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Abstract
We present a novel technique, automatic input rectification, and a prototype imple-

mentation, SOAP. SOAP learns a set of constraints characterizing typical inputs that

an application is highly likely to process correctly. When given an atypical input

that does not satisfy these constraints, SOAP automatically rectifies the input (i.e.,

changes the input so that it satisfies the learned constraints). The goal is to auto-

matically convert potentially dangerous inputs into typical inputs that the program

is highly likely to process correctly.

Our experimental results show that, for a set of benchmark applications (Google

Picasa, ImageMagick, VLC, Swfdec, and Dillo), this approach effectively converts

malicious inputs (which successfully exploit vulnerabilities in the application) into

benign inputs that the application processes correctly. Moreover, a manual code

analysis shows that, if an input does satisfy the learned constraints, it is incapable of

exploiting these vulnerabilities.

We also present the results of a user study designed to evaluate the subjective

perceptual quality of outputs from benign but atypical inputs that have been auto-

matically rectified by SOAP to conform to the learned constraints. Specifically, we

obtained benign inputs that violate learned constraints, used our input rectifier to

obtain rectified inputs, then paid Amazon Mechanical Turk users to provide their

subjective qualitative perception of the difference between the outputs from the orig-

inal and rectified inputs. The results indicate that rectification can often preserve

much, and in many cases all, of the desirable data in the original input.

Thesis Supervisor: Martin C. Rinard

Title: Professor
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Chapter 1

Introduction

Errors and security vulnerabilities in software often occur in infrequently executed

program paths triggered by atypical inputs. A standard way to ameliorate this prob-

lem is to use an anomaly detector that filters out such atypical inputs. The goal

is to ensure that the program is only presented with typical inputs that it is highly

likely to process without errors. A drawback of this technique is that it can filter

out desirable, benign, but atypical inputs along with the malicious atypical inputs,

thereby denying the user access to desirable inputs.

1.1 Input Rectification

We propose a new technique, automatic input rectification. Instead of rejecting atyp-

ical inputs, the input rectifier modifies the input so that it is typical, then presents

the input to the application, which then processes the input. We have three goals: a)

present typical inputs (which the application is highly likely to process correctly) to

the application unchanged, b) render any malicious inputs harmless by eliminating

any atypical input features that may trigger errors or security vulnerabilities, while

c) preserving most, if not all, of the desirable behaviors for atypical benign inputs. A

key empirical observation that motivates our technique is the following:

Production software is usually tested on a large number of inputs. Standard

testing processes ensure that the software performs acceptably on such inputs. We

refer to such inputs as typical inputs and the space of such typical inputs as the

comfort zone [37] of the application. On the other hand, inputs designed to exploit

security vulnerabilities (i.e., malicious inputs) often lie outside the comfort zone. If

the rectifier is able to automatically detect inputs that lie outside the comfort zone
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and map these inputs to corresponding meaningfully close inputs within the comfort

zone, then it is possible to a) prevent attackers from exploiting the vulnerability in

the software, while at the same time b) preserving desirable data in atypical inputs

(either benign or malicious) for the user.

We present SOAP (Sanitization Of Anomalous inPuts), an automatic input rec-

tification system designed to prevent overflow vulnerabilities. SOAP first learns a set

of constraints over typical inputs that characterize a comfort zone for the application

that processes those inputs. It then takes the constraints and automatically generates

a rectifier that, when provided with an input, automatically produces another input

that satisfies the constraints. Inputs that already satisfy the constraints are passed

through unchanged; inputs that do not satisfy the constraints are modified so that

they do.

Potential Advantages of Automatic Input Rectification

Input rectification has several potential advantages over simply rejecting malicious or

atypical inputs that lie outside the comfort zone:

" Desirable Data in Atypical Benign Inputs: Anomaly detectors filter out

atypical inputs even if they are benign. The result is that the user is completely

denied access to data in atypical inputs. Rectification, on the other hand, passes

the rectified input to the application for presentation to the user. Rectification

may therefore deliver much or even all of the desirable data present in the

original atypical input to the user.

" Desirable Data in Malicious Inputs: Even a malicious input may contain

data that is desirable to the user. Common examples include web pages with

embedded malicious content. Rectification may eliminate the exploits while

preserving most desirable input from the original input. In this case the rectifier

enables the user to safely access the desirable data in the malicious input.

" Error Nullification: Even if they are not malicious, atypical inputs may

expose errors that prevent the application from processing them successfully. In

this case rectification may nullify the errors so that the application can deliver

most if not all of the desirable data in the atypical input to the user.
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1.2 The Input Rectification Technique

SOAP operates on the parse tree of an input, which divides the input into a collection

of potentially nested fields. The hierarchical structure of the parse tree reflects nesting

relationships between input fields. Each field may contain an integer value, a string,

or unparsed raw data bytes. SOAP infers and enforces 1) upper bound constraints on

the values of integer fields, 2) sign constraints that capture whether or not an integer

field must be non-negative, 3) upper bound constraints on the lengths of string or

raw data byte fields, and 4) correlated constraints that capture relationships between

the values of integer fields and the lengths of (potentially nested) string or raw data

fields.

The two main challenges in designing an automatic input rectifier such as SOAP

are how to infer and enforce constraints for a given application. The execution mon-

itor of SOAP first uses taint analysis [13, 32] to identify input fields that are related

to critical operations during the execution of the application (i.e., memory alloca-

tions and memory writes). The learning engine of SOAP then automatically infers

constraints on these fields based on a set of training inputs. When presented with

an atypical input that violates these constraints, the SOAP rectifier automatically

modifies input fields iteratively until all constraints are satisfied.

Nested Fields in Input Files

One of the key challenges in input rectification is the need to deal with nested fields.

In general, input formats may contain arbitrarily nested fields, which make infer-

ring correlated constraints hard. Our algorithm must consider relationships between

multiple fields at different levels in the tree.

Nested input fields also complicate the rectification. Changing one field may

cause the file to violate constraints associated with enclosing fields. To produce a

consistent rectified input, the rectifier must therefore apply a cascading sequence of

modifications to correlated fields as its constraint enforcement actions propagate up

or down the tree of nested fields.

1.3 Key Questions and Experiments

We identify several key questions that are critical to the success of the input rectifi-

cation technique:

11



" Learning: Is it possible to automatically learn an effective set of constraints

from a set of typical benign inputs?

" Rectification Percentage: Given a set of learned constraints, what percent-

age of previously unseen benign inputs fail to satisfy the constraints and will

therefore be modified by the rectifier?

" Rectification Quality: What is the overall quality of the outputs that the

application produces when given benign inputs that SOAP has modified to

enforce the constraints?

" Security: Does SOAP effectively protect the application against inputs that

exploit errors and vulnerabilities?

We investigate these questions by applying SOAP to rectify inputs for five large

software applications. The input formats of these applications include three image

types (PNG, TIFF, JPEG), wave sound (WAV) and Shockwave flash video (SWF).

We evaluate the effectiveness of our rectifier by performing the following experiments:

" Benign Input Acquisition: For each application, we acquire a set of inputs

from the Internet. We run each application on each input in its set and filter

out any inputs that cause the application to crash. The resulting set of inputs

is the benign inputs. Because all of our applications are able to process all of

the inputs without errors, the set of benign inputs is the same as the original

set.

" Training and Test Inputs: We next randomly divide the collected benign

inputs into two sets: the training set and the test set.

" Potentially Malicious Inputs: We search the CVE security database [2] and

previous security papers to obtain malicious inputs designed to trigger errors

and/or exploit vulnerabilities in the applications.

" Learning: We use the training set to automatically learn the set of constraints

that characterize the comfort zone.

* Atypical Benign Inputs: For each application, we next compute the percent-

age of the benign inputs that violate at least one of the learned constraints. We

call such inputs atypical benign inputs. In our experiments, the percentage of
atypical benign inputs is less than 1.57%.
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" Quality of Rectified Atypical Inputs: We evaluate the quality of the recti-

fied atypical inputs by paying people on Amazon Mechanical Turk [1] to evalu-

ate their perception of the difference between 1) the output that the application

produces when given the original input and 2) the output that the application

produces when given the rectified version of the original input. Specifically,

we paid people to rank the difference on a scale from 0 to 3, with 0 indicat-

ing completely different outputs and 3 indicating no perceived difference. The

mean scores for over 75% of the atypical inputs are greater than 2.5, indicating

that Mechanical Turk workers perceive the outputs for the original and rectified

inputs to be very close.

" Security Evaluation: We verified that the rectified versions of malicious in-

puts for each of these applications were processed correctly by the application.

* Manual Code Analysis: For each of the malicious inputs, we identified the

root cause of the vulnerability that the input exploited. We examined the

learned constraints and verified that if an input satisfies the constraints, then

it will not be able to exploit the vulnerabilities.

1.4 Understanding Rectification Effects

We examined the original and rectified images or videos for all test inputs that SOAP

rectified. These files are available at:

http://groups.csail.mit.edu/pac/input-rectification/

For the majority of rectified inputs (83 out of 110 inputs), the original and rectified

images or videos appear identical. The mean Mechanical Turk scores for such images

or videos was between 2.5 and 3.0. We attribute this to the fact that the rectifier

often modifies fields (such as the name of the author of the file) that are not relevant

to the core functionality of the application and therefore do not visibly change the

image or video presented to the user. The application must nevertheless parse and

process these fields to obtain the desirable data in the input file. Furthermore, since

these fields are often viewed as tangential to the primary purpose of the application,
the code that handles them may be less extensively tested and therefore more likely

to contain errors.

Figures 1-1, 1-2 and 1-3 present examples of images that are visibly changed by

rectification. For some of the rectified images (8 of 53 inputs), the rectifier truncates

part of the image, leaving a strip along the bottom of the picture (see Figure 1-1).
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(a) The original image

(b) The rectified image

Figure 1-1: A JPEG image truncated by the rectification.
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(a) The original image

(b) The rectified image

Figure 1-2: A JPEG image twisted by the rectification

.... . ........ .......... ...... .. .... .. .. ..



(a) The original image

(b) The rectified image

Figure 1-3: A TIFF image whose color is changed by the rectification.
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For the remaining inputs (19 of 110), the rectifier changes fields that control various

aspects of core application functionality, for example, the alignment between pixels

and the image size (see Figure 1-2), the image color (see Figure 1-3), or interactive

aspects of videos. The mean Mechanical Turk scores for such images or videos vary

depending on the severity of the effect. In all cases the application was able to process

the rectified inputs without error to present the remaining data to the user.

1.5 Contributions

We make the following contributions:

" Basic Concept: We propose a novel technique for dealing with atypical or ma-

licious inputs, automatic input rectification, and a prototype implementation,

SOAP, which demonstrates the effectiveness of the technique.

" Constraint Inference: We show how to use dynamic taint analysis and a

constraint inference algorithm to automatically infer safety constraints. This

inference algorithm operates correctly to infer correlated constraints for hierar-

chically structured input files with nested fields.

" Rectification Algorithm: We present an input rectification algorithm that

systematically enforces safety constraints on inputs while preserving as much of

the benign part of the input as possible. Because it is capable of enforcing cor-

related constraints associated with nested input fields, this algorithm is capable

of rectifying hierarchically structured input files.

" Experimental Methodology: We present a new experimental methodology

for evaluating the significance of changes to program inputs and/or outputs.

Specifically, we use Amazon Mechanical Turk [1] to evaluate the subjective per-

ceptual quality of the outputs for rectified inputs. We present effective mech-

anisms to ensure the quality of the collected responses, which is a primary

challenge of utilizing such crowdsourcing workforce.

" Experimental Results: Our results indicate that, for our set of benchmark

applications and inputs, Mechanical Turk workers perceive rectified images and

videos to be, in most cases, close or even identical to the original images and

videos (Chapter 5). These results are consistent with our own quantitative
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(Chapter 4) and qualitative (Chapter 5) evaluation of the differences between

the original and rectified images and videos.

9 Explanation: We explain (Section 1.4 and Section 5.4) why rectification often

preserves much or even all of the desirable data in rectified files.

We organize the rest of this thesis as follows. Chapter 2 presents an example that

illustrates how SOAP works. We describe the technical design of SOAP in Chapter 3.

We present a quantitative evaluation of SOAP in Chapter 4 and a subjective human

evaluation of SOAP in Chapter 5. Chapter 6 discusses related work. We conclude in

Chapter 7.
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Chapter 2

Motivating Example

Figure 2-1 presents source code from Dillo 2.1, a lightweight open source web browser.

Dillo uses libpng to process PNG files. When Dillo starts to load a PNG file, it

calls the libpng callback function Png-datainfo-callback() shown in Figure 2-1. The

function contains an integer overflow vulnerability at line 20, where the multiplica-

tion calculates the size of the image buffer allocated for future callbacks. Because

png--+rowbytes is proportional to the image width, arithmetic integer overflow will

occur when opening a PNG image with maliciously large width and height values.

This error causes Dillo to allocate a significantly smaller buffer than required. Dillo

eventually writes beyond the end of the buffer.

Dillo developers are well aware of the potential for overflow errors. In fact, the code

contains a check of the image size at lines 10-11 to block large images. Unfortunately,
the bounds check has a similar integer overflow problem. Specific large width and

height values can also cause an overflow at line 10 and thus bypass the check.

SOAP can nullify this error without prior knowledge of the vulnerability itself.

To use SOAP, an application developer or system administrator first provides SOAP

with a set of typical benign inputs to the application. To nullify the above Dillo error,
SOAP performs following steps:

" Understand Input Format: SOAP provides a declarative input specification

interface that enables users to specify the input format. SOAP then uses this

specification to automatically generate a parser, which transforms each PNG

input into a collection of potentially nested input fields. Along with the other

fields of a typical PNG file, the parser will identify the locations - specifically

the byte offsets - of the image width and height fields.

" Identify Critical Fields: SOAP monitors the execution of Dillo on training

19



1 //Dillo's libpng callback
2 static void
3 Png-datainfo-callback(png-structp png-ptr, ...)
4 {

5 DiIIoPng *png;

6 ...

7 png = png-get-progressive-ptr(png-ptr);
8 ...

9 /* check max image size */
10 if (abs(png-±width*png-height) >
11 IMAGE.MAXW * IMAGEMAXH) {

12 ...

13 Png-error-handling(png-ptr, "Aborting...");
14.

15

16 ...

17 png- rowbytes = png-get-rowbytes(png-ptr, info-ptr);
18 ...

19 png-+image_ ata (uchar-t *) dMalloc(
20 png-rowbytes * png-height);
21 ...

22 }

Figure 2-1: The code snippet of Dillo libpng callback (png.c). The boldfaced code is

the root cause of the overflow vulnerability.

20



PNG inputs and determines that values in the image width and height fields

influence a critical operation, the memory allocation at line 19-20. Thus SOAP

marks width and height in PNG images as critical fields which may cause dan-

gerous overflow. In the Dillo source code, png-±height contains the image

height field value and the png-+rowbytes is proportional to the image width

field value. These two variables influence a memory allocation statement at

lines 19-20.

" Infer Constraints: SOAP next infers constraints over the critical fields, in-

cluding the height and width fields. Specifically, for each of these fields, SOAP

infers an upper bound constraint by recording the largest value that appears in

that field for all PNG training inputs.

" Rectify Atypical Inputs: SOAP performs the above three steps offline. Once

SOAP generates constraints for the PNG format, it can be deployed to parse

and rectify new PNG inputs. When SOAP encounters an atypical PNG input

whose width or height field is larger than the inferred bound, it enforces the

bound by changing the field to the bound. Note that such changes may, in turn,

cause other correlated constraints (such as the length of another field involved

in a correlated relation with the modified field) to be violated. SOAP therefore

rectifies violated constraints iteratively until all of the learned constraints are

satisfied.
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Chapter 3

Design

SOAP has four components: the input parser, the execution monitor, the learning

engine, and the input rectifier. The components work together cooperatively to enable

automatic input rectification (see Figure 3-1). The execution monitor and the learning

engine together generate safety constraints offline before the input rectifier is deployed:

e Input parser: The input parser understands input formats. It transforms raw

input files into syntactic parse trees for the remaining components to process.

" Execution Monitor: The execution monitor uses taint tracing to analyze

the execution of an application. It identifies critical input fields that influence

critical operations (i.e., memory allocations and memory writes).

" Learning Engine: The learning engine starts with a set of benign training

inputs and the list of identified critical fields. It infers safety constraints based

on the field values in these training inputs. Safety constraints define the comfort

zone of the application.

" Input Rectifier: The input rectifier rectifies atypical inputs to enforce safety

constraints. The algorithm modifies the input iteratively until it satisfies all of

the constraints.

3.1 Input Parser

As shown in Figure 3-1, the input parser transforms an arbitrary input into a general

syntactic parse tree that can be easily consumed by the remaining components.

In the syntactic parse tree, only leaf fields are directly associated with input data.

The hierarchical tree structure reflects nesting relationships between input fields.
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Figure 3-2: A syntax parse tree example.

Each leaf field has a type, which can be integer, string or raw bytes, while each

non-leaf field is a composite field with several child fields nested inside it.

Figure 3-2 presents an example of an integer leaf field inside a parse tree for a

PNG image file. The leaf field identifies the location of the data in the input file.

It also contains a descriptor that specifies various aspects of the field, such as the

value stored in the field, the name of the field, and the encoding information such as

whether the value is stored in big endian or little endian form.

The only requirement for the input parser is the input specification for the par-

ticular format. This is reasonable as most input formats of production systems have

been standardized and their specification is publicly available. In the absence of an

input specification, SOAP can use one of the existing syntax inference techniques

[16, 27, 11, 43, 33].

3.2 Execution Monitor

The execution monitor identifies the critical input fields that should be involved in the

learned constraints (see Figure 3-1). Because large data fields may trigger memory

buffer overflows, the execution monitor treats all variable-length data fields as critical.

Integer fields present a more complicated scenario. Integer fields that influence the

addresses of memory writes or the values used at memory allocation sites (e.g., calls
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to malloc() and callocO) are relevant for our target set of errors. Other integer fields

(for example, control bits or checksums) may not affect relevant program actions.

3.2.1 Taint Analysis

The execution monitor uses dynamic taint analysis [13, 32] to compute the set of

critical integer fields. Specifically, SOAP considers an integer field to be critical if the

dynamic taint analysis indicates that the value of the field may influence the address

of memory writes or values used at memory allocation sites.

We next sketch the dynamic taint analysis in the execution monitor. The execution

monitor actively tracks a mapping from memory addresses and registers to sets of

input byte positions. This mapping represents the input byte positions that influence

each memory address or each register.

The execution monitor dynamically instruments the binary code of the application

to insert callbacks to maintain this mapping. The execution monitor also inserts

callback before each critical operation (memory write or memory allocation site).

This callback records the input bytes that influence the critical operation based on

the current mapping information.

The execution monitor currently tracks data dependences only. This approach

works well for our set of benchmark applications, eliminating 58.3%-88.7% of integer

fields from consideration. It would be possible to use a taint system that tracks

control dependences [10] as well.

3.2.2 Training Input Selection

Dynamic taint analysis generally imposes 10x-100x overhead on the application exe-

cution. Given a limited time budget for offline training, the execution monitor may

not be able to run the application on all training inputs.

The execution monitor uses an automated greedy algorithm to select a subset of

the training inputs for the runs that determine the critical integer fields. The goal is

to select a small set of training inputs that 1) reduce the total execution time on the

execution monitor and 2) together cover all of the integer fields that may appear in the

input files. Our algorithm assumes that the running time of an input is proportional

to the size of the input. Therefore it attempts to minimize the total size of selected

training inputs.

The greedy algorithm contains a main loop. For each training input I, the algo-

rithm computes the number of new integer fields the input I covers (CI) and the size
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/header/width <= 1920

2 /header/width >= 0

3 sizebits(/text/text) <= 21112

4 /text/size * 8 == sizebits(/text/keyword)

5 + sizebits(/text/text)

Figure 3-3: A subset of constraints generated by SOAP for PNG image files.

of the input I (S1 ). At each iteration, the algorithm select a new training input I

that maximize C1 /S, until all integer fields have been covered.

3.3 Learning Engine

The learning engine works with the parse trees of the training inputs and the list of

critical fields as identified by the execution monitor. It infers safety constraints over

critical fields (see the offline training box in Figure 3-1).

3.3.1 Safety Constraints

Overflow vulnerabilities are typically exploited by large data fields, extreme values,

negative entries or inconsistencies involving multiple fields. Figure 3-3 presents several

examples of constraints that SOAP infers for PNG image files. Specifically, SOAP

infers upper bound constraints of integer fields (line 1 in Figure 3-3), sign constraints

of integer fields (line 2), upper bound constraints of data field lengths (line 3), and

correlated constraints between values and lengths of parse tree fields (lines 4-5).

These kinds of constraints enable the rectification system to eliminate extreme

values in integer fields, overly long data fields, and inconsistencies between the spec-

ified and actual lengths of data fields in the input. When properly inferred and

enforced, these constraints enable the rectifier to nullify the target set of errors and

vulnerabilities in our benchmark.

Note that once SOAP infers a set of safety constraints for one input format, it may

use these constraints to rectify inputs for any application that reads inputs in that

format. This is useful when different applications are vulnerable to the same exploit.

For example, both Picasa [6] and ImageMagick [5] are vulnerable to the same overflow

exploit (see Section 4). A single set of inferred constraints enables SOAP to nullify

the vulnerability for both applications.
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3.3.2 Inferring Bound Constraints

SOAP infers three kinds of bound constraints: upper bound constraints of integer

fields, sign constraints of integer fields, and upper bound constraints of data field

lengths. SOAP learns the maximum value of an integer field in training inputs as

the upper bound of its value. SOAP learns an integer field to be non-negative if it

is never negative in all training inputs. SOAP also learns the maximum length of a

data field that appeared in training inputs as the upper bound of its length. SOAP

infers all these constraints with a single pass over all the parse trees of the training

inputs.

3.3.3 Inferring Correlated Constraints

SOAP infers correlated constraints in which an integer field f indicates the total

length of consecutive children of the parent field of f. Lines 4-5 in Figure 3-3 present

an example. A text data chunk in PNG image file contains five different fields: size,

tag, keyword, text, and crc32 in this order. The constraint states that the value of

the field "/text/size" is the total length in bytes of the field "/text/keyword" and the

field "/text/text", which are two consecutive nested fields inside the field "/text".

Figure 3-4 shows the pseudo-code of the inference algorithm for length indicator

constraints in SOAP. The SOAP learning algorithm first enumerates all possible field

combinations for correlated constraints initially assuming that all of these constraints

are true. When processing each training input, the algorithm eliminates constraints

that do not hold in the input.

The pseudo-code in Figure 3-4 uses a map R to track valid length indicator con-

straints associated with each integer field. At lines 1-12, the pseudo-code initializes R

with all possible length indicator constraints. fields in the code represents data fields

whose lengths are controlled by the integer field. scale identifies whether the length

field counts the size in bits or in bytes1 . At lines 14-27, the algorithm tests each

candidate constraint on the parse tree of each training input. After the algorithm

processes all training inputs, the inference algorithm outputs the length indicator

constraints that still remain in R.

'For convenience, the pseudo-code here assumes that the length values count lengths either in

bits or bytes. Our algorithm extends to handle arbitrary measures.
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1 // Initialization
2 FOR f IN all integer fields:
3 R[f] +- 0
4 p <- f.parent
5 FOR S IN subsets of consecutive children of p:
6 FOR scale IN {1, 8}:
7 relation.fields <- S
8 relation.scale <- scale
9 R[f].add(relation)

10 END FOR

11 END FOR
12 END FOR
13

14 / Checking relations against each parse tree
15 FOR parse-tree IN training-input-set:
16 FOR f IN parse-tree.integer-fields:
17 FOR relation IN R[f]:
18 sum -0

19 FOR data-field IN relation.fields:
20 sum +- sum + sizeinbit(data-field)
21 END FOR
22 IF f.value * relation.scale # sum:
23 R[f].erase(relation)
24 END IF
25 END FOR
26 END FOR
27 END FOR

Figure 3-4: Inference algorithm for correlated constraints.
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3.4 Input Rectifier

Given safety constraints generated by the learning engine and a new input, the

input rectifier rectifies the input if it violates the safety constraints (see Figure 3-

1). The main challenge in designing the input rectifier is enforcing safety constraints

while preserving as much desirable data as possible.

3.4.1 Rectification Algorithm

Our algorithm is designed around two principles: 1) It enforces constraints only

by modifying integer fields or truncating data fields-it does not change the parse

tree structure of the input. 2) At each step, it attempts to minimize the value

difference of the modified integer field or the amount of truncated data. It finds

a single violated constraint and applies a minimum modification or truncation to

enforce the constraint.

Nested input fields further complicate rectification, because changing one field may

cause the file to violate correlated constraints associated with enclosing or enclosed

fields at other levels. Our algorithm therefore iteratively continues the rectification

process until there are no more violated constraints. In our experiments, SOAP

enforces as many as 86 constraints on some rectified input files.

Figure 3-5 presents the pseudo-code of the SOAP rectification algorithm. upbound

maps an integer field or a data field to the corresponding upper bound of its value

or its length. If a field f has no upper bound, upbound[f]=oo. may-neg stores the

set of integer fields that have been observed to allow negative values. R stores length

indicator constraints (see Section 3.3).

Our algorithm has a main loop that iteratively checks the input against learned

constraints. The loop exits when the input no longer violates any constraint. At each

iteration, it applies a rectification action depending on the violated constraint:

e Upper bounds of integer fields: At lines 4-8 in Figure 3-5, if the input

violates the upper bound constraint of an integer field, our algorithm changes

the value of the field to the learned upper bound.

e Sign Constraints of integer fields: At lines 9-13 in Figure 3-5, if the input

violates the sign constraint of an integer field, our algorithm changes the value

of the field to zero.
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1 REPEAT

2 violated - false;
3 FOR f IN input.integer.fields:

4 // Checking against upper bounds

5 IF f.value > upbound[f]:

6 f.value <- upbound[f]

7 violated <- true

8 END IF

9 // Checking against non-negativeness

10 IF f.value < 0 and f ( may-neg:

11 f.value - 0

12 violated <- true

13 END IF
14 END FOR
15

16 FOR f IN input.data.ields:

17 // Checking against length upper bounds

18 IF f.size > upbound[data-field.name]:

19 truncate f to size upbound[data-field.name];

20 violated <- true

21 END IF
22 END FOR

23

24 FOR f IN input.integer.fields:

25 FOR rel IN R[f]:
26 // Checking against length indicator constraints

27 IF f.value * rel.scale > sizeinbit(rel.fields):
28 f.value <- sizeinbit(rel.fields) / rel.scale

29 violated <- true

30 ELSE IF f.value * rel.scale < sizeinbit(rel.fields):

31 truncate rel.fields to size f.value * rel.scale

32 violated <- true

33 END IF

34 END FOR
35 END FOR
36 UNTIL violated = false

Figure 3-5: The rectification algorithm in SOAP.
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* Upper bounds of data field lengths: At lines 16-22 in Figure 3-5, if the

input violates the upper bound constraint of the length of a data field, our

algorithm truncates the data field to its length upper bound.

" Correlated constraints: At lines 27-29 in Figure 3-5, if the value of a length

indicator field is greater than the actual length of corresponding data fields, our

algorithm changes the value to the actual length.

At lines 30-32 in Figure 3-5, if the total length of a set of data fields is longer

than the length indicated by a corresponding integer field, our algorithm trun-

cates one or more data fields to ensure that the input satisfies the constraint.

Note that correlated constraints may be violated due to previous enforcements

of other constraints. To avoid violating previously enforced constraints, our

algorithm does not increase the value of the length indicator field or increase

the field length, which may roll back previous changes.

3.4.2 Properties of the Algorithm

Note that this algorithm will always terminate, because the absolute values of integer

fields and the lengths of data fields always decrease at each iteration. The algorithm

may discard data when truncating data fields to enforce upper bounds constraints of

data fields (See lines 16-22) or correlated constraints (See lines 30-32). Thus we can

use the amount of truncated data to measure the data loss after rectification. Because

the algorithm truncates a minimum amount of data each iteration, it produces a

locally optimal rectified input, i.e., if the algorithm returns a rectified input 'a, there

is no other rectified input Ib such that Ib contains all data of a.

Note also that rectifying an input to enforce correlated constraints with minimum

data truncation is NP-hard in general. We can easily prove the NP-hardness by

reduction from the set cover problem [24], which is known to be NP-complete. We

next sketch the proof.

The definition of the set cover problem is the following: given an universe set

{ 1,... , m} and n sets1, . .. S, whose union comprises the universe, the question is

whether it is possible to select k or less sets from the given n sets such that the union

of the selected sets still comprises the universe.

We can construct a rectification problem instance from a set cover problem in-

stance as follows. For each set Si, we create a corresponding data field data, with

length 1 in the input. For each universe element i, we create a corresponding in-

teger field inti. Assume Sal, Sa2, - - - I Sak are sets that contain this element i. We
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set the original value of inti to k - 1 and create a correlated constraint, inti

size(dataa1) + - - - + size(dataak). We also create a bound constraint, inti < k - 1.

Note that we can construct the solution for the set cover problem instance from

the solution of this constructed rectification problem instance. To obtain the solution

for the set cover problem, we simply select all sets whose corresponding data fields are

truncated in the rectification problem solution. The correlated constraints guarantee

that for each universe element we selected at least one set that covers this element.

Therefore we obtain a valid solution for the set cover problem instance. This reduction

shows that the input rectification problem with correlated constraints is NP-hard.

3.4.3 Checksum

SOAP appropriately updates checksums after the rectification. SOAP currently relies

on the input parser to identify the fields that store checksums and the method used

to compute checksums. After the rectification algorithm terminates, SOAP calculates

the new checksums and appropriately updates checksum fields. SOAP could use the

checksum repair technique in TaintScope [41] to further automate this step.

3.5 Implementation

The SOAP learning engine and input rectifier are implemented in Python. The

execution monitor is implemented in C based on Valgrind [30], a dynamic binary

instrumentation framework. The input parser is implemented with Hachoir [4], a

manually maintained Python library for parsing binary streams in various formats.

SOAP is able to process any file format that Hachoir supports. Because SOAP
implements an extensible framework, it can work with additional parser components

implemented in the declarative specification interface of Hachoir to support other

input formats.
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Chapter 4

Quantitative Evaluation

We next present a quantitative evaluation of SOAP using five popular media appli-

cations. Specifically, the following questions drive our evaluation:

1. Is SOAP effective in nullifying errors?

2. How much desirable data does rectification preserve?

3. How does the amount of training data affect SOAP's ability to preserve desirable

data?

4.1 Experimental Setup

Applications and Errors

We use SOAP to rectify inputs for five applications: Swfdec 0.5.5 (a shockwave

player) [7], Dillo 2.1 (a browser) [3], ImageMagick 6.5.2-8 (an image processing tool-

box) [5], Google Picasa 3.5 (a photo managing application) [6], and VLC 0.8.6h (a

media player) [8].

Table 4.1 presents a description of each error in each application. In Table 4.1,

"Source" presents the source where we collected this vulnerability. "Fault" and "For-

mat" present the fault type and the format of malicious inputs that can trigger this

error. "Position" presents the source code file and/or line positions that are related to

the root cause. "Related constraints" presents constraints generated by SOAP that

nullify the vulnerability.

These applications consume inputs that (if crafted) may cause the applications to

incorrectly allocate memory or perform an invalid memory access. The input formats
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Application Source Fault Format Position Related constraints

Swfdec Buzzfuzz X1I crash SWF XCreatePixMap /rect/xmax < 57600

/rect/ymax < 51000

Swfdec Buzzfuzz overflow/crash SWF jpeg.c: 192 /sub jpeg/.../width < 6020

/sub jpeg/... /height K 2351

Dillo CVE-2009-2294 overflow/crash PNG png.c:142 /header/width K 1920

png.c:203 /header/height < 1080

ImageMagick CVE-2009-1882 overflow/crash JPEG,TIFF xwindow.c:5619 /ifd[..]/imgwidth/value < 14764

/ifd[..]/imgiheight/value < 24576

Picasa TaintScope overflow/crash JPEG,TIFF N/A /start-frame/content/width < 15941

/start-frame/content/height K 29803

VLC CVE-2008-2430 overflow/crash WAV wav.c: 147 /format/size < 150

Table 4.1: The six errors used in our experiments. SOAP successfully nullifies all of these errors.



Input Application Train Test Field Distinct

SWF Swfdec 3620 3620 5550.2 98.17

PNG Dillo 1496 1497 306.8 32.3

JPEG IMK, Picasa 3025 3024 298.2 75.5

TIFF IMK, Picasa 870 872 333.5 84.5

WAV VLC 5488 5488 17.1 16.8

Table 4.2: Applications and collected inputs for our experiments.

for these errors are the SWF Shockwave Flash format; the PNG, JPEG, and TIF

image formats; and the WAV sound format.

Malicious Inputs

We obtained six malicious input files from the CVE database [2], the Buzzfuzz

project [21] and the TaintScope project [41]. Each input targets a distinct error

(see Table 4.1) in at least one of the examined applications. We obtained three of

these inputs from the CVE database [2], two from the example inputs of the Buzzfuzz

project [21], and one from the example inputs of the TaintScope project [41].

Benign Inputs

We implemented a web crawler to collect input files for each format (see Table 4.2

for the number of collected inputs for each input format). The "Input" column

presents the input file format. The "Application" column presents the application

name (here "IMK" is an abbreviation of ImageMagick). The "Train" column presents

the number of training inputs. The "Test" column presents the number of test inputs.

The "Field" column presents the mean number of fields in each test input of each

format. The "Distinct" column presents the mean number of semantically distinct

fields (i.e., fields that have different names) in each test input.

Our web crawler uses Google's search interface to acquire a list of pages that

contain at least one link to a file of a specified format (e.g., SWF, JPEG, or WAV).

The crawler then downloads each file linked within each page. We verified that all

of these inputs are benign, i.e., the corresponding applications successfully process

these inputs. For each format, we randomly partitioned these inputs into two sets,
the training set and the test set (see Table 4.2).
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Training

For each input format and application, we trained SOAP with the training set to

obtain safety constraints.

Picasa is a Windows application and because our execution monitor does not

support Windows we, therefore, cannot monitor the execution of Picasa to iden-

tify critical fields for JPEG. However, because ImageMagick processes both TIF and

JPEG files, we were able monitor the execution of ImageMagick on JPEG files to

determine critical fields and then evaluate the effectiveness of the derived constraints

for Picasa.

Rectification

Once SOAP learned the safety constraint for each application, we deploy the SOAP

input rectifier as front-end to the application test it with the malicious input and all

benign test inputs of the application. All rectification experiments were run on a 3.33

GHz machine with 24 GB of RAM.

4.2 Nullifying Vulnerabilities

We next evaluate the effectiveness of SOAP in nullifying six vulnerabilities in our

benchmark (see Table 4.1). We applied the rectifier to the obtained malicious inputs.

The rectifier detected that all of these inputs violated at least one constraint. It

enforced all constraints to produce six corresponding rectified inputs. We verified

that the applications processed the rectified inputs without error and that none of

the rectified inputs exploited the vulnerabilities. We next discuss the interactions

between the inputs and the root cause of each vulnerability.

4.2.1 Flash Video

The root cause of the X1I crash error in Swfdec is a failure to check for large Swfdec

viewing window sizes as specified in the input file. If this window size is very large,
the X11 library will allocate an extremely large buffer for the window and Swfdec will

eventually crash. SOAP nullifies this error by enforcing the constraints /rect/xmax

< 57600 and /rect/ymax < 51000, which limit the window to a size that Swfdec can

handle. In this way, SOAP ensures that no rectified input will be able to exploit this

error in Swfdec.
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The integer overflow vulnerabilities in Swfdec occurs when Swfdec calculates the

required size of the memory buffer for JPEG images embedded within the SWF

file. If the SWF input file contains a JPEG image with abnormally large specified

width and height values, this calculation will overflow and Swfdec will allocate a

buffer significantly smaller than the required size. When SOAP enforces the learned

constraints, it nullifies the error by limiting the size of the embedded image. No

rectified input will be able to exploit this error.

4.2.2 Image

Errors in Dillo, ImageMagick and Picasa have similar root causes. A large PNG image

with crafted width and height can exploit the integer overflow vulnerability in Dillo

(see Chapter 2). The same malicious JPEG and TIFF images can exploit vulnera-

bilities in both ImageMagick (running on Linux) and Picasa Photo Viewer (running

on Windows). ImageMagick does not check the size of images when allocating an

image buffer for display at magick/xwindow.c:5619 in function XMakelmageo. Pi-

casa Photo Viewer also mishandles large image files [41]. By enforcing the safety

constraints, SOAP limits the size of input images and nullifies these vulnerabilities

(across applications and operating systems).

4.2.3 Sound

VLC has an overflow vulnerability when processing the format chunk of a WAV file.

The integer field /format/size specifies the size of the format chunk (which is less

than 150 in typical WAV files). VLC allocates a memory buffer to hold the format

chunk with the size of the buffer equal to the value of the field /format/size plus two.

A malicious input with a large value (such as Oxfffffffe) in this field can exploit this

overflow vulnerability. By enforcing the constraint /format/size < 150, SOAP limits

the size of the format chunk in WAV files and nullifies this vulnerability.

These results indicate that SOAP effectively nullifies all six vulnerabilities. Our

code inspection proves that the learned constraints nullify the root causes of all of

the vulnerabilities so that no input, after rectification, can exploit the vulnerabilities.

4.3 Data Loss

We next compute a quantitative measure of the rectification effect on data loss. For

each format, we first apply the rectifier to the test inputs. We report the mean data
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Input Test Rectified Max enforced Mean enforced floss

SWF 3620 57 (1.57%) 86 8.61 N/A

PNG 1497 0 (0%) 0 0 0%

JPEG 3024 42 (1.39%) 8 2.55 0.08%

TIFF 872 11 (1.26%) 2 1.36 0.50%

WAV 5488 11 (0.20%) 2 1.09 0%

Table 4.3: The statistic of input rectification on test inputs of each input format.

loss percentage of all test inputs for each format. We use the following formula to

compute the data loss percentage of a rectified input i:

pi
loss Dos

Dtot

D' measures the amount of desirable data before rectification and Dj055 measures the

amount of desirable data lost in the rectification process. For JPEG, TIFF and PNG

files, D'0 , is the number of pixels in the image and D'055 is the number of pixels that

change after rectification. For WAV files, D'0 , is the number of frames in the sound

file and D'055 is the number of frames that change after rectification. Because SWF

files typically contain interactive content such as animations and dynamic objects

that respond to user inputs, we did not attempt to develop a corresponding metric.

We instead rely solely on our human evaluation in Section 5 for SWF files.

Result Interpretation

Table 4.3 presents rectification results from the test inputs of each input format.

The "Input" column presents the input file format. The "Test" column presents the

number of test inputs. The "Rectified" column has entries of the form X(Y), where

X is the number of test inputs that the rectifier modified and Y is the correspond-

ing percentage of modified test inputs. The "Max enforced" column presents the

maximum number of constraints that SOAP enforced over all rectified test inputs of

each format. The "Mean enforced" column presents the mean number of constraints

that SOAP enforced over all rectified test inputs of each format. Finally, the "Ploss"
column presents the mean data loss percentage over all test inputs of each format.

First, note that more than 98% of the test inputs satisfy all constraints and are

therefore left unchanged by the rectifier. Note also that both PNG and WAV have
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zero desirable data loss - PNG because the rectifier did not modify any test inputs,

WAV because the modifications did not affect the desirable data. For JPEG and

TIFF, the mean desirable data loss is less than 0.5%.

One of the reasons that the desirable data loss numbers are so small is that

rectifications often change fields (such as the name of the author of the data file or

the software package that created the data file) that do not affect the output presented

to the user. The application must nevertheless parse and process these fields to obtain

the desirable data in the input file. Because these fields are often viewed as tangential

to the primary purpose of the application, the code that processes them may be less

extensively tested and therefore more vulnerable to exploitation.

Also note that the SOAP rectification algorithm often needed to iteratively enforce

correlated constraints on nested fields. For the SWF format, SOAP enforced as many

as 86 constraints on some SWF inputs. This is because the SWF format contains

deeply nested fields, so that enforcing a violated constraint will cause violations of

other correlated constraints at different levels.

4.4 Size of Training Input Set

We next investigate how the size of the training input set affects the rectification

result. Intuitively, we expect that using fewer training inputs will produce more

restrictive constraints which, in turn, will cause more data loss in the rectification.

For each format, we incrementally increase the size of the training input set and

record the data loss percentage on the test inputs. At each step, we increase the

number of training inputs by 200. Figure 4-1 presents curves which plot the mean

data loss percentage of the different input formats as a function of the size of the

training input set.

As expected, the curves initially drop rapidly, then approach a limit as the training

set sizes become large. Note that the PNG and WAV curves converge more rapidly

than the TIFF and JPEG curves. We attribute this to the fact that the PNG and

WAV formats are simpler than the TIFF and JPEG formats (see Table 4.2 for the

number of semantically distinct fields).
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Figure 4-1: The mean data loss percentage curves under different sizes of training

input sets for JPEG, TIFF, WAV and PNG (see Section 4.4). X-axis indicates the

size of training input sets. Y-axis indicates the mean data loss percentage.

Input Mean Parse Rectification Per field

SWF 531ms 443ms 88ms 0.096ms

PNG 23ms 19ms 4ms 0.075ms

JPEG 24ms 21ms 3ms 0.080ms

TIFF 31ms 26ms 5ms 0.093ms

WAV 1.5ms 1.3ms 0.2ms 0.088ms

Table 4.4: The running time of SOAP on test inputs of each format.
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4.5 Overhead

We next evaluate the rectification overhead that SOAP introduces. All times are

measured on an Intel 3.33GHz 6-core machine with SOAP running on only one core.

Table 4.4 presents the mean running time of the SOAP rectifier for processing the

test inputs of each file format. The "Input" column presents the input file format.

The "Mean" column presents the mean running time for each test input including

both parsing and rectification. The "Parse" column presents the mean parsing time

for each input. The "Rectification" column presents the mean rectification time for

each input. The "Per field" column presents the mean running time divided by the

number of input fields.

The results show that the majority of the execution time is incurred in the Hachoir

parsing library, with the execution time per field roughly constant across the input

formats (so SWF files take longer to parse because they have more fields than other

kinds of files). We expect that users will find these rectification overheads negligible

during interactive use.
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Chapter 5

Mechanical Turk-Based Evaluation

Amazon Mechanical Turk [1] is a Web-based crowdsourcing labor market. Requesters

post Human Intelligence Tasks (HITs); workers solve those HITs in return for a small

payment.

5.1 Experiment Design

We organized the experiment as follows:

e Input Files: We collected all of the TIFF, JPEG, and SWF test input files

that the rectifier modified (we exclude PNG and WAV files because the original

and rectified files have no differences that are visible to the user).

e HIT Organization: Together, the TIFF and JPEG files comprise the image

files. The SWF files comprise a separate pool of video files. We partition the

image files into groups, with four files per group. There is one HIT for each

group; the HIT presents the original and rectified versions of the files in the

group to the worker for rating. The HIT also contains a control pair. With

probability 0.5 the control pair consists of identical images; with probability 0.5
the control pair consists of two completely different images. We similarly create

HITs for the videos.

9 HIT Copies: We post 100 copies of each HIT on Mechanical Turk. Each Me-

chanical Turk worker rates each pair in the HIT on a scale from 0 to 3. A score

of 3 indicates no visible difference between the images (or videos), 2 indicates

only minor visible differences, 1 indicates a substantial visible difference, and 0
indicates that the two images (or videos) appear completely different.
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1. Image a Imige b

O 3. Same.
O 2. Noticeable minor difference.

1 I. Substantially different, but still some parts of image remain same.
O 0. Completely different. (Dramatically distorted)

Briefly describe the difference, if your choice is other than 3.

2. Image a Image b

Figure 5-1: The user interface of an image comparison HIT.

Figure 5-1 presents the user interface of an image comparison HIT. The worker

accesses images through the links. The worker rates the difference of each pair of

images by choosing one of the four options. The worker also describes the difference

in the text box.

5.2 Mechanisms for Validity

As with all marketplaces that involve the exchange of currency, Amazon's Mechanical

Turk contains misbehaving users. For example, some workers attempt to game the

system by using automated bots to perform the HITs or simply by providing arbitrary

answers to HITs without attempting to perform the evaluation [25]. We used three

mechanisms to recognize and discard results from such workers:

" Approval Rating: Amazon rates each Mechanical Turk worker and provides

this information to HIT requestors. This rating indicates what percentage of

that worker's previously performed HITs were accepted by other requestors as

valid. We required that prospective Mechanical Turk workers have an accep-

tance rate of at least 95%. Using an approval rating filter provides an initial

quality filter but cannot guarantee future worker performance.

" Control Pairs: Each HIT contains five pairs, one of which was a control

pair. Half of the control pairs contained identical images or videos, while the
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Format Undetectable diff. Minor diff. Substantial diff. Complete diff.

SWF 43 (1.19%) 7 (0.19%) 7 (0.19%) 0

JPEG 37 (1.22%) 3 (0.10%) 1 (0.03%) 1 (0.03%)

TIFF 3 (0.34%) 5 (0.57%) 2 (0.23%) 1 (0.11%)

Table 5.1: Numerical results of Mechanical Turk experiment.

other half contained completely different images or videos (one of the images

or videos was simply null). If a worker did not correctly evaluate the control

pair, we discarded the results from that worker. This technique can effectively

detect bots and misbehaving workers but requires control pairs that are difficult

to misinterpret.

Descriptions: For each HIT, we require workers to provide a short description

of the perceived differences (if any) between image or video pairs. By forcing

users to provide a textual description, we help users transition from performing

motor control actions (e.g., clicking on images) to cognitive executive functions.

This technique helps improve the performance of legitimate workers and enables

the detection of misbehaving users by monitoring for empty or nonsensical de-

scriptions.

Whenever we discarded a result from a worker , we reposted a copy of the HIT to

ensure that we obtained results for all 100 copies of each HIT.

5.3 Experiment Result

For each HIT h, we computed the mean scores over all the scores given by the workers

assigned to h. We then used the mean scores to classify the files in h into four cate-

gories: undetectable difference (score in [2.5, 3]), minor difference (score in [1.5, 2.5)),
substantial difference (score in [0.5, 1.5)), and complete difference (score in [0, 0.5)).

Table 5.1 presents, for each combination of input file format and classification, an
entry of the form X(Y), where X is the number of files in that classification and Y
is the corresponding percentage out of all test inputs. Figure 5-2 presents graphical
ratio results for each categories.

Note that, out of 110 rectified inputs, only two exhibit a complete difference after
rectification. Only 12 exhibit more than a minor difference. This shows that SOAP
can often preserve most or even all desirable data in the test inputs for the user.
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JPEG.. ........ .

SW F.. . .. .. . .. . .. . . .

97% 98% 99% 100%

0 Unrectified 0Undetectable [2.5, 3] Q Minor diff. [1.5, 2.5)

1 Substantial diff. [0.5, 1.5) U Complete diff. [0, 0.5)

Figure 5-2: Graphical results of Mechanical Turk experiment.

To compare the Mechanical Turk results with the quantitative data loss percentage

results on image files (see Section 4.3), we compute the correlation coefficient between

these two sets of data. The correlation coefficient is -0.84, which indicates that

they are significantly correlated (p < 0.01). For complex rectification effects, we

find that Mechanical Turk workers can provide a more intuitive evaluation than the

than quantitative data loss percentage provides. For example, only the image color

in Figure 1-3 changes (Mechanical Turk score 1.42), but the quantitative data loss

percentage reports simply that all pixels change.

5.4 Rectification Effect Explanation

JPEG

When we compare the original and rectified JPEG files, we observe essentially three

outcomes: 1) The rectification changes fields that do not affect the image presented

to the user - the original and rectified images appear identical (37 out of 42 inputs

with Turk scores in [2.5, 3.0]). 2) The rectification truncates part of the picture,
removing a strip along the bottom of the picture (3 out of 42 inputs with Turk scores

in [2.0, 2.3], see Figure 1-1). 3) The rectification changes the metadata fields of the

picture, the pixels wrap around, and the rectified image may have similar colors as

the original but with the detail destroyed by the pixel wrap (2 out of 42 inputs with

Turk scores in [0, 1), see Figure 1-2).
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For TIFF files, we observed essentially four outcomes: 1) The rectification changes

fields that do not affect the image presented to the user - the original and rectified

images appear identical (3 out of 11 inputs with Turk scores in [2.5, 3.0]). 2) The

rectification truncates the image, removing a strip along the bottom of the picture

(5 out of 11 inputs with Turk scores in [1.0, 2.5]). 3) The rectification changes the

color palette fields so that only the image color changes (2 out of 11 inputs with Turk

scores in [1.5, 2.0], see Figure 1-3). 4) The rectification changes metadata fields and

all data is lost (1 out of 11 inputs with Turk score 0.2).

SWF

For SWF files, we observed essentially three outcomes: 1) The rectification changes

fields that do not affect the video (43 out of 57 inputs with Turk scores in [2.5, 3.0]). 2)

The rectification changes fields that only affect a single visual object in the flash video

such as an embedded image or the background sound, leaving the SWF functionality

largely or partially intact (3 out of 57 inputs with Turk scores in [1.5, 2.5]). 3) The

rectification changes fields that affect the program logic of the flash video so that the

rectified flash fails to respond to interactive events from users (11 out of 57 inputs

with Turk scores in [0.5, 2.6] depending on how important the affected events are to

the users).
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Chapter 6

Related Work

Input Rectification

Applying input rectification to improve software reliability and availability was first

introduced by Rinard [37], who presented the implementation of a manually crafted

input rectifier for the Pine email client. SOAP improves upon the basic concept by

automating the fundamental components of the approach: learning and rectification.

Data Diversity

Ammann and Knight [9] propose to improve software reliability using data diversity.

Given an input that triggers an error, the goal is to retry with a reexpressed input that

avoids the error but generates an equivalent result. Input rectification, in contrast,

may change the input (and therefore change the output). The freedom to change

the input semantics enables input rectification to nullify a broader class of errors in

a broader class of applications (specifically, applications for which equivalent inputs

may not be available).

Anomaly Detection

Anomaly detection research has produced a variety of techniques for detecting ma-

licious inputs [38, 26, 39, 29, 22, 34, 40]. Web-based anomaly detection [38, 26]

uses input features (e.g. request length and character distributions) from attack-

free HTTP traffic to model normal behaviors. HTTP requests that contain features

that violate the model are flagged as anomalous and dropped. Similarly, Valeur et

al [39] propose a learning-based approach for detecting SQL-injection attacks. Wang

et al [40] propose a technique that detects network-based intrusions by examining
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the character distribution in payloads. Perdisci et al [34] propose a clustering-based

anomaly detection technique that learns features from malicious traces (as opposed to

benign traces). SOAP differs from anomaly detection techniques in its aim to rectify

inputs and to preserve desirable data in inputs, while anomaly detection techniques

simply recognize and drop potentially malicious inputs.

Signature Generation

Vigilante [15], Bouncer [14], PacketVaccine [42], VSEF [31], and ShieldGen [17] gen-

erate vulnerability signatures from known exploits. SOAP differs from such systems

in its ability to nullify unknown vulnerabilities and to enable users to access desirable

data in potentially malicious inputs (rather than discarding such inputs).

Critical Input, Code, and Data Inference

Snap [12] can automatically learn which input fields, code, and program data are

critical to the acceptability of the output that a given application produces. Other

fields, code, and data can sustain significant perturbations without changing the

acceptability of the output. SOAP could use this criticality information to minimize

or even eliminate changes to critical input fields in the rectification process.

Directed Fuzzing

SOAP uses taint analysis to track input fields that may trigger overflow errors. Buz-

zFuzz also uses taint tracing to track disparate input bytes that simultaneously reach

security critical operations [21]. BuzzFuzz uses this information to perform directed

fuzzing on inputs that have complex structures. Like BuzzFuzz, SOAP learns which

bytes reach security critical operations. Unlike BuzzFuzz, SOAP also learns and

enforces safety constraints over these bytes.

Automatic Patch

Like SOAP, ClearView [35] enforces learned invariants to eliminate errors and vul-

nerabilities. Specifically, ClearView learns invariants over registers and memory lo-

cations, detects critical invariants that are violated when an adversary attempts to

exploit a security vulnerability, then generates and installs patches that eliminate the

vulnerability by modifying the program state to enforce the invariants.
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Rectification Algorithm

The SOAP rectification algorithm is inspired by automated data structure repair [19,
23, 20], which iteratively modifies a data structure to enforce data consistency defined

in an abstract model. It is also possible to use data structure repair to enforce learned

data structure consistency properties [18].

Evaluation with Mechanical Turk

By enabling a large-scale, low-cost human workforce, Mechanical Turk has become a

viable option for a variety of experimental tasks such as training data annotation [28],
computation result evaluation [25], and behavior research [36].
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Chapter 7

Conclusion

Standard anomaly detection techniques detect potentially malicious inputs for an

application and drop these inputs. Therefore these techniques deny the user to ac-

cess desirable data in atypical benign inputs and malicious inputs. Automatic input

rectification is an alternative technique, which changes atypical inputs back to the

application comfort zone.

The combination of quantitative evaluation and human qualitative evaluation in-

dicates that automatic input rectification can effectively nullify errors in applications

while preserving much, and in many cases, all, of the desirable data in complex input

files.
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