance factors, and to further customize

solutions for performance-focused and budget-focused cloud storage providers based

on our evaluation.

Figure 3-2 represents our prototype system architecture, which consists of two

parts: an untrusted server with an untrusted disk, and a trusted pair consisting

of an S chip and a P chip. In this section, we introduce the characteristics of our
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Table 3.1: Notation

Notation Description
PubEK the public key of the endorsement key pair
PrivEK the private key of the endorsement key pair

ECert the endorsement certificate
SK the symmetric key generated by the P chip

ECC the syndrome used to re-generate SK

0~PrivEK (ECC) the signature of ECC

Hx the hash value of X

{M}K the encryption of message M with the encryption key K
HMACK(M) the HMAC of message M generated by the key K

the message type used to indicate that a message is sent from X to Y,
MTXYN where X and Y can be C (client), P (the P chip), or S (the S chip),

and N is a number that indicates the sub-type of the message
n nonce
s the system's state, which is the root hash in our system

Sid the session ID

Sc the session cache entry used to store a session key (Skey)

Skey the HMAC key (session key) shared between a client and the S-P chip
Pkey the processed key, an HMAC key encrypted under SK, {Skey}SK
Wkey the write access key associated with a data block

Vid the revision number associated with a data block
W WkeylI V id, the write access information

data the data of a data block
Bid the block number of a data block
Nid the node number of a tree node (in BFS-traversal order)
leaf the value of a Merkle tree leaf node, which is also called a leaf hash

leafarg the argument of a leaf hash (Hdata Vid H Wkey)
V the valid bit of a tree cache entry
L the left child valid bit of a tree cache entry
R the right child valid bit of a tree cache entry
C the tree cache entry in which a Merkle tree operation is performed

Cp the parent tree cache entry in a VERIFY operation
CL the left child tree cache entry in a VERIFY operation
CR the right child tree cache entry in a VERIFY operation
H the value of a tree node

CpOld the parent tree cache entry of an evicted tree node

CPath the tree cache entries on an update path from a tree leaf to the root

Csib, the tree cache entries of the sibling nodes along an update path
LV the height of the Merkle tree

Hzero the leaf hash value of the initial Merkle tree

prototype system and how we achieve the security and performance goals mentioned in

Section 3.1. The detailed hardware techniques we used for performance enhancement

are discussed in Chapter 4.
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Figure 3-2: System overview

3.4.1 Memory Authentication

To verify the integrity and freshness of the data stored on the disk, we build a Merkle

tree [57], which is a binary hash tree described in Section 2.3, on top of the disk.

The hash function's collision resistance property allows the Merkle tree root, also

called the root hash, to represent the current state of the entire disk. The root hash

is calculated, updated, and stored in the S-P chip pair, so it can be trusted against

any corruption or replay attacks. The root hash is always fresh, and leaf hashes are

verified by the S-P chip pair to be consistent with the root hash and sent to the

clients in the response messages, which are authenticated using HMACs. Therefore,

a client can detect any data corruption or forking attack by verifying the received

data against the received leaf hash. In this scheme, there is no need to communicate

with other clients and check the consistency of the data.

To improve efficiency of the Merkle tree authentication, we let the P chip cache

some of the tree nodes. The caching concept is similar to what Gassend et al. pro-

posed in [76]: once a tree node is authenticated and cached on-chip, it can be seen as

a local tree root. While Gassend et al. use the secure processor's L2 cache, which is

on-chip and assumed to be trusted, to cache tree nodes, we cache the tree nodes on

the P chip and let the software running on the untrusted server OS (on a commodity

PC) control the caching policy. The caching policy is controlled by the untrusted

42



server instead of the trusted hardware because software can easily switch between

different caching policies to match the data access patterns requested by different

cloud-based applications.

In our prototype system, the entire Merkle tree is stored on the untrusted server.

The P chip's Merkle tree engine (shown in Fig. 3-2) updates the tree to reflect the

write operations and verifies the tree nodes to authenticate read operations. The

Merkle tree stored on the server is also updated during each write operation. The

P chip updates and stores the root hash when the system is powered; the S chip

maintains the root hash value across power cycles and sends it to the P chip when

the system boots. The P chip's Merkle tree engine is also responsible for computing

the first root hash when the disk is initially empty and the S chip has not stored any

root hash yet.

Under our Merkle tree caching protocol, the P chip caches tree nodes in its tree

cache. Each entry in the tree cache contains the cached node's node number, its

hash value, its valid bit (V) indicating whether the hash is verified to be correct or

not, and its child nodes' valid bits (L and R). The Merkle tree engine manages the

cached nodes according to the cache management commands sent from the server's

tree controller, which controls the caching policy.

There are three cache management commands: (1) the LOAD command asks the

Merkle tree engine to load a certain tree node and evict a cached node if necessary; (2)

the VERIFY command asks the Merkle tree engine to authenticate two child nodes

against their parent node; (3) the UPDATE command asks the Merkle tree engine

to calculate and update the tree nodes on a certain path from a leaf node to the

root. Note that these commands are sent from the untrusted server via an untrusted

connection, therefore, the P chip should do additional checks against each cache

management command to prevent attacks from violating the integrity and freshness

guarantees. If any check or any tree node verification fails, the Merkle tree engine

raises the integrity check signal and reports the error to the system manager. Table 3.3

has a more detailed description of the operations and checks done by the Merkle tree

engine for each command.
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Figure 3-3: HMAC key management protocol

3.4.2 Message Authentication and HMAC Key Management

As mentioned in the threat model, the connection between each client and the trusted

S-P chip pair is untrusted. To prevent message corruption or replay attacks, we create

an authenticated channel over the untrusted connection using the client's HMAC key.

A client's HMAC key should be kept secret, only known to the client and the S-P

chip pair. When sending a request, the client needs to send an HMAC along with

the request; similarly, the trusted S-P chip pair needs to generate an HMAC over its

response. When receiving a client's request, the P chip checks the request against the

HMAC from the client and rejects any invalid request. When receiving an HMAC

from the S-P chip pair, the client uses it to authenticate the read/write operation. A

more detailed description of how the S-P chip/the client generates and checks HMACs

can be found in Section 3.5, Table 3.2, and Table 3.3.

Figure 3-3 describes how we securely share the HMAC key between a client and

the S-P chip pair with minimal performance overhead even when the storage system

serves multiple clients. The communication between the client and the server is based

on a session-based protocol.

Each time a client connects to the server, the client first requests a session for

future communication. Each session has a unique HMAC key, so an HMAC key is

also called a session key. To share the HMAC key with the S-P chip, the client

encrypts the HMAC key with PubEK and sends the encrypted key along with the

44



request for the new session. When receiving the client's session-request, the server

assigns a new session ID to the client and forwards the encrypted key to the P chip.

The P chip can decrypt the encrypted HMAC key using PrivEK, which is only known

to the S-P chip pair. To eliminate the need for key transmission in future read/write

operations, the server stores HMAC keys in the encrypted version along with the

corresponding session IDs in its session table, and the P chip's session cache stores a

subset of the HMAC keys in plain text to reduce the number of decryption operations.

When the client issues a read/write request, the client simply sends the session ID

instead of the encrypted session key, and the server can find the corresponding key

using its session table. If the key is not cached on the P chip, the P chip will decrypt

the encrypted key sent from the server. To reduce the performance overhead when

handling read/write requests, we do not store the original encrypted key sent by the

client on the server; instead, we let the P chip generate the processed key by re-

encrypting the HMAC key using the P chip's symmetric key SK, because symmetric

key decryption is much faster than public key decryption.

3.4.3 Write Access Control

We let the S-P chip pair manage the write access control to ensure fresh writes and

prevent unauthorized writes from the server and clients. Under our write access

control, no unauthorized user or malicious server can overwrite a block without being

detected by the S-P chip pair or an authorized user. In addition, all writes are ensured

to be fresh; that is, an old write from an authorized user cannot be replayed by the

server. Note that we do not focus on read access control in our storage system, because

a client can prevent unauthorized reads by encrypting the data locally, storing the

encrypted data on the cloud, and sharing the read access key with authorized users

without changing the system design.

To manage a situation where a data block has multiple authorized writers, we

assume a coherence model in which each user should be aware of the latest update

when requesting a write operation. For example, considering the following operation

sequence on a certain block: "A read, B read, A write, B write", B should be informed

that A has updated the data. Under this coherence model, we achieve write access

control and fresh write guarantees as follows. To distinguish authorized writers from
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others, each set of blocks with the same authorized writers has a unique write access

key (Wkey), which is only known to the authorized writers and the S-P chip pair.

In addition, to protect data against replay attacks, each block is associated with a

revision number ( d), which increases during each write operation, and each leaf node

of the Merkle tree should reflect the change of the associated Wkey and Vid. In this

way, any change of Wkey and d in any data block would change the root hash, and

therefore cannot be hidden by the untrusted server. In the following paragraphs, we

describe this write access control scheme in more detail.

For each data block, in addition to the data itself, the server also stores the block's

write access information, which consists of the hash of the write key (HWkey) and the

revision number (Vid). To guarantee that the write access information stored on the

server is correct and fresh, we slightly modify the original Merkle tree by changing

the function used to compute each leaf node to reflect any change of the write access

information. The new formula to compute each leaf node is shown in Equation 3.1,

where H refers to the cryptographic hash function used in the Merkle tree. It is

similar to adding an additional layer under the bottom of the Merkle tree. Each leaf

node in the original Merkle tree now has three children: the original leaf hash (Hdata),

the write key (HWkey), and the revision number (Vid). We refer the children of each

leaf node to leafarg.

leaf = H(Hdata||Midj|Hwkey) = H(leafarg) (3.1)

Figure 3-4 describes the concept of how the P chip manages the write access

control, and the exact API is described in Table 3.2 and Table 3.3. When a client

reads a certain block, the server sends the latest revision number (Vid) along with

the original response. On the next write to the same block, the client encrypts the

write key (Wkey) and the new revision number (Vid+1) under the HMAC key (Skey),

then sends the encrypted message ({ W}Skey) as well as the hash of the new write key

(HWkey.) along with the write request. The new write key (Wkey*) is different from

the original write key (Wkey) only if the client wants to change the access information,

e.g., revoking a certain user's write access. { W}Skey can only be decrypted by the

P chip. The P chip first authenticates the access information stored on the server

by checking it against the verified leaf node. Then, the P chip checks the access

46



Server P chip

issue
rdraread {W}Skey = encskey(W) = encskey(WkeyI Vid+1)

leafarg = Hdata || Vid ||Hwkey
d SK d leafarg*= Hdata* 1 Vid+1| Hwkey*

issue _'ke,, data* leaf = H(leafarg)
write leaf* = H(leafarg*)

leaffarg, feif' {L"Skey

datak decrypt (WSkey
verify leaf
verify leafarg
check W

allow update(/eaf*)

- Vd+l, Ieaf*1

Figure 3-4: Write access control example

information provided by the client against the one stored on the server. If the write

keys are not consistent, the P chip rejects the write request directly. If the new

revision number provided by the client is not larger than the one stored on the server

by 1, the P chip sends the client the correct revision number (the one stored on the

server) to inform the client that some other authorized users have already updated

the block and the client's write request needs to be re-issued. If all verification is

successful, the P chip generates the new leaf value to reflect the change of the access

information and performs tree updates. In this scheme, only the users with correct

Wkey can increase the revision number and send a valid { W}skey. The server cannot

perform replay attacks because it cannot re-use { W}skey from an authorized user and

modify the revision number without knowing the user's Skey, and it cannot generate

a valid { W}Skey (using its own Skey) without knowing the correct Wkey. In addition,

the access information for each block (HWkey and Vd) is protected under the Merkle

tree scheme, so it can be guaranteed to be correct and fresh.

The write access control scheme described above is used after the client has gen-

erated a write key and stored Hwkey on the server. The P chip should be able to deal

with the first write to a data block if the write key of the block has not been yet

established since the system is initially set up. As described in Section 3.4.1, when

the disk is initially empty, each leaf node of the Merkle tree is assigned to a special
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value, and the P chip generates the first root hash based on this value. The P chip

does not check the access of the first write to each data block. After the first write,

the write key has been established, and the P chip starts to check subsequent writes

following the write access control scheme. In a real cloud storage case, when a client

requests to have a chunk of data blocks, the server can first establishes a write key

for these data blocks and shares the write key with the client. Then, the client can

overwrite the write key to prevent the server from modifying the data.

3.4.4 System State Protection against Power Loss

In our prototype system, while the S chip is responsible for storing the root hash,

which is the system's state, across power cycles, the P chip computes and updates

the root hash in its volatile memory (the tree cache), in which the data stored is

vulnerable to power loss. To prevent the server from maliciously or accidentally

interrupting the P chip's supply power and losing the latest system state, the P chip

should keep sending the latest root hash to the S chip and delay the write responses

to be sent to the clients until the latest root hash is successfully stored on the S chip.

When a client receives a write response, the system guarantees that the system state

that can reflect this write operation is securely stored in the NVRAM. Considering

that the S chip has long write times (around 1 ms/byte for smart cards as mentioned

in Section 2.2.1), in order to maintain high throughput of the system, the P chip

deals with new requests from the clients but stores the responses in an on-chip buffer

while waiting for the S chip's acknowledgement for successfully saving the root hash.

Figure 3-5 illustrates our root hash storage protocol. After a Merkle tree update,

the P chip generates an HMAC to authenticate the write operation, stores the HMAC

in the on-chip buffer instead of sending to the client immediately. When receiving a

getRootP() request from the server, the P chip sends the current root hash (s) and

a random nonce (n) to the server. Then, the server passes the information to the

S chip. While waiting for the acknowledgement from the S chip, the P chip keeps

working on clients' requests and generates responses (HMAC,, and HMA Cm). The

P chip stores the responses that are used to authenticate write operations or read

operations that access the same blocks written by buffered write operations. The

P chip releases the responses only if it receives a valid acknowledgement from the
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Figure 3-5: Root hash storage protocol

S chip indicating that the corresponding root hash has been successfully stored. In

the two-chip prototype system, the communication between the S chip and P chip is

untrusted. In order to securely store the current root hash back on the S chip, the P

chip sends HMACSK(MTPS1 |Is|In) along with the root hash and a nonce, and the S

chip uses HMACSK(MTsP I sI In) as the acknowledgement to protect against forging

and replay attacks, where MTps5 and MTSP1 are message types used to differentiate

between the HMACs sent by the P chip and by the S chip so that the server cannot

maliciously acknowledge the P chip. On the other hand, the communication between

the S and P chips becomes trusted in a single chip solution, and therefore the HMACs

for the root hash storage protocol are no longer needed.

3.4.5 Crash-Recovery Mechanism

Under our root hash storage protocol, when a client receives a write response, the

system guarantees that the root hash stored on the S chip reflects the client's write

operation. Even if the power of the P chip is maliciously or accidentally interrupted,

the server cannot perform replay attacks without being detected by the client. In this

section, we discuss how to guarantee that even if the server crashes (either accidentally

or maliciously), our system is able to recover from the crash; that is, the data stored

on the disk can be recovered to the state that is consistent with the root hash stored

on the S chip. This is essential for a robust storage system in order to maintain

service against crashes or unplanned re-boots.
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Figure 3-6: Crash-recovery mechanism

There are two possible scenarios in which the disk state is not consistent with the

root hash stored on the S chip after the server re-boots from a crash. One happens

when the the server crashes after the root hash is stored on the S chip but the data has

not yet been stored on the disk. The other one happens when the server crashes after

the data is stored on the disk but the corresponding root hash has not yet been stored

on the S chip. To prevent the first scenario, the server should first flush the data into

disk before it passes the root hash to the S chip, eliminating the possibility that the

root hash is "advanced" to the disk state. To recover from the second scenario, we

keep a request log on the disk where we save a snapshot of the Merkle tree and the

leaf arguments of each block (Hwkey, Vid, Hdata).

Figure 3-6 shows how the recovery scheme works. When the server sends a get-

RootP() request to the P chip and obtains the latest root hash (the ith root hash),

it flushes all the data into the disk, takes a snapshot of the current Merkle tree and

write access information for each block (the ith snapshot), and stores the snapshot

on the disk. After the data and the snapshot are stored on the disk, the server sends

the root hash (as well as the nonce) to the S chip, and continues to work on new

requests from clients. The Merkle tree and the access information stored in the RAM

are updated by new write requests. The information in each new write request except

for the write data (shown in Fig. 3-6) is stored in the request log on the disk. The

read request that reads the data from a write request in the request log is also stored.
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Algorithm 1 Recovery Procedure

1: procedure RECOVERSYSTEM

2: Re-boot the P chip
3: Ask the S chip to share the root hash (s) and PrivEK with the P chip
4: Reload the snapshot that contains the root hash (s) into RAM
5: i - 1, done a false
6: while i < N and done # true do > N equals the depth of the request log
7: Read request i from the request log
8: if Request i is a read request then
9: Re-perform request i

10: else
11: Read DBid from the disk
12: if Hash of DB, # Hdata then > Request i is newer than the disk state
13: done +- true > Recovery completes
14: else

15: Re-perform request i
16: end if
17: end if
18: i - i+1
19: end while
20: s, n +- getRootP() > Ask the P chip to return the latest root hash
21: Take a snapshot of the current Merkle tree and access information
22: Store the snapshot on the disk
23: HMA CSK(MTPSl llsIn) <- storeRoot(s, n) > Send the root hash to the S chip
24: Clear the request log
25: Send HMA CSK(MTSP| s| n) to the P chip, and the P chip releases all HMACs
26: end procedure

In short, the request log buffers all the requests whose responses are buffered by the

P chip. Note that we keep the previous snapshot on disk so that the system is able to

recover from a crash that happens after the server sends the root hash but before the

root hash is successfully stored. When the server receives the acknowledgement from

the S chip saying that the ith root hash is successfully stored, it clears all the requests

that are not newer than the ith root hash from the request log. Under this scheme,

the system is able to recover from the server's crash following the recovery procedure

described in Algorithm 1. After the server reboots, it re-boots the P chip and obtains

the stored root hash from the S chip. The server re-loads the snapshot that is con-

sistent with the S chip's root hash, and re-performs the requests in the request log

until the root hash is consistent with the disk state. In our recovery mechanism, we

assume that each write of a data block is atomic; that is, the file system guarantees

that writing the whole amount of data within one data block is not interrupted.
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3.5 Trusted Storage Protocol

In this section, we describe how the components in our system work together to

provide a trusted storage service. Table 3.2 shows the API between each client and

the server, and Table 3.3 describes how the server controls the S chip and the P chip

and how the two chips perform trusted storage and computation according to each

command from the server.

When the cloud server boots, the server's boot logic re-pairs the S chip and P

chip following the procedure described in Section 2.2.3. The server executes the

recovery procedure (see Algorithm 1) if the server re-boots from a crash. After boot

or recovery, the server is ready to provide a trusted storage service. When a client

requests a new session for future communication, the server assigns a new session ID

to the client and stores the client's HMAC key in the encrypted version as described in

Section 3.4.2. After the session is created, the client uses the session to communicate

with the cloud storage system, sending read/write requests to access/modify the data

stored on the cloud. Algorithm 2 and Algorithm 3 show how the system handles each

read and write request. The P chip obtains the client's HMAC key from its session

cache or from the encrypted version stored on the server. For a read request, the

server reads the data from the disk and asks the P chip to verify the Merkle tree

nodes and generate an HMAC to authenticate the read operation. As described in

Section 3.4.4, the P chip buffers the HMAC if the client tries to access the data that

is not yet reflected by the root hash stored on the S chip. For a write request, the P

chip checks the client's write access and only allows authorized users with a correct

revision number to update the Merkle tree (see Section 3.4.3). The server writes the

data into the disk and asks the P chip to send the latest root hash to the S chip. The

P chip buffers the HMAC for the write operation until the root hash is successfully

stored on the S chip. At the same time, the server stores the required information on

the disk as described in Section 3.4.5 so that the system is able to recover from an

accidental or malicious crash.
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;orithm 2 Read Operation

procedure READBLOCK(Sid, Bid, n, HMACskey)

Pkey <- sessionTable(Sid)
if session cache miss then

loadSession(Sc, Pkey)
end if
The P chip checks the client's request > See
The server rejects the invalid request
data - readDisk(Bid)
if tree cache miss then

The P chip LOADs required but uncached tree nodes
The P chip VERIFYs newly cached tree nodes

> To obtain Skey

checkReqR() in Table 3.3

> Read data from disk

end if

HMACSkey(MTPCO Bid |n| Hdata Vid) +- readCertify(Sc, n, C, leafarg)

return data, Vid, HMA Ckey(MTPCO|Bid |In Hdata| Vid)
end procedure

Algorithm 3 Write Operation

1: procedure WRITEBLOCK(Sid, Bid, n, data*, { W}Skey, HWkey*, Hdata*, HMACSkey)
2: Pkey <- sessionTable(Sid)
3: if session cache miss then
4: loadSession(Sc, Pkey) > To obtain Skey
5: end if
6: Hgdata* <- dataHash(data*)
7: The P chip checks the client's request > See checkReqW() in Table 3.3
8: The server verifies data* by checking Hgdata* against Hdata*
9: The server rejects the invalid request

10: if tree cache miss then
11: The P chip LOADs required but uncached tree nodes
12: The P chip VERIFYs newly cached tree nodes
13: end if
14: The P chip checks { W}skey > See checkWrite() in Table 3.3
15: if valid Wkey and valid Vid then
16: writeDisk(Bid, data*) > Write data to disk
17: HMA CSkey(MTPcillBid|n||Hdata*) <- The P chip UPDATEs the tree nodes
18: return HMACSkey(MTPC1||Bid|n||Hdata-)
19: else if valid Wkey then
20: return correct Vid, HMACSkey(MTPC2||Bid I|n|Vid)

21: else
22: return Invalid
23: end if
24: end procedure
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Table 3.2: API between client and server

Command Arguments and Operation Semantics

connect) 0 Args: None

Return: PubEK, ECert

Args: {Skey}PubEK

createSession() Return: Sid

Action: The server assigns Sid, calls processKey({Skey}PubEK) to obtain

Pkey, and stores (Sid, Pkey).

Args: Sid, Bid, n, HMACSkey(MTCPo||Bid||n)

Return: data, Vid, HMACSkey (MTPCO |Bid||n||Hdata| Vid)

Check: The client re-computes the hash of data, HIa, and checks H*ata

and Vid against HMACSkey(MTPco Bi|d n Hdata Vid).

Action: See Algorithm 2.

Args: Sid, Bid, n, data*, HMACSkey(MTCPl|Bidl|nlHdata-||Hwkey-),

writeBlock() Hdata*, HWkey*, { Wkey| Vid}Skey

Return: HMA CSkey(MTpc1|Bid |n||Hdata*) if successful write, or

Vid, HMACSkey(MTPC2 ||Bid n||Vid) if invalid Vid

Check: The client checks the received HMAC, and in addition, checks

Vid if the write is not successful.

closeSession() Args: Sd
Action: The server releases the corresponding entry in its session table.

Table 3.3: API between server and S-P chip

Command Arguments and Operation Semantics

Boot Process Commands (P Chip)

Args: ECert, ECC, cPrivEK(ECC)

genSK() Return: nonce(n), HMA CSK (MTpso ln)
Action: The P chip verifies ECert, checks ECC against oPrivEK(ECC),

and re-generates SK if the verification is successful.

reloadRootO Args: s, HMACsK (MTspo s IIn)

Action: The P chip clears its tree cache (if necessary), checks the given

root hash (s) against HMA CSK(MTsPo lIsIn), and stores s.
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Table 3.3: (continued)

Command Arguments and Operation Semantics

reloadKey() Args: {PivEK}SK, ECert

Action: The P chip decrypts {PrivEK}SK using SK, checks PrivEK

against PubEK, and stores PrivEK.

Args: Hzero, LV

Action: The Merkle tree engine initializes the tree root using the given

leaf hash (Hzero) and the tree height (LV). (Note: This com-

mand is issued when the system boots for the first time.)

Boot Process Commands (S Chip)

Args: n, HMACSK(MTPo||n)

getRootS() Return: root hash (s), HMA CSK (MTspol s| n)

Action: The S chip verifies the nonce (n) against HMA CSK (MTpso ln).
Args: None

getKey() Return: {PrivEK}SK

Action: The S chip encrypts PrivEK under SK.

Root Hash Storage (P Chip)

Args: None

get RootP() Return: s, n, HMA CSK (MTPs1 s n)

Action: The P chip stores the current root hash (s) and a nonce (n).

Root Hash Storage (S Chip)

Args: s, n, HMACSK( MTPs| s||n)

storeRoot() Return: HMACSK(MTSP1 s In)

Action: The S chip checks s and n against HMACSK(MTPs| s|rn),

stores s, and generates HMACSK(MTSP s n).

Request Check Commands (P Chip)

checkReqR( Args: S, Bid, n, HMACSkey(MTCPo IBid In)

Action: The P chip verifies Bid and n against HMA CSkey (MTCpo Bi|d n)

checkReqW( Args: Se, Bid, n, HMACSkey(MTCP1 Bidn Hdata* Hwkey*), Hdata*,

HWkey*

Action: The P chip verifies Bid, n, Hdata*, and HWkey* against HMA CSkey
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Table 3.3: (continued)

Command Arguments and Operation Semantics

HMAC Key Management Commands (P Chip)

Args: {Skey}PubEK

processKey() Return: Pkey (Pkey = {Skey}SK)

Action: The P chip uses PrivEK to decrypt the encrypted HMAC key

({Skey}PubEK), then uses SK to re-encrypt Skey and obtains the

processed key (Pkey).

loadSession() Args: SC, Pkey

Action: The P chip uses SK to decrypt the given processed key (Pkey)

and obtain the HMAC key (Skey). Then, the session cache stores

Skey in the given entry (Sc).

Data Hashing Command (P Chip)

Args: data

dataHash() Return: Hata

Action: The data hash engine calculates the hash value of data.

Write Access Control Command (P Chip)

Args: SC, { W}Skey, C, HWkey, Vid, Hdata

checkWriteo Action: The P chip verifies Hwkey, Vd, Hdata against the leaf hash

stored in the given tree cache entry (C). Then, the P chip de-

crypts {W}Skey and obtains Wkey* and Vi*. The P chip checks

H(Wkey*) against Hwkey and checks V* against Vid +1. (Note:

If the leaf hash equals the Hzero, then all checks are ignored.)

Check: The leaf node stored in C should already be verified.

Tree Cache Management Commands (P Chip)

Args: C, Nid, H, CPold

LOAD() Action: The Merkle tree engine loads the node number (Nid) and the

hash (H) of the new node into the given cache entry (C). If the

node being evicted is verified, the L or R bit stored in its parent's

cache entry (CPld) will be cleared to reflect the eviction.

Check: To avoid multiple caching of a single node, the evicted node

should not have cached children.
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Table 3.3: (continued)

Command Arguments and Operation Semantics

Args: Cp, CL, CR

VERIFY() Action: The Merkle tree engine checks the hashes in the given child en-

tries (CL and CR) with the hash in their parent entry (CP) and

sets the corresponding valid bits.

Check: The node in Cp should already be verified, and its L and R bits

should match the valid bits in CL and CR.

Args: CPath, CSibs, { W}Skey, Hdata-, SC, n, HWkey*

Return: HMA CSkey(MTPC1||Bid||n|Hdata*)

Action: The Merkle tree engine generates new leaf using Equation 3.1

and updates the tree nodes specified in CPath using leaf and the

sibling nodes specified in CSibs. Then, the Merkle tree engine

calls writeCertify(Sc, n, C, leafarg) to obtain the HMAC for the

write operation, and stores the HMAC in the on-chip buffer until

the root hash is stored on the S chip. (Note: writeCertifyo is

similar to readCertify() but called inside the P chip.)

Check: Hdata*, Hwkey*, and { W}Skey should already be verified by

checkReqW() and checkWriteo. CPath should form a valid up-

date path. Nodes stored in CPath and Csib, entries should be

verified.

Response Command (P Chip)

Args: Sc, n, C, leafarg

Return: HMACSkej(MTco| Bid |n| Hdata| Vid)
readCertify()

Action: The P chip reads the HMAC key (Skey) from its session

cache entry (Sc). Then, the Merkle tree engine reads the

leaf node out of the given tree cache entry (C), checks

Hdata and Vid in leafarg against the leaf hash, generates

HMA CSkey (MTPCO Bid In| Hdata| |Vid), and releases the HMAC

if the HMACs in the on-chip buffer do not have the same block

number (Bid).(Note: n signifies a nonce, and Bid can be derived

from Nid in C. )

Check: The tree node stored in C should already be verified.
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Chapter 4

Implementation

Our implementation focuses on performance, which is determined by the processing

time for each incoming request. The processing time is directly affected by the latency

and the throughput of the disk, the controllers on the server, the data hash engine

and the Merkle tree engine on the P chip, as well as by the connection between the

server and the P chip. On the other hand, the S chip and the P chip's boot engines

only affect booting time, and the P chip's session cache as well as its cryptographic

engines are assumed to introduce constant and negligible overhead. The root hash

storage protocol can be done asynchronously with normal write operations, so it has

no impact on throughput and only introduces constant latency overhead. In the write

access control scheme, the decryption and checks required on the P chip also can be

done in parallel with the data hashing operation and therefore introduce negligible

overhead. The recovery mechanism only has little memory bandwidth and storage

overhead, which is negligible compared to the data access and storage. To validate

the prototype system in an efficient way, we only implemented in hardware (i.e.,

the FPGA) the parts that are directly related to the processing time while using

software to simulate the functionality of the remaining parts. More specifically, in

our implementation and experiments (Section 5.2), we send back HMACs immediately

without waiting for the latest root hash to be stored on the S chip and the data to be

stored on the disk. We will discuss the overhead introduced by the root hash storage

protocol, the write access control scheme, and the recovery mechanism in Section 5.4.
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Figure 4-1: Block diagram of P chip

4.1 P Chip Implementation

We implemented the P chip on a Xilinx Virtex-5 FPGA, using Gigabit Ethernet to

connect with the server. As shown in Fig. 4-1, two computational logic modules,

the data hash engine and Merkle tree operation engine, are independent but share

a single Gigabit Ethernet I/O. Because these two engines are independent, they can

be executed in parallel. Asynchronous FIFOs are placed at the input and output

sides of each engine to parallelize the input data, received from the Ethernet receiver,

and to serialize the output data that is going to be sent to the Ethernet transmitter.

Table 4.1 shows a summary of the resources used by the P chip.

When receiving instructions from the server, the Ethernet receiver sends the in-

structions to the corresponding input FIFOs according to their types. Each engine
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Input Data Initial / Previous Hash Value

Figure 4-2: Four-stage pipelined SHA-1 engine

will start executing whenever its input FIFO becomes non-empty. Next, we describe

the implementation details of the two engines.

4.1.1 Data Hash Engine

The data hash engine is designed to generate the hash value for any given data

block. In our storage system, the data hash engine is used to verify the integrity of

data sent from a client. As described in Algorithm 3, the server asks the data hash

engine to re-compute the hash value of the data, and checks the re-computed hash

against the hash sent from the client. We implemented a hardware hash engine for

performance consideration. This hash operation can also be executed on the server

using a software hash function. We describe our software hash function in Section 4.2,

and the performance comparison can be found in Section 5.2.

We implemented SHA-1 [77], which is the most commonly used hash function,
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Entry Node Number Hash V L R
(C) (Nid) (H) V L_ R

0 1 321f... Y Y Y

1 2 ed20... Y Y Y

2 5 52cf... Y N N

3 4 be42... Y N N

4 3 345f... Y N N

5 7 21a0... N N N

6 6 ae2b... N N N

Figure 4-3: A tree cache example

mapping an input of arbitrary length to a 160-bit output. The basic core is a single

chunk SHA-1 hash engine, which accepts a 512-bit input message and generates the

160-bit hash output. Longer input messages should be divided into 512-bit message

blocks, also called chunks, and then be processed in order.

SHA-1 requires four data transformation rounds, each with a distinct non-linear

function applied 20 times in each round, resulting in 80 processing steps in total. Since

SHA-1 comprises four similar rounds, to improve the throughput, a pipeline stage is

assigned to each round as proposed in [78]. The resulting single chunk pipelined

SHA-1 engine is shown in Fig. 4-2.

4.1.2 Merkle Tree Operation Engine

The Merkle tree engine performs operations on the tree cache, according to the tree

cache management commands sent from the server's tree controller. The functionality

of each operation is described in the Section 3.4.1 and Table 3.3.

We implement the tree cache using the FPGA's block RAM. Figure 4-3 shows how

the tree cache stores the information of a tree node. As described in Section 3.4.1,

each tree cache entry (C) stores the cached node's node number, its hash value, and

three valid bits. The node number is assigned according to the BFS-traversal order,

starting at 1 from the root, so that the Merkle tree engine can easily determine the

relationship (the parent, the left child, or the right child) between two tree nodes. In

Fig. 4-3, the colored nodes (node 1-7) are stored on the tree cache, where the blue

ones (node 1-5) are verified and the green ones (node 6-7) are not verified yet.
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hi Operation Start Cycle End Cycle

h4= H(hsI|hs) 0 80
h2 h3 hs= H(h121h13) 20 100

h7= H(h141h15) 40 120

h4 hs h6 h7 h2= H(h4||h5) 80 160

h3= H(h61|h7) 120 200
h8 h9 hio hu hiz h13 h14 his hl= H(h2||h3) 200 280

(a) Update paths (b) Timing table

Figure 4-4: An example of updating four leaf nodes

To verify or update hashes of the cached tree nodes, we put an identical single-

chunk pipelined SHA-1 engine inside the Merkle tree engine. We also use this SHA-1

engine to generate the HMAC. To maximize the utilization of the embedded hash en-

gine, the Merkle tree engine can potentially process up to four VERIFYs, UPDATEs,

and HMAC operations (readCertify() or writeCertifyo in Table 3.3) simultaneously.

Note that under the root hash storage protocol (see Section 3.4.4 and Table 3.3), the

HMAC generation command for a write operation (writeCertify() should be called

inside the P chip. In Chapter 4 and Chapter 5, we separate writeCertify() from the

UPDATE command for convenience. We combine readCertify() or writeCertify() as

a single CERTIFY command that asks for HMAC generation, and the UPDATE

command only asks the Merkle engine to execute the tree update procedure.

Our system only supports instructions with multiple UPDATEs. This is because

the HMAC generation operation has little performance impact on the system, requir-

ing only one hash operation per client's request. Although the Merkle tree engine

does support multiple VERIFY operations, only nodes that are on the independent

paths can be verified together. In order to avoid dependencies, more complicated

software than currently implemented is needed to schedule the instructions across

multiple requests. On the other hand, each UPDATE command contains successive

hash operations from a leaf to the root. For instance, if we build a hash tree over a

1TB disk that is divided into 220 megabyte data blocks, each UPDATE consists of

20 successive hash functions. Moreover, it is easy for the software tree controller to

send multiple UPDATEs by collecting UPDATE commands from multiple requests

63



and sending them as a single instruction. Therefore, compared with the other two

operations, supporting multiple UPDATEs to improve the system's throughput is

most cost-effective.

Figure 4-4 gives an example of how combining multiple UPDATEs improves the

system's throughput. Suppose we need to update h8, h9 , h12 , and h15 . The update

paths are shown in Fig. 4-4a, each requiring 3 hash operations. Without supporting

multiple UPDATEs, we update one path at a time, and we need 3 x 80 x 4 = 960

cycles to complete all UPDATE operations. On the other hand, if we combine multiple

UPDATEs by utilizing the SHA-1 pipeline stages, we only need 280 cycles. Figure 4-

4b shows the detailed timing table for combining multiple UPDATEs. In addition, we

merge the hash operations performed by nodes that are siblings to avoid computing

hashes that will be overwritten soon. In our example, this reduces the number of

hash operations from 12 to 6, eliminating unnecessary power consumption.

4.1.3 Resource Usage Summary

Table 4.1 shows the summary of the resource used by the P chip.

Table 4.1: P chip implementation summary

Modules FFs LUTs Block RAM/FIFO
Data Hash Engine 4408 5597 0 kB

Merkle Tree Engine 4823 9731 2952 kB
Ethernet Modules 1130 1228 144 kB

Total 10361 16556 3096 kB

4.2 Server Implementation

We build the server on the Linux platform. As shown in Fig. 3-2, the data controller

handles disk accesses; the hash controller and the tree controller send commands

through the Ethernet controller, which is a Gigabit Ethernet interface, to control the

computation on the P chip. The server schedules all the operations, following the

trusted storage procedure described in Section 3.5, Algorithm 2, and Algorithm 3.
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Disk

Figure 4-5: Data controller

4.2.1 Data Controller and Request Handling Timelines

To speed up data access time, most operating systems have buffer caches, which store

a subset of the disk data in the RAM. The data read from the disk is stored in the

buffer cache until evicted; therefore, reading the same part of the disk in a short

period of time requires only one disk access. The data to be written to the disk is

first stored in the buffer cache, so the operating system- can handle the write from

the buffer cache to the disk in the background, without slowing down other running

programs.

In our prototype system, the data controller (see Fig. 4-5) handles data accesses

to/from one or multiple hard disks through the operating system. When handling

a read operation, the data controller reads the data from the buffer cache if there

is a cache hit; otherwise, the operating system first reads the data from the disk

and stores the data in the buffer cache. When handling a write operation, the data

controller first writes the data to the buffer cache, and the operating system writes

the data that are in the dirty state to the disk at a later time. To achieve parallel

execution, we put the data controller on another thread.

Figure 4-6a shows the timeline of a read operation. When receiving a read request,

the server reads the data from the disk or the buffer cache. At the same time, the

server sends the tree operation commands to the FPGA and asks the FPGA to

generate an HMAC for authentication. After the server receives the data and the

HMAC, the server sends the data and the HMAC to the client and starts to handle

the next request.

As described in Algorithm 3, when handling a write operation, the server should

first check the integrity of data sent from the client by re-computing the hash of data

and checking against the hash sent from the client before the server writes the data
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(a) Timeline of a read operation
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(b) Timeline of a write operation

Figure 4-6: Trusted storage timelines

to the disk. To minimize the system latency, we perform speculative writes; that is,

when the data hash engine is computing the hash value of the data, the server writes

the data into the buffer cache at the same time. If the verification fails, the data in

the buffer cache should be discarded. The operating system should be modified so

that it only writes data blocks that are verified to be correct to the disk. Figure 4-6b

shows the timeline of a write operation. When receiving a write request, the server

sends the data to the FPGA to compute the hash; at the same time, the server writes

the data into the buffer cache. After the server obtains the hash from the FPGA and

verifies the data, the server starts to send tree cache commands to the FPGA and

send the data to the disk. Since the disk write controlled by the operating system

can be done in the background, the server (as well as the FPGA) can start to handle

the next request once the server finishes writing the data to the buffer cache and

the FPGA finishes generating the HMAC. Therefore, in general, the disk write time

does not affect the system throughput. Under the root hash storage protocol and

crash-recovery mechanism, however, the disk write time affects the system latency

because the P chip buffers the HMAC until the data is stored on the disk (and the

66

FPGA



root hash is stored on the S chip). The disk write time may also affect the system

throughput if the P chip's on-chip buffer is full and forces the server to stop handling

new requests.

One of our main implementation goals is to evaluate the maximum throughput

that our system can achieve. The throughput and latency of the buffer cache can

be seen as the optimal performance we can achieve, since all data sent from the

server or sent from the disk must pass through the buffer cache. Note that the disk

read/write throughput can be increased by using smart caching policies, multiple

disks, or faster data storage devices such as SSDs. We assume that we have a perfect

caching scheme and a large enough number of hard disks so that the data access (read)

time is close to the RAM access time, and disk write time does not affect the system

throughput even under the root hash storage protocol and crash-recovery mechanism

but only introduces a constant latency. Therefore, to simplify our implementation

and evaluation, instead of measuring both the RAM and disk read/write time, we

only measure the data access time to/from the buffer cache. In our implementation,

instead of modifying the operating system, we allocate a RAM buffer in the data

controller (see Fig. 4-5) to store all the test data. The RAM buffer mimics the buffer

cache with a 100% hit rate, and the data controller controls the data access to/from

the RAM buffer. In addition, as mentioned in the beginning of this chapter, we

do not include the root hash storage protocol and the crash-recovery mechanism in

our implementation; that is, the FPGA does not buffer the HMAC until the data is

stored on the disk (and the root hash is stored on the S chip) but sends the HMAC

immediately to the client (see Fig. 4-6b). The overhead introduced by the root hash

storage protocol and the recovery mechanism is discussed in Section 5.4.

4.2.2 Hash Controller

When handling a write request, the hash controller packs the data block, which is

typically one megabyte long, into hundreds of Ethernet frames, and waits for the result

from the P chip. We also provide an alternative software hash function to generate

hash values for data blocks when hardware resources are limited. Note that replacing

the hardware hash function with software does not degrade the security level, because

the computed hash (H*,t, in Algorithm 3) is only used to verify the integrity of data
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sent from the client. The hash used to update the Merkle tree (Hdata- in Algorithm 3)

is included in the HMAC sent by the client, so this hash can be authenticated by the

P chip. If the server mis-computes H*ata* and allows the wrong data to be stored on

the disk, the inconsistency between the data and Hdata* can be detected by the client

on the next read to the same block.

4.2.3 Tree Controller and Request Queue

The tree controller maintains a Merkle tree over the disk and controls the caching

policy of the P chip's tree cache. The Least-Recently-Used (LRU) caching policy is

implemented. Additionally, the caching policy can be easily switched to other policies

to match different access patterns.

To support the P chip's pipelined data hash engine and the Merkle tree engine

that allows multiple UPDATEs, the server is also designed to process up to four

requests simultaneously. A request queue is set up to store incoming requests. The

server keeps checking the request queue and starts processing one or multiple requests

if it finds that the queue is not empty. Since hardware optimization techniques across

multiple requests are only used for handling write requests, the server takes up to

four requests at a time only when they are successive write requests.
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Chapter 5

Evaluation

This chapter evaluates the throughput and latency of our prototype system, using

synthetic benchmarks to simulate requests from the cloud clients. The performance

overhead introduced by providing integrity and freshness guarantees is also analyzed.

Finally, we study the effects of different architectural parameters on system perfor-

mance, and then provide suggestions on hardware requirements according to the cloud

storage providers' different demands.

Our experimental setup consists of an Intel Core i7-980X 3.33 GHz processor with

6 cores and 12 GB of DDR3-1333 RAM, which is used as the untrusted server, and

a Xilinx Virtex-5 XC5VLX110T FPGA board connected to the server via Gigabit

Ethernet. For the purpose of performance evaluation, we assume that there is a 1 TB

disk on the server and the disk is divided into 220 1 MB-long data blocks, which fixes

the depth of the Merkle tree at 20.

5.1 Throughput Estimation

To evaluate the throughput of our system, we first estimate the throughput of each

system component (see Table 5.1). Table 5.2 shows how we calculate the worst-case

throughput of the Merkle tree engine. The worst case happens when handling write

requests with an empty tree cache, because the maximum number of LOAD and

VERIFY operations are needed when there are no tree nodes cached, and UPDATE

is only needed when handling write requests. In our system settings, N equals 20,

69



Table 5.1: Throughput estimation

Component Estimated Throughput (MB/s)
Hard Disk (7200 rpm) 100
RAM (DDR3-1333) 10,240

Gigabit Ethernet 125
Server-P Chip Data Bus PCI Express x16 4,096

Data Hash Engine non-pipelined 100
pipelined 400

Merkle Tree Engine 37,650

Table 5.2: Merkle tree engine throughput estimation

Commands Throughput (block/s) # cycles operation # operations block
LOAD 125,000,000/2N 1 2N

VERIFY 1,562,500/N 80 N
UPDATE 1,562,500/N 80N 1
CERTIFY 1,562,500 80 1

Total 125,000,000/(162N+80) block/s

Operating frequency = 125 MHz
N = log 2 (total data blocks over the disk)

and each block represents 1 MB of data. Each component in the system can be seen

as a hardware pipeline stage. Therefore, to maximize the system's throughput while

efficiently utilizing hardware resources, the throughput of each component should be

balanced.

As mentioned in Section 4.2.1, all data sent from the server (for write operations)

or sent from the disk (for read operations) must pass through the buffer cache (the

RAM buffer in our implementation); therefore, the RAM limits the system's through-

put. In Table 5.1, except for the Merkle tree engine which already has much higher

throughput than the RAM, the throughput of other components (including the hard

disk) can be increased by using multiple engines or buses in parallel.

5.2 Experimental Results

To analyze the overhead introduced by our memory authentication scheme, we built

another system assuming that the server is trusted, which we refer to as Baseline.

Figure 5-1 illustrates the comparison of the two schemes' timelines for handling a

write request. In the baseline scheme, because of the trusted server assumption, all
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Figure 5-1: Timeline comparison of a typical write request

Table 5.3: Synthetic benchmarks

Benchmark Type Description
read only cont continuously read 2 GB data
read only period repeatedly read 256 MB data
read only random randomly read 1 MB data blocks
write only cont continuously write 2 GB data
write only period repeatedly write 256 MB data
write only random randomly write 1 MB data blocks
random read write randomly read/write 1 MB blocks (read probability = 0.8)

computation can be done on the server. The HMAC is generated by the server to

prevent attacks between the server and its clients. The timeline for handling a read

request is similar except that there is no hash operation. Note that we ignore the disk

access time in Fig. 5-1, because the disk access time does not affect the maximum

system throughput as discussed in Section 4.2.1. Instead of measuring both the RAM

and disk access time, we only measured the RAM access time by storing all the test

data in the RAM buffer and measuring the data access time to/from the RAM buffer.

Keeping in mind the size of the server's RAM, we built a 2 GB RAM buffer and set

our working set size as 2 GB.

We compare the performance of the two schemes in terms of average processing

time, using several synthetic benchmarks listed in Table 5.3. We measured the pro-

cessing time of each request as the period starting from when the server dequeues the

request and ending when the server finishes processing it. In Table 5.3, in addition to

random accesses, the benchmarks for continuous data accesses simulate backup appli-
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Table 5.4: System overhead

Benchmark Type Our work (software hash) Our work (hardware hash)
read only cont 0.03% -0.22%
read only period 1.18% 1.09%
read only random -0.75% 1.01%
write only cont 2.25% 302.71%
write only period 4.00% 307.83%
write only random 3.38% 309.21%
random read write 2.06% 212.58%

(msec)
10 -

9
8--
7-
6-
5-
4-
3-
2
1
0-

read only
cont

N Baseline

read only read only write only write only write only random
period random cont period random read write

a Our work (software hash) 0 Our work (hardware hash)

Figure 5-2: Average processing time comparison (2048 operations on 1 MB data blocks
with tree cache size = 214)

cations for a single client, while the benchmarks for repeated data accesses simulate

group collaboration on the same chunk of data.

Figure 5-2 and Table 5.4 show the comparison between the baseline scheme and

the two schemes we implemented, with a single hardware pipelined hash engine and

a software hash. The three schemes have the same performance when handling read

requests, while our hardware hash engine scheme is four times slower when handling

write requests. To understand which component slows down the system, we did

detailed timing analysis shown in Fig. 5-3 and Table 5.5. For read requests, the

processing time is equal to the data access time. The latency of tree operations

and HMAC generation is completely hidden because they can be executed in parallel

with data access. On the other hand, the hash operation dominates the processing

time when handling write requests. In our software hash implementation scheme, the
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Table 5.5: Detailed timing analysis

Data Access Hash Tree + HMAC
(msec) (msec) (msec)

read Baseline 4.01E-1 0 1.69E-3
only Our work (software hash) 3.93E-1 0 2.02E-2

random Our work (hardware hash) 3.97E-1 0 2.04E-2
write Baseline 1.76E-1 2.29 2.40E-3
only Our work (software hash) 1.74E-1 2.33 3.72E-2

random Our work (hardware hash) 1.69E-1 9.51 3.69E-2

overhead for writes is small. In our hardware hash engine scheme, the large overhead

for processing write requests is due to the fact that our single hardware pipelined data

hash engine is running at a much lower clock frequency compared to the software hash

function and that its throughput is limited by the Gigabit Ethernet. We will have a

more detailed discussion later.

Table 5.6 shows the throughput and latency of the two schemes we implemented.

The throughput and latency for handling write requests is improved by replacing the

single hardware hash engine with the software hash function. An alternative would

have been to replicate the hardware hash engine. To achieve greater throughput than

what can be achieved with the software hash, more parallelism is required in hardware

or software.

Table 5.1 shows that when using the non-pipelined data hash engine, computing

the hash value is the bottleneck of the whole hash operation, which includes sending
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Table 5.6: Performance summary

Scheme Randomly Write Randomly Read
Throughput Latency Throughput Latency

Our work (software hash) 411 MB/s 2.4 msec
Our work (hardware hash) 104 MB/s 12.3 msec 2.4 GB/s 0.4 msec

(msec)

14

12

10

6

4 - - - - - - - - - - - -

2 - - - - - - -

0-

non-pipelined hash pipelined hash pipelined hash with software hash
fast connection

Figure 5-4: Comparison of hash execution time

data packets to the P chip, computing the hash value, and sending back the result.

When using the pipelined hash engine, the Gigabit Ethernet becomes the bottleneck.

To verify this, when using the pipelined hash engine, we mimic a 4x faster data bus

by only sending a quarter of each 1 MB block to the P chip and expanding it at the P

chip's side. Figure 5-4 shows the comparison of the average hash execution time using

different hash operation schemes on a workload of randomly writing 2,048 1 MB data

blocks. With a fast data bus, the throughput of the pipelined hash engine is 4 x as the

throughput of the non-pipelined hash engine, which is consistent with Table 5.1. One

might ask why we are interested in a pipelined hash engine when the software hash is

faster. Although the throughput of the pipelined hash engine (running at 125 MHz)

with a 4x faster data bus is still smaller than that of the software hash function

(running at 3.33 GHz) because of the much lower clock frequency in our prototype

hardware, it is cheaper and more energy-efficient to have multiple hash engines in

hardware to further improve the throughput as long as the throughput of the data

bus is large enough. (As we will indicate in Section 5.3, if we can build a large enough

number of hardware hash engines, we can support performance-focused cloud storage

providers.) Moreover, the clock frequency running at our prototype hardware can

also be increased to improve the throughput of the hash engine.
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Figure 5-5: Performance comparison between different cache sizes

As mentioned previously, the Merkle tree engine has a higher throughput than the

RAM, so there is no need to improve the throughput of the Merkle tree engine. The

latency of the Merkle tree engine can be reduced by carefully caching tree nodes in

the tree cache. If the hit rate of the tree cache is high, it can significantly reduce the

number of required LOAD operations as well as the number of corresponding VERIFY

operations, saving hardware computation time as well as instruction transmission

time. The hit rate is determined by the tree cache size, the caching policy, and the

request patterns. Figure 5-5 gives an example of how we can choose an appropriate

tree cache size given request patterns. (In Figure 5-5, the number of LOAD operations

is normalized with the maximum number of LOAD operations when there is no tree

cache existed.) To approach multi-client settings, we enlarged the working set to

64 GB and issued 6144 requests to randomly access chunks of data of fixed size, under

the assumption that there are multiple clients accessing data of fixed size, such as

photos or mp3 files. The result shows that if the caching policy works well, there is no

need to have a large tree cache, while with random access patterns, a larger tree cache

is needed. If the request pattern is known, cloud storage providers can determine an

appropriate tree cache size by considering the tradeoff between area and performance.

In addition, we also simulated the case without a tree cache by flushing our tree cache

between handling each request. We observed that the time spent on tree operations

was ten times larger than with a large tree cache, but there was no significant overhead

in terms of system latency. This is because the latency caused by tree operations is

small compared to the latency caused by other components. Therefore, if resources

are limited, the tree cache can be removed without a large performance degradation.
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Table 5.7: Hardware requirements

Demand Connection Hash Engine Tree Cache
Performance-focused PCIe x16(P)/USB(S) 8 + 1 (Merkle tree) large

Budget-focused USB 0 + 1 (Merkle tree) none

Table 5.8: Estimated performance

Randomly Write Randomly Read # HDDs
Demand Throughput Latency Throughput Latency supported

Performance-focused 2.4 GB/s 12.3 msec 2.4 GB/s 0.4 msec 24
Budget-focused 377 MB/s 2.7 msec 2.4 GB/s 0.4 msec 4

5.3 Suggestions on Hardware Requirements

Based on the experimental results of our prototype system, we can provide different

hardware suggestions to cloud storage providers with different needs. In Table 5.7, we

list the different hardware requirements for performance-focused and budget-focused

storage providers, and the estimated performance is listed in Table 5.8. The estimated

performance is derived from our experimental results with a 1 TB disk divided into

1 MB-long blocks and a typical DDR3-1333 RAM.

5.3.1 Performance-focused Solution

If a storage provider focuses on performance, the system can achieve a throughput as

high as its RAM throughput, which is 2.4 GB/s, using multiple hardware data hash

engines and a fast data bus. The throughput of a pipelined hash engine, 330 MB/s,

is measured using a fast data bus as shown in Fig. 5-4. Therefore, in order to achieve

2.4 GB/s throughput, we need 8 pipelined hash engines to perform 1 MB data hashing

as well as a PCI Express x16 link, which can support up to 4.0 GB/s. Figure 5-6 shows

the functional units of a S-P chip pair required by a performance-focused cloud storage

provider. A typical performance-focused solution is an ASIC paired with a smart card

chip. If the P chip runs at a clock frequency higher than 125 MHz, which is easy for

an ASIC to achieve, the number of hash engines required can be further reduced.

5.3.2 Budget-focused Solution

If a storage provider has limited resources, a solution with a software hash function

and without a tree cache can be chosen to reduce the cost while maintaining the sys-
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tem's throughput around 400 MB/s for write requests and 2.4 GB/s for read requests

(shown in Table 5.8). In a budget-focused design, many functional units and on-chip

storage required by the original P chip are removed. Therefore, we can combine the

functionality of the original two chip solution and build a single chip as shown in

Figure 5-7. This single chip can be imagined as a typical smart card chip running at

125 MHZ (or slightly less than 125 MHz) with an additional hardware SHA-1 engine

as well as some control logic and a on-chip buffer. In addition, after the two chips are

merged into a single chip, the communication between the two chips become trusted,

so the HMACs between the two chips are no longer needed to protect messages against

forging or replay attacks, and updating the root hash in the NVRAM becomes easier.

Under today's NVRAM process, this single chip solution is feasible in terms of chip

area and speed. Therefore, this represents a cheap solution for trusted cloud storage,

and yet is significantly more efficient than, for example, the solution of [171.
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5.4 Discussion

In this section, we first discuss the reasoning behind our design parameter choices.

Then, we evaluate our write access control scheme and the root hash storage protocol

qualitatively to prove that they have fixed or little overhead and thus can be safely

excluded from our implementation. We also discuss the memory overhead introduced

by the crash-recovery mechanism.

5.4.1 Design Parameter Choices

In our experiment, we fix the block size as 1MB, which is close to current cloud storage

systems. For example, Dropbox uses 4 MB blocks, and the Google File System uses

64 MB chunks [79]. For a cloud storage provider, the best choice of block size depends

on the access patterns from its clients. When the disk size is fixed, choosing a smaller

block size results in a higher Merkle tree and thus introduces larger overhead on tree

operations. When accessing a large chunk of data, the overhead introduced by the

scheme with a smaller block size is larger than that with a larger block size due to

more requests required as well as more communication overhead. However, when

accessing a chunk of data that is smaller than a single data block, the whole data

block needs to be retrieved from the disk, and thus the scheme with a smaller block

size is more efficient. Therefore, a cloud storage provider should choose the block size

based on the statistics of its clients' access patterns, and the storage provider should

optimize the data hashing scheme when choosing a larger data block size, because

data hashing (as well as the data access time) would dominate the processing time.

We assume one terabyte disk in our experiment, where one terabyte is a typical

size of a commodity hard disk. When the block size is fixed, the size of the Merkle

tree is determined by the size of the disk. A larger disk results in a larger Merkle tree

and thus more tree operations for each read/write operation. However, as shown in

Table 5.1, the throughput of the Merkle tree engine for a 1 TB disk is much higher

than that of RAM. Therefore, increasing the disk size would have little impact on

system throughput. For example, we can increase the disk size to 16 TB without

system throughput degradation.
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5.4.2 Write Access Control

As mentioned in Section 3.4.3, in order to prevent unauthorized writes as well as replay

attacks, the P chip needs to decrypt { W}skey, which is the client's encrypted access

information, verify with the access information stored on the server, and generate the

new leaf value using Equation 3.1. In other words, to manage the write access control

on the P chip, we need to add one symmetric decryption and two hash operations to

our hardware implementation. However, these additional operations do not require

additional hardware resources and only add negligible performance overhead. For

the hardware resource issue, we can simply re-use the AES engine, which is already

required by the P chip's boot process and the processed key decryption, to decrypt

{ W}sky, and re-use the SHA-1 hash engine in the Merkle tree operation engine to

perform the hash operations. For the performance issue, the AES decryption can

performed in parallel with the 1 MB data hashing, which is performed either on the

server or on the P chip. According to the FPGA implementation and evaluation

results in [80], the decryption of { W}Skey, which is the decryption of two 128-bit data

blocks, only requires around 100 clock cycles and can be run above 125 MHz, which

is the clock frequency we use in the prototype system. Therefore, the latency of the

AES decryption can be easily hidden behind the 1 MB data hashing operation. The

two additional hash operations, which are both single-chunk hash operations, need

to be performed in serial with the Merkle tree operations (after the tree verification

and before the tree update), adding no throughput overhead and negligible latency

overhead because the Merkle tree engine has higher throughput than the RAM on the

server. Therefore, we can safely omit the implementation of the write access control

scheme, because it has little impact on system performance.

5.4.3 Root Hash Storage Protocol

Our root hash storage protocol (mentioned in Section 3.4.4) requires the P chip to

buffer the responses of the write operations and the related read operations until

the latest root hash is stored on the S chip. This protocol does not degrade the

system throughput and only introduces a constant latency overhead if the on-chip

buffer is large enough. The latency overhead depends on the issuing rate of the
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server's getRootP() requests and the round-trip time, which consists of the time the

server spends on flushing the data to disk (around 10 ms for 1 MB data), the time

the S chip spends on storing the 20-byte root hash (around 20 ms as mentioned in

Section 2.2.1), and the time the S chip spends on checking HMACSK(MTPsl) and

generating HMA CSK(MTspl) (around 2 ms if using a 32-bit RISC CPU or less time

if using a SHA-1 hardware engine). Therefore, the minimum latency introduced is

around 32 ms. To maintain the throughput of the system, the performance-focused

solution needs a 2k-byte on-chip buffer to store up to 100 responses, while the budget-

focused solution, which is a single chip solution, needs a 300-byte on-chip buffer to

store up to 15 responses. Note that the EEPROM/flash on a smart card has limited

number of write/erase cycles (around 105 as mentioned in Section 2.2.1). In order to

extend the lifetime of the S chip, we divide the NVRAM into 20-byte long chunks and

switch to a different chunk once the root hash cannot be successfully stored on the

previous chunk. Recent smart card chips, which have above 100 kB EEPROM/flash

storage, can serve for around 5 years with the maximum issuing rate of the getRootP()

requests. The S chip can serve for a longer time with a lower issuing rate, but the P

chip requires a larger on-chip buffer to maintain the system throughput.

5.4.4 Crash-Recovery Mechanism

To recover from accidental or malicious crashes, the server needs to store the re-

quired information, including a snapshot of the Merkle tree and the leaf arguments

(HWkey, Vd, Hdata) as described in Section 3.4.5. A straightforward approach to save

a snapshot on the disk is to overwrite the entire tree and all leaf arguments, resulting

in a large memory bandwidth overhead (around 84 MB for a 1 TB disk). To reduce

the memory overhead, when saving the ith snapshot, we only overwrite the parts that

are different between the ith and (i - 2 )1h snapshots and only take a snapshot of the

leaf nodes and leaf arguments. The entire tree can be built after the server re-boots

from a crash. As mentioned in the previous section, during a 32 ms time interval, the

storage system can process up to 100 requests. Therefore, the number of leaf nodes

(and their arguments) that are different in the (i - 2 )th and ith snapshots is at most

200, resulting in total 12.8 KB memory bandwidth overhead, which is negligible com-

pared to a 1 MB data block. Therefore, in the previous section, we omit the time the
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server spends on saving the snapshot when calculating the required round-trip time

to store the root hash on the S chip. The memory storage overhead introduced by

storing snapshots and request logs is less than 65 MB, which is very small compared

to a 1 TB disk.
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Chapter 6

Conclusion

6.1 Thesis Summary

In this thesis, we have detailed the design of a cloud storage system that ensures data

integrity and freshness while maintaining high-performance by attaching a trusted

pair of chips to an untrusted server. We proposed a write access control scheme to

prevent unauthorized writes and ensure all writes are fresh. We also introduced a

crash-recovery mechanism to protect our prototype system from crashes and power

loss events. To prove our prototype design is practical, we implemented the system

using an FPGA and a Linux server. We analyzed our prototype system and showed

that even with limited resources, the storage system can achieve 2.4 GB/s (as high as

the server's RAM throughput) for handling read requests and 377 MB/s for handling

write requests. One can easily imagine building a single chip that is not appreciably

more expensive than current smart card chips and can support this level of through-

put. If more hardware resources are available, the throughput for handling write

requests can be increased to 2.4 GB/s.

6.2 Future Work

In this work, we implemented the data hash engine, the RAM buffer, and the Merkle

tree operation engine, which are the most essential parts of the system that directly

affect the system throughput and latency. We omitted the implementation of the
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write access control scheme, the root hash storage protocol, and the recovery mech-

anism. We adopted theoretical results and qualitatively proved that these schemes

only introduced negligible or constant overhead. However, to completely catch the in-

teraction between different components and the effectiveness of various optimization

schemes, an implementation of the full system is necessary. In addition, evaluating

with real workloads and taking the network latency between the client and the server

into consideration would make the experimental results of our system more practical.
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