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Abstract

Electrolytic capacitors, the current standard for high-value capacitors, are one of the most challenging com-
ponents to miniaturize, accounting for up to 1/3 of the volume in some power devices, and are the weak
link with regard to reliability, accounting for the majority of failures in consumer electronics. As a potential
alternative vertically aligned carbon nanotubes are utilized to create miniature high-speed ultracapacitors.
Because the nanotubes are grown on silicon using low pressure chemical vapor deposition, this technique also
opens the possibility of high-value integrated (on-die) capacitors. Using this technique a capacitance density
of 52 pF/mm2 was achieved. Separately, through careful design of the electrode geometry it is demonstrated
that the ionic resistance, the primary factor responsible for the long time constant of ultracapacitors, scales
approximately linearly with electrode finger width, thereby demonstrating a workable method for making
miniature high-speed ultracapacitors. This work represents the first known example of controlling an ul-
tracapacitor time constant purely though modification of the mechanical structure of the electrodes. It is
further projected that using advanced lithography and growth techniques this speed could be increased to
120 Hz. Finally, a variety of packaging techniques are examined for both integrated and discrete applications
of this technology.
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Title: Bernard M. Gordon Professor of the Practice
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Prologue

Ever since I was a small child I have been fascinated with electronics and electronics repair. One of my

earliest memories is sitting transfixed by the vacuum tubes glowing in a radio at my Grandmother's house.

When I got a few of years older, I wanted to actually make the radio work, not just watch the tubes glow.

With my father's help we quickly found the problem - a dried up and leaking electrolytic capacitor! I fixed

the radio and my interest in electronics grew.

Over the years since then I have fixed literally hundreds of pieces of electronics ranging from simple

circuits such as 1920's radio sets and fluorescent light ballasts to complex and delicate instruments including

microwave signal generators and oscilloscopes. Each project has provided a unique challenge and has helped

to stretch my knowledge of electronics, past and present. However, there has been one component that has

played a role in more than half of all failures I have diagnosed. It is the electrolytic capacitor.

Because of their high failure rate and their tendency to spray corrosive electrolyte on surrounding parts

when they do fail, I have developed a strong dislike for electrolytic capacitors, or 'electrolytics' as they are

colloquially known. So when, after having been accepted to MIT as a graduate student, I heard a lecture

by Professor Joel Schindall on his carbon nanotube ultracapacitor technology I immediately wanted to try

to apply the technology to producing a miniature ultracapacitor capable of competing with the traditional

electrolytic capacitor. This thesis is the culmination of that effort.
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Chapter 1

Background

This chapter explores the history and current state-of-the-art for electrolytic capacitors and ultracapacitors.

It then introduces the concept of a miniature integrated ultracapacitor and outlines the specific challenges

that have to be overcome in order to create such a device. The details of these challenges and the work done

so far to overcome them is explored in the remaining chapters.

1.1 Introduction to the Electrolytic Capacitor

The present standard for high-value capacitors is the aluminum electrolytic capacitor. Patented in 1901

by Charles Pollak [1], the electrolytic capacitor was the first capacitor with sufficient capacitance density

to make a practical off-line power converter (a plug-in power supply) and thus allowed radios to run off

of the AC power line instead of batteries. "The first really practical AC set-and sold in quantity, was

RCA's Radiola 30, from September, 1925" [2]. Eighty-seven years later the electrolytic capacitor is still the

preferred device for filtering the ripple from rectified 60 Hz line voltage to make clean DC, offering sufficient

speed and energy density for this application as well as low cost.

The device consists of two aluminum plates separated by an electrolyte. When a potential is first applied

to the plates after fabrication a thin layer of alumina (aluminum oxide) forms on the positive anode plate.

This oxide is insulating and so electrically isolates the plates, resulting in a capacitor with the anode plate

forming one side, the alumina grown on this plate forming the dielectric, and the electrolyte, which is

conducting and electrically connected to the other plate, forming the other side. This oxide layer can be

extremely thin, and thus the device can have high capacitance density, because it is self-healing - if a hole

forms in it the exposed aluminum will quickly react to re-form the insulating alumina layer. See Figure 1.1.

1.2 Problems with the Electrolytic Capacitor

Despite all of its advantages, the aluminum electrolytic capacitor also has numerous drawbacks. The two

most prevalent are its low volumetric energy density and its high failure rate. As an example of their low

energy density, see Figure 1.2. This figure shows the mainboard of a recent (2009) laptop charger made by
the Apple computer company. The electrolytic capacitors, highlighted in red, take up approximately 1.2 in 2

15



Electrolyte. / Alumina Dielectric

Negative Lead Positive Lead

Aluminum plates

Figure 1.1: Diagram of an electrolytic capacitor

which is 22% of the 5.4 in 2 of the total available board area, second only to the magnetic components.

This same percentage applies to device volume, since all components in this design are the same height. In

personal experience, this is typical, if not slightly lower than average, with electrolytic capacitors using up

to 1/3 of total board area in off-line switching power supplies.

There are two major uses of electrolytic capacitors in off-line switching power supplies. The first is as a

primary side filter for smoothing out the rectified line frequency, and the second is as a secondary side filter

for smoothing out ripple at the switching frequency. As switching frequencies increase there is reason to

believe that the secondary filters can be replaced with smaller value higher speed capacitors such as ceramic

multi-layer capacitors. However, since the line frequency is fixed, the capacitance of the primary side filter

is dependent only on the current drawn from the converter and the amount of ripple that is tolerable [11].

Thus, this capacitor becomes one of the largest components in the supply.

Furthermore, in extensive personal experience repairing consumer and scientific electronics, about half

of all failures have electrolytic capacitors as their root cause. Electrolytic capacitor failure is widely

recognized among people working on electronics, to the point that an entire hobbyist website, http:

//www.badcaps.net/, is devoted to their replacement. The mechanism of failure is simple and funda,

mental to the design. When the capacitor self-heals, aluminum is converted to alumina by the following

reaction: 2Al(s) + 3H 20 -+ A12 0 3 + 3H 2 , thus releasing hydrogen gas that vents through the seal on the

capacitor can, thereby using up electrolyte [12]. As the electrolyte is consumed the internal resistance of

the capacitor increases, thereby causing heating and additional gas generation. Eventually the device fails

open-circuit.

16



Figure 1.2: Mainboard of a 2009 Apple laptop charger with electrolytic capacitors highlighted in red

1.3 Introduction to the Ultracapacitor

An ultracapacitor, also known as a super capacitor or electrolytic double layer capacitor, offers the highest

energy density of any existing capacitor technology. Invented at Standard Oil and patented in 1966 [3], the

device operates on an entirely different principle from a traditional electrolytic capacitor. The device consists

of two porous electrodes, traditionally made of activated carbon, immersed in an electrolyte and separated

by a piece of ion-permeable insulating material. This separator, which is commonly made of cellulose, serves

to electrically insulate the electrodes from each other while allowing ions to easily pass through. When a

potential is applied between the plates, the ions in the electrolyte are attracted to and migrate into the

electrodes with the opposite charge. These ions cancel out the fields created by the electric charges on

the plates, allowing additional electric charge to build up, which in turn attracts more ions. The process

continues until the all the surface area of the electrodes is covered with ions, implying that the capacitance of

the device increases with the porosity of the plates. Figure 1.3 shows such a device; however, in a traditional

ultracapacitor the electrodes would be made of a porous sponge-like material rather than the highly ordered

carbon-nanotubes as shown in the figure. With highly porous plates, farad-range capacitances are easily

obtained. However, because ions have to move inside the device and because ionic resistances are typically

much higher than electrical resistances, ultracapacitors have tended to be far too slow for electronic filtering

applications [4].

The speed of a traditional ultracapacitor is limited by the ionic resistance of the porous electrodes. That

is, as ions migrate into and out of the electrode material under the influence of the electric field created in

the electrolyte by the potential across the device, collisions with the electrode material slow their progress.

In this sense, the electrode material can be modeled as an ionic resistor with an ionic resistance, Rimic

which is a function of the ionic resistivity, pimic, the length (distance the ions have to migrate), L, and a

cross-sectional area A per Equation 1.1.

17



Negative Charge Collector

Separator V

Positive Charge Collector

Figure 1.3: Schematic of an opposing-electrode ultracapacitor using carbon nanotubes as the electrode
material. Note that the electrode material is actually much thicker than shown here.

Rionic = PionicL

1.4 Previous Work on High-Speed Ultracapacitors

Attempts have been made to create ultracapacitors that operate at higher speed than traditional activated

carbon devices. One such example is the work done at MIT by Riccardo Signorelli (PhD 2009), Prof.

Joel Schindall and Prof. John Kassakian, which forms the basis for the technique explored in this thesis.

The idea behind this work was to reduce the ionic resistivity of the electrode material by replacing the

traditional activated carbon with carbon nanotubes. Carbon nanotube forests provide less ionic resistance

than activated carbon because the paths along which the ions must migrate into the electrode material are

less convoluted [5]. See Figure 1.3 for a diagram of this device. Although this technique improves speed by up

to 5x as compared with activated carbon based ultracapacitors, by itself this technique does not yield speeds

sufficient for filtering at 120 Hz as required to make a primary-side filter for an off-line power converter. For

a more detailed description of this device and of ultracapacitor technology in general, see references [17] and

[18].

Sufficient speed for that application was achieved by Dr. John Miller by using a forest of approximately

0.6 pm graphene "potato chips" grown out of a nickel substrate and wetted with a phosphonium ionic liquid

[4]. While this device provides sufficient speed, the extremely thin layer of electrode material severely limits

the capacitance density of the device. Also, since the graphene must be grown at 800 'C it is not possible

to integrate this technology into a standard IC.
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1.5 Previous Work on Miniature Ultracapacitors

Lower energy commercial ultracapacitors for electronics applications are also available and are sold by compa-

nies such as Panasonic, Nichicon, Cornell Dubilier, and AVX. However, these devices exhibit high equivalent

series resistance (ESR) and low speed in comparison with traditional electrolytic capacitors, and are thus still

primarily sold as burst power or "battery replacement" devices for use in applications like complementary

metal oxide semiconductor (CMOS) memory backup.

There are two published microelectromechanical systems (MEMS) ultracapacitors at the time of this

writing. The first, which uses the same interdigitated topology that is proposed in this thesis, was done by

Y. Q. Jiang [7]. However, no attempt is made in that paper to optimize the speed of the device for filtering

applications, nor do they achieve the capacitance density demonstrated in this thesis.

The second, by H. J. In, uses an opposing electrode topology and must be produced using a far more

sophisticated manufacturing process where the electrodes are grown in a planar topology and then folded

into an opposing topology on micro-fabricated gold hinges [8].

1.6 Introduction to the Interdigitated Electrode Miniature Ultra-

capacitor (IDEMU) Concept

The idea behind the IDEMU is to utilize the carbon nanotube (CNT) enhanced ultracapacitor technology

developed at MIT by Riccardo Signorelli, Prof. Joel Schindall and Prof. John Kassakian, to create miniature

planar high-speed ultracapacitors of the structure shown in Figure 1.4.

Figure 1.4: Structure of IDEMU. The nanotubes grow vertically out of the silicon substrate while the ions
move sideways, parallel to the silicon substrate.

There are several advantages to this structure. First, because the electrodes are fabricated on the same
substrate at the same time, no mechanical assembly of the device is required. This means that it can be
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miniaturized to scales that would be prohibitive to the assembly of individual parts. Second, because the

nanotubes are held rigidly in place by the substrate, and the separation between the electrodes is defined by

the lithographic technique used to create the interdigitated pattern, the need for an ion-permeable separator

to prevent the electrodes from making electrical contact is completely eliminated, preventing the wasted

space and increased ionic resistance that separators introduce. Third, and most importantly, it has the

potential to allow a device to be constructed that is simultaneously fast and high capacitance. As the width

of each interdigitated finger of the electrodes is decreased, the effective pore depth seen by the ions should

also decrease, and with it the ionic resistance of the electrodes. In a device with conventional geometry,

the pore depth seen by the ions also decreases with the height of the nanotubes, but here it is linked to

the width of the electrode fingers, since the ions are migrating parallel to the silicon substrate, so the RC

time constant remains the same. However, in the IDEMU, as the width of the fingers is decreased, the total

surface area available to store ions can be maintained by increasing the number of fingers, thus allowing for

a high-value, high speed device. In other words, per Equation 1.1 the ionic resistance is dependent on the

distance into the electrode that the ions have to migrate, which, in this structure, is set by the finger width,

not the nanotube height. Therefore, this is a way to control the time constant of an ultracapacitor by only

changing the mechanical structure of the electrodes, something that is not known to have been proposed or

done before.

All of the steps required to produce the CNT electrodes can be performed using only standard semicon-

ductor processing equipment, giving the technology the potential to be manufactured inexpensively using

existing equipment and to be easily integrated into existing technologies. Furthermore, it has been demon-

strated that nanotubes can be grown at CMOS compatible temperatures [6], which means that this tech-

nology could potentially be integrated into ICs, allowing previously unobtainable on-die capacitances to be

realized. (Trench capacitors are the current state of the art for high-value on-die capacitors but they only

demonstrate a capacitance of about 450 nF/mm2 [10].)

1.7 Thesis Outline

The remainder of this document attempts to answer the question: "Can an ultracapacitor be constructed

that competes with electrolytic capacitors and if so, can it be integrated onto an IC?"

Specifically:

" What should the electrodes be made of?

Chapter 2 explains catalyst deposition and nanotube growth.

" What mechanical structure should be used?

Chapter 3 describes lithography and device structure optimization.

" What electrolyte should be used?

Chapter 4 discusses electrolyte selection and wetting.

" How should the device be packaged?

Chapter 5 proposes methods of packaging.
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* What has been achieved?

Chapter 6 outlines the results obtained.
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Chapter 2

Catalyst Deposition and Nanotube

Growth

This chapter details the procedure for creating high-speed planar ultracapacitor electrodes on silicon. The

challenges associated with this procedure, and with the technique in general, are also explored.

2.1 Overview of the Optimized Deposition Process

Device construction begins with a polished single-crystal silicon wafer that has been thermally oxidized

to give it an approximately 50 pm silicon dioxide layer. This wafer represents a passivated IC on top of

which a nanotube capacitor is to be grown. Onto this wafer the interdigitated electrode pattern is formed

using lithography. The idea is to deposit the current-collector metal and nanotube catalyst only where the

electrodes are to be formed, thereby controlling the position and shape of the resulting nanotube forest

electrodes with lithographic precision.

The lithographic process uses positive masking. Specifically, photoresist is applied to the wafer, exposed,
and developed such that bare silicon is exposed only where nanotubes are to be grown. Positive masking is

used, as opposed to negative masking (where the metal would be applied to the whole wafer and then etched

off where it is not needed) so as to avoid islands of photoresist, which were determined to be easily damaged

when the unwanted metal was removed (liftoff).

The lithography process begins when a quarter of a four inch wafer is cleaned by spinning it at approxi-

mately 600 RPM while spraying it first with acetone and then isopropyl alcohol. The wafer is then dried by

spinning it at 3000 RPM for 10 to 15 seconds. After cleaning, a coating of OCG 825 photoresist is applied

by pouring a one inch diameter puddle of photoresist onto the wafer and then spinning it at 3000 RPM for

30 seconds. The resultant coating is visually inspected for fine particulates, and if there are acceptably few,
the photoresist is cured by placing the quarter wafer on a 130 C hotplate for two minutes.

After the photoresist is applied, the 1/4 wafer is placed on the chuck of a Karl Suss MA4 mask aligner and

the mask (a plastic transparency) is placed on top of it and aligned to maximize the number of usable samples.

The resist is then exposed for 30 seconds, after which it is developed in OCG 934 for 30 seconds under

agitation. After rinsing and drying with high-pressure nitrogen, the 1/4 wafer is ready for the deposition
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process.

Next, three layers are deposited on the wafer using an AJA 3-target sputtering machine. These layers

consist of: molybdenum (100 nm), alumina (10 nm), and iron (1 nm). The molybdenum underlayer serves as

an electrical conductor connecting all of the nanotubes in a given electrode together. Iron is the catalyst for

nanotube growth, and the other two layers, alumina and aluminum, have been determined experimentally to

promote good nanotube growth [1]. After sputtering, the remaining photoresist is removed with Microstrip@

in an ultrasonic cleaner using the following process. A dish of water is heated to just under the boiling point

on a hotplate. Into this dish a beaker containing the sample and Microstrip® is placed for roughly one to

two minutes. The beaker is then transferred to an ultrasonic cleaner for one to two minutes before being

returned to the heated water bath on the hotplate. This process is repeated for approximately 20 minutes

until all of the excess metal is removed. The finished wafer is diced into individual 1 cm x 1 cm square

devices by one of two processes. Initially the wafers were diced using a die-saw. However, it was determined

that the debris produced by this process damaged the catalyst layer, so later samples were diced by manually

scribing and cleaving them. These squares (called samples) are then ready for nanotube growth. Figure 2.1

shows a partial cross section of the completed sample. Finger AN and Finger BN represent two fingers of

opposite electrodes.

FingerAN ron(nm) Finger BN

Alumina (10 nm)
Molybdenum (100 nm)

ISilicon Doxid

Figure 2.1: Partial cross-section of sample after deposition but before growth (not to scale)

2.2 Challenges to the Deposition Process and Potential Future

Work

Since the deposition process relies exclusively on standard semiconductor processing it has the fewest chal-

lenges associated with it of all the steps in the construction process. However, the following issues still need

to be addressed.

2.2.1 Reducing the Resistance of the Current Collector

The resistance of the molybdenum layer is of concern. As shown in Chapter 3, the resistance of the current

collector, even of the widest finger device (400 pm wide fingers ) is 1.9 ohms, which is significant in the

overall performance of the device. This gets dramatically worse in the narrowest finger (10 pm wide fingers)

device at 11 ohms.

The obvious ways to improve this performance are to either use a metal with a higher conductivity for the

current collector and/or use a thicker layer of it. First, to address the use of other metals, the conductivity
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of Molybdenum is 4.85 x 10-8 Qm, which is high compared to that of aluminum, the standard material used

for metalization in semiconductor processing, at 2.42 x 10- Qm [13]. However, experiments on aluminum

have not been successful, presumably because the nanotube growth is currently done at a temperature

which exceeds that of the melting point of aluminum. Tungsten, at 4.82 x 10-8 Qm was also tried earlier

in the development process, not because of resistivity issues but because tungsten was the metal used for

the current collector in earlier CNT ultracapacitor research [5]. However, tungsten was determined to be

completely unsuitable because it does not adhere to the oxidized silicon substrate, resulting in peeling when

the photoresist is lifted off. The second choice is a thicker layer of molybdenum. However, increasing the

metal thickness greatly increases the liftoff time. In corroboration, increasing the thickness of molybdenum

from 50 nm to 100 nm approximately doubled the time required for liftoff to occur completely.

An alternative (but unexplored) deposition process would be to apply the current collector, alumina and

iron catalyst to the entire wafer, then apply photoresist, expose the photoresist, develop the photoresist and

then etch, removing the metal where it is not needed. This has the advantage of potentially being able

to handle thicker current collectors with no liftoff problems but due to the wide array of variables in this

project, this approach has been left unexplored. As a final point, the current collector resistivity issue will

become much less of a problem as the devices are scaled down, since the width to length ratio of the fingers

can be reduced (and with it the electrical resistance of the current collector) without adversely affecting the

ionic resistance of the device (i.e. the fingers can still be narrow on an absolute scale).

2.2.2 Reducing Contact Resistance Between the Nanotubes and Current Col-

lector

As will be shown in Chapter 6, the electrical contact resistance between the nanotubes and the current

collector dwarfs the more fundamental source of series resistance: the ionic resistance of the electrodes.

Thus, it is imperative for a working device that this contact resistance be lowered. The assumed source of

this resistance is the alumina layer between the current collector and the catalyst from which the nanotubes

grow. This layer appears to be essential for nanotube growth, but alumina is an insulator. Thus, another

material that is more conductive than alumina but which still promotes nanotube growth needs to be found,
or the thickness of the alumina layer needs to be reduced to the point that its resistance is negligible. To

this end, titanium nitride was deposited in place of alumina for one set of samples, but, unfortunately, this

did not allow for nanotube growth.

2.2.3 Improving Electrical Connections to the Current Collector

Another, separate issue is that of connecting to the current collector. To ultimately create a useful device, a

solderable or wire-bondable conductor will have to be applied to the contact pads. This will require multiple

deposition steps and mask alignments that were not required for the kind of experimental fabrication done

for this project. However, aside from requiring more expensive chrome masks and a more complex deposition

procedure, the steps required are perfectly standard in the semiconductor industry and should not provide

significant technical challenge.

As a final note, early in the development of the process an extremely thin (0.3 nm) aluminum layer was

placed over the catalyst layer in an attempt to protect the samples from oxidation in air prior to growth.
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Table 2.1: Table of gas flow rates and pressures
Gas Reduction Flow Rate (sccm) Growth Flow Rate (sccm)

Argon 642 642
Hydrogen 88 66
Acetylene 0 28

Chamber Pressure (Approximate) 10 Torr 20 Torr

Heater Temperature ('C) 100 'C (heater current is off) 780 'C

When no difference was observed in the growth of the samples this was abandoned as it required that the

sputtering machine be brought up to air to have one of the targets changed partway through the deposition

process, greatly increasing the time required for the deposition process.

2.3 Overview of Growth System and Growth Process

The growth equipment used to produce the vertically aligned carbon nanotubes consists of a custom-built

low pressure chemical vapor deposition (CVD) system. This system consists of three parts: a resistive

heater to heat the sample, shown in Figure 2.2(a), a vacuum pump to remove the air and gases from the

growth chamber, shown in Figure 2.2(b), and a gas distribution system to introduce high purity gas into

the growth chamber, shown in Figure 2.2(c). The heater is simply a strip of heavily doped silicon wafer,

which is heated by means of a high current power supply. The temperature of this heater is monitored

by an infrared thermometer positioned below the growth chamber such that it 'looks' up at the bottom of

the heater. A control system monitors the heater temperature and adjusts the current flowing through the

heater accordingly, to keep the temperature constant. This heater is contained inside a glass tube made of

high purity quartz so that it can withstand the pressure of the atmosphere when under vacuum and the high

temperatures generated by the heater. This tube is sealed to the rest of the vacuum system such that the

tube can slide to one side, exposing the heater support so that samples can easily be inserted and removed

from the chamber. A simplified diagram of the growth chamber is shown in Figure 2.3. See Appendix D for

a detailed description of the construction of the growth chamber, heater and heater support.

The growth process is summarized as follows. For the first run of the session, the system is heated by

turning on the heater (under evacuation) for about 15 minutes until the tubing feels warm, and all of the

gases are purged by running them simultaneously for three minutes. This serves to put the system into the

same state that it is in after the completion of a growth run. When preheating was not performed, it was

observed that the first growth of the session was different from later growths. After prepping the system,

the sample is placed on the heater and the vacuum pump is turned on. Next the argon mass flow controller

(MFC) is turned on and set to 642 sccm for three minutes. This is to flush out excess air in the growth

chamber. Then the argon is turned off and the pressure is allowed to drop to under 10 mTorr. After this,

a valve is closed, constricting the connection between the chamber and the vacuum pump to a piece of 1/8

in. stainless tubing (from a 2 in. connection) before the MFCs are set for the reduction flow rates shown

in Table 2.1. The purpose of this step is to reduce unwanted oxides on the surface of the sample, which

have been shown to diminish CNT growth [9]. The sample is allowed to reduce for five minutes and then

the heater is turned on to the temperature shown in Table 2.1 and the gas flow rates are set to the growth

flow rates. Growth continues for 15 minutes after which all the gases are shut off as well as the heater. The
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(a) Heater used to heat the sample during growth (b) Vacuum pump used to remove air and gasses
from the chamber

(c) Gas distribution system used
to inject high purity gas into the
growth chamber during reduction
and growth

Figure 2.2: Pictures of equipment used in nanotube growth
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Heater Support' Heater Sample

Figure 2.3: Diagram of growth chamber (not to scale)

restriction valve is again opened and the system is allowed to evacuate again for five minutes. This serves

the safety functions of ridding the chamber of residual gases and allowing the sample to cool before it is

exposed to air. The height of the resulting nanotubes is on the order of 100 pm but varies with the specific

sample. Figure 2.4 shows what the sample looks like when it is sitting on the heater. Note the dull red color

of the heater.

Figure 2.4: A sample on the heater

2.4 Challenges to the Growth Process and Potential Future Work

The growth process is by far the most temperamental part of the construction process. Frequently the

samples do not grow in spots or, worse, the nanotubes grow sideways and short out the sample as in Figure

2.5. This section outlines in detail these problems, the work done so far to address them, and what can be

done in the future.

Not all of the factors influencing nanotube growth are understood as yet. However, it is clear that

aside from the deposition of the catalyst, the main factors affecting the results are the gas ratios during

the reduction and growth, and the heater temperature during growth. Extensive experiments have been

performed to attempt to optimize these parameters and eliminate other variables. A few examples are

outlined below.
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2.4.1 Temperature During Reduction

Heater temperature during reduction was explored in two different manners. First, the heater was heated to
a known temperature and then turned off, at which point a timer was started. After fixed amounts of time,
varying between a few seconds and several minutes, which permitted the heater to cool to varying degrees,
the sample was placed onto the heater and the growth process was initiated. No association between wait
time and the resulting growth quality was observed. Second, the heater was explicitly turned on during the
reduction phase. This resulted in contradictory results as the first sample grown in this manner seemed to
grow better but later ones seemed worse, and so this approach was abandoned.

Figure 2.5: Scanning electron microscope image of a shorted sample. Adjacent fingers are from different
electrodes and so their bridging causes an electrical short-circuit.

2.4.2 Gas Preheating

Another factor that was explored was the temperature of the gas entering the chamber. This was controlled
by placing a tube furnace around the line entering the growth chamber and setting it to various temperatures
around those used for growth (700 "C to 800 'C). It has been reported [9] (although with ethylene as opposed
to acetylene) that heating the gas before allowing it to enter the chamber changes its chemical composition
in a manner that favors nanotube growth. However, no significant improvement was observed. According
to Zhong, [19], the precursor gas needed for CNT growth is acetylene, which is used in this project. Others
have used ethylene, which forms acetylene at high temperatures, explaining their success with preheating
and the results obtained here which indicate that it is not useful.

2.4.3 Chamber Pressure

Chamber pressure is not actively controlled in our system because the pressure is set by the constriction
size of the tubing, the characteristics of the vacuum pump, and the rate at which gases are introduced into
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the chamber. Thus, to determine the effect of pressure on growth rate, the constriction during growth was

increased by partially closing a valve, but no noticeable increase in growth was observed. In a future system

it would be highly desirable to have a gate valve in series with the vacuum pump, which would be controlled

electronically to maintain a constant pressure. This would eliminate pressure as a variable and would allow

independent control of gas pressure and gas flow rate through the chamber.

2.4.4 Tube Furnace

Other nanotube groups [9] have experimented with a tube furnace instead of a heater to provide the high

temperatures needed for nanotube growth. The advantage is that this guarantees even heating of the whole

sample. However, it was found to be impracticable for the reason that the tube furnace has such large

thermal mass that if a sample is placed into a hot furnace it immediately and completely oxidizes, rendering

it useless. Also, once the furnace is hot it takes hours to cool, which prevents the rapid cycling of samples

needed for efficient experimentation. That said, it might be feasible to use a tube furnace if a sample insertion

system were built that allowed the sample to be inserted into the furnace while the furnace is under vacuum.

2.4.5 Gas Flow Rates and Growth Temperature

Finally, and most importantly, the optimal ratio of gases and the optimal growth temperature were deter-

mined through repeated experiments at different flow rates and temperatures. The flow rates appear to be

much less critical than the temperature, and the values in Table 2.1 were readily determined and have been

maintained throughout most of the experimentation. However, growth appears to be very sensitive to the

heater temperature, and the optimal temperature seems to change somewhat from batch to batch. For that

reason, temperatures ranging from 675 C to 780 'C have been used, with the highest temperatures yielding

the best results in the latest experiments. If the temperature is set too low the growth will be short and

tends to have an excess of amorphous carbon in it. On the other hand, a temperature that is too high tends

to produce uneven growth or even the complete absence of growth if the temperature is excessive. This

is due to the trade-off between activation energy needed for growth, favoring a high temperature, and the

self-pyrolysis (chemical breakdown) of acetylene if the temperature is excessive.

These are all of the major challenges to growth that have been recognized so far. Although they are

significant, using the existing system produces good quality growth a high percentage of the time and is

certainly sufficient to produce growths for experimental and even prototyping purposes. The next chapter

discusses the design of the mechanical structure of the electrodes and its effect of the capacitance and speed

of the resulting devices.
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Chapter 3

Electrode Structure Optimization

This chapter addresses the geometric configuration of the interdigitated- electrode structure and its effect on

time constant and capacitance. The two basic parameters are the width of the fingers and the width of the

space between the fingers. Thinner fingers allow for faster speed, but also increase the electrical resistance

of the current collector and decrease the total capacitance. Wider space between fingers increases reliability

but at the expense of lower capacitance.

3.1 Basic Electrode Structure

The basic structure, common to all devices investigated, is shown in the scaled drawing shown in Figure 3.1.

Figure 3.1: Basic structure of all devices investigated. Units are in microns (pm).

As shown, the structure consists of interdigitated fingers of uniform width separated by uniform spacing.

On either side, all of the fingers are attached together and to a pad for making electrical connections. In
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this original design the spacing between the fingers is 200 pm while the finger width is 400 pm and there are

eight fingers per electrode. The entire device is 1 cm x 1 cm as this is the maximum size that will fit on the

heater in the growth chamber (see Chapter 2).

3.2 Calculating electrical resistance

One of the important parameters for a given mechanical structure is its effective electrical series resistance.

This is the effective electrical resistance seen in series with the capacitor considering only the effect of

the resistivity of the current collector material deposited in the interdigitated pattern. Calculating this

resistance is straightforward as each finger can be modeled as a resistor made of a thin strip of resistive

material. Equation 3.1 calculates the resistance of such a strip of material with thickness t, width W, and

resistivity p.

L
R= p (3.1)

Wt

Since the capacitance is distributed evenly along each finger the average resistance seen in series with this

capacitance is half the resistance of a finger, but since charge must travel through two fingers (one in each

electrode) to charge or discharge the capacitor the total resistance seen is equal to the resistance of a finger.

Finally, since there are n fingers per side, all in parallel with each other, the total resistance is divided by the

number of fingers per electrode. Therefore, Equation 3.2 represents the total calculated electrical resistance

of the fingered structure. Note that this calculation neglects resistance in the bonding pad and interconnect

wires, but this should not be significant, especially in later designs when the width of the bonding pad was

dramatically increased.

R=p (3.2)
nWt

For example, if the structure shown in Figure 3.1 is deposited with 20 pm of molybdenum, as was the

case for the original samples, then the electrical ESR is calculated to be 4.5 Q.

3.3 Minimizing Finger Spacing

After verifying the basic functionality of the structure shown in Figure 3.1, the next step was to determine

the minimum spacing between the fingers. Minimizing the space between fingers maximizes the capacitance,

as it increases the device area used for electrode material. However, it has two other advantages as well.

First, from a packaging perspective, if the finger spacing is sufficiently narrow, surface tension alone will

hold electrolyte between the fingers, meaning that the excess electrolyte can be removed from the sample,

leaving a well defined structure of wetted nanotubes. This has the potential to simplify packaging as it

would eliminate loose liquid without having to resort to gelling the electrolyte (see Chapter 5). Second, by

minimizing finger spacing the ionic resistance of the electrolyte between the fingers is minimized, potentially

increasing device speed.

To find a minimum finger spacing, a set of four different types of samples were made. Each had a

constant finger width of 400 pm, just like the original samples, but the finger spacings were 200 pm (the
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original spacing), 100 pm, 50 pm, and 20 pm. To approximately maintain a 1 cm 2 sample size, the number

of fingers per electrode was increased to nine, ten, and eleven respectively for the three new spacing sizes.

For example, Figure 3.2 is a scale drawing of the ten finger 50 pm spacing sample.

2
2

Figure 3.2: Structure of variable finger spacing
Units are in microns (pm)

devices. This example has ten fingers and 50 pm spacing.

These new samples were then grown and the yield rate was noted, thus determining that the yield

dropped below 50% for the finest (20 pm) spacing and thereby setting the minimum spacing, at least for

the equipment used, to be approximately 50 pm. Yield here refers to the percentage of samples that are not

shorted after being grown.

3.4 Variable Finger Widths

The final, most critical, and ultimately most challenging part of electrode structure optimization was deter-

mining the effect of finger width. As explained in Chapter 1 the ionic resistance should decrease linearly

with decreasing finger width, and confirming this was one of the major goals of this project.

First attempt at variable finger widths

Since the minimum finger spacing had already been determined to be 50 pm, the first set of variable finger

width samples were made using that same spacing. The finger widths were 400 pm, 200 pm, 80 pm, and

40 pm. Again, the number of fingers was increased to maintain approximately 1 cm 2 total sample area.

Figure 3.3 is a scaled drawing of the 200 pm wide samples.

Unfortunately, these samples did not work correctly for a variety of reasons. First and foremost, although

the 50 pm spacing had been tried for a sample with relatively few fingers and produced acceptable yield,
when the number of fingers was dramatically increased (the 40 pm wide finger samples had 90 fingers, for

example) the yield decreased to practically zero. The majority of devices failed because one or more bunches
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Figure 3.3: Structure of the first attempt at variable finger width devices. This example has eighteen fingers
per electrode, 50 pm spacing, and 200 pm finger width. Units are in microns (pm)

of CNTs grew laterally, shorting adjacent fingers. The probability of this occurring scales with the length of

the boundary between the sets of fingers and thus with the number of fingers. The second problem was that

in this first design, the width of the material connecting the uppermost and lowermost fingers to the bonding

pad scaled with the finger width, causing greatly increased (and therefore non-negligible) electrical resistance

in these fingers. See Figure 3.2. Finally, the widest finger sizes turned out to be so wide that the nanotube

fingers were wider than the nanotubes were long. Such wide fingers are undesirable because in that case the

shortest path for the ion flow to take would be to come vertically out of one finger and vertically down into

the adjacent finger in an arching path. This would invalidate the linear ionic resistance scaling with finger

width theory because if the nanotubes are shorter than the fingers, it would be the nanotube height, not the

finger width that would set the length of the dominant ionic resistor and thus the ionic resistance. For all of

these reasons, this first design of variable finger width samples was abandoned.

Second attempt at variable finger widths

To solve the problems with the first generation of variable finger width samples, a second set was designed.

This set used 150 pm finger spacing with finger widths of 10 pm, 20 pm, 40 pm, and 80 pm and with

redesigned bonding pads. The 80 pm sample is shown in Figure 3.4. This redesign solved all of the problems

previously discussed and successfully demonstrated a roughly linear relationship between finger width and

ionic resistance (see Chapter 6). The electrical resistance of each of these samples, as computed by Equation

3.2, is summarized in Table 3.1.

As can be seen, the electrical resistances are still relatively large, but this could be completely mitigated

by using a thicker metalization or more fingers (assuming that the shorting problem could be resolved through

better growth equipment).

This concludes the analysis of the mechanical structure of the electrodes. See Chapter 6 for the excellent
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Figure 3.4: Structure of the second attempt at variable finger width devices. This example has twenty
fingers, 150 pm spacing, and 80 pm finger spacing. Units are in microns (pm)

Table 3.1: Table of parameters for variable finger width samples
Finger Width (pm) Finger Spacing (pm) Finger Length (mm) Number of Fingers ESR (Q)

10 150 6.35 28 11
20 150 6.35 27 5.7
40 150 6.35 24 3.2
80 150 6.36 20 1.9

results obtained from this last design. The next chapter discusses electrolyte selection and handling, and its

effect on device performance.
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Chapter 4

Electrolyte Selection and Handling

In order for an ultracapacitor to function, its electrodes must be submerged in an electrolyte (see Section

1.3). However, numerous mechanical and chemical issues occur when the electrolyte is added to the system.

This section discusses those challenges and the various electrolytes that have been tested in an attempt to

overcome them.

4.1 Electrolyte Requirements

The most fundamental requirement of the electrolyte is that it contain mobile ions. This means that (aside

from exotic materials such as ionic liquids) the electrolyte must consist of a solvent with an ionic compound

(salt) dissolved in it. At this level, common saltwater would work as a (crude) electrolyte. However, there

are other requirements as well. It is desirable that the solution have a low ionic resistance. That is, the

ions should move easily through the solution when a potential (electric field) is applied across it. This is

necessary for a high speed device. Furthermore, to decrease the ionic resistance of the device and to increase

the available surface area, and therefore the capacitance, it is desirable that the chosen compound produce

ions with a small diameter. Since the ions are dissolved in the solvent, the radius that matters is that of

the solvation shell, and this is affected both by the selection of the salt and the solvent. See Figure 4.1 and

Table 4.1. (There is some controversial evidence that under certain circumstances an ion can be separated

from its solvation shell in an ultracapacitor. This effect, if it is proven to exist, is beyond the scope of this

document. [20]) To complicate matters, the voltage limit of an ultracapacitor is set by the voltage at which

the electrolyte breaks down by electrolysis. For example, at STP (standard temperature and pressure) this

is about 1.2 V for water [13]. Per equation 4.1, the energy stored in a capacitor increases as the square

of the voltage across it, so it is highly desirable to increase the operating voltage of the device, indicating

that a solvent other than water should be used. On top of these basic requirements, the electrolyte must

not chemically interact with the other materials used in the cell (capacitor) and needs to be stable both

over time and over the operating and storage temperature ranges of the device. Each of these electrolyte

parameters introduces various trade-offs, with the added complexity that the higher-performance options

are more difficult to handle. Put differently, there is no one perfect electrolyte, so the various options must

be considered carefully. The rest of this chapter is devoted to the choices of electrolytes thus far explored.
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Table 4.1: Radii of various ions in water (from Reed [21])

Ion Dry Radius A Hydration (Mol H2 0) Hydrated Radius (A)
Li+ 0.78 14 7.3

Na+ 0.98 10 5.6

K+ 1.33 6 3.8

Rb+ 1.49 0.5 3.6

NH4 + 1.43 3 -

Mg2+ 0.78 22 10.8

Ca2+ 1.06 20 9.6

Ba2+ 1.43 19 8.8
A13 + 0.57 57 1 _-_I

Ecapacior -=CV 2

H9

ii H

H

H

H
OH

H

Figure 4.1: Solvation shell of a positive ion in water.

4.2 Testing with Aqueous Electrolytes

The majority of experiments performed were done on aqueous (water based) electrolytes because of their

relative ease of handling compared to organic electrolytes. However, this limits the usable maximum voltage

for the cells to 1 V and eventually causes the nanotubes to delaminate from the current collector.
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4.2.1 Wetting CNTs in Aqueous Electrolytes

Carbon nanotubes are highly hydrophobic (contact angle of approximately 145', per Murakami [14]), meaning

that water (and water based solutions) will not penetrate down into a forest of them but rather will bead

up on top in almost spherical droplets. This is highly undesirable as the electrolyte must penetrate into the

electrodes in order for the device to function. This problem was overcome by the following procedure, kindly

suggested by John Miller of JME Consulting.

" Using a pipette apply one droplet of water to the surface of the CNT electrode.

The droplet beads up and stays on top.

" On top of this drop apply one drop of concentrated isopropyl alcohol (IPA).

Once the IPA is introduced, both droplets combine and penetrate into the nanotube forest, re-

leasing the trapped air in it in the form of bubbles.

" Wash out the water and IPA by liberally applying electrolyte.

It is undesirable that the electrolyte be diluted with or contaminated with the alcohol.

In a revised version of this procedure, the alcohol is applied directly to the dry sample and then washed out

with the electrolyte, thereby simplifying the procedure. The advantage of the original procedure, however, is

that it clearly demonstrates that the IPA allows the water to penetrate the normally hydrophobic electrode.

4.2.2 Sulfuric Acid

Sulfuric acid was the first electrolyte experimented with. It is a good choice because of its low ionic resistance

and small ion size, and is widely used in the ultracapacitor industry. However, it was quickly determined to

be unsuitable for experimentation due to its highly corrosive nature. The acid rapidly dissolved the silver

plating from the wires connected to the ultracapacitor and, due to bubbling, it was also apparent that it was

dissolving the silver in the epoxy used to hold the wires onto the bonding pads on the edges of the sample

(see Chapter 5). Figure 4.2 shows the sample in question. Note the exposed copper on the right-hand

interconnect wire and the discoloration of the nanotubes (assumed to be due to dissolved silver deposition)

and the darkening of the silver epoxy. Further experiments with sulfuric acid could proceed, but doing so

would require that all metals used in the device be compatible. This could be achieved by using gold-wire

bonding to attach to the device, but that would add considerably to the expense and complexity of testing,
and so was not pursued.

4.2.3 Sodium Sulfate

To allow testing with an easy-to-handle aqueous electrolyte, but not have the sample damaged by a strong

acid, it was proposed by David Jenicek (PhD candidate, MIT) that a neutral salt be used, thereby providing

ions without lowering the pH of the system. A review of literature showed that sodium sulfate was sometimes

used for this purpose, due to its relatively small ion size, low ionic resistance, safety, availability, and

compatibility with other materials used in the cell [15]. This proved a good choice and all remaining testing

in aqueous electrolyte was done with sodium sulfate. The solution proved easy to work with, and using the
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Figure 4.2: Damage to sample tested in sulfuric acid

process described previously, was easily wetted to the samples. However, since it is aqueous, it is only useful

for testing below 1 V (1.2 V is the absolute limit, but an 0.2 V safety window is usually needed), and as

described in the next section, it caused the devices to disintegrate within several hours of wetting.

4.2.4 Delamination of CNTs in Aqueous Electrolytes

From the first time sodium sulfate was used, it was observed that the carbon nanotubes delaminate from

the current collector after the sample has been wetted for several hours. This first manifests itself as a

drastic decrease in capacitance, followed by the nanotube fingers separating completely from the substrate.

Interestingly, the nanotubes stick together, such that the individual fingers remain intact, although separated

from the substrate and suspended in solution as shown in Figure 4.3. It was further observed that this process

is accelerated by the presence of an electric potential across the device. If a bias is applied, the device can

start to disintegrate in under an hour. To see if the problem is due to sodium sulfate specifically, or to all

aqueous electrolytes, a sample was placed in pure deionized water for approximately 48 hours and was found

to delaminate just like those placed in sodium sulfate.

Figure 4.3: Delaminated nanotube fingers suspended in solution

The delamination process, therefore, occurs due to the presence of water and although the exact mech-

anism has not been determined with certainty, it is hypothesized that, as described by Murakami and
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Maruyama, it is due to the highly hydrophobic nature of carbon nanotubes [14]. When water is forced into

the hydrophobic nanotube forest, it creates microscopic forces on the nanotubes as the water tries to wet to

the substrate but is repelled from the nanotube, as shown in Figure 4.4. This force separates the nanotube

from the substrate, eventually delaminating the entire electrode.

Immediately After Wetting After Separation

Figure 4.4: Hypothesized mechanism of nanotube delamination

4.3 Testing in Non-Aqueous Electrolytes

Due to the problems associated with aqueous electrolytes, non-aqueous electrolytes are frequently used in

commercial and experimental ultracapacitors. The two commonly used solvents for non-aqueous electrolytes

are acetonitrile and propylene carbonate. Both of these solvents allow the cells to be used up to 2.7 V.

Acetonitrile has a higher ionic conductivity, but also has a much higher vapor pressure (boiling point 82 "C),
evaporating quickly if not kept in a sealed container. It also has the disadvantage of being moderately toxic if

inhaled or ingested and decomposing into cyanide gas if overheated such as in an over-voltage condition in an

ultracapacitor. It is widely used in the US, but due to safety concerns it is banned for use in ultracapacitors

in Japan. Propylene carbonate, on the other hand, is very safe (so much so that it is frequently used in

cosmetics) and has a much lower vapor pressure (boiling point 240 'C). However, the non-aqueous electrolytes

present another challenge in that they must be handled in an environment free from moisture. They are

hydrophilic and if water is introduced will decompose by electrolysis when the cell is brought above 1

V, resulting in highly reactive hydrogen and oxygen being produced that will then damage the cell. In

both cases, the salt commonly used in non-aqueous electrolytes is TEMA/BF4 (triethylmethylammonium

tetrafluoroborate), desirable because of its high solubility and small ion size.

4.3.1 Acetonitrile

A 1 M solution of TEA/BF4 (tetraethylammonium tetrafluoroborate) in acetonitrile was kindly provided

by Riccardo Signorelli (PhD, 2009) and thus testing in acetonitrile was done with TEA/BR4 rather than

TEMA/BF4. These salts are extremely similar and the high cost of purchasing a small quantity of TEMA/BF4

meant that the TEA/BF4 solution was used instead.

Due to the nonpolar nature of the acetonitrile, there is no problem wetting it to the carbon nanotubes -
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applying a drop causes it to immediately sink in rather than bead up as is the case with aqueous electrolytes.

Furthermore, after leaving a sample sitting in a solution of acetonitrile for over two years, no evidence of

nanotube separation could be seen. In fact, in the course of all the experiments done with acetonitrile

throughout the duration of this project and all those done previously by Signorelli, no issues with nanotube

separation were observed.

Samples Shorting in Acetonitrile

Although no delamination was observed, another equally serious problem emerged. An unknown mechanism

causes the very thin fingers of nanotubes to fall sideways against each other, shorting out the device. This

occurs to some degree immediately upon wetting the device and is substantially worsened by the application

of an electric potential. For this reason, no usable data was obtained from samples wetted in acetonitrile.

Investigating this problem proved difficult. No matter which electrolyte is used, after they are wetted it is

impossible to dry the samples without destroying them, as the evaporating liquid causes the nanotubes to

bunch up and fall over, completely destroying the fingered structure. Since acetonitrile evaporates extremely

quickly, it was not easily possible to photograph the damaged samples under optical or electron microscopes.

Thus, there are several unconfirmed hypotheses as to why the samples short in the acetonitrile. The first

is that the nanotubes do not fully wet in the aqueous electrolyte, and the resulting surface tension has the

effect of drawing the individual tubes together, forming a relatively rigid mechanical structure resistant to

being pulled over. This is evidenced by the fact that the nanotube fingers, when wetted in water, appear

to be thinner at the top than at the bottom. The second hypothesis is that the acetonitrile is acting as a

lubricant, allowing the nanotubes to slide relative to one another, thereby allowing the entire finger structure

to fold over sideways. These two hypotheses are not mutually exclusive and some combination of them may

be occurring.

4.3.2 Propylene Carbonate

Due to the high cost of dry TEMA/BF4 salt, it was not possible for us to prepare a solution of TEMA/BF4

in propylene carbonate. However, a sample of pure propylene carbonate was acquired and used to attempt

to create a solution with sodium sulfate. This proved unsuccessful as sodium sulfate is apparently insoluble

in propylene carbonate. That said, it was determined that the carbon nanotubes easily wet in the propylene

carbonate, just as they do in the acetonitrile. Unfortunately, the propylene carbonate is no better than

the acetonitrile with regard to samples shorting - the nanotube fingers fold sideways and short in propylene

carbonate just as they do in acetonitrile. However, since propylene carbonate is not nearly as volatile as

acetonitrile, it was possible to get pictures of the damage under an optical microscope. Figure 4.5 shows the

effect.

Due to the problem with the non-aqueous electrolytes causing the samples to short, non-aqueous elec-

trolytes were abandoned for the remainder of the project, and all useful data (see Chapter 6) was taken

using sodium sulfate. The data was taken immediately after wetting the samples to avoid delamination.

That said, the non-aqueous electrolytes, because they don't cause said delamination and allow for operation

at a higher voltage, are probably a better choice for a commercial device. The use of a gelling agent to

thicken the electrolyte and thereby hold the fingers in place without adversely effecting ion mobility is a
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Figure 4.5: Device wetted in propylene carbonate showing the individual fingers folded sideways and shorting
out to each other. The effect looks the same in acetonitrile.

promising option for controlling the shorting issue. This concludes discussion of electrolytes. In the next

chapter, various methods of packaging the device are explored.
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Chapter 5

Packaging

One of the major remaining hurdles to a working miniature ultracapacitor is a reliable, small, inexpensive,

and easy-to-manufacture package. Unlike traditional semiconductor devices, ultracapacitors require a wet
electrolyte to operate, thus necessitating a hermetically sealed package capable of preventing the electrolyte

from evaporating or becoming contaminated with environmental moisture. The fact that the electrolytes of

choice cannot be heated too much above the boiling point of water and are easily contaminated by common

metal ions such as iron and silver eliminates common hermetic techniques based on soldering, brazing,
or high-temperature fusing of glasses and ceramics. This leaves adhesive-based or mechanical bonding as

the only reasonable choices. Due to lack of time and resources no serious experiments on packaging were

performed; however, two potential packaging options, both derived from existing semiconductor packaging

techniques, were considered and are described in detail below.

5.1 Wire Attachment

Before beginning to describe future systems, it is worth discussing the 'packaging' performed on the exper-

imental devices created so far. Because the devices are simply placed in a beaker of electrolyte for testing,
there is no need to have a proper 'package' per se. However, it is still necessary to attach wires to the

contact pads on the samples so that electrical testing can be performed. Wire bonding and soldering were

investigated, but both would require an additional deposition layer with a separate, aligned, mask. Also,
soldering has the potential to introduce unwanted ions while the diameter of wire bonding wire is so small

that it makes handling difficult. For these reasons silver-plated Teflon coated wire was chosen to be attached

to the samples with silver epoxy. The use of silver epoxy was taken from the work done by Jiang et al. in

[7].

5.2 Coverslip Encapsulation

One method considered was to encapsulate the device by placing a piece of impermeable material on top

of the nanotube electrodes and sealing it around the edges with adhesive, presumably an epoxy resin. This

design is shown in schematic form in Figure 5.1.
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Bonding Adhesive
Catalyst and Metalization

CNT Electrodes Wetted With Electrolyte
Glass Cover Slip

Through Silicon Vias (TSVs)

Solder Balls on Back of Device

Figure 5.1: Cross-section of proposed cover slip package. Shown here with through silicon vias (not to scale).

This design derives from a procedure already used for encapsulating image sensors used in digital cameras

with the exception that in that application the space between the cover slip and the device is not filled with

a liquid electrolyte [16]. One advantage of this option is that the technology to create this kind of package

already exists, and therefore should be less expensive and easier to manufacture than a packaging technology

invented for ultracapacitors. It also has the advantage that glass is one of the few truly hermetic materials

and is completely compatible with all potential electrolytes. This leaves the sealing material as the only

potentially permeable part of the package, and even this can be mitigated by making the seal very wide

and short, thereby greatly increasing the distance over which electrolyte and/or contaminants would have to

diffuse. The package could be designed with through silicon vias (TSVs) such that the finished device could

be bumped on the back and directly soldered to the board, as shown in Figure 5.1, or, as a less expensive

alternative, it could be configured with bonding pads as used with the alternative packaging scheme shown

in Figure 5.2. That said, the TSVs offer the advantage of allowing the sealing compound to mate directly

with the silicon substrate, simplifying the adhesion requirements of the adhesive. TSVs would also allow for

a smaller total package size.

The main challenge of this scheme is the difficulty of finding and applying the adhesive such that even

in the presence of the electrolyte it still bonds to the cover slip and silicon die. The design is potentially

expensive, especially with the TSVs, and requires mechanical assembly of separate parts, something which,
from a manufacturing standpoint, is undesirable. On this last point however, it is conceivable that an entire

wafer of devices could be covered in one step and then diced afterwards, although this further complicates

the matter of dispensing the adhesive and electrolyte.

A slight variant of the design calls for the silicon substrate to be etched away, allowing the top of the

CNTs to be level with the top of the substrate, thereby containing the electrolyte and greatly reducing the

amount of adhesive that must be applied. However, such deep etching would be expensive to do on a large

scale and would complicate the process of depositing the catalyst material and metalization as it would now

have to be deposited in a recess. Other variants, which all include the same drawbacks illustrated above,
involve etching the glass or making a three-layer sandwich structure.
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5.3 Epoxy Encapsulation

The second proposed encapsulation method, which is shown in Figure 5.2, involves simply potting the entire

device in an appropriate epoxy resin. This has the distinct advantage that it would be very inexpensive to

perform once perfected and is already the dominant method of encapsulating semiconductor devices. It also

has the advantage that the tops of the nanotubes would end up embedded in the encapsulant, protecting the

fingers from moving inside the device after construction and shorting out. However, finding an appropriate

encapsulant that will not itself contaminate the electrolyte either when liquid or when cured and which

will form a sufficiently hermetic seal when dry that it will not allow contamination or evaporation of the

electrolyte is a tall order. Acetonitrile, for example, is highly miscible with epoxy resin. Should such an

encapsulant be found, this technique could be used with either TSVs or with bond pads and would allow for

relatively easy integration of ultracapacitors with existing semiconductor packaging lines.

Encapsulation Compound

Catalyst and Metalizatio

/CNT Electrodes Wetted with Electrolyte

Bonding Pads

Figure 5.2: Cross-section of proposed potted package. Shown here without through silicon vias (not to scale).

To help with the problem of finding a compatible sealant, two modifications to the basic design described

above are proposed. The first is to gel the electrolyte, holding it in place while the encapsulant is applied and

allowed to cure. This was previously discussed in Chapter 4 in the context of providing mechanical support

to the electrode fingers to prevent shorting. A second modification, and one which was experimentally

demonstrated to a limited extent, is to spray a thin layer of material over the wetted electrodes before the

encapsulent is applied to prevent the electrolyte from mixing with the uncured encapsulant. This inner

material does not need to provide long term permeability resistance nor does it need to be mechanically

strong. It only needs to separate the electrolyte from the encapsulant for long enough to allow full curing to

occur.

To test this idea, a small droplet of water, representing a drop of aqueous electrolyte, was placed on a

1 cm square of passivated silicon, representing the substrate of a device. Onto this water was sprayed a

thick coating of Krylon Appliance Enamel, chosen for its immiscibility with water and its ability to form

a continuous layer on top of the droplet. The results were promising in that the paint dried and provided

a remarkably tough skin over the water droplet. However, since the paint is thin and permeable the water

evaporated out from under it in the course of a week. Figure 5.3 shows the experiment after the evaporation of

the water. VacSeal, made by Space Environment Laboratories, was also tried as it has very low permeability.

Unfortunately, it would not form a coherent film over the water droplet.

Ultimately, for all of these schemes, an advanced sealant needs to be found, ideally one that is immiscible

with non-aqueous electrolytes. However, that goal proved to be beyond the scope of this project. The next

chapter describes the results obtained so far.
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Figure 5.3: Experiment in encapsulating a droplet of water with Krylon Appliance Enamel. Note that due
to the permeability of the paint, the water has evaporated despite being covered.
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Chapter 6

Results and Analysis

This chapter describes the analysis methods used to evaluate finished devices, and details the results obtained

from the samples produced over the course of this project. The results are divided into two sections. The first

section describes the results of the initial samples that used wide fingers for maximum low-speed capacitance.

The second section describes the results of the devices optimized for higher speeds.

6.1 Analysis of Cyclic Voltammograms

One of the primary measurement instruments used is a cyclic voltammeter. Made by Arbin, this instrument

measures the current through the capacitor while sweeping the voltage linearly between bounds (usually -1

and 1 volt) in a triangle-wave pattern as in Figure 6.1. The current is then plotted as a function of voltage,
to form a plot called a cyclic voltammogram (CV), an idealized version of which is shown in Figure 6.2.

Analysis of a cyclic voltammogram is performed as follows. Per Equation 6.1 the voltammogram for an ideal

capacitor should be a rectangle with the capacitance equal to the current divided by the voltage sweep rate.

Thus, the capacitance for a device is determined by dividing the current recorded on the voltammogram

at zero volts by the sweep rate. The current around zero voltage is used because the apparent capacitance

increases with applied voltage due to parasitic effects.

ic = C dV (6.1)dt

6.2 Results and Analysis for Wide Finger Devices Optimized for

Maximum Capacitance Density

The initial devices created used very wide fingers (500 pm wide with 50 pm spacing) to maximize the

capacitance per unit area that could be obtained, and thereby maximize the amount of energy that could be

stored. This approach also simplified fabrication and minimized the potential for shorting between adjacent

fingers (due to the wide spacing). Specifically, only approximately 8% of the active device area did not have

nanotubes on it and thus very large specific capacitances, the highest known to be reported for capacitors
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Figure 6.1: Voltage waveform applied to the capacitor by the cyclic voltammeter
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Figure 6.2: Idealized cyclic voltammogram for a capacitor

on silicon, were obtained [22].

For repeatability, three devices of this nature were constructed and characterized. Performing CVs on

these devices yielded a wide range of capacitances, presumably due to variations in the consistency, height,

and density of the carbon nanotube growth. Specifically, capacitance values of 0.67 mF, 1.6 mF, and 3.5 mF

were obtained. Figures 6.3(a), 6.3(b), and 6.3(c) show the voltammograms corresponding to these three

samples. The sweep rate for the graphs shown is 50 mV/sec, chosen because it is slow enough that the

ESR and the observed decrease in capacitance with frequency become negligible. Since this device is planar

and intended for eventual use in compact electronics, the specific capacitance (capacitance per unit area) is

important for comparison with other similar technologies. The active area of the interdigitated nanotube

structure, without the connecting terminals, has dimensions of 7 mm x 9.5 mm, which corresponds to

66.5 mm2, yielding a maximum capacitance density of 52.6 pF/mm2, which is over an order of magnitude

higher than the 4.28 pF/mm 2 achieved by Y. Q. Jiang with a structurally similar planar ultracapacitor [7].

For comparison, this is over two orders of magnitude higher than for typical trench capacitors, which at

about 450 nF/mm2 , is the current state-of-the art for high-value on-die capacitors [10].
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6.3 Analysis of Impedance Spectrograms

After confirming the concept of an interdigitated electrode capacitor and proving that high-value devices

could be created, the next step was to optimize the speed of the device. As explained in Chapters 1 and

3, the speed of an ultracapacitor is limited primarily by the ionic resistance of the electrodes, which in

theory should scale linearly with the distance ions have to migrate into the electrode. Thus, the ionic

resistance of the device should scale linearly with finger width and verifying this was one of the major goals

of this project as it demonstrates the interdigitated electrode miniature ultracapacitor (IDEMU) concept -

the possibility of creating high specific capacitance, high speed ultracapacitors by altering the mechanical

structure of the electrode. However, to do that a new measurement tool was needed. While the CV does

a good job of determining capacitance, and the speed of the device can be crudely estimated by increasing

the sweep rate of the CV and noting the change in measured capacitance, it does not allow the individual

sources of internal resistance to be separated from each other. Instead, this property was measured using

electrochemical impedance spectroscopy, a technique frequently used to characterize the performance of

batteries and fuel cells.

The data for an impedance spectrogram is taken by measuring the complex impedance (both real and

imaginary components) of the device over a very wide range of frequencies, in the case of this work, 0.1 Hz

to 100 kHz. This data is then plotted with the real component on the x-axis, the negative of the imaginary

component on the y-axis, and the frequency as a parametric variable. The following subsections describe

the impedance spectrograms for specific components.

6.3.1 Resistor

A circuit consisting of a single resistor will have a single point on the x-axis at the value of the resistor

because a resistor has a constant real impedance independent of frequency. The impedance spectrogram for

this case is shown in Figure 6.4

E

0

E

01 R

Real Component of Impedance

Figure 6.4: Idealized impedance spectrogram for a resistor
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6.3.2 Capacitor

Similarly, the impedance of a capacitor, as shown in Equation 6.2, is negative and purely imaginary. Thus,
since the negative impedance is plotted along the y-axis of an impedance spectrogram, an ideal capacitor

will form a vertical line going down from infinity with increasing frequency along the y-axis. The impedance

spectrogram for this case is shown in Figure 6.5

Z-=
WC

0

0

(6.2)

a!0

Real Component of Impedance

Figure 6.5: Idealized impedance spectrogram for a capacitor

6.3.3 Series Resistor and Capacitor

Combining the two cases above, a circuit consisting of a resistor in series with a capacitor will form a vertical
line coming up from the x-axis at the value of the series resistance. This is because the real component

of the impedance will always remain constant at value R, and the imaginary component will decrease from

infinity with frequency. The impedance spectrogram for this case is shown in Figure 6.6.

a

E
a

E

0 R

Real Component of Impedance

Figure 6.6: Idealized impedance spectrogram for a capacitor in series with a resistor

53

U-
LF



6.3.4 Parallel Resistor and Capacitor

A more complex case consists of a resistor in parallel with a capacitor. This will form a semi-circle with

diameter equal to the value of the parallel resistance as derived below. First, the impedance of the parallel

RC circuit is found by taking the inverse of the sum of the inverses of the impedances of the resistor and the

capacitor, resulting in Equation 6.3.

1
Z = 1(6.3)

-+ jwC

Then, Equation 6.3 can be simplified as shown in 6.4 such that the real and imaginary components can

be separated.

_ R R(1 - RjwC) _ R - R 2 jwC
1+ RjwC (1+ RjwC)(1 - RjwC) 1+ R 2 W2 C 2

Next, the real and imaginary components of the impedance are separated resulting in equations 6.5 and

6.6.

Zreai = (6.5)
1+ R 2W2 C 2

Zimag = 1 R 2WC (6.6)

±+ R2 W2C 2

Finally, since an impedance spectrogram plots the negative imaginary component of the impedance versus

the real component, y is taken to be negative Zimag. To further simplify, a parametric variable k is set equal

to the quantity RwC. This results in the parametric equations 6.7 and 6.8, which define x and y in terms

of the parametric variable k. These equations are easily recognized as those for a semicircle of radius R

extending from x = y = 0 to x = R, y = 0.

R X 1
= - 1 (6.7)

1+k 2  R 1+k 2

y Rk - = k (6.8)
1 +k2 R 1+k 2

The impedance spectrogram for this case is shown in Figure 6.7.

6.3.5 Ionic Resistances

For reasons beyond the scope of this document, a pure ionic resistor will form a 45' line starting from the

origin as shown in Figure 6.8 [5].

6.3.6 Equivalent Circuit Model of an Ultracapacitor

Combining the cases described in the sections above, the equivalent circuit shown in Figure 6.9 can be

obtained from the idealized impedance spectrogram shown in 6.10. This is one model of the equivalent circuit

for an ultracapacitor. The electrical series resistance arises from the resistance of the current collector (as

described in Chapter 3), the resistance of the connection between the current collector and the connecting
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Figure 6.7: Idealized impedance spectrogram for a capacitor in parallel with a resistor
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Figure 6.8: Idealized impedance spectrogram for an ionic resistor

wires, and the resistance of the connecting wires themselves. The contact resistance and contact capacitance

arise from the fact that there is resistance between the nanotubes and the current collector and that the

bottoms of the nanotubes and the top of the current collector form a small parallel plate capacitor. Finally,
the ionic resistance arises from the time it takes ions to migrate into and out of the electrodes as discussed

in detail in Chapter 1.

Contact Resistance

RL- Rs
Electrical Series

Resistance Ionic Resistance

Rs cc Re r- RL
Contact Capacitance Ultra Capacitance

Figure 6.9: Equivalent circuit for an ultracapacitor
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Figure 6.10: Idealized impedance spectrogram for an ultracapacitor. RTOT is the series resistance, the
quantity (RTOT - RL) is the ionic resistance, the quantity (RL - RS) is the contact resistance, and RS is the
electrical series resistance.
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6.4 Results for High-Speed Narrow Finger Devices

Samples were created with narrow fingers to test the hypothesis that the ionic resistance of the device can

be decreased, and therefore the speed increased, by decreasing the width of the fingers. Two such sets were

created to validate the results. Each set of samples had four different finger widths, 10 pm, 20 pm, 40 pm,

and 80 pm, all spaced 150 pm apart. These two sets will be referred to as sample set one and sample

set two throughout this document. After growing these two sets of samples, they were characterized with

the impedance spectrometer to find their ionic resistances and with the cyclic voltammeter, to find their

low frequency capacitances. From the resulting impedance spectrograms (shown in Appendix A) the total

electrical series resistance (consisting of the electrical and contact resistances) and the ionic resistance were

extracted as explained in the previous section. Figure 6.11 is an example of a real EIS plot with the point

indicating RTOT marked with a circle and the point representing RL marked with an 'X'. Because of the

frequency limitation of the impedance spectrometer, the semi-ellipse representing the contact resistance and

contact capacitance is incomplete.

150

100-

E

50

0
0 50 100 150

Zreal (Q)

Figure 6.11: Example of resistances being extracted from real EIS data. RTOT is marked with an 'X' and
RL is marked with a circle.

Note, however, that due to non-idealities in the real impedance spectrograms there is significant ambiguity

in describing the location of the inflection point that determines the transition between the regions of the

plot representing the ionic resistance and the ultra capacitance and thus in determining the value of the

ionic resistance. The largest source of this error is that due to leakage resistance across the ultracapacitor,
the 'vertical' line representing the ultracapacitance is not actually vertical but starts to curve down again in

another semi-ellipse. This curving makes it hard to distinguish the end of the 45' line representing the ionic

resistance from the start of the large semi-ellipse representing the ultracapacitance.

Table 6.1 and Table 6.2 list the ionic resistance, total electrical series resistance, and capacitance for each

of the samples in the two sample sets. Note that unrounded data is NOT meant to imply any specific degree

of precision.
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Table 6.1: Data collected from first set of variable finger width samples
Finger Width (pm) Total ESR (RTOT) (Q) Ionic Resistance (RTOT - RL) (Q) Capacitance (mF)

10 45.64 4.01 1.39
20 39.34 8.11 2.33
40 59.28 16.34 2.51
80 108.8 15.1 0.85

Table 6.2: Data collected from second set of variable finger width samples
Finger Width (pm) Total ESR (RTOT) (Q) Ionic Resistance (RTOT - RL) (Q) Capacitance (mF)

10 60.95 6.23 1.27
20 40.29 23.37 1.14
40 73.56 32.64 1.54
80 78.43 49.47 1.68

6.5 Analysis of Results for High-Speed Narrow Finger Devices

Here the results for the variable finger width devices are analyzed.

6.5.1 Analysis of Relationship Between Finger Width and Ionic Resistance

The first, and arguably most important question that can be answered from this data is whether or not there

is indeed a linear relationship between finger width and ionic resistance. To that end, the ionic resistance

for both sets of data is plotted against the finger width in Figure 6.12. From this figure, it can be seen

that ionic resistance increases roughly linearly between 10 pm and 40 pm, but then starts to drop off at

80 pm. However, this drop-off is expected because the nanotubes are on the order of 100 pm high, so when

the finger width reaches 80 pm the nanotubes fingers are as wide as they are tall, meaning that the ions

have three paths into and out of them - two through the sides and one through the top, thus decreasing

the ionic resistance. For comparison, the thinner fingers are so much taller than they are wide that the ion

conductivity into the fingers from the top is negligible. Furthermore, the 80 pm point for sample set one is

suspect as the capacitance measured for that sample is much lower than the other even though, being the

widest finger sample (and thus having the least wasted space between fingers), it should have the largest

capacitance of the three. For these reasons, the best-fit lines only include the first three points in each data

set.

The second observation is that the slopes of the two sample sets are not the same. This too, is to be

expected. Since the samples were grown at different times on different substrates, the characteristics, such

as growth density and height of the nanotubes is different. Per Equation 6.9, the ionic resistance depends

on the finger width, L, the finger area, A, which is the finger width times the nanotube height, and the

ionic conductivity of the material, piomic. Thus, a difference in nanotube height, or a difference in ionic

conductivity could easily cause a different slope in the linear relationship between finger width and ionic

resistance.

Finally, it is observed that the intercepts for both lines are near zero. This is also expected as a zero

length ionic resistor should have zero ionic resistance!
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Figure 6.12: Ionic resistance vs. finger width for sample set 1 and sample set 2

6.5.2 Background on Time Constant

Determining that ionic resistance is linear with finger width is good, but ultimately what matters for filtering

is the time constant. An RC circuit, in this case formed by the series electrical and ionic resistance of the

ultracapacitor in series with the capacitance of the ultracapacitor, forms a first order low-pass filter circuit

with cutoff frequency fe, which is related to the time constant r as shown in Equation 6.10. The time

constant, in turn, is related to R and C per Equation 6.11.

1
fc = 1

27-rr

r = RC

(6.10)

(6.11)

For frequencies below the cutoff frequency, the filter does not reduce their amplitude. However, for

frequencies above the cutoff frequency, the amplitude is decreased by 20 dB (ten times) for every factor

of ten that the input is higher than the cutoff frequency. Thus, to effectively filter a 120 Hz signal, the

cutoff frequency must at minimum be about ten times higher, or 1.2 kHz. Solving for the time constant

for a 1.2 kHz cutoff frequency yields 0.13 ms. Similarly, a cutoff frequency of 120 Hz corresponds to a time

constant of 1.3 ms.
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6.5.3 Analysis of Time Constant vs. Finger Width Data

To compare the time constants needed for 120 Hz filtering with those obtained so far, the series electrical

resistance is neglected as it can presumably be reduced through the methods discussed in Chapter 3 and

is not a fundamental limit to the speed of an ultracapacitor. With this assumption, the time constant is

computed as the product of the ionic resistance and the low frequency capacitance of the device. This time

constant is plotted against finger width in Figure 6.13

| |
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$ 60 --6004' ~ ~ J( 444*
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C
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20-
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0
0J 20 40 60 80
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Figure 6.13: Time constant vs. finger width for sample set 1 and sample set 2

From this figure it is obvious that, neglecting the final point in each data set for the reasons discussed

previously, the time constant is very linear with finger width and intercepts near zero, both properties that

are expected. This provides strong evidence that the time constant of an ultracapacitor can be controlled

purely by adjusting the geometry of the electrodes, a result that is not known to have been shown before.

The slopes of the correlation are similar for both sets of samples, being 1.17 ms per pm for sample set one

and 1.38 ms per pm for sample set two. Because these are roughly similar, it is acceptable to average them

to about 1.3 such that a rough estimate of the finger width needed for 120 Hz filtering can be obtained. This

admittedly crude model predicts that to form a filter with a cutoff frequency of 120 Hz (a time constant of

1.3 ms), the absolute minimum for any 120 Hz filtering to occur, the finger width would have to be about

1.7 pm wide. For effective filtering, a cutoff frequency of 1.2 kHz corresponding to a time constant of 0.13 ms,

the width would need to be about 0.17 pm. Although the narrowest finger widths created in this project

were 10 pm, there is no reason why, using modern lithography techniques, the width of the fingers could not

be reduced to 0.17 pm or thinner as the nanotubes themselves are on the order of 5 to 10 nm in diameter

[5].
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6.6 Ion Migration Distance

The basis for the ionic resistance model for porous electrode material is that the ions must physically move
into and out of the electrode structure, and the results of the preceding chapter are based and interpreted

upon this premise. To verify this assumption, in this section the model is explored analytically.

The diagram shown in Figure 6.14 shows a simple model of a parallel-plate carbon nanotube ultracapacitor

with 1 cm 2 plate area in the uncharged state. Based on previous results, such a device has a capacitance of

approximately 15 mF at 1 V in aqueous sodium sulfate electrolyte. Equation 6.12 calculates the charge on

a single plate of a capacitor based on the capacitance, C, and the voltage across the device, v. Using this

formula, when fully charged, there will be a charge of 0.015 coulombs stored on each plate.

Current Collec or
lectrolyte

Electres
Volume of Electrolyte Containing Ions Required To Fully Charage Device

Figure 6.14: A simple model of a parallel-plate carbon nanotube ultracapacitor with 1 cm 2 plate area in the
uncharged state (spacing between plates is drawn larger than scale)

q = Cv = (15 x 10-3 F)(1 V) = 0.015 C (6.12)

Sodium ions have a charge of +2 and sulfate ions have a charge of -2 and the sodium sulfate electrolyte

has a concentration of 1 mol / L. Equation 6.13 calculates the volume, V, of electrolyte needed to hold a

charge, q, worth of positive or negative ions, based on a molarity, m, of the electrolyte, the charge of an
electron, 1.602 x 10-19, and Avogadro's constant, 6.022 x 1023. Therefore, by equation 6.13 a volume of

0.00518 cm 3 will hold all of the ions needed to fully charge one plate of the device.

V = 0.015 Coulombs 1 Carrier 1 Ions 1 L 1000 ML =7.8 x 10~5 mL1.602 x 10-1 Coulombs 2 Carriers 6.022 x 102 ions 1 L
(6.13)

Thus, according to this model, within the electrolyte, a 1 cm x 1 cm section of positive ions will move

approximately 78 pm toward the negatively charged electrode, while a 1 cm x 1 cm section of negative ions
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will move approximately 78 pm toward the positively charged electrode in order to fully charge the device.

The diagram in Figure 6.15 shows the effective movement of the ions when the device is fully charged.

The red layer represents the positive ions, while the green layer represents the negative ions. Of course,

in the real device the ion movement is more complex, but this model does confirm that there is significant

movement of ions into and out of the electrode material (which is about 100 im thick), so it should be

expected that mechanical resistance to ion movement by the porous electrode structure affects the device

speed significantly.

Current Collec or
Electrolyte

Electrodes
Negatve and positve ions moved to charage device

Figure 6.15: A simple model of a parallel-plate carbon nanotube ultracapacitor with 1 cm 2 plate area showing
effective ion movement when the device charges (spacing between plates is drawn larger than scale)

Based on these results, two important conclusions can be drawn. First, a device was produced on silicon

with an extremely high specific capacitance of 52.6 pF/mm2 , the highest known to have been reported for

capacitors on silicon. Second, the finger spacing and time constant of the devices appears to scale linearly with

finger width, demonstrating that the time constant of an ultracapacitor can be varied by simply adjusting

the mechanical structure of the electrode, which so far as is known, is a novel concept.
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Chapter 7

Conclusion

The goal of this project was to explore the possibility of designing miniature ultracapacitors that can compete

favorably with electrolytic capacitors in select applications. Specifically, the following questions were asked.

" What should the electrodes be made of?

" What mechanical structure should be used?

" What electrolyte should be used?

" How should the device be packaged?

" What can be achieved using the time, money, and technology available right now?

Work was performed on each of these and the results are summarized below.

What should the electrodes be made of?

It was determined that vertically aligned carbon nanotubes are a good choice to create miniature high-speed

ultracapacitors for two main reasons. First, because they create an electrode with uniform pore spacing,
the devices can operate faster than those created with activated carbon electrodes. Second, because the

nanotubes are grown on silicon using low pressure chemical vapor deposition, this technique also opens the

possibility of high-value integrated (on-die) capacitors.

What mechanical structure should be used?

A structure consisting of interdigitated fingers appears to be promising, again for two separate reasons. First,
it allows the entire device to be created on a single piece of silicon with no mechanical assembly. This should

help make manufacturing inexpensive and compatible with existing semiconductor technology. Second, and

most significantly, using an interdigitated structure allows the ionic resistance, the main limiting factor to

ultracapacitor speed, to be reduced without sacrificing their large capacitance, by making the fingers very

narrow.
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What electrolyte should be used?

This remains partially answered. In exploring different electrolytes, it was determined that aqueous elec-

trolytes are safe, inexpensive, and work well, but they cause the nanotubes to delaminate from the substrate

in a matter of hours, excluding their use in a practical device. On the other hand, non-aqueous electrolytes

(acetonitrile and propylene carbonate) do not appear to cause long-term device deterioration of the nature

seen with aqueous electrolytes, but they do, for unknown reasons, cause the thin nanotube fingers to bend

over and short to each other, preventing a usable device from being constructed. However, overall they seem

more promising than the aqueous electrolytes and the shorting problem may be able to be overcome by

forming a gel out of the electrolyte, which would provide mechanical stability to the fingers.

How should the device be packaged?

This question is also open, though there are two attractive possibilities. The first is to cover the device with

a glass coverslip adhered on the edges with epoxy. The advantage of this is that the relative impermeability

of glass would prevent significant electrolyte evaporation. However, it is not clear how to easily fabricate

and fill the structure. The second possibility is to find a material in which the entire device can be potted

successfully. This has the advantage that it should be extremely simple to manufacture the devices. However,
the requirements on a sealing compound are severe in that it must be compatible with the electrolyte both

in liquid and cured form and not allow for significant electrolyte evaporation.

What can be achieved using the time, money, and technology avail-

able right now?

Specific achievements of this project are as follows. First, it was demonstrated that the interdigitated elec-

trode concept does indeed produce a usable capacitor. Second, a device was produced on silicon with an

extremely high specific capacitance of 52.6 pF/mm2, the highest known to have been reported for capacitors

on silicon. Finally, and most significantly, strong evidence was presented that the ionic resistance of devices

with sufficiently narrow fingers scales with the finger width, meaning that the time constant of an ultraca-

pacitor can be varied by simply adjusting the mechanical structure of the electrode, an idea not known to

have been explored before. Together, these advancements enable the construction of faster ultracapacitors

with lower internal resistance and higher capacitance values.

Future Work

This project only attempted to explore the concept of a miniature integrated high speed ultracapacitor.

There is still much more to be done to create a working, and ultimately manufacturable, device. Specifically:

" The growth process needs to be adapted to commercial equipment and optimized for reliable growth

of nanotube electrodes with a high yield rate.

" An electrolyte needs to be found that does not cause the device to short or disintegrate over time.
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* An easily manufacturable and sufficiently reliable packaging system needs to be devised.

Based on the promising results of this early work, I am confident that this technology will continue to

evolve toward its ultimate goal of displacing unreliable and space-wasting electrolytic capacitors in a variety

of applications.
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Appendix A

Raw Impedance Spectroscopy Data

In this appendix are the unprocessed impedance spectrograms for both sets of data used to find the rela-
tionship between finger width and ionic resistance. These are included because there is significant ambiguity
in describing the location of the inflection point that determines the transition between the regions of the
plot representing the ionic resistance and the ultra capacitance, and thus in determining the value of the
ionic resistance. Thus, should the reader have any doubts about the accuracy with which the analysis was
performed, the calculations may be repeated using the plots shown here.
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Figure A.1: Unscaled impedance spectrograms for first set of samples
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Appendix B

Growth Procedure

Reproduced below is the procedure used to operate the LPCVD growth equipment used to grow nanotubes
on all of the samples discussed in this document.

Phase 1: Preheating

1. Turn on the power to all the equipment and open the cylinder shutoff valves and auxiliary gas shutoff
valves (blue valves) if they are closed.

2. Open the large and small vacuum valves and the chamber isolation valve.

3. Turn the heater current up to 9 A.

4. Wait until the metal ends of the vacuum chamber are warm to the touch (about 15 min).

Phase 2: Sample Insertion

1. Close the large and small vacuum valves and the chamber isolation valve.

2. Move the Air/Vac valve to the Air position and wait for the chamber to vent.

3. Loosen the stainless steel ring on the end of the chamber until it comes off the threads.

4. Pull the end of the chamber off and push it to the side.

5. Using tweezers carefully place the sample on the center of the heater.

6. Adjust the rotation of the heater support so that it is parallel to the work surface.

7. CAREFULLY replace the end of the chamber and tighten the stainless steel ring. If this is not done
with sufficient care the sample will slide off the heater from the vibrations.

8. Align the infrared thermometer so that it is directly underneath the center of the sample.

9. Move the Air/Vac valve to the Vac position.

Phase 3: Evacuation

1. Slowly open the small vacuum valve.

2. Wait until the chamber pressure is under 10 torr.

3. Open the large vacuum valve.
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4. Open the chamber isolation valve.

5. Turn on the argon and set it to the value listed in the reduction column of Table B.1. If this is the
first run of the day, also turn on the other gases to their growth flow rates.

6. Wait five minutes.

7. Turn off the argon.

8. Wait until the pressure in the chamber is under 10 mtorr.

Phase 4: Reduction

1. Set the gas flow rates to the values listed in the reduction column of Table B.1.

2. Close the large vacuum valve.

3. Wait 5 minutes.

Phase 5: Growth

1. Set the gas flow rates to the values listed in the growth column of Table B.1.

2. Adjust the heater control unit for a growth temperature of 780 'C, turn on the heater power, and wait
until the green light illuminates, indicating that the heater is up to temperature. Refer to Appendix
D for instructions regarding the use of the heater control unit.

3. Wait 15 minutes for growth.

4. Turn the heater current off using the heater control unit.

5. Turn off the hydrogen and acetylene gas.

6. Open the large vacuum valve.

7. Allow argon to continue flowing for 5 minutes and then shut it off as well.

Phase 6: Sample Removal

1. Close the large and small vacuum valves and the chamber isolation valve.

2. Move the Air/Vac valve to the Air position and wait for the chamber to vent.

3. Loosen the stainless steel ring on the end of the chamber until it comes off the threads.

4. Pull the end of the chamber off and push it to the side.

5. Carefully remove the sample using tweezers.

6. If another sample is being grown, return to step 5 of phase 2; else continue to phase 7.

Phase 7: System Shutdown

1. Replace the end of the chamber and tighten the stainless steel ring.

2. Move the Air/Vac valve to the Vac position.

3. Open the large vacuum valve and allow the chamber to evacuate to 1 torr or lower.

4. Close the large vacuum valve tightly and check that the small vacuum valve and the chamber isolation
valve are both closed tightly.

5. Turn off all of the equipment.

6. Close the cylinder valves.

7. Make sure that the door to the gas cabinet is closed tightly.
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Table B.1: Gas flow rates for reduction and growth
Gas Reduction Growth Notes

Argon 642 sccm 642 sccm
Hydrogen 88 sccm 66 sccm
Acetylene 0 sccm 28 sccm Keep regulator pressure under 15 psi when gas is flowing
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Appendix C

Mass Flow Controller System

The mass flow controller system is responsible for dispensing a regulated flow of gas into the growth chamber

during reduction and growth procedures.

C.1 Mass Flow Controller Calibration

At the beginning of this project all of the mass flow controllers (MFCs) used in the system were replaced,
as the existing ones were worn out and not correctly calibrated for the gases they were being used with.

However, a substantial amount of data had been taken with the equipment while the old MFCs were installed,
so it was desirable to cross-calibrate the new MFCs against the old MFCs. To accomplish this two techniques

were used. The first was to use the new MFCs in metering mode to measure the flow rates of the old MFCs

for several flow rates. However, this does not verify the calibration of the new MFCs. To accomplish that,
a bubble test was performed as shown in Figure C.1.

A bubble test begins by filling a tub with water. A graduated cylinder is then filled and placed entirely

under the water in the bucket before being inverted and brought to the surface such that the top of the

cylinder is just at the level of the water in the tub but not so high that the vacuum is broken and the water

pours out of the cylinder. A tube, connected to the output of the mass flow controller under test is then

inserted into the underside of the graduated cylinder such that the end of the tube is just level with the

water surface. The tube end is placed level with the water surface to assure that the back pressure from the

water is equal to atmospheric pressure. To test the MFC with negative pressure on its output, the tube is

inserted further into the cylinder, while to test with positive pressure, the tube is lowered into the tub of

water. With the system setup, the MFC is turned on and allowed to run for a fixed amount of time before

being shut off again. This causes bubbles to enter the graduated cylinder, displacing some of the water.

After the MFC is shut off, the graduated cylinder is lowered into the water such that the water level inside

the cylinder is exactly level with the water in the tub. This is to equalize the pressure inside the cylinder

to that of atmospheric pressure. The amount of gas in the cylinder can then be read. This amount of gas,
measured in cubic centimeters, divided by the time, in minutes, that the MFC was allowed to run is the flow

rate of the MFC in sccm (standard cubic centimeters per minute.) This assumes, of course, that the water

is at room temperature and that the test is performed at sea level.
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Graduated Cylinder

Tube Connected To MFC Under Test

Figure C.1: Diagram of the setup required for a bubble test.

Per the above procedures, each of the mass flow controllers (for each of hydrogen, argon, and acetylene)

were tested, and the flow rates measured for the new mass flow controllers were plotted against the flow

rates registered by the old mass flow controllers. The resulting plots can be seen in Figure C.1.

As can be seen in Figure C.1, the old mass flow controllers proved to be quite linear, but exhibited

significant offset and calibration (slope) errors as compared with the new mass flow controllers. Furthermore,
the new mass flow controllers agreed with the results from their bubble tests. Thus, the equations of the

lines fitted to these plots can be used to convert flow rates taken with the old mass flow controllers to the

corresponding flow rates on the new, correctly calibrated mass flow controllers. Equations C.1, C.2, and C.3
relate the old flow rates to the new.

New Flow Rate = 0.24 * Old Flow Rate - 0.077

New Flow Rate = 1.03 * Old Flow Rate + 13.063

New Flow Rate = 0.44 * Old Flow Rate - 0.87

(C.1)

(C.2)

(C.3)

C.2 Documentation for MIT / LEES Mass Flow Controller Inter-

face Box

The Mass Flow Controller Interface Box was custom built for this project and is responsible for interfacing the

mass flow controllers with the National Instruments LabView based software that controls the experiment. It

should not require any maintenance, but in case of trouble, the schematic is shown in Figure C.4. The label

on the back of the unit that describes the connector pinout, wire colors, and wire functions is reproduced
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Figure C.2: Flow rates of the new mass flow controllers plotted against the flow rates registered by the old
mass flow controllers.
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below in Figure C.3.

Mass Flow Controller Cable Description

Function Gas 1 Gas 2 Gas 3 Gas 4
FunctionPin Number Wire Color Pin Number Wire Color Pin Number Wire Color Pin Number Wire Color
MFC Flow Output 1 Purple - Black 10 Brown 19 Red - Black 28 Blue-White
Open MFC Valve 2 Brown - Green 11 Pink 20 Green - Red 29 Green - White
Close MFC Valve 3 Brown - Black 12 Yellow 21 White - Red 30 Purple - White
Power Common 4 Gray - Green 13 Blue 22 Orange - Red 31 Yellow-White
-15V 5 Purple - Green 14 Green 23 Yellow - Black 32 Red-White
+15V 6 Orange - Black 15 Tan 24 Brown - Red 33 Brown -White
MFC Flow Input 7 White - Black 16 Purple 25 Blue - Black 34 Orange - White
Signal Common 8 Orange - Green 17 Orange 26 Yellow - Red 35 Blue - Red
Chassis Ground 9 Red - Green 18 Black 27 Green - Black 36 White - Green

Figure C.3: Reproduction of the pinout label on the back of the MIT / LEES mass flow controller interface
box.
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Figure C.4: Schematic of the MIT / LEES mass flow controller interface box. Note that in the present setup,
gas 1 is argon, gas 2 is acetylene, gas 3 is hydrogen, and gas 4 is not connected.
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Appendix D

Heater System

This appendix describes the heater system, including use of the heater control unit, maintenance procedures

for the heater itself, and instructions for replacing the quartz tube and the silicon heater element.

D.1 Growth Chamber

The growth chamber, shown in cross-section in Figure D. 1, consists of a quartz tube sealed at either end

with o-rings. The o-rings are held against the glass and the end of the vacuum fittings (which are not shown

in Figure D.1) by compression nuts. Compression rings inside the compression nuts force the o-rings against

the quartz tube. To protect the ends of the tube, rubber cushion washers (square rings) were installed which,

in turn, rest against stainless support washers inside the vacuum fittings.

Maintenance of this system is straightforward and consists of occasionally disassembling the entire system,
cleaning all of the parts, replacing the o-rings if needed, and re-lubricating with Dow Corning vacuum grease.

Note however that only the o-rings and threads on the compression nut should be lubricated. Vacuum grease

should be applied sparingly as excess attracts dirt and may contaminate the system. This procedure should

be performed whenever trouble is had attaining a 10 mtorr vacuum or when excess debris accumulates in

the chamber.

Note that despite the cushion washers, the end of the quartz tube will become chipped over repeated use

and it will eventually need to be replaced. For this reason, care should be taken to insert the tube into the

vacuum fitting carefully and fully - it may catch before seating completely, causing chipping when vacuum

is applied. In the case that the chamber does crack, it is easily replaced. The tubing is standard 2" quartz

laboratory tubing and can be cut to length with a diamond saw or a waterjet cutter.

D.2 Heater Support and Electrical Interface

The heater assembly rests inside the growth chamber, supporting the heater horizontally and providing

electrical connections to it. It consists of a ceramic substrate onto which stainless blocks (the lower heater

clamps) are mounted with hex machine screws driven from below. Under the heads of these screws are

fastened the wire terminals. Two wires are connected to each end of the heater. One pair provides electrical
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Square Ring Compression Ring

Compression Nut

0-Ring

Support Washer

Figure D.1: Cross section of the growth chamber without heater support installed. Note that the vacuum
fittings that this assembly mounts to are not shown (not to scale).

power to the heater, while the other pair is used by the heater control unit to monitor the voltage across the
heater element. On top of this first set of blocks is a second set, the upper heater clamps, with the heater
between them. A second set of hex machine screws fastens the lower and upper heater clamps together,
providing electrical connection and mechanical support to the heater. Under the heads of this second set
of hex ma'chine screws are split lock washers intended to provide a spring with which to hold the heater
between the clamps without breaking it. Slid over the ends of the machine screws mounting the lower heater
clamps are a pair of flat washers. These were added to assure uniform pressure on the end of the heater
by the upper heater clamps. Without them the heater is much more prone to breakage. Figure D.2 is a
cross-sectional drawing of the heater assembly.

D.3 Replacing the Heater

The heater, due to thermal stresses, will eventually crack and require replacement. When this occurs, the
following procedure should be used to install a replacement.

1. Unplug the heater control unit.

2. Allow the heater assembly to cool for at least an hour after power has been shut off to avoid the risk
of burns.

3. Loosen the left-hand compression nut on the growth chamber until it disengages from its threads, then
slide the entire growth chamber to the right until the heater assembly is completely exposed.

4. Loosen and remove the heater mounting screws. Be sure not to lose the lock washers. Then remove
the upper heater clamps.

5. Remove and discard the remains of the old heater. Be sure that the flat washers (now visible on top
of the lower heater clamps) remain in place.
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Terminal Mounting Screw

Ceramic Substrate Wire Terminal

Figure D.2: Cross section of the heater assembly. Note that connecting wires are not shown (not to scale).

6. Using a diamond scribe, cut a 10-cm wide strip from a polished, highly doped silicon wafer. The exact
thickness and conductivity are unimportant so long as the resulting heater has a resistance on the
order of 1 Q. Then cut this strip to a length such that when set on the lower heater clamps each end
will be about 1 - 2 mm from the holes for the heater mounting screws. The exact length depends on
the alignment of the lower heater clamps with respect to the ceramic substrate.

7. Check for excessive corrosion on the upper and lower heater clamps where they meet the heater surface.
Any excessive corrosion should be removed with fine sand paper.

8. Place the heater on the lower heater clamps. Assure that it is exactly centered and that the flat washers
are in place.

9. Install the heater mounting screws. DO NOT OVERTIGHTEN. They should be tightened just enough
to fully compress the split lock washers and no more.

10. Slide the growth chamber closed, tighten the compression nut, and pull a vacuum.

11. Plug in the heater control unit and turn on the heater to 800 "C. The heater should glow red. The peak
intensity of this glow should be in the center of the heater. If it is not, turn off and unplug the heater
control unit. Allow the system to cool. Open the growth chamber as described in Step 1. Loosen the
heater mounting screws and slide the heater slightly in the direction that the glow was stronger, then
re-tighten the heater mounting screws. Recheck for even glow and repeat until the glow is exactly in
the center of the heater.

12. Normal operations may now resume.

D.4 Heater Control

The attached pages document the use, calibration, and internal operation of the heater control unit designed

by David Otten.
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Introduction

The carbon nano tube (CNT) heater control is a stand alone device to control the
temperature of the heater in a CNT furnace based on the signal from an infrared
thermocouple (IRt/c). The heater is a rectangular piece of doped silicon through which a
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current of approximately 9 amps is passed to heat it up to a temperature of 600 to 900 *C.
Because of the somewhat metallic surface of the heater, a low emissivity (LoE) IRt/c is
used to sense the heater temperature.

Features:
" Temperature can be set from 200 *C to 990 *C with a resolution of 1 *C
" Simple menu-driven user interface to set all parameters
" Manual and/or computer interface to heater control
" Dedicated blinking red LED to indicate heater control is active
" Dedicated green LED to indicate heater control is within 1.0 degree of setpoint
" High speed operation - temperature typically settles to within 1 *C of setpoint

within 1 second
* Separate optically isolated enable input can be used to shut off heater current in an

emergency
" Isolated high speed serial interface to computer (9600 - 115200 baud)
" Dedicated 4 line x 20 character LCD display to show temperature setpoint and

measured temperature.
* 24-bit Al A/D converter sampling at 55 Hz to monitor temperature and other

signals
0 10-bit 20 kHz PWM amplifier with onboard LC filter to supply current to heater.
0 16-bit general purpose analog output is available for monitoring or control

The pictures below show the front and back of the heater control printed circuit
board.

w of Controller with Display and Menu-selection Buttons
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Rear View of Controller with Connectors and Circuitry

Connection Instructions
This section of the manual deals with the various connections to the Heater

Controller.

Sensor Connections

The heater controller has inputs for up to 4 external sensors. Two of these can be
Type J thermocouples and two can be any signal source. The thermocouples are
connected to amplifiers with integral cold junction compensation in hardware. The
arbitrary signals are connected to the inputs of programmable gain amplifiers (PGA) with
differential inputs. Gains of 1, 10, 100, and 1000 can be selected by the uP. The
temperature of the PGA inputs is monitored to allow cold junction compensation in
software if the signals come from thermocouples. It is important to connect the unused
inputs of all channels to ground to prevent saturation of the amplifiers and overloading
of the AID converter inputs.

A digital output is included to control the power to a pair of low power lasers to
help identify the sensing position of the IRt/c sensors on the CNT heaters. This function
is not currently implemented in the software.

An analog output is included to allow for analog monitoring of the temperature
sensors or controller operation. This function is not currently implemented in the
software.

The sensor input connections are located on the left edge of the rear of the
controller. The connectors are shown in the photograph below. The top pin of each
connector is pin 1.
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Sensor Connectors

The table below shows the signals on each pin.

Sensor Connector Signals
Pin Number Signal

Top 1 Thermocouple 1 Input +
Top 2 Thermocouple 1 Input -
Top 3 Laser Power
Top 4 Ground
Top 5 Thermocouple 2 Input +
Top 6 Thermocouple 2 Input -

Bottom 1 PGA 1 Input +
Bottom 2 PGA 1 Input -
Bottom 3 D/A Ouput
Bottom 4 Ground
Bottom 5 PGA 2 Input +
Bottom 6 PGA 2 Input -

The software is configured to have the LoE IRt/c signals connected to PGA 1 and
the HiE IRt/c signals connected to PGA 2. The software currently only uses the LoE
IRt/c sensor for control but monitors the HiE IRt/c signal.

Power Supply and Enable Input Connections

The heater controller operates from a 12 - 24 volt DC power supply. The heater
may require currents in excess of 10 amps so two pins on the connector are used for the
positive supply and two pins are used for the negative supply.
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Provision is also made for an external enable signal. This signal is optically
isolated from the ground of the controller. A DC voltage of 5 - 24 volts applied between
pins 1 and 2 of the connector will enable the controller. The polarity of the enable signal
is not important.

The power supply and enable input connections are located on the upper right side
of the rear of the controller. The connector is shown in the photograph below. The top
pin of the connector is pin 1.

Power Supply Connector

The table below shows the signals on each pin.

Power Supply Connector Signals
Pin Number Signal

1 Enable Input
2 Enable Input
3 + Supply
4 + Supply
5 - Supply
6 - Supply

If no enable signal is provided, the LCD on the controller will
EMERGENCY STOP message.

display the

Heater Connections

The heater controller includes a high current PWM amplifier. This amplifier may
provide currents in excess of 10 amps so two pins are included on the connector to supply
current to each end of the heater. An integral LC filter is included in the design to
minimize the high frequency voltage and current signals on the heater.

A separate differential heater voltage input is also provided on the heater
controller. This allows for a 4-terminal measurement of the heater power and resistance.

The heater connections are located on the lower right side of the rear of the
controller. The connector is shown in the photograph below. The top pin of the
connector is pin 1.
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Heater Connector

The table below shows the signals on each pin.

Heater Connector Signals
Pin Number Signal

1 Heater Voltage -
2 Heater Voltage +
3 Heater Current +
4 Heater Current +
5 Heater Current -
6 Heater Current -

The heater voltage, power, and resistance are not available on the LCD display
but the voltage, current, and power are available on the computer interface which allows
the resistance to be calculated and all variables monitored.

Serial Interface Connections

The heater control has a serial interface that connects to a computer. The
interface allows computer control and monitoring of the controller. The serial interface
connections are located on the top left side of the rear of the controller. The connector is
shown in the photograph below. The left pin of the connector is pin 1.

Serial Interface Connector

The table below shows the signals on each pin.

Serial Interface Connector Signals
Pin Number Signal Color

1 GND black
2 CTS brown
3 +5V red
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4 TXD orange
5 RXD yellow
6 RTS geen

The serial interface follows the conventions of an RS-232 interfice except for the
voltage levels. Instead of traditional RS-232 voltage levels (+/-12 volts), only logic
levels (0 and 5 volts) are available. A special USB cable is supplied with the transmitter
that works with these logic levels and allows the transmitter to be connected to the
computer using a USB port. (Today USB ports are generally more available on laptops
and other computers than traditional serial ports.)

A special driver is required for the USB to TTL Serial Cable from FTDI Chip.
This is available on their web site at http://www.ftdichip.com/Drivers/VCP.htm. Once
the driver is installed, HyperTerminal, a terminal emulation program available on
Windows operating systems, may be used to test the interface.

The baud rate may be set to 9600, 19200, 57600, or 115200 via the LCD and
menu system described below.

Manual Interface using LCD and Keyboard
All the options of the heater control can be selected from the

interface shown in the photograph below.
manual user

Normal Display showing Setpoint and Measured Temperature, and Heater Current

The red LED on the left shows that temperature control is active. The green LED on the
right shows that the measured temperature is within 1 *C of the setpoint.
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Diagnostic Display showing IRtIc mV Signal, equivalent Temperature, Setpoint
Temperatue, equivalent mV Signal, Reference (ambient) Temperature, Heater Voltage,

Heater Current, andAmplifier Pulse Width

Menus are also displayed on the 4-line LCD display and 4 buttons, labeled RESET, UP,
DN, and ENTER are used to select options from the menu. The function of each button
and all menus is described below.

Reset

When the unit is first turned on, the version number of the software will be
displayed for 2 seconds.

Heater Control
Version 0.5

At any other time, while the RESET button is pressed, the same information will be
displayed.

Default Display

Following the initial power-on or after the RESET
following information is available on the LCD.

button is released, the
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Measured 780.0 C
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The first line is the setpoint temperature in *C. The second line is the measured
temperature in *C. The third line is the heater current in amps. The fourth line is a
prompt to instruct the user on how to turn the feedback on and off using the UP and DN
switches below the display. To exit the default display and enter the menu system, the
ENTER button must be pressed. Unfortunately there is no room on the display for this
information without leaving something else off.

If the diagnostic mode is enabled from the computer, the default display is
changed to include the following information.

LoE 13898 RT 26.83
LoE 780.0 HV 6.760
Set 780 HI 9.117
mV 13897 PW 737

The left signal on the first line is the raw mV signal from the LoE IRt/c sensor. The left
signal on the second line is the equivalent temperature from the LoE IRt/c sensor. The
left signal on the third line is the setpoint temperature in *C. The left signal on the fourth
line is the equivalent mV signal corresponding to the setpoint temperature. The right
signal on the first line is the reference or ambient temperature in *C. The right signal on
the second line is the heater voltage in volts. The right signal on the third signal is the
heater current in amps. The right signal on the fourth line is the output amplifier pulse
width.

Top Menu

When the ENTER button is pressed from the default display, the top menu is
displayed on the LCD screen. This is shown below.

PARAMETERS
*Setpoint
Calibration
Control

The black block to the left of the S in Setpoint will be a blinking cursor. The position of
the cursor can be moved up or down with the UP or DN buttons. Once the cursor is on
the line of the desired parameter, the ENTER button should be pressed. At any point the
RESET button may be pressed to return to the default display without changing the
current parameter. Each of the sub menus below the top menu will be discussed in turn.

Setpoint

The setpoint temperature is set with this menu. The display will initially contain
the current setpoint.

SETPOINT

I980 deg C
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I UP = inc, DN = decENTER = next digit

The blinking cursor will initially be located over the first digit of the setpoint
temperature. This digit can be increased with the UP button or decreased with the DN
button or remain at its current value. Each digit must be between 0 and 9 inclusive.
When the current digit is correct, the cursor can be advanced to the next digit with the
ENTER button. There is no provision for moving the cursor back to a previous digit. If
this is required, the RESET button should be pressed and the process started over from
the default display. After the last digit has been confirmed with the ENTER command,
the new value will be checked to make sure it is within range. The range for the setpoint
temperature is 0 - 990 *C. If it is out of range, it will be modified to be within range.
The setpoint temperature is then updated with the new value and the program returns to
the top level and displays the default menu.

Calibration

A series of menus are used to set the calibration constants for both the LoE and
HiE sensors. At each level, the UP or DN button can be used to select the next level and
then the ENTER button can be used to move to that level.

The first level selects whether parameters for the LoE or HiE sensor will be
selected.

CAL IBRAT ION

LoE
HiE

If the LoE sensor is selected, the next level selects whether the Offset or Gain
parameter will be selected.

LoE PARAMETERS
Offset
Gain

If the LoE Offset parameter is selected, the following screen will be displayed.

LoE OFFSET
-0.0057

UP = inc, DN = dec
ENTER = next digit

The blinking cursor is initially placed over the first digit of the offset. The UP and DN
buttons can be used to modify that digit. Each digit must be between 0 and 9. When the
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ENTER button is pressed, the cursor advances to the next digit. There is no provision to
go back to a previous digit. If this is required, the RESET button should be pressed, and
the process repeated from the beginning. After the last digit is confirmed with the
ENTER command, the LoE Offset is updated with the new value and the program returns
to the top level and displays the default menu.

If the LoE Gain parameter is selected, the following screen will be displayed.

LoE GAIN
1.0000

UP = inc, DN = dec
ENTER = next digit

The UP, DN, and ENTER buttons are used to modify the LoE Gain in the same way as
the other parameters, the new value is saved, and the program returns to the top level and
displays the default menu.

A similar menu tree exists for the HiE Parameters. This level selects whether the
Offset or Gain parameter will be selected.

HiE PARAMETERS

Offset
Gain

If the HiE Offset parameter was selected, the following screen will be displayed.

HiE OFFSET
-0.0032

UP = inc, DN = dec
ENTER = next digit

The UP, DN, and ENTER buttons are used to modify the HiE Offset in the same way as
the other parameters, the new value is saved, and the program returns to the top level and
displays the default menu.

If the HiE Gain parameter was selected, the following screen will be displayed.

1,0000
UP = inc, DN = dec
ENTER = next digit

The UP, DN, and ENTER buttons are used to modify the HiE Gain in the same way as
the other parameters, the new value is saved, and the program returns to the top level and
displays the default menu.
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Control

Two menus are used to set up the interface to the heater control. For both menus,
the initial position of the cursor is on the currently selected entry. This entry is also
identified with a dot in the first column. The UP and DN buttons can be used to select a
different entry. The new entry is saved as the current entry when the ENTER button is
pressed.

The first menu selects the type of control available on the serial interface. In
manual mode, all the commands listed in the next section (Computer Interface using
Serial Port) of this manual are available. In computer mode, only the first command is
available. The other commands are disabled because they are designed for a human
operator and either contain syntax not required by the computer, or are too powerful and
would allow a single character from the computer to significantly change the operation of
the controller.

CONTROL
-Manua l
Computer

The second menu selects the baud rate of the serial interface. The new baud rate should
be available immediately after it is set.

9600 BAUD RATE

19200
57600
-115200

Emergency Stop

The heater control is provided with an independent optically isolated enable input
that can be used to allow controller operation or shut off the heater current in an
emergency. A voltage signal of 5 to 12 volts DC is required to enable the heater. If this
signal is not present, the following display is provided. The expectation is that this input
would be used with an emergency stop button to coordinate all shut down functions of
the CNT furnace.
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Computer Interface using Serial Port
The screen dump below shows a typical display when the transmitter is first

turned on and the serial interface is connected.

ill ilOW EX Imw Qd 7faE. t*

Heater Control Ver 0.5
January 12, 2012

AVAILABLE COMMANDS
I Computer control
0 Zero heater PWM
+ Increment heater PWN
- Decrement heater PWM
D Disable temperature feedback control
E Enable temperature feedback control
L List commands
P Pulse Width
S Set temperature setpoint
V Version of firmware
W Set diagnostic counter
X Enable diagnostics
Y Disable diagnostics

amnectd 0:00:21 ast 111sanos1 |SaRou. fWjiUICapre |Precho

The first two lines show the software version number and date. This is followed
by a list of the available commands. All commands can be entered with a lower case or
upper case letter. Each of the commands will be explained in turn.

[ Computer control

Entering the character [ signals the start of a computer command. Three
commands are supported. [E] is used to enable the temperature feedback control. [D] is
used to disable the control. [xxx] is used to set or update the setpoint temperature where
the xxx represents any number between 0 and 990. The syntax of this command is very
specific which allows the heater controller to check it carefully and ignore all commands
that do not have the correct format. This makes the protocol robust against noise and
helps to prevent communication errors. There is no direct response from this command
but the flag and setpoint information is transmitted back to the computer when the
diagnostic display is enabled.

0 Zero heater PWM

Entering the number 0 sets the pulse width of the heater current amplifier to zero.
There is no direct response from this command, but the pulse width information is
transmitted back to the computer when the diagnostic display is enabled.

+ Increment Heater PWM
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Entering the character + increments the pulse width of the heater current
amplifier. If the pulse width is incremented from its maximum value of 639, it will roll
over to 0. There is no direct response from this command, but the pulse width
information is transmitted back to the computer when the diagnostic display is enabled.

- Decrement Heater PWM

Entering the character - decrements the pulse width of the heater current
amplifier. If the pulse width is decremented from its minimum value of 0, it will roll
over to 639. There is no direct response from this command, but the pulse width
information is transmitted back to the computer when the diagnostic display is enabled.

D Disable Temperature Feedback Control

Entering the letter D disables the feedback control. The firmware sets the heater
current to zero, sets the left LED to green, and turns off the right LED. This is the
equivalent to pressing the DN button in manual mode. A typical response is shown
below.

Disable temperature feedback control

E Enable Temperature Feedback Control

Entering the letter E enables the feedback control. The firmware controls the
heater current to match the measured heater temperature to the setpoint temperature. It
also turns on the left LED to blinking red and the right LED to green if the temperature is
within 1 deg C of the setpoint or red if it is not. This is equivalent to pressing the UP
button in manual mode. A typical response is shown below.

Enable temperature feedback control

L List commands

Entering the letter L displays a list of the available commands. A typical response
is shown below.
AVAILABLE COMMANDS

Computer control
0 Zero heater PWM
+ Increment heater PWM
- Decrement heater PWM
D Disable temperature feedback control
E Enable temperature feedback control
L List commands
P Pulse Width
S Set temperature setpoint
V Version of firmware
W Set diagnostic counter
X Enable diagnostics
Y Disable diagnostics

P Pulse Width
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Entering the letter P is used to set the pulse width of the heater current amplifier.
If the value entered is not within range, the prompt will be issue again. A typical
response is shown below.
Enter pulse width (0 - 1023) 100

S Set temperature setpoint

Entering the letter S is used to specify the setpoint temperature. If the value is
higher than the allowed range, it will be reset to the maximum value. A typical response
is shown below.
Enter setpoint temperature (0-990) 780

V Version of firmware

Entering the letter V displays the current version of the firmware and the date it
was created. A typical response is shown below.

Heater Control Ver 0.5
January 12, 2012

W Set diagnostic counter

Entering the letter W is used to specify the diagnostic counter. The diagnostic
counter is used to control the number of lines of diagnostic data that are displayed when
diagnostics are enabled. If the counter is set to 1 every line is displayed. The A/D
sample rate is 55 Hz and the temperature is measured every other sample so the data rate
will be 27.5 Hz. If the counter is set to 2, every other sample is displayed. If the counter
is set to 3, every third sample is displayed. If the counter is set to 0, every 25 6th sample is
displayed. A typical response is shown below.

Enter diagnostic counter (0-255) 0

X Enable diagnostics

Entering the letter X enables the diagnostic display on the LCD and starts
transmission of diagnostic data over the serial interface. The data is transmitted in
comma separated value (CSV) format suitable for importing into an Excel file. The
number of data samples transmitted is controlled by the diagnostic counter. A typical
response is shown below.
Enable diagnostics
D,780,26.62,54,-12,87.8,0,-0.001,0.000,0.00,-14
D,780,26.63,54,-12,87.8,0,-0.001,-0.001,0.00,-15
D,780,26.63,54,-13,87.8,0,0.000,0.000,0.00,-15

The following data is transmitted. The first field is a D or E to indicate if the
temperature feedback is enabled or disabled. The second field is the setpoint temperature
in *C. The third field is the temperature of the LoE IRt/c connector on the heater
controller board in *C. The fourth field is the thermocouple voltage a Type J
thermocouple would generate at that temperature if the reference junction was at 25.0 *C.
This signal is in A/D counts. The fifth field is the LoE IRt/c signal in A/D counts. The
sixth field is the equivalent temperature measured by the LoE IRt/c in *C. The seventh
field is the pulse width of the heater current amplifier. The eighth field is the heater
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voltage in volts. The ninth field is the heater current in amps. The tenth field is the
heater power in watts. The eleventh field is the HiE sensor signal in A/D counts.

Y Disable diagnostics

Entering the letter Y disables the diagnostic display on the LCD and stops the
transmission of diagnostic data over the serial interface. A typical response is shown
below.
Disable diagnostics

Hardware

The CNT Heater Controller is built around an Infrared Thermocouple (IRt/c)
manufactured by Exergen. When this passive device is pointed at a heated surface, it
generates a voltage related to the temperature. The output is also a function of the
emissivity of the surface. Sensors for high emissivity (HiE) surfaces (not reflective) and
low emissivity (LoE) surfaces (somewhat reflective) are available. The heater in the
CNT furnace is a silicon substrate with low emissivity. The sensor selected for this
system is the IRt/c.3AMF which has a medium focus of 70 mm and a spot size of 3 mm.
This allows the sensor to be mounted below the heater to measure the temperature while
the CNT sample is placed on top of the heater.

Input RC filters followed by programmable gain instrumentation amplifiers are
included in the design to amplify the input signals. An absolute temperature sensor can
measure the temperature of the input connectors if cold junction temperature
compensation in software is required. Additionally special thermocouple amplifiers with
integral cold junction compensation in hardware are also included.

The signal for the IRt/c is digitized with a 24-bit AE A/D converter from Linear
Technology (LTC2449). The sample rate of the converter can be adjusted to trade off
speed vs noise performance in any given application. In the heater controller the A/D
samples at 55 Hz. For good feedback performance, the LoE IRt/c is sampled every other
conversion and all the other signals are sampled at a lower rate.

All the operations of the heater controller are coordinated by a PIC 18F8722 uP.
This 8-bit chip runs at a clock rate of 32MHz using an 8 MHz internal oscillator and an
integral 4X PLL. At this frequency it executes most instructions in 125 nsec.

The uP drives a switching amplifier with its onboard PWM generator. The 20
kHz output of the amplifier is filtered with an LC filter to reduce the switching noise
before it is sent to the heater. The amplifier routinely supplies currents in excess of 10
amps to the heater. Provision is made to measure the current through the heater and the
voltage across it with a 4-terminal measurement.

Also included in the design of the heater controller is an LCD display and
switches to provide a user interface. The display is used to show the heater setpoint and
measured temperature and to change parameters with a convenient menu system. An
isolated serial interface allows the controller to be monitored or controlled from a
computer without causing any ground loops.
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An important function of the uP is to convert the non-linear output of the IRt/c
from mV to *C. This is done with a lookup table. Tables are provided to convert from
both mV to *C and vice versa. Tables are also provided for a HiE IRt/c sensor and for
type J thermocouples.

For safety, an optically isolated enable input is provided to the controller. The uP
turns off the heater current when no enable signal is present.

Though it is not used, a 16-bit D/A convert is designed into the system. This can
be used to provide an analog temperature signal or any other diagnostic function if
desired.

The heater temperature is controlled with a PID loop calculated by the uP. To
simplify the calculations, the control is done with the raw A/D signals and the results are
converted from A/D counts to *C outside of the feedback loop. To make this work, the
setpoint temperature is also converted to A/D counts when it is first entered into the
system or if it is changed.

Performance

The graph below shows the response of the system to a series of setpoint
temperatures between 300 and 700 *C.

Setpoint Set to 300, 4, 50, 60, 60, 700 -C

25000

20000

I
15000

0

1 10000

5000

10 20 30 40 50

Time (seconds)

--- Sere1

60

Note that the response changes with temperature. This is because the sensitivity
of the sensor changes with temperature. At low temperatures the sensor is not very
sensitive (low mV/*C) and the gain around the control loop is low. This results in low
bandwidth. At high temperatures the sensor has much higher sensitivity (high mV/*C)
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resulting in more gain around the loop and much higher bandwidth. Care is taken to
make sure that at the highest temperatures anticipated, the system is still very stable.

The graph below shows a step input from 650 to 700 *C. This demonstrates the
response time and stability of the system at the higher temperatures. Note that the
signal settles in approximately 1 second and the rise time is much faster than that.

Step Change from 650 to 700 *C
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The plot below demonstrates a large scale transient from room temperature to
650 and 700 *C. In this situation the amplifier is supplying the full available power to
the heater for about 3 seconds before the temperature gets close to the desired value.
Special software in the uP keeps the integrator from "winding up" in this situation and
causing overshoot once the temperature is achieved.
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initial Tum-On Transient
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Calibration tests were also done to determine the accuracy of the system. A
special wax was purchased from Omega that melts at a specific temperature. This was
applied to the heater and the temperature setpoint varied to determine the temperature at
which the wax melted. The results are within ±5 *C. Three different waxes were used.
The results are shown in the table below.

Wax Melting Point (*C) Se int (*C) Error (C
649 575 74
704 685 19
816 805 11

The results are very encouraging, particularly at the higher temperatures.

Schematic

The following three pages contain the schematic for the heater controller.
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