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Abstract

We introduce CLAIRE, a mathematically principled model for inferring ranks and
scores for arbitrary items based on forced-choice binary comparisons, and show how
to apply this technique to statistical models to take advantage of problem-specific
assistance from non-experts. We apply this technique to two language processing
problems: parsing and machine translation. This leads to an analysis which casts
doubts on modern evaluation methods for machine translation systems, and an ap-
plication of CLAIRE as a new technique for evaluating machine translation systems
which is inexpensive, has theoretical guarantees, and correlates strongly in practice
with more expensive human judgments of system quality. Our analysis reverses sev-
eral major tenants of the mainstream machine translation research agenda, suggesting
in particular that the use of linguistic models should be reexamined.
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Introduction

1.1 Prologue

This thesis reflects an interest in the pursuit of machine translation in particular,

although the methods and findings have bearing on the natural language processing

enterprise in general.

We might define the natural language processing enterprise as comprising of meth-

ods engaged in engineering systems that produce or consume natural language text in

some way that corresponds to aspects inherent to that modality.

Why the interest in this field? Putting aside the scientific interest an anthropolo-

gist might have in the "language phenomenon", there has been an absolute explosion

in the amount of natural language text that is available.

Natural language is sought after as a desirable interface between man and machine

more and more as we expect our devices to perform increasingly complex tasks.

Even before the information explosion, a globalization phenomenon has required

us to communicate with others across a language barrier.

Even when communicating with others in the same language, we are each person-

ally required to produce more prodigious quantities of text than ever before.

What are the greatest desires of the natural language practitioner? What is

the most that can reasonably be expected? Let's for a moment imagine a world

in which natural language were solved-it becomes easy to convert back and forth
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between natural language and various logical forms. Precise queries could be executed

to extract specific information from large bodies of natural language text. Large

documents could be summarized and brief summaries could be expanded into large

documents! Documents written in other languages could be translated accurately

and quickly, preserving meaning, tone, meter, etc.

The possibilities are staggering and indeed have bewitched researchers since the

early days of computation. Warren Weaver[47], an early cryptanalyst and cryptogra-

pher renowned for his work decrypting the ENIGMA code in World War 2, famously

compared translation to codebreaking in the 1940's. Early natural language practi-

tioners achieved small victories in the 1950's, and with exciting advancements in lin-

guistics (particularly by Noam Chomsky), they promised the dreams outlined above

to funding agencies in the US and abroad. Anyone familiar with the modern fruits of

machine translation, taking into consideration the great advancements in the theory

of computation, learning theory, linguistics, as well as the massive improvements in

supporting infrastructure (microprocessors and datasets), would hardly be surprised

by the demoralizing failures that were to come.

After pouring funding into one promising project after another for decades, the

NSF, DOD, and CIA commissioned a report from the National Academy of Sciences

to advise them on sensible next steps in the field. The National Academy of Sciences

formed an Automatic Language Processing Advisory Committee (ALPAC) in 1964

to answer this need. ALPAC shared their findings in 1965 [42]. As a result of the

report, support of machine translation projects was suspended in the United States

for twenty years.

This report and its findings have a negative reputation in the statistical language

community as an unjustified attack on a nascent field and which subsequently held

the artificial intelligence community in general, and the natural language processing

community in particular, back for decades.

ALPAC was chaired by John R. Pierce, a seasoned electrical engineer and physi-

cist from Bell Labs who supervised the team that invented the transistor. ALPAC's
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other members were the American psychologist John B. Carroll, known for his contri-

butions to educational linguistics and psychometrics, then at Harvard; the American

linguist Eric P. Hamp, who remains a professor of linguistics at the University of

Chicago; David G. Hays of RAND, an important pioneer of computational and cor-

pus linguistics (and the inventor of the term); American linguist Charles F. Hockett;

American mathematician Anthony G. Oettinger, who is currently the chair of the

Center for Information Policy Research at Harvard; and American computer scientist

Alan Perlis, a pioneer in programming languages and the recipient of the first Turing

Award. In short, the committee consisted of academic heavyweights of the highest

caliber and included members who were interested in the continued support of fields

relating to computation and linguistics.

The report is supported by extensive research, not only of the progress of the

natural language processing enterprise itself, but also to establish the needs that the

projects could reasonably be expected to satisfy.

The committee concluded that:

" Machine-aided translation tools (such as user-friendly technical dictionaries)

improved both the speed of a translator's work and the quality of his output.

This is an area of research worth supporting.

* The quality of automatic machine translation was too poor to be used without

extensive post-editing by a translator, and this was more costly than simply

having the translator translate from the source text directly. This result rested

on extensive comprehension tests on scientific documents translated by then

state-of-the-art systems.

" Furthermore, there was no prospect of improved translation systems under cur-

rent research agendas.

* The only real, immediate need that could not be met by the available human

translators is for rapid, accurate translation for a small circulation (too few

to justify the cost of expedited human translation), and the research directions
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that were being pursued were too superficial to achieve it. They went so far as to

suggest that document typesetting was a bottleneck that could be more readily

alleviated by development to improve the throughput of the conventional trans-

lation teams. Also, recurring needs of individual researchers for translations

from a particular language could be alleviated with basic language training for

that researcher in the language in question.

" Research had resulted in a number of useful results in related fields, including

stimulating energetic research in corpus linguistics. This research should be

supported with funding as a science with expectations of long-term improvement

to automatic systems.

" There was an immediate need for improved evaluation methodologies.

The funding agencies responded by following the recommendations to eliminate

funding to fully automatic systems, but did not follow recommendations to provide

funding to supporting fields.

Perhaps the funding agencies deserve some derision for not taking the long view on

translation. At the same time, it is clear that the popular view at the time the funding

proposals were written was that translation would be solved with minimal government

expenditure and the benefits were manifest; this was certainly reflected in the report.

Series of failed projects could not continue to receive funding; if administrators in

the funding agencies felt inclined to be sympathetic, they would certainly have been

replaced by more skeptical colleagues at this point.

Nearly twenty years after the ALPAC report, the British computational linguist

and computer scientist Martin Kay wrote a brief statement [27] expressing his view

on the future of automatic machine translation. The statement is brief enough to

include here in its entirety:

Large expenditures on fundamental scientific research are usually limited

to the hard sciences. It is therefore entirely reasonable to suppose that, if

15



large sums of money are spent on machine translations, it will be with the

clear expectation that what is being purchased is principally development

and engineering, and that the result will contribute substantially to the

solution of some pressing problem.

Anyone who accepts large (or small) sums on this understanding is either

technically naive or dangerously cynical. It may certainly be that

1. machine translation could provide a valuable framework for funda-

mental research;

2. texts in highly restricted subsets of natural language could be de-

vised for particular purposes and texts in [sic] translated automati-

cally;

3. computers have an important role to fill in making translations;

4. translations of extremely low quality may be acceptible [sic] on oc-

casions.

However,

1. the fundamental research is so far from applicability,

2. the language subsets are so restricted,

3. the useful computer technologies are so different from machine trans-

lation,

4. the quality of the translations that can be produced of natural texts

by automatic means is so low, and

5. the occasions on which those translations could be useful are so rare,

that the use of the term in these cases can only result in confusion if not

deception.
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A determined attempt was made to bring machine translation to the point

of usability in the sixties. It has become fashionable to deride these as

"first generation" systems and to refer to what is being done now as

belonging to the second or third generation. It should surely be possible

for those who think that the newer systems can succeed where the earlier

ones failed, to point to problems that have been solved since the sixties

that are so crucial as substantially to change our assessment of what can

be achieved. We know a good deal more about programming techniques

and have larger machines to work with; we have more elegant theories

of syntax and what modern linguists are pleased to call semantics; and

there has been some exploratory work on anaphora. But, we still have

little idea how to translate into a closely related language like French

or German, English sentences containing such words as "he", "she", "it",

"not", "and", and "of". Furthermore, such work as has been done on these

problems has been studiously ignored by all those currently involved in

developing systems.

Unfortunately, the sums that are being spent on MT in Europe and Japan

are large enough to make virtually inevitable the production of a second

ALPAC report sometime in the next few years. This will inevitably have

a devastating effect on the whole field of computational linguistics, every-

where in the world. The report will be the more devastating for the fact

that much of the money has in fact been spent frivolously, and much of

the work has been incompetent, even by today's limited standards.

Fortunately for us, Kay's predictions on funding have not come true. The needs

that ALPAC reported have grown by leaps and bounds, and machine translation

systems have found use in niche applications. For example, the Canadian weather

service has famously used machine translation (with a human post-editing phase)

to translate weather bulletins from English to French for 30 years (including using

the same system, METEO, for two decades 1981-2001) [45]. In 2009, President
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Obama released a "Strategy for American Innovation" which named "automatic,

highly accurate and real-time translation between the major languages of the world"

an ambitious goal that will "improve our quality of life and establish the foundation

for the industries and jobs of the future." [36]

How can we distinguish our work from the pseudo-science that ALPAC and Kay

described? It is difficult to declare natural language processing to be a science since

our goal is not to learn about an existing system, but is instead to build useful

systems of our own. I would argue that it is still possible to do science in this arena,

but that it requires care to understand the limitations of our results. It's difficult to

make broad statements about the value of a particular approach when so much is still

unknown about language in general and considering how far state-of-the-art systems

fall short of the dream. It is not at all inconceivable that the best research systems

extant would bear little resemblance to a future system that fulfills the promises of

our predecessors.

In spite of this uncertainty, there is a definitive mainstream thrust of research

in the natural language community: Quantity Leads to Quality. State-of-the-art

performance is more surely and readily achieved by an appeal to a massive dataset

than an appeal to linguistic theory. An extension of this is that improvements in

quality are achieved by more advanced statistical models that are capable of modelling

more exotic relationships between input and output, with careful regularization to

account for the sparsity of data.

Indeed, researchers entering natural language processing are often warned of the

consequences of expecting and promising too much, and veteran researchers are care-

ful to establish metrics that can illustrate sustained, gradual improvement and to

point out the immediate uses of the state-of-the-art translation systems, notwith-

standing their manifestly poor quality. Church and Hovy go as far as stating that it

may be more important to improve performance by seeking an appropriate application

than by improving the system in question [15].
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1.2 Background

1.2.1 Parsing

Our baseline parsing model is Collins Model 2 parser. We describe it here briefly;

please see [16] for more details.

Just as a statistical speech recognition system aims to maximize Pr (e I a), given

a sentence S, the statistical parser aims to find the parse tree T that maximizes

Pr (T S). The Collins parsers are generative models based on the probabilistic con-

text free grammar formalism (PCFG), except that they are lexicalized. An unlexi-

calized PCFG would be broken down as follows:

arg max Pr (T I S) = arg max Pr (T, S)
T T

= argmax Pr(RHS|LHS,),

where RHSi and LHS, denote the left- and right-hand sides of the context-free gram-

mar rule that is used at the ith step in the derivation of the tree; the probabilities of

the rules make up the parameters of the model, and maximum likelihood estimates

are easy to obtain from a corpus of trees.

Collins lexicalizes the PCFG by adding every possible word and part-of-speech

to each non-terminal in the grammar, greatly increasing the number of parameters.

The maximum-likelihood estimates can be obtained as before (technically, this is

still a PCFG), but data sparsity quickly becomes an issue, so the generative story

is broken down further. Each LHS now generates a head1 , and the head generates

subcategorization frames for the left and the right (just a set of required complements

on each side of the head phrase); each terminal of the rule to the left and right of

the head is then generated depending only on the head and the constraint that the

final rule math the subcategorization frame. Model 2 also adds a flag which indicates

1The head itself is not easy to define and is the subject of some debate. Collins provides hand-
designed head rules in his thesis which seem to work well for the Wall Street Journal. In [4], Bikel
provides similar rules for use in other languages.
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whether each nonterminal is a complement or an adjunct.

1.2.2 Machine Translation

Let us state the machine translation problem: our goal is to translate French 2 sen-

tences to English3 sentences. For simplicity, we will consider sentences in isolation,

ignoring the impact of context. We will always denote sentences in the source lan-

guage by f and sentences in the target language by e. m is the number of words in

the source sentence f and f is the number of words in the target sentence e. Now,

in Bayesian terms, given a French sentence f, we wish to find the English sentence e

that maximizes Pr (e l f), in effect imagining that French sentences are generated by

some unknown transformation on English sentences. Using Bayes' Law, we write:

arg max Pr (e I f) = arg max Pr(fIe)Pr(e)
e Pr (f)

= arg max Pr (f l e) Pr (e) .
e

The Pr (f) term can be ignored since f is constant. The first term, Pr (f l e), is called

the "translation model" and the second, Pr (e), is called the "language model." It is

just good to know that our translation model does not have to worry about assigning

low probabilities to English sentences that look like they could be translations of f

but don't really look like they could be English sentences; a good language model

can make up for some deficiencies in the translation model. One other advantage of

factoring the model in this way is that the language model can be trained on very

large unlabeled (i.e., untranslated) data sets in the target language.

In this work, we use a trigram language model; that is, we assume that the

procedure that produces English sentences is a Markov process with a history of two
2or in the general case, Foreign. The original papers translated from French to English, and it

has become a tradition.
3 or in the general case, Native.
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words: the probability of an English sentence e is broken down like this:

f+1
Pr (e) = Pr (ei, e2 , , ef) = Pr (ei l ei_ 1 , ei- 2 ),

where ef+1 is a stop symbol implicitly included at the end of every English sentence.

This is a raw trigram model. To learn the parameters, we can simply count the

number of times each trigram appears in a corpus:

count(ei, e2 , e)
count(ei, e2 )

where count(-..) denotes the number of times the words ... appear together in the

corpus in the given order. One problem with this model is that it will assign a zero

probability to any sentence that has a trigram that was never seen in the corpus. To

fix this, one uses a smoothed trigram model [22]:

Pr (e I e2 , ei) = at Prt (e I e2 , ei) + ab Prb (e I e2 ) + am Prm (e)

where at + ab + am = 1, the as are nonnegative, and Prt (.), Prb (.), and Prm ()

denote trigram, bigram, and unigram probabilities, respectively. This is called an

affine combination of the three distributions.

1.2.3 Five IBM Models

In a seminal 1993 paper, Brown et al introduced a set of five machine translation sys-

tems based on fairly simple statistical models (under the "noisy-channel" framework

described above) and large parallel corpora. The later models are significantly more

complex than the earlier models, with each subsequent model corresponding to an

increase in complexity and improved accuracy (but with diminishing returns in the

later models) [7].

We assume that we have at our disposal a corpus of N pairs of sentences (e(1 ), f(1))
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(e(2 ), f(2 )), . . ., (e(N), f(N))

In this document, our analysis will not extend beyond the first and second IBM

Models, so we will limit our discussion of the later models to a brief overview.

Model 1

We begin by describing an idea fundamental to both Model 1 and Model 2: an

alignment between a pair of sentences f and e is an ordered set ai, a2 ,.. ,am E

{O, 1, ... , f}. The French word fj is said to be aligned to the English word eaj (where

eo denotes a fake word "NULL" that is used to explain function words that may not

have an obvious analog in the English sentence). Notice that we don't demand that

English words are aligned to French words; a single English word could be used to

explain an entire French sentence (a developed model would declare such an alignment

as very improbable, however).

Model 1 makes the following assumptions/approximations:

" All alignments are equally likely.

" All French sentence lengths m are equally likely (we will ignore the obvious

problem that there are infinitely many French sentence lengths4 ; if it both-

ers you, you can assume that someone gives you the length or that there are

only finitely many possible French sentence lengths, which is true in practice,

anyway). We will generally omit this term.

" Each word is translated independently of the other words.

These assumptions are outrageously simplifying, but it is important to start with a

tractable model. It is also important to remember that our language model will clean

up output problems: we can expect short-range alignment problems and, to some

extent, poor grammar to be dealt with there.

4There really are. As proof, I present a regular expression that matches an infinite number
of grammatical French sentences: Je suis un tres* grand singe. Obvious analogs exist in other
languages.
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Ultimately, we obtain the following formulation 5 :

Pr(fle) - E 11 m I~Pr (fJieai)

Pr (f e)..:ZHPr(fIeaj
a1=0 a2=0 am=0 j=1

m t

~+1) m 1 1 Pr (f I ea,)
j=1 aj=O

Here, aj is the index of the English word that is aligned to the jth French word;

Model l's parameters are the translation probabilities Pr (f I e) (the probability that

the French word f was generated by the English word e). Model 1 is an excellent

candidate for optimization by EM; it is convex and has only one local maximum

(outside of saddle points due to symmetry) so given a random starting point, it will

always converge to the same, optimum translation table. Some more math gives us

the following update rules:

1 T(f(k)|e (k))
T'(f I e) = ( kZr(e) ie~k= T(f ,j )'

ek)= fj(k)

where ZT is a normalization constant.

Model 2

In Model 2, we wish to relax Model l's assumption that all alignments are equally

likely. However, we will assume for simplicity that the words all "move" indepen-

dently; that is, which English word a French word is aligned to is independent of the

5 The reversal of the product and sum is an important trick, since it makes it easy to optimize
the terms independently.
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alignment of the remaining words. Here is the formulation of Model 2:

Pr (f I e) ZIIPr (fj I es,) Pr (a Ij, f, m)
a j=1

- EJ Pr (f I eaj) Pr (a| j, E, m).
j=1 a,=O

Here, in addition to the translation probabilities Pr (f I e) Model 2 inherits from

Model 1, we find alignment probabilities, Pr (a I j, f, m) (the probability that, given

a French sentence of length m that is the translation of an English sentence of length

f, the jth French word was generated by the ajth English word). Model 2 is not as

good a candidate for EM as Model 1 was; it is riddled with saddle points and local

maxima. Typically, one initializes the translation parameters by training Model 1

before training Model 2, whence we use the following update rules:

1 D(aj = i l j, £, m)T(f k) I e()
T (f I e) =

Zr (e) Zk ,OD(aj = il j, f, m)T(fj), e, )
k) =( fik) =f

1 i ei

'Z=0 D(a = i j, , m)T(f k), e())
Z D , M I e ( k ) I j f ( k ) I m / D a = i l I j f , ) T j ) e /

where ZT and ZD are normalization constants.

The pseudocode to train IBM Models 1 and 2 is given in figure I-1.

Models 3, 4, and 5

IBM Model 3 introduces fertility parameters, modeling the number of French words

a single English word generates. IBM Model 4 introduces distortion parameters to

the alignment models as a way of encouraging words to move in groups. Both of

these models are formulated "deficiently": that is, they assign probability mass to

impossible French sentences (four-word French sentences without a third word, for

instance); Model 5 is the non-deficient version of Model 4. Since this makes little
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Initialize t(f I e) and D(i f , , m)

do:
- zero t'(fl e) and D'(i j,f, m)

- for (e, f) in corpus:

S - m= IfI, Ef= le
- - for j=1... m:

- - - for i=0... f:

- - - - a = t(fy I ei) -D(il j, e, m)
- - - ai = ai/(EZ, air)

- - for i=0... f:

S - (f e) = t'(fj I ei) + ai

- - - - D'(i j , m) = D'(i j, f, m) + ai

- t'(f l e) tV(fle) ( ,t' (f' I e))

S D'(i lj, , m) = D'(i I j, f, m) D' (i'/ , nm))

S t= t', D = D'

until convergence

(Set to 1 for Model 1)

Figure I-1: IBM Models 1 and 2 pseudocode.

25



empirical difference and is a great computational burden, Model 5 is rarely used in

practice [381.

1.2.4 Phrase-Based Models

The primary unit of information in all of the systems we have described up to this

point is the word; in phrase-based systems, the primary unit of information is the

phrase, a collection of (lexically) consecutive words and the lexical entry in a phrase-

based system is a triple containing a source phrase fi . . . f,, a target phrase ei ... em,

and a score s E [0, 1]. That is, instead of considering probabilites of word-to-word

translations and word-movement, a phrase-based system will deal with probabilities of

phrase-to-phrase translations and phrase-movement. There is a great deal of evidence

to suggest that machine translation systems generally experience a performance boost

by making this change.

Some phrase-based models, such as Marcu's [33], simply introduce mechanisms for

phrase-to-phrase translations and invent policies to assign probability mass to phrase-

to-phrase translations. Others, such as K6hn's [31], build a dictionary of phrases from

other information sources. Our experiments are centered on the K6hn system, as it

achieves state-of-the-art performance.

There are a number of ways one can build phrase dictionaries depending on the

data available. Phrases can be built from word-based alignments (such as those gen-

erated by the IBM Models). If syntactic information is available, it can be used to

restrict our attention to syntactic phrases; although it seems that syntactic phrases

may be more useful, experiment suggests that phrases that are not syntactically mo-

tivated are, generally, just as useful6 . Furthermore, even weighting syntactic phrases

produces virtually no improvement at best and is sometimes harmful. Phrase dic-

tionaries can also be built from phrase-aligned data generated from phrase-based

systems. Again, we can place more confidence in these phrases if we wish, but gen-

6For example, the German phrase "es gibt" corresponds nicely to the English phrase "there is",
even though they cross a syntax boundary in both languages.
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erally, the lesson from the experiments with syntactic phrases is applicable: it is

better in practice simply to consider as many phrases as possible than to restrict our

knowledge to satisfy any bias we may have [29].

Experiments by K6hn et al show that simple heuristic methods based on word-

based alignments from the IBM models generate state-of-the-art translations. To

generate a phrase dictionary, he begins by observing that the IBM models are not

symmetric; the alignments generated by a model trained to translate from French to

English can be different from alignments generated by a model trained to translate

from English to French (in fact, it is often impossible for alignments generated in one

direction to match those generated in the other direction, due to inherent restrictions

of the IBM models). K6hn's method begins by considering the intersection of the two

alignments as a starting point for the phrases it must generate; that is, it begins by

suggesting that words that are aligned in both models are probably related. Next,

K6hn uses a growing technique to induce the phrase dictionary; phrase dictionaries

generated in this fashion tend to be very large because of the generality of this tech-

nique; however, the method naturally also generates scores and generates many very

low-scoring phrase pairs.

Decoding is done using an algorithm described in [24]. The output sentence is gen-

erated left-to-right in the form of partial translations which are formed using a beam-

search algorithm including scores for the phrase translations and for the language

model, rewards for increased sentence length, and penalties for phrase reordering.

Typical states are depicted in Figure 1-2.

The two factors that govern the quality of translations generated using this tech-

nique are the quantity and quality of the alignments that are given to the system

during training. In practice, translation quality from this method is significantly bet-

ter than any of the IBM Models. Surprisingly, it does almost as well with IBM Model

2 alignments as with IBM Model 4 alignments.
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Translation Hypothesis: ei e2

Source: fi f2 ( X f5 f6
Score: S

Translation Hypothesis: ei e2 e3 64

Source: fi f2 K K A (K
Score: S + [Score(e 3 , e4; f5, f6) + log Pr (e3 e1 , e2 )

+ log Pr (e4 I e2, e3 ) + Distortion(5-6, 3-4)]

Figure 1-2: Typical states in the Kbhn decoder. In the original state, depicted above,
the decoder has hypothesised that the French phrase f3 f4 corresponds with the
English phrase ei e2 with score S. This state is updated by adding that the phrase

f5 f6 corresponds to the English phrase e3 e4 with score terms corresponding to this
assignment (Score(e3 , e4 ; fA, fA)), log likelihood terms corresponding to the language
model, and a score for the phrase reordering.

1.3 Answering Kay

It is now, armed with a metric and a modern system design substantially different

from those that Kay described in his statement [27] above, that we can respond to

his demands to point to the lessons that have been learned and which summarize the

mainstream agenda of the field.

1. Noisy-channel methods, like those described above, are vastly superior to rule-

based systems, and require substantially less effort to design.

2. Linguistic formalisms can be incorporated into statistical translation models,

but the effort required to do so is substantial, and the effect on the scores does

not justify the effort.

3. n-gram language models are easy to train and tough to beat.

This second point is now a byword in the field; the following quote, by Fred Jelinek,

famously conveys this:

Every time I fire a linguist, the performance goes up!

We will review these and other lessons in Chapter 3.
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1.4 Outline

Chapter 1 presents details on our work in using human assistance for parsing, with

an eye toward but without application to machine translation. Chapter 2 presents

our work on word-sense disambiguation for machine translation using source-language

human assistance. Chapter 3 revisits Kay's question, presents a critique of automatic

metrics, and presents CLAIRE, our alternative. We close with conclusions and a few

useful appendices.

tlr
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Chapter 1

Human Assisted Parsing

What makes language processing tasks difficult? Early practitioners believed that

better-than-human performance was just around the corner for many problems that

remain enticingly unsolved, despite decades of active inquiry.

Perhaps the difficulties can be summarized as two broad issues: linguistic formal-

ism and language ambiguity.

The former corresponds roughly to choice of representation, which is indeed a

major concern. We do not wish to restrict ourselves to a synthetic or controlled

language; we wish to permit all of the ambiguity and flexibility of open-domain natural

language. Logical forms are too fragile and disconnected from the text, and traditional

parse trees do not supply much of the information needed to make confident use of the

text, and yet often contain a great deal of information that corresponds to linguistic

hair-splitting and not to any valuable distinction in emphasis, structure, or meaning.

This problem corresponds to a major share of the scope of the field of linguistics, so

it comes as no surprise that we find it challenging.

However, in fully automatic systems, genuine ambiguity is such a great concern

that the linguistic formalism is often regarded as a minor issue with little impact on

performance. This is exemplified by the fact that the techniques that are known to

consistently improve the quality of modern systems are those that reduce ambiguity
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in the problem (most notably, constraining the domain of the text in question).

Consider the classic example:

I saw the man with the telescope.

There are several ambiguities in this relatively short, simple sentence, including:

" the intended sense of the word saw (either past tense of the verb to see or present

tense of the verb to saw);

" the attachment of the prepositional phrase with the telescope, either to the verb

saw or the object the man.

" the many possible meanings of the preposition with (which may be reduced

given a particular attachment choice):

- I used the telescope to see the man.

- I saw the man when I saw the telescope.

- I saw the man adjacent to the telescope.

- I saw the man who owns a telescope.

and so on. Clearly there is ambiguity at many levels (lexical, syntactic, semantic),

resulting in a combinatorial explosion in the number of readings of a sentence. In spite

of this, language users generally have such little difficulty winnowing them that the

ambiguities are often not even evident without explanation. Most English speakers

would never consider the possibility that the author of this sentence wished to convey

that he was using a telescope to cut a man in two, yet it is not difficult to imagine

a context (perhaps a crime novel) where this would be the intended meaning of the

sentence. In any case, two of the readings (that he used the telescope to see the man

and that the man had the telescope when he saw him) are entirely plausible, and,

without context, no system should entirely eliminate either of these readings.
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Our goal is a system that enables a non-expert user to perform expert pars-

ing with performance that exceeds that of fully automatic systems. We propose a

transformation-based approach: users input a sentence for processing, and candidate

readings of the sentence are transformed and presented to the user for correction.

Why would such a system be valuable? Some processing tasks currently must be

performed by experts because the quality of fully automatic systems is still too poor

for many uses. Researchers have developed tools to assist the experts in tasks such

as computer assisted translation, but expert labeling is still prohibitively expensive.

On the other hand, non-experts are in bountiful supply. Furthermore, as long as the

performance of human-assisted systems surpasses that of fully automatic systems,

their outputs could be used to augment existing corpora.

It may even be argued that, in lieu of strong artificial intelligence, fully-automatic

systems will never be able to resolve world-knowledge or common-sense ambigui-

ties. Certainly, without some sort of reasoning subsystem, it is inconceivable that

we will be able to properly respond to context, even if we were to solve syntax and

reverse-engineer the language center. Without the mind's superior pattern-matching

machinery and world model, language understanding would (probably) still be un-

solved.

What difficulties might we face? First of all, an improvement in quality may

require prohibitively great effort on the part of the user. This is particularly true of

a system that cannot generate a reasonable partial understanding automatically, in

which case it may be difficult to form meaningful questions.

In spite of these possibilities, there may yet be hope. Ambiguities that cannot

be expressed with transformation (i.e., by rewriting the sentence) do not exist for all

practical purposes, so an ideal system should be able to communicate any difficulty

it has. Anyone is qualified to respond: virtually every human being has a first-class

world-model and pattern-recognizer waiting to be used. The labels he gives for one

sentence, or even for part of one sentence, may be useful for subsequent ambiguities,

so we can hope that the number of questions we have to ask will increase more slowly
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than the amount of information we are interested in (that is, we have to know a great

deal to ask an intelligent question, but much of that knowledge will be helpful for the

following question). Finally, we can hope that the number of questions we need to

ask overall will gradually diminish as we collect enough data to better estimate the

answers.

1.1 Previous Work

Many recent papers have targeted specific attachment types directly with automatic

methods, by reranking or self-training. These have achieved significant gains, but the

authors are quick to note that these gains are specific to the corpus being used (i.e.,

the Wall Street Journal corpus), and clearly do not represent gains in broad-domain

text.

Disambiguating by transformation is not a radical thing; the Treebank parsing

guidelines include criteria for especially tricky examples by syntactically transforming

difficult sentences. [3]

However, perhaps the earliest paper to suggest disambiguation by asking in any

formal context is Kay's description of the MIND system [26], a multilingual translation

engine. Later proposals for the use of monolingual consultants in translation are

described in Chapter 2.

In parsing, Carter [13] presents TreeBanker, a system similar to an earlier system

by Tomita for translation [46], but targeted at expert consultants and with an eye

toward corpus-building.

1.2 Our Approach

To reiterate, our goal is to improve quality of parsing using transformations, with an

eye toward applications that would make use of argument structure.
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Our approach differs primarily from the previous approaches in three respects:

first, we incorporate interaction in a statistical (not rule-based) parser; second, our

mode of interaction with the user is by way of transformations of the original text

using a probabilistic tree transducer; third, instead of trying to design tests for am-

biguity patterns, we propose using linguistically meaningful transformations without

an eye toward particular ambiguity classes. The advantage of favoring statistical

techniques is that they are less labor-intensive and less fragile than their rule-based

counterparts, at the cost of being mechanistically opaque to system designers. Con-

sidering that we are expecting human attention, using probabilistic techniques confers

another serious advantage: the system can be designed to continuously adapt its be-

havior to new data.

Ideally, the machine learning practitioner would have sentences in some canonical

form, along with corresponding versions authoritatively transformed in some way. In

lieu of such a corpus, we are consigned to manual design methods. We therefore

produced a list of transformation types and designed the corresponding transduc-

tion rules. We envision that statistics would play its part by incorporating failure

probabilities and in lexicalizing the rules.

Machine learning concepts also motivate how we question the user. We envision

a system in which the user may choose to stop answering questions at any time, so

we assume every question we ask may be the last. Consequently, we will always

ask the question that gives us the most information in expectation. The amount of

information a question and answer pair gives us is given by the change in the entropy

of the belief distribution, which is based on probabilities given by our baseline parser.

1.2.1 Collins Parser

Our baseline parser is the Model 2 Collins parser (described briefly in the introduc-

tion and in full in [16]) modified to recover the full Penn extended tag-set ([20] and

Appendix B). This parser is fully automatic and is a standard baseline, because of
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its relative simplicity and high performance. It recovers labeled constituents with

~88% precision/recall. Certain recurring attachment decisions are highly ambiguous

because constituents can feasibly be attached to many previous points in a sentence;

consequently, these correspond to a substantial portion of the error that Collins re-

ports. For instance, in the sentence:

She announced a program to promote safety in trucks and vans.

the prepositional phrase in trucks and vans can attach to several points in the sen-

tence:

" Safety in trucks and vans is what the program promotes.

" The program promotes safety, and it does so in trucks and vans.

" The announcement was made in trucks and vans.

and the conjunct and vans can attach to several points in the sentence as well:

" Safety in trucks and vans is what the program promotes.

" The program promotes safety and also promotes vans.

" She announced a program and she announced vans.

So it comes as no surprise that the scores for these attachment types are lower:

prepositional phrase attachments are recovered with -82% precision/recall, and co-

ordinating conjunction attachments with -62% precision/recall.

1.2.2 Algorithm

We make use of any available syntactic transformations that are meaningful linguis-

tically (ones we can expect a non-expert consultant to understand). We select which

transformation to use based on our belief, which is initially just the probability scores
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given by the parser, and which is updated by any information we obtain from the

user(s).

Our intended algorithm, then, is as follows:

Given a sentence s, obtain top N output from the Collins parser

Transform this sentence using the available rules for each candidate parse

Group the outputs of the transformation by the word span of the constituents

do

- For each collection of word spans, compute the entropy of the partition

. Ask the user to label the outputs corresponding to the maximum entropy

- Adjust the scores of the parses

until the user quits or we run out of questions

return the highest scoring parse

Now we approach the issue of the transformations themselves.

1.2.3 Tree Transduction Grammar

For the purposes of this chapter, we will only be transforming

to passive voice or clefting sentences. However, since we expect

formations in later work, and since changing voice in particular

procedure, we will sketch the formal machinery and attach our

transformations (see the end of chapter).

clauses from active

to use other trans-

is a fairly complex

grammars for both

A transducer is a finite state automaton with two tapes. We use a transducer that

operates on the internal nodes of a tree, and call this machine a tree transducer. The

match or input portion of the transducer amounts to little more than executing an

exhaustive regular expression matcher at each level of the tree for each rule, and then

making the results of the match available to parent nodes for recursive matching.

The output portion is slightly more complicated: since changing voice can involve

long-range movement of constituents, output rules have to be able to "pass" trees as
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Original Sentence John saw the man with the telescope.

Passive The man with the telescope was seen by John.
The man was seen with the telescope by John.

Cleft It is John that saw the man with the telescope.
It is the man with the telescope that John saw.

It is the man that John saw with the telescope.
It is with the telescope that John saw the man.

Table 1.1: Examples of voice-changing and clefting.

arguments to children outputs. To leave this stage as flexible as possible, the output

rules are simply lambda expressions. Stylized outputs from the active-to-passive rule

and the cleft rule are given in table 1.2.3, illustrating how they may be used to

disambiguate prepositional phrase attachments.

Once again, the input to the transducer is a parse forest-the dynamic program-

ming table that is generated when the parser analyzes a sentence-and the output is

a collection of all of the possible outputs of the original sentence and the amount of

information we would gain by knowing whether or not each output is correct (e.g., if

it is semantically equivalent).

We define a tree transduction grammar to be a collection of tree transduction

rules, and we define a tree transduction rule to be a triple consisting of a label, an

input rule, and an output rule. Input rules map a particular node in a candidate

tree to a set (possibly empty) of "matches" (generally, input rules will correspond to

regular expressions) and output rules will map a match to an output for that node.

A particular node label is designated to be the root of the grammar; the output

of the transducer is the set all of the possible outputs labeled with the root of the

grammar. The input rules can require that a child match another input rule in the

grammar, so the transduction grammar is a graph as well. We have constructed two

tree transduction grammars: one to change sentences from active to passive voice,
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and another to cleft a sentence's arguments.

The transducer does the work of applying every rule to every node in the parse

forest without repeating work; in general, neither the transduction grammar nor the

parse forest will be acyclic (a parse tree containing a "cycle" is possible because the

Collins grammar permits unary productions; such a tree will never be the maximum

likelihood tree, however).

An early version of the transducer operated on single parse trees and was applied

to top N output of the Collins parser, but the transducer was modified after our early

experiments to operate on parse forests (i.e., on the parser's dynamic programming

chart) instead. This posed a significant technical challenge, but ultimately (somewhat

surprisingly) resulted in a much more efficient system (since there are generally only

minor differences between the top N trees, much of the work the early system was

doing was repeated). The modifications to the code are described in appendix C, and

we have made an implementation of the transducer (in python) available online for

future work.

The transducer is a very powerful tool, but because it's so flexible, it's difficult

to give performance guarantees. In practice, even for the types of grammars that we

gave, the performance is decent; on a modestly powered computer, it can produce

outputs for a 40-word sentence in about two seconds, comparable to the time it takes

to parse the sentence.

The grammars for the active-to-passive and cleft transformations are given at the

end of the chapter.

For each output that is generated by the system, we can compute the probability

that the nodes that produced the output would appear in the correct parse tree. If

we were completely confident that each grammar produced perfect output, we simply

choose the output that partitions the space of possibilities most evenly. This does

not change if we don't completely trust the grammars, as long as we trust them all

equally, which we do for simplicity.
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FOREST List of NODES

NODE label
headLabel
headWord
spanStart, spanEnd (sentence span)
List of CHILDRENs

CHILDREN score

List of NODES
MATCH content

NODE

CHILDREN

spanStart, spanEnd (subspan of the CHILDREN, for partial matches)
TGRAMMAR List of TRULEs

rootLabel
TRULE label

INPUTRULE

OUTPUTRULE

INPUTRULE RERULE

NAMEDRULE

NOTRULE

KLEENERULE
ANDRULE

ORRULE

CONCATRULE

mapping from (NODE, CHILDREN) F-+ MATCH

RERULE regularExpression denoted by "<regexp>"
NAMEDRULE label denoted by #<label>

NOTRULE INPUTRULE denoted by !<rule>

KLEENERULE INPUTRULE denoted by <rule>*

ANDRULE List of INPUTRULEs denoted by <rule> & <rule> & ... & <rule>

ORRULE List of INPUTRULEs denoted by <rule> | <rule> I ... I <rule>
CONCATRULE List of INPUTRULEs denoted by <rule> @ <rule> @ ... @ <rule>

OUTPUTRULE mapping which accepts MATCH

Figure 1-1: Types used in the Transducer
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toExamine = {Leaf Rules} x {(Nodes, Children)}

toExamine' = {}
partialMatches = empty hash with default value of {}
matches = empty hash with default value of {}
while ItoExaminel > 0:

- for each rule, node, children in toExamine:

- - n = Ichildren|

- preMatchCount = Imatches[rule, node, children]|

- . + |partialMatches [rule, node, children]|

- - for each subspan of children:

- - - update partialMatches[rule, node, children, subspan]

- - update matches[rule, node, children, subspan]

- - postMatchCount = Imatches[rule, node, children]|

- - + IpartialMatches[rule, node, children]|

- - if preMatchCount > postMatchCount:

. - - continue

- - for each parent rule pRule of rule:

- - - for each parent node pNode of node:

- - - - for each pChildren in of pNode.children:

- - - . - if node E pChildren:

- - - . - - toExamine'.add ((pRule, pNode, pChildren))

- toExamine = toExamine'

- toExamine' = {}
return matches

Figure 1-2: Transducer Pseudocode
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1.2.4 Sample Output

We will briefly run our sample sentence "I saw the man with the telescope" through

the active-to-passive transducer to make its operation more clear. Let us suppose

that our parser produced the following set of possible subtrees:

{(NP, 0-1), (VB, 1-2), (DT, 2-3), (NP, 3-4), (IN, 4-5), (DT, 5-

(S, 0-2), (NP-A, 2-4), (NP-A, 5-7), (VP, 1-4), (PP, 4-7), (S, 0-

(VP, 1-7), (S, 0-7)}

This corresponds to the following chart:

S

VP

NP-A

S

VP PP

S NP-A NP-A

NP VB DTTNP IN DT NP

-6), (NP, 6-7),

-4), (NP-A, 2-7),

I saw the man with the telescope

The active-to-passive transduction grammar (given at the end of this chapter) has

the following dependency structure:
S

V

vBA

VB

We begin by applying the input rule of the leaves of this dependency structure

on the nodes in the parse forest in reverse tree-order (so that a node will only be

processed after the children are processed). The algorithm beings by setting the
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variable toExamine accordingly (we exclude the children of each node):

toExamine <- {(VB, (NP, 0-1)), (VB, (VB, 1-2)), ..., (VB, (S, 0-7))}

After the first iteration of the transducer, VB will match the node (VB, 1-2), so the

parents of VB must be examined:

toExamine <- {(V, (S, 0-2)), (V, (VP, 1-4)), (V, (VP, 1-7)),

(VBA, (S, 0-2)), (VBA, (VP, 1-4)), (VBA, (VP, 1-7))}

After the second iteration of the transducer, V will match the nodes (VP, 1-4) and

(VP, 1-7) with outputs (t -+ was seen by t, t - the man) and (t -+ was seen by

t, t F-+ the man with the telescope), respectively. Now the parents of V must be

examined (this time, we include the children):

toExamine <- {(S, S -+ NP(0-1) VP(1-7)),

(S, S -4 NP(0-1) VP(1-4) PP(4-7))}

After the third and final iteration of the transducer, S matches both nodes and yields

the following outputs:

The man was seen by me with the telescope.

The man with the telescope was seen by me.

1.3 Further Augmenting the Tree

The trees in the Penn treebank have a great deal of information beyond flat sen-

tences in the Wall Street Journal; they include basic part-of-speech information at

the word level, constituent dependency information, and information about the ar-

gument structure. This information is so rich that the vanilla Collins parser does
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not attempt to recover it. However, there is an absence of many syntactic features

on internal nodes even on these trees. This is true even of agreement features, such

as number and gender, which we find ourselves in need of to confidently write new

sentences with the noun phrases in the corpus. For a moment, let us attempt to

recover these features given the information that is present in the corpus.

Why are these features absent in the first place? Perhaps it is imagined that num-

ber, for example, can be reliably extracted deterministically, particularly considering

that number is given at the leaves. An algorithm that immediately comes to mind is

to simply use the head of a tree to recover these properties at each internal node.

The first difficulty we encounter with the "head" approach is that there is some

disagreement about what exactly the head should be! Conjunction phrases, for exam-

ple, are notorious sticky points: should the head of the first conjoined phrase be the

head of the whole phrase? Perhaps the conjunction itself should be the head? When

we consider these options with our problem, the answer becomes even less clear: if

we form a phrase from two singular phrases using and, certainly the entire phrase

should not be singular. Yet, we have some well-founded discomfort with the notion

that and is plural. (Clearly there is a problem with the representation that is used in

the treebank; this is addressed in [19].)

We would run into even more trouble with other languages, like Arabic, where

verbs are conjugated based on gender as well. If we merge (via and) a masculine noun

phrase and a feminine noun phrase, the resulting noun phrase is considered masculine;

however, even if we get over our discomfort at assigning and noun-like features, there

is no correct answer here: no fixed decision on constituent head assignment works for

any combination of masculine and feminine subphrases. Other conjunctions, like or,

are even more difficult; it is not clear whether a phrase like a man or the boys should

be singular or plural, so we should not be surprised that a general rule is elusive.

Even if we adopt some set of rules, say the hand-written head rules used to

parametrize the Collins parser, we run into difficulty with fairly common phrases

like a number of men, where number, a singular noun, is the head. Perhaps the rea-
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son that such rules would fail is that number is really a semantic thing with some

syntactic manifestations, and not simply an arbitrary syntactic property. If English

speakers were to begin using a new word, say joople, they may assume that it refers

to some singular thing based on its ending and would conjugate verbs accordingly;

however, if they were told that joople referred to a plural thing, they would at the

very least consider treating it as such (analogous phenomena were described in [32]).

Furthermore, when we are considering two such features simultaneously, it is not

clear that both properties for an entire noun phrase would even come from a single

head. These difficulties pushed the NLP community to use statistical methods in the

first place.

1.3.1 Method

Statistical parsers are built using hand annotated parse trees, such as the treebank.

Unfortunately, the treebank does not label entire noun phrases as singular or plural,

without which we cannot build a supervised model.

However, the treebank does have rich argument labels, so we can extract subject-

verb pairs from sentences in the treebank. Since the verbs and their subjects must

agree in number in English, wherever we can identify the number of the verb, we can

identify the number its subject. Hence, the same agreement property of the language

that motivated this problem in the first place is the source of the data we will use to

solve it. This method can be used to recover any syntactic property that is needed

for agreement in any language. We apply our approach to number in English and

gender in Arabic.

1.3.2 Data Collection

In both treebanks, we make use of the extended set of internal node tags; in particu-

lar, the NP-SBJ tag helps us handle sentence constructions that do not have ordinary

agreement, such as expletive and cleft constructions. In English, we search for the
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first verb leaf of the predicate; if it is labeled VBZ, we take the subject to be singu-

lar; if it is labeled VBP, we take the subject to be plural; otherwise, we discard the

subject. Note that this heuristic will work for sentences with auxilliary verbs as well,

since these verbs carry the number agreement, and its verbal arguments do not carry

number (e.g., John (and Bob) eats (eat) the apple become John (and Bob) has (have)

eaten/been eating/etc. the apple).

In Arabic, circumstances are slightly more complicated. Formally, Arabic has

strict gender agreement. However, there are two major word orders in Arabic with

differing number agreement rules. In particular, sentences with the VSO (Verb Sub-

ject Object) ordering (Z.M ULe- or verbal sentences) have gender agreement between

verb and subject, but do not have number agreement (the verb is usually conjugated

for the singular). On the other hand, sentences with the SVO order (Ztz-l "de or

nominal sentences) have agreement in both gender and number. In Classical Arabic,

the VSO order is dominant; however, in Modern Standard Arabic (MSA) the SVO

order is quite common.1

In Arabic, we collect sentences with the same criterion as in English and search

for the verb with the same heuristic (the modal verb certainly must agree with the

subject; in Arabic, the verbal arguments will also agree, but this information is not

used in our experiments). Also, since Arabic is morphologically rich, the leaf tags

take on a more "factored" appearance; on the other hand, the internal nodes are

more impoverished (there are only 17 distinct internal node labels, compared with

240 distinct internal node labels for English, but there are 284 distinct leaf labels

in Arabic, compared with only 43 for English). The verb tags that are taken as

singular/dual/plural and masculine/feminine are given in table 1.4.

sentence type verb gender verb number

VSO LW .ZalP agreement singular

SVO Za) UP- agreement agreement

1It may seem surprising that Arabic would preserve any verb-subject number agreement consid-
ering that the classically dominant order lacks this type of agreement; however, Arabic is pro-drop
and sentences without explicit subjects have subject-verb agreement in both gender and number.
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VSO - (Verbal Sentence / i., UA)
Masculine /Ji Feminine

Singular /2
the apple the boy ate(Ms) the apple the girl ate(rs)

Dual /Y ju
the apple the two boys ate(Ms) the apple the two girls ate(es)

Plural /Y1 Y
the apple the boys ate(Ms) the apple the girls ate(FS)

SVO - (Nominal Sentence / )

Masculinej/ Feminine /&p

Singular /
the apple ate(us) the boy the apple ate(is) the girl

Dual/
the apple ate(un) the two boys the apple ate(to) the two girls

Plural /
the apple ate(io) the boys the apple ate(Me) the girls

Table 1.2: To distinguish between the different conjugated forms in Arabic, we append
labels to the English verb in the gloss; M and F denote masculine and feminine,
respectively, and S, D, and P denote singular, dual, and plural, respectively.

1.3.3 The Model

Our setting is a standard supervised classification task: the input is a noun phrase

tree and the output is the number/gender of the noun phrase. Our model is that

the number/gender is propagated upward from the leaves to the root according to

feature-specific head rules; the parameters of our model dictate the probability at

each stage that the feature-head is a particular child. For each noun phrase, we are

given the feature value for the root (by virtue of subject-verb agreement) and for all

of the leaves (which are hand labeled). We treat the labels of the remaining nodes as

hidden variables and use expectation-maximization (EM) to optimize the model.

With some notation, we can make this more explicit: let T denote a parse tree,

To the root node of T, T the ith subtree of the root, and T the root rule (i.e.,

TO -+ T10 T24 ... TNO). Our goal is to model the propagation of some feature F;

we do so as follows:

Pr (F(TO) f I T) Pr (F(Tio) f | Ti) Pr (F-head = i I T,)

Hence, the parameters of the model are the probabilities Pr (F-head = i T,) for each

rule in the grammar. The distributions of the feature-values for the leaf nodes is fixed
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Masculine Feminine
PVSUFFSUBJ: 3MS PVSUFFSUBJ: 3FS
PVSUFFSUBJ:2MS PVSUFFSUBJ:2FS

Singular IV3MS IV3FS
IV2MS IV2FS

CVSUFFSUBJ: 2MS CVSUFFSUBJ:2FS
Dual PVSUFF-SUBJ: 3MD PVSUFFSUBJ: 3FD

IV3MD IV3FD

PVSUFFSUBJ:3MP PVSUFFSUBJ:3FP

PVSUFFSUBJ: 2MP PVSUFFSUBJ: 2FP

Plural IV3MP IV3FP

IV2MP IV2FP
CVSUFFSUBJ: 2MP CVSUFFSUBJ:2FP

Table 1.3: The agreement tags of conjugated
and CV are perfect, imperfect, and imperative

verbs in the Arabic treebank. PV, IV,
(command) aspects, respectively.

for each language and is given in table 3.

We optimize the parameters of the model using EM; the resulting algorithm is

given in table 1.5.

After the model has been optimized, we can evaluate new trees; in our algorithm,

in case of a tie, we back-off to a simple majority model. That is, for example, if

singular noun phrases are more common and the probability that a given noun phrase

is plural according to our model is exactly 0.5, we will return singular.

We compare our method to a simple majority model in Arabic and to the one

suggested in the introduction (drawing number from the head of the noun phrase)

in English, using the head rules given in Collins 1999. We trained our models on a

random selection of 80% of the noun phrases obtained from each corpus; we ran the

algorithm for 10 iterations (we found that increasing the number of iterations had

little effect on the performance).
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English

Singular NN, NNP
Plural NNPS, NNPS

Arabic
Masculine Feminine

CVSUFF.SUBJ:2MS NSUFF-FEM-SG

DEM.PRON.MS CVSUFF.SUBJ: 2FS

IVSUFFMD:3MS DEMPRONFS

PRON-2MS IVSUFF.DO:3FS
PEON 2MSPRON_3FS

Singular PRON-3MS DEPRONF
PVSUFF.DO:3MS D-N

Ivis PRONS
IV1NS PRONAiS

PRONOS PVSUFF.DO:1S
PVSUFFDO:1 isPVSUFF.DO:3FS

NSUFFMASCDUACC
NSUFF.MASCDU.ACC.POSS NSUFFYEM-DU-ACC

NSUFF-MASCDUGEN NSUFF-EM.DU-ACC-POSS
NSUFFMASCDUGEN.POSS NSUFFYEM-DU-GEN

NSUFF ASC-)UNOM NSUFF-FEMDU EN-POSS
NSUFF-MASC-DU-NOMYPOSS NSUFFPYEM-OUJIOM

CVSUFFSUBJ:2MP NSUFF.FEM.DU.NOM.POSS

Dual DEM.PRON.MP DEM.PRON.FD
NvipNi

PRONAP PRON.1P
PRON-2MP DEM.PRON.F

IV2MP 
PRON.3D

IVSUFF.DO: 3MP PVSUFF.DO: iP

PVSRONDO: PVSUFF.DO:3D

PVSUFF-DO: 3D
NSUFF-MASC-PL-ACC

NSUFF.MASC-PLACC.POSS
NSUFF.MASC.PL-GEN

NSUFF.MASC.PL.GEN.POSS
NSUFF..MASC.PL.N0M

NSUFF.MASC.PL.NOM.POSS NSUFFFEM.PL
PRON-3MP 

IVIP

Plural CVSUFF.SUBJ:2MP PRON_1P
DEMI RO0P DEMPRONF

PRON.P PVSUFFDO:1P

PRON-2MP
IV2MP

IVSUFF.DO: 3MP
PVSUFF.DO:1P
PVSUFF.DO:3MP

Table 1.4: Leaf feature values in Arabic and
distributed between all possible labels. Tags
distributed between those categories. Also,
egories for Arabic; this is in anticipation of
these features on verb phrases.

English. Tags not given here are evenly
placed in multiple categories are evenly
note that we have included verbal cat-
future work with statistically inducing
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Given:
- E possible feature values
- An array of N trees, T
- An array of feature values, FT, for the roots
- An array of feature values, f, for the leaves

Initialize E:
- foreach rule T,:
- -* n <- the number of children in rule T,
- - [T,] +- n random values from [0, 1]
- - normalize 8[T,]

do
- E-Step:
- - foreach tree T[i]:
- - - estep(T[i], E)
- - - T[i].F +- F[i]

- M-Step:
- - zero E
- - foreach tree T[i]:
- - - mstep(T[i], E)
- - normalize E
until convergence

function estep(tree T, parameters E)
- if r is a leaf:
- - r.F <- f(T.tag)
- else:
S - p +- array off zeros
- - foreach subtree T:
- - - estep(ri, E)

- - -p <-- p + rTO.F + [r.] [i]
- . +-.F[- p

function mstep(tree T, parameters 8)
- if T is not a leaf:
- - foreach subtree Ti:
- - - mstep(Ti, E)

-- e[r-]i] +- E[T,] [i] +T.F - ri.F

Table 1.5: The model optimization algorithm.
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1.4 Results

Let's start by looking at the results of the tree-augmenter. We performed experiments

on the English and Arabic Penn Treebank corpora. For English, we start with 35,752

sentences with a total of 910K tokens which yielded 28K subject noun phrases for

which numbers could be extracted. For Arabic, we start with 12,412 sentences with a

total of 430K tokens which yielded 24K subject noun phrases for which gender could

be extracted. Unfortunately, the SVO order is relatively rare in the Arabic corpus;

only 30 noun phrases could be marked for number. Hence the results for Arabic

number were not statistically significant.

Language Feature Baseline Head EM

Arabic Gender 66% - 69%

English Number 61% 75% 82%

We ran our transformation experiments on the standard evaluation section (sec-

tion 0) of the Penn Treebank II (the Wall Street Journal corpus). We ran the modified

Collins parser on this data. We ran the active-to-passive and cleft tree-transducers

on this data to produce questionnaires for each sentence; 14% of the sentences pro-

cessed produced multiple outputs; another 4% produced a single output. We gave

the questionnaires for 300 randomly selected sentences to two users for labeling. For

each user, the scores for the parses were adjusted for the labels (parses corresponding

to images that were marked as incorrect were simply penalized by 10 log probability

points). The resulting top-scoring parses were compared to the gold-standard parses

using the evalb metric described in [16]; the results are as follows:

50

Baseline (Collins Parser) 0.871

Collins + Oracle 0.893 +17.0%

Collins + User 1 0.877 +4.7%

Collins + User 2 0.874 +2.2%

Collins + Users 1 and 2 0.875 +2.4%



User 2 reported that he labelled the data very quickly and may have made some

mistakes, possibly explaining his diminished performance. Below are the agreement

statistics between the two users.

User 1

Correct Incorrect Total

Correct 65% 5% 70%
User 2

Incorrect 12% 18% 30%

Total 77% 23% 100%

We expect that the reason for the high (~20%) false image rate is due to the rough

implementation of the transformations. Despite this, the method shows significant im-

provement to a baseline parser with relatively little effort on the part of the user (one

or two questions per sentence). We expect that better statistics would be achieved

once the transformation was improved to incorporate lexical information. The labels

from both users correspond to a significant improvement in ambiguous, semantically

meaningful attachment types (particularly PP).

1.5 Future Work

The first and most obvious step is to further refine the transduction grammar by

hand. Improvements could be made simply by modifying the parser to output traces.

Several transformations can be added to help other attachment problems, and also

to attempt anaphora resolution and other language understanding tasks.

Naturally, more data would improve our performance and allow us to advance our

model. In particular, an attractive next step is to obtain enough data to lexicalize the

rule scores, so that we can estimate when a rule will fail. An even more interesting

idea (and therefore one which requires yet more data) would be to predict correlated

failures; that is, we may find that the sentence will break when one constituent is

placed before the other for some linguistic reason (e.g., one refers to the other), so all

transformations that rearrange these constituents will fail.
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Beyond a specialized corpus for this task, we are interested in using this system

to develop treebanks in new domains and languages and to refine existing treebanks,

as in [13].

In lieu of more labeled data, we can make use of unlabeled (i.e., parsed, but not

annotated) data to estimate the lexicalized rule scores via self-training. For instance,

if we find that a verb does not appear in passive voice in our data set, we can

confidently hypothesize that it cannot be passivized.

The Transduction Grammars

Bold-faced capital letters denote internal nodes of the transduction grammar, normal

capital letters denote internal nodes of the parse trees (often accompanied with reg-

ular expression markers), the asterisk denotes any number of children of any type,

subscripts are indices for output rules that return multiple items (tuples), t and t

when present denote the arguments to output rules, and c and pp are auxiliary func-

tions which output the copula and the passive participle, respectively. Patterns that

appear in the output rules are intended to refer to the region in the input that was

matched; regions matched by the asterisks are intended to be replaced in the order

they appeared in the input.
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S e S(-A)? - * NPB?-A * V *
S "* V 2 (NPB?-A) * V 1 (NPB?-A) *

* VP - VB *VBA *

V -- ' (t) VB * VBA 1 (t,VB) *

- 2 (t) VBA2(t,VB)
e VP-S VB * NPB?-A *

V - 1 (t) c(t) pp(VB) *byt *

-27(t) NPB?-A
e VP-A - VB *VBA *

VBA e -+1 (t, $) VB * VBA 1 (t,VB) *

- 2 (t, $) VBA2(t,VB)
e VP-A - VB * NPB?-A *

VBA =4 -I (t, $) c(tNPB?-A) p(VB) * by t *

- 2 (t, $) NPB?-A

VB = VB[^N] - not a form of to be or to have
-+ itself

Table 1.6: The active-to-passive transduction grammar

CS e S(-A)? -4 (CCIINTJ)* (PREARG)* CSUB * CVB *
- It c(CVB) CSUB that * CVB *

CS S(-A)? - (CCIINTJ)* (PREARG)* CSUB * CVBARG *

- It c(CVBARG) CSUB that * CVBARG *

* VP a *CSUB*
CVBARG 4 -1 CSUB

e VP - *CVBARG *

CVBARG --1 CVBARG1
-+2 * CVBARG2 *

CVB e VP head is not a form of to, said, add, contend
-+ itself

PREARG = !(S.*ICCIINTJ) -+ *
-+ itself

CSUB [ [VCMSI].* a *
- itself

Table 1.7: The cleft transduction grammar
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Chapter 2

Human Assisted Word-Sense

Disambiguation for Translation

The goal of word-sense disambiguation systems is to identify the meaning of a word

from context. Word-sense disambiguation, like parsing, is considered a fundamental

problem in natural language processing, which is broadly applicable and, like pars-

ing, word-sense disambiguation systems are rarely used outside of natural language

research labs. In spite of this, word-sense disambiguation remains an active area of

research.

Formally, for a given word or phrase in context, word-sense disambiguators are

asked to identify which synset the word or phrase belongs to. The difficulty depends

on the granularity of distinctions that are being made; in a recent evaluation which

used synsets from WordNet, interannotator agreement on word senses was as low as

85%: this is a practical upper bound on an automatic systems performance [1].

Shallow methods yield surprisingly good results on word-sense disambiguation; the

simplest method that achieves state-of-the-art performance is one which incorporates

a handful of shallow methods by voting.

One of the most-cited potential uses of word-sense disambiguation is automatic

machine translation. In [11], Carpuat and Wu incorporated a state-of-the-art Chinese
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word sense disambiguation model into a state-of-the-art statistical machine transla-

tion system and found that their system performed worse than an uninformed system!

This was (to the best of our knowledge) the only negative result published in ACL

that year, which suggests just how unexpected the result is. Indeed, several later

papers (notably [12] and [14]) seek to reverse it, with some success. Nevertheless,

the fact that the original paper found that it did not help and that the later pa-

pers (despite careful design surrounding the inclusion of the system) found limited

improvement is suggestive.

We will modify a current state-of-the-art system to obtain word-senses from a

monolingual consultant instead of from a word-sense disambiguation system to more

directly evaluate whether eliminating this type of ambiguity improves translation.

Notably, our system is the first that uses source-language consultants to improve a

statistical translation system.

2.1 Previous Work

The idea of disambiguating by asking is an old one; perhaps the earliest paper to

suggest disambiguation by asking is Kay's description of the MIND system [26], a

multilingual translation engine. Kay points out that use of the term "fully automatic"

when describing translation systems is misleading, because users of fully automatic

translation systems will edit the output if they are familiar with the target language.

He therefore suggests the use of a monolingual consultant to resolve ambiguities in

the source language, but he does not propose algorithms for producing or processing

the interaction, nor does he indicate what form the interaction should take.

Tomita [46] later refines the problem definition by disallowing assumptions about

the consultant-in particular, that the consultant has any specialized background

(in linguistics or computer science)-so the interaction cannot include parse trees or

phrase structure rules. Tomita presents a rule-based system for parsing by augmenting

a context-free grammar with annotation rules to explain each attachment and solicit
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correction. For the sentence:

Mary saw a man in the park with the telescope.

Tomita's system generates the following questions:

1) (a man) is (in the park)

2) The action (Mary saw a man) takes place (in the park)

1) (the park) is (with a telescope)

2) (a man) is (with a telescope)

3) The action (Mary saw a man) takes place (with a telescope)

Ben-Ari et al propose embedding a similarly designed parsing engine in a rule-

based translation system [2], with an emphasis on transfer (i.e., preferring to preserve

ambiguity in translation whenever the source and target languages make that possi-

ble). They also point out that more sophisticated queries than those of Tomita may

be used for certain types of ambiguity.

Maruyama [35] presents a system for ambiguity resolution in a Japanese-to-English

translation system by interactively displaying dependencies. When the user selects

a phrase (underlined), the system displays the phrases that the chosen phrase might

modify (the automatic choice is in reverse video; all other choices are highlighted

in red). In the screenshots below (adapted from [35]), the user first selects the first

phrase, then the second phrase.

you-SUJ ytd m seP
you-SUBJ yesterday meet-PAST man-OBJ see-PAST

tyou-SUBJ yesterday meet-PAST man-OBJ see-PAST

A recent paper [10] presents an elegant variation of the target language rewriting

technique: display a chart of possible phrasal translations and permit the user to

select a path through the phrase chart, but which reports negative results in spite of
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the human assistance.

2.2 Methods

moses[30] is a free (both gratis and libre) state-of-the-art statistical translation system.

The moses decoder can be asked to produce the set of all possible outputs (in its

search space) for a given input as a directed acyclic graph. Each edge corresponds to

a phrase in the output, and each path from the start node to an end node corresponds

to a candidate translation.

Formally, moses generates a collection of nodes V and edges E. Each node repre-

sents a possible state of the decoder (as described in the introduction), and each edge

consists of a source phrase that is removed from the source, a target phrase that is

generated and added to the candidate translation, and a score that is added to the

total score at that point. Each path from the empty start node to a final node (one

for which the entire source sentence has been absorbed) corresponds to a candidate

translation.

V C U E' x 'P({1, ..., m}1) x [0, 1]
fENU{0}

where E denotes the set of all words in English and m is the length of the input

sentence. Members of V are triples:

1. an English hypothesis prefix,

2. the indices of the French words that have already been translated, and

3. the score so far.

C U E'x U Fm x[0,1]
fGNU{O} mENU{0}

Members of E are triples:
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1. an English hypothesis fragment,

2. a French hypothesis fragment, and

3. the partial score.

If we had access to a bilingual consultant, we could ask them whether or not a

particular edge in the graph would be visited in an ideal translation. Which nodes

in a given graph would we ask about? As always, we would ask the consultant the

question that would give us the most information. Assuming (for simplicity) that

there are no redundant paths in the search graph (i.e., that every possible translation

corresponds to at most one path), the edge that would give us the most information

is the one which we are most uncertain about; that is, we are interested in edges that

we will traverse with as close to a 50% probability as possible (or more generally, the

edges that have the highest entropy).

for each node n in G (traverse in topological order):

P[n] := E, P[n'] P[n' -- n]

Asking about particular edges is effectively asking a bilingual consultant whether

or not a phrase in the target language is an appropriate translation of a particular

phrase in the source sentence. Unfortunately, we only have access to consultants

that speak the source language; hence, instead of asking questions involving both

languages, we can only ask questions involving the source language. Our model

provides translation tables of the form Pr (f I e), so given a particular phrase in the

target language, we can produce a number of candidate phrases in the source language

(including the original source phrase) as well as scores for each of these phrases. Notice

that the flipped translation model that came out of the noisy channel approach is in

exactly the right form for our use!

Now our questions are of the form: which of the following two phrases is the more

suitable synonym of this phrase in the original sentence? How much information is
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house

is

it

there is

hqus too.

Figure 2-1: A search graph produced by moses for the German sentence Es gibt ein

Haus.
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gained by answering such a question?

Pr (translation Ianswer) - Pr (node I answer)

Pr (node)
- 1 Pr (answer |node) -Pr (node)

Pr (answer)

Pr fanwe 6,ode *Pr (node)
=H r(aser|eoe Pr (answer)

Without knowing the answer, we can tell what information will be gained in expec-

tation by asking this question. We simply ask the question that will maximize this

quantity.

In practice, this idea is complicated by the fact that Pr (f l e) is not given and is

very often overtrained. moses will, by default, learn five models for Pr (f I e); the final

model is optimized with a held-out subset of the corpus as an affine combination of

the five models. These other models can be used to estimate the model's uncertainty

without going back to training. We simply assume that the underlying distribution

of Pr (f l e) is drawn uniformly from the simplex of all affine combinations of the five

models.

We use a Monte Carlo algorithm to estimate the entropy of the resulting model.

arg max Eans [H [e ans] Iq]
q

- arg max Pr (ans) H [e I ans]
ans

= arg max Pr (ans I e) Pr (e) log Pr (ans l e) Pr (e)
mane (P Pr (ans)ans e/

= arg max Pr (e) Pr (ans l e) log (Pr (ans I e))
ans e

- Pr (ans) log Pr (ans)
ans

To incorporate uncertainty in the values of Pr (e) into the model, we will sam-

ple from the space of possible models which moses's training script generates. The
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complete algorithm is in figure 2-2.

2.3 Mechanical Turk

The source for the human judgments needed by our algorithm is Mechanical Turk.

Mechanical Turk is a service offered by Amazon for outsourcing tasks to be completed

by human agents, and for doing so at a large scale. Amazon calls these tasks "Hu-

man Intelligence Tasks" (HITs), corresponding to our use-case for crowdsourcing Al

complete tasks. We offer $.10 per task. The tasks are easy to complete so this corre-

sponds to a reasonable hourly wage. Unfortunately, a fair percentage of Mechanical

Turk Workers simply spam the questions, so it is important to include a test question

with a known answer. An example question including the test question is shown in

Figure 2.3.

2.4 Results

We performed experiments on the same corpus used for the 2007 NIST evaluation.

Our results show a significant improvement on the sentences for which the decisions

had an effect. However, the system only had an impact on a small portion (-4%)

of sentences; hence, the overall improvement is slight (from 27.7 to 28.1) and is just

below the threshold of statistical significance.

61



for each phrase f, in f:

- for each pair of english translations ei and e2 of f,:
S- Z' = 0

- . for node n in g corresponding to f,:
- - -Z' =Z'+ n.p

- - s =0

- - repeat N times:

- - - draw a from the five-dimensional simplex

* P2-
- - - for node n in g corresponding to fp:
- - - - p n.p/Z'

S -Pi = E ai Pr (ei fp)
- 2 = E a Pr (e2 | fp)

- Zzp1+p2

-- - -P1 = p1|Z
- - - -P2 = P2/Z
- - - - s =s Z'p1 log(-logAnsGi) + Z'p1 log(-logAnsGi)

*f I4- +P,

- - - H=Z1 logZ1 +Z 2logZ 2

- - - S=S+s-H

- - S=S/N

Figure 2-2: Algorithm for incorporating human assistance in phrase-based translation
system.
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Welche W6rter kann man in diesem Satz benutzen?

Wer hat das neue Haus verzichtet?

auf
vor
an

for

Welche Ausdruck ist der beste Ersatz fOr die Kursivschrift Phrase?

Das Problem ist zu schwer fOr mich.

6 schwierig

dickleibig

Figure 2-3: Sample Mechanical Turk Questionnaire including a test question.
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Chapter 3

Human Assisted Translation

Evaluation

We return to the lessons of machine translation (in response to Kay's question) that

we touched on in the introduction. The lessons are established as the modern conven-

tional wisdom of the statistical machine translation practitioner and are intended as

a review of the major results of the field since Kay first posed this question (roughly

the past twenty years); after the review, we will discuss the methodology that was

used to obtain these results.

3.1 Answering Kay

3.1.1 Rule-Based MT is Bad

Noisy-channel methods, those described in the introduction, are vastly superior to

rule-based systems, and require substantially less effort to design. In our own exper-

iments in 2006 with German to English translation on the EUROPARL corpus [29],

Systran (a commercial rule-based translation system) achieved a BLEU score of 0.11,

whereas Pharaoh [28] (the predecessor of moses[30]) scored a BLEU score of 0.20, a
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massive difference.

3.1.2 Hybrid Systems Are OK

In the same series of experiments in 2006, we created a hybrid model where a statis-

tical system was trained on Systran's output of 100,000 EUROPARL sentences. The

resulting BLEU score was 0.20, suggesting that statistical systems are able to fix the

errors of the rule-based system. This result was reproduced by [17] and is the basis

of Systran's current hybrid systems.

3.1.3 Minimum Error-Rate Training

In [37], Och suggested adding a number of high-level parameters to statistical language

models and optimizing the BLEU score over these parameters as a meta-step in

training a translation system. For example, he proposed optimizing:

arg max Pr (e f) Pr (e)"
e

to generalize the original:

argmaxPr (e lf) Pr (e).
e

This has nothing to do with the Bayesian formalism that we started with for any value

of a other than 1; however, minimum error-rate training typically finds a C [2, 2.5]

to be optimal.

3.1.4 Linguistics Doesn't Work

It is appealing to rest an engineering effort on a scientific one; the scientific coun-

terpart of natural language processing is linguistics (and the closely related field of

psycholinguistics). A number of intricate linguistic models have been in development

for decades. These formalisms can be incorporated into statistical translation models,
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Average information content per word BLEU score
3.5 0.28
5.5 0.52
7.6 0.82

10.0 1.00

Table 3.1: Amount of information content per word in nits (according to a trigram
model) needed to obtain a certain BLEU score on the EUROPARL corpus. A BLEU
score of 0.28 is state-of-the-art on this corpus, and corresponds to the translation
model providing 3.5 nits of information per word, compared to the 10.0 nits required
to obtain a perfect BLEU score.

but incorporating anything more than the most coarse, general observations (such as

the idea that sentences have hierarchical structure) into the design calls for substan-

tial effort which are not rewarded by increased BLEU scores. Hence, in spite of their

appeal, formal linguistics does not often find its way into modern machine translation.

3.1.5 n-gram Language Models Are Best

In particular, the idea that language is a simple Markov chain is frustrating; [6]

describes this model as "almost moronic... [capturing] local tactic constraints by sheer

force of numbers, but the more well-protected bastions of semantic, pragmatic and

discourse constraint and even morphological and global syntactic constraint remain

unscathed, in fact unnoticed". In spite of this, n-gram language models are used

universally in speech recognition and in machine translation. In fact, n-gram models

are easy to train and hard to beat[23, 44].

In our own experiments, we found that it is possible to remove a substantial

amount of information-heavy content (as judged by a trigram model) and to obtain

a high BLEU score, showing that n-gram models are closely tied to the BLEU score

(see Table 3.1).

Perhaps it is because data remains sparse and more complex language models

would be successful if only more data were available. On the other hand, more

(albeit unlabeled) data is readily available for training English language models than
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for almost any other artificial intelligence task.

3.1.6 More n-grams Help... Forever

No group is better placed to take advantage of this data than Google, and the Google

translation systems are all based on massive language models harvested from web-

sites and newspapers, and have achieved record performance on open-domain machine

translation [5]. Beginning with a state-of-the-art Arabic to English translation sys-

tem, they found that simply increasing the amount of data available to their n-gram

model, even data from sources other than the original target text, consistently in-

creases the BLEU score. This is true in spite of simplifications that had to be made

to the back-off model to deal with such massive datasets. They report in their con-

clusions:

Significantly, we found that translation quality as indicated by BLEU

continues to improve with increasing language model size, at even the

largest sizes considered. This finding underscores the value of being able

to train and apply very large language models, and suggests that further

performance gains may be had by pursuing this direction further.

Their results are shown in figure 3-1.

Google provides researchers with an excellent opportunity for exploration: they

offer the use of their translation system gratis on their websitel. The effect that the

emphasis on the language model (based on Och's work, described above) combined

with the largest language model in the world offers some interesting examples in table

3.2 to reflect on; in order to optimize the language model term Pr (e), the system will

sacrifice Pr (f I e).

lhttp://translate.google.com/
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fr -+en La pomme mange le gargon.
= The apple eats the boy. Reference
- The apple eats the boy. Systran

=# The boy eats the apple. Google
fr -+en Un hippopotame me veut pour No81.

4 A hippopotamus wants me for Christmas. Reference
# An hippopotamus wants me for Christmas. Systran
= I want a hippopotamus for Christmas. Google

de->en Leute stahlen mein WeiBes Auto.
- People stole my white car. Reference
-> People stole my white car. Systran
-> White people stole my car. Google

it -+en George Bush non e un idiota.
- George Bush is not an idiot. Reference

# George Bush is not an idiot. Systran
a George Bush is an idiot. Google

it -+en Ali Mohammad non e un idiota.
SAli Mohammad is not an idiot. Reference

- Ali Mohammad is not an idiot. Systran
- Mohammad Ali is not an idiot. Google

Table 3.2: Examples from Systran and Google translate (at the time of this writing),
elucidating some possible issues with BLEU.
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0.44 -
+0.51BP/x2

+0.15BP/x2

0.42 - +0.39BP/x2
+0.56BP/x

-j 0.4
Ca +0.70BP/x2

0.38 _+0.62BP/x2

target KN
+ldcnews KN :

0.36 - +webnews KN -K--

target SB ---
+0.66BP/x2 +Idcnews SB ----

+webnews SB +

0.34 - +web SB ---
I I I I . p I . . I , , ,II

10 100 1000 10000 100000 le+06

LM training data size in millions of tokens

Figure 3-1: BLEU scores for a translation system with varying amounts of data
using Kneser-Ney (KN) and Stupid Backoff (SB). BP/x2 indicates the increase in
the BLEU score (in 0.01 BLEU points, or BP) for every doubling of the size of the
language model (in tokens). Differences greater than 0.51 BP are significant at the
0.05 level. Adapted from [5].
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3.1.7 Shrinking the Translation Model is OK

Adding complexity to the language model seems to help quite a bit; equivalently,

reducing the complexity of the language model will significantly degrade the quality

of the translation system. This does not seem to be the case for the translation model.

In fact two experiments on state-of-the-art systems causing a massive reduction in the

number of parameters of the translation model have shown no statistically significant

effect on the BLEU score (one is our own experiment, described in Appendix D;

another is the work of [25]).

3.1.8 Word-Sense Disambiguation Does Not Help Machine

Translation

The previous chapter details an attempt by Carpuat and Wu and our own attempt

to incorporate a Word-Sense Disambiguation model into machine translation, with

disappointing results: even with the assistance of monolingual consultants to perform

disambiguation, the scores do not improve significantly. Fully automatic word-sense

disambiguation systems attenuate the scores.

3.1.9 Having Monolingual Consultants Revise Translations

is Bad

[8] puts forward Kay's idea [26] that monolingual consultants are able to improve the

output of a modern translation system by introducing a controlled revision phase.

Unfortunately, the results are disappointingly poor: the BLEU score plummeted from

0.51 to 0.43.
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3.2 BLEU

Under the force of these results, many of which are surprising but not unbelievable,

let's take a moment to understand the methodology that yielded them.

Evaluation is a serious problem for Machine Translation. In other supervised

learning tasks, such as hand-written digit recognition, evaluation is a simple matter

of comparing the output of a system to the output of a reference (usually a human

capable of performing the given task). For hand-written digit recognition, a perfect

match is given a score of 1, and a mismatch is given a score of 0: guessing "7" when

the reference is "8" is just as bad as guessing "0", even though "7" is closer.

In automatic speech recognition, researchers can't afford to be quite as heavy

handed since an all-or-nothing approach is too coarse and (for many applications) a

hypothesis which has an error in one word is substanitally better than random text.

The typical method of evaluation in this context is Word Error Rate (WER): it is

the average number of edit operations (substitutions, deletions, and insertions) that

would have to be performed per word to change the output to the reference. WER

is closely related to the Levenshtein distance between two strings; fast (linear-time)

algorithms exist for computing WER.

WER can be used to evaluate machine translation as well; however, there are some

important differences between what is acceptable for a machine translation system and

what is acceptable for an automatic speech recognition system that are not captured

by WER: in particular, for automatic speech recognition, a single reference is seen

as authoritative, whereas in machine translation, two translators are unlikely to ever

agree completely.

Indeed, human evaluations consider two aspects of translation quality separately:

fluency and adequacy. Fluency is a measure of the quality of text in the target

language, whereas adequacy is a measure of the accuracy of the translation. Fluency

and adequacy are competing qualities; a translation which is more faithful to the

source text, particularly for languages that are unrelated, tends to feel alien in the
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target language. For example, the Arabic sentence:

could be translated as "Ali is present" or as "Ali is a findable one." Technically, "a

findable one" is a more precise rendering of

than "present", but clearly "Ali is present" is a much more fluid English sentence.

The BLEU metric[40] is a standard method for evaluating machine translation sys-

tem performance by comparing translations to one or many human translations. The

translations are compared by the precision of n-grams of successively greater length;

the BLEU score typically refers to a smoothed 4-gram comparison; mathematically,

it can be described by the following formula:

BLEU = e ce'('/c) . g p
4

log BLEU = Ic< ( - + pi

where c is the total length of the candidate translation produced by the system being

evaluated, r is sum of the lengths of the reference sentences that most closely match

the lengths of the candidate sentences, Ic<, is 1 if c < r and 0 otherwise, and pj refers

to the j-gram precision of the test set.

Evaluating translation systems is a difficult task-BLEU has a number of useful

properties that make it a popular choice: it is fast, it is cheap, and it correlates well to

judgments of translation fluency and adequacy by bilingual judges. Hence, BLEU is

the de facto standard for evaluating automatic machine translation systems and has

been for over a decade. It is largely on the authority of BLEU that the conclusions of

the previous section rest; over 90% of papers in machine translation published after

BLEU use BLEU as their sole method of evaluation. BLEU has had an impressive

impact on the agenda of the field.
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3.2.1 BLEU Correlates Well With Human Judgments?

BLEU is used as a general metric for translation quality, but considering its definition,

it is more precise to call it an n-gram precision model. The papers that introduce

BLEU [39, 40] report then that an n-gram precision model correlates strongly with

human judgments of translation quality. Of course, an improvement in a correlated

value does not imply an improvement in the value of interest; however, it is the

strength of the correlation that is so promising. In [39], the authors report that

the correlation between BLEU and human judgments of adequacy and fluency for

French-English translation systems are 0.94 and 1.00, respectively.

These figures are incredibly impressive. A correlation of 1.0 implies that BLEU is

a linear function of the human evaluation of fluency, which implies that BLEU can

be used to predict the human evaluation of fluency perfectly.

Another interpretation of this result, however, is that humans, when asked to

evaluate the fluency of a sentence against reference sentences, simply report values

that are proportional to the n-gram precision of the sentence versus the references.

This interpretation is a statement on the methods that were used to collect the human

judgments; that is, under certain conditions, when humans are asked to perform

semantic or syntactic comparisons, they will resort to simple string comparisons, and

these papers established a set of conditions under which this is true.

It is alarming that this seemingly minor issue of methodology calls into ques-

tion the research agenda that mainstream researchers have been laboring under for

decades.

3.2.2 Re-evaluating BLEU

When we restate the experimental results we cited above as statements about the

n-gram precision, the results are far less surprising and the conclusions are less con-

vincing.
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The problems with BLEU are becoming better known; Callison-Burch et al fol-

lowed the surprising results of their experiment with human evaluations that showed

lower correlations with BLEU than were reported by Papineni et al [10]. However,

they conclude that, although BLEU clearly cannot be used as a substitute for human

evaluations in general, it can be used to compare models within the same class.

Another common belief is that even if BLEU has its problems, it may be possible

to account for them with some other automatic metric. It seems that an evaluation

method for translation is hardly useful if it cannot be used to compare two arbitrary

systems; any performance difference can simply be attributed to the systems being

overly different. I propose that any automatic metric can be fooled-building an

automatic evaluator is just as hard as building an automatic translation system.

Indeed, recent experiments show that, for most language pairs, BLEU correlates

more strongly to human judgments than any other available automatic metric does

[9].

Reconsidering the results of table 3.1, BLEU is effectively a detector for an n-gram

language model. Hence, we propose the use of monolingual consultants for evaluation.

With humans in the loop, we have a good chance of mimicing a bilingual evaluator.

According to earlier work [39], monolingual evaluators favor translations that are

more fluid to translations that are more adequate. On the other hand, bilingual

evaluators tend to be more forgiving to sentences that favor adequacy over fluency.

It seems that the gold standard should be the bilingual evaluator; an evaluator that

is able to judge the source text as well as the target text will obviously have an

advantage. At the same time, there is some reason to pay attention to the monolingual

evaluator's perspective, as it is generally people that have little to no familiarity with

the source language that will be using a translation system.
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3.3 Methods

The psychometrics literature tells us that when faced with difficult judgments, human

evaluators experience cognitive fatigue and will turn to heuristics to perform the

evaluation. This fatigue can be measured (and lessened) by asking questions which

can be answered quickly and consistently [181. Forced-choice binary comparisons are

a premiere method of obtaining information from human evaluators without causing

the kind of fatigue that we described.

We will withdraw from the machine translation setting for the remainder of this

section to analyze the mathematical aspect of this question. This yields a new eval-

uation metric which we call CLAIRE2 .

You are the head judge of a baking competition and you are required to announce

a full ranking of the cakes that were submitted to you. You are democratic, so you'd

like to give a ranking that corresponds to the rankings that would be given by the

average cake-taster. Tasters are able to compare exactly two cakes at a time, and will

indicate which of the two cakes is better. With an unlimited queue of tasters at your

disposal, how can you arrive at the correct ranking of these cakes?

If the tasters were absolutely consistent, this would be a sorting problem, and

it could be solved in N log N comparisons in the worst case. However, we can't

guarantee that the tasters are in total agreement. Let us instead model the tasting

as a probabilistic process.

Let's assume that each of the cakes i 1,2, ... N has a secret score xi E R, such

that when we ask a taster to try cakes i and j, he draws a value X which represents

his momentary preference for cake i versus j; if X + xi > xz, he will report that cake

i is better than cake j, which we will denote i >- j; otherwise, he reports j >- i. This

will happen with some probability, F(x, - xj):

F(xi - xLs) := P [i >- Rans ] .

2 CLAIRE stands for CLAIRE Lets Anyone Infer Ranks Easily.
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There are a few nice properties that will be required of this function for it to be

useful; obtaining these properties will help us impose restrictions on the distribution

that the preference variable X is drawn from.

1. F : R -- + [0, 1], making it produce meaningful probabilities.

2. F - 1/2 is odd; also required since the choices are forced. That is, when a taster

is given cakes i and j, they must either select i >- j or j >- i. Consequently, F' is

even. This implies that X must be drawn from a distribution that is symmetric

about X = 0 (i.e., one whose density function is even).

3. F(x) -* 1 as x -+ oc. That is, our judges will correctly identify differences that

are far apart. If we added a random selection phase to our process (i.e., after

a decision is made, with some probability, a taster may decide to flip a coin

instead of tasting the cakes), it would violate this condition. This will happen

if X is finite in expectation.

4. log F is concave, so when the tasters report i >- j more often than they report

that f >- m, it indicates that it is quite likely that xi - xj > xf - xm. This will

happen if the density function of X decreases somewhat rapidly for positive X.

5. F has a continuous first derivative (that is, F is C). This requires X to be

drawn from a distribution which has a continuous density.

Now that we've put together a model, given some comparisons C from our tasters

(where Cij is the number of times that a taster reported i >- j), we'd like to find the

set of scores Y E RN that is most likely given our data. So we'd like to find the value

of - that maximizes the following quantity:

P(z |IC) cX P(C I X)
N N

H (cicJc)Fc.(x - xj)Feit(xj - xi).
i= jci1
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It's more convenient to work with the logarithm of this quantity; since log monoton-

ically increases, we can maximize that instead:

= log P(C I X)
N N-

= E log C U +

i=1 j=i+1 . 3

ci ) + cij log F(xi - xj) + cj log F(xj - xi )]

Since C is constant with respect to X, we can ignore the first term and optimize this:

Z Z [cij log F(x, - xj) + cpi log F(xj - xi)]
i=1 j=i+l

This is a mapping from RN to R, so we'll compute the gradient of this quantity with

respect to Y and find the critical points.

OLx
Oxj

cij F'(xi - xj)

F(xi - xj)

= EZ F'(xi - xj) F(
j54i

_cpiF'(xj - xi )

F(xj - xi) I

cii c-
xi- x3) -1 - F(x, - x, )

Assuming the ci are all nonzero, we can make a few observations about this

quantity:

1. If we hold xo constant for j i and increase i, BL/8xi will decrease (since

log F is concave).

2. If we increase xz for some j , i and hold the remaining components constant,

DE I /8xi will increase.

3. If we select a subset A C {1, 2, ... , N} and increase xi for i C A such that xi - xj

remains constant for i, j E A, and the remaining components of 7 also remain

constant, 0BL/Oxi will decrease for i E A and increase for i ( A.

Assume that we have two distinct critical points 7 and . Without loss of generality,
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order the indices by the difference y - xi, so that:

Y1 - X1 < Y2 - X2 < - - YN - XN-

We construct a sequence of points '(1), j2), ... , 7 (N) in the following fashion:

#4) -

t) x + (Yt - X(0) for
x(t) 

otherwise

Hence, j(N) = . Observe that f((')) = VfL() since the two vectors only differ

by a constant offset in each coordinate, and that

&L(Y) BL(P)) &L(( 2)) L(y(N)) g(Y)
0 OX -- 0OXN OXN 9XN aN 9XN

By the sandwich theorem, all of the quantities are 0; hence, the change from (N-1)

to (N) implies that XN - YN = XN-1 - YN-1, etc. That is, x - - y3 for all

i, j; thus L(z) = L(Y). Thus, every critical point is unique up to an offset. Ignoring

such offsets, there is at most one global maximum likelihood.

If we close RN to include infinite values and extend L to take its limiting values

in that space and remain continuous, it must achieve a maximum value; hence there

is a unique global maximum up to offset.

Now, we can optimize L using a nonlinear optimization method (such as conjugate

gradient with Newton-Raphson and Fletcher-Reeves in the case where F is twice

differentiable); this is guaranteed to converge rapidly to a local maximum from a

random starting point; since every local maximum is a global maximum, it is easy

to optimize L for nice F's (those that satisfy the properties we outlined above).

The psychometrics literature suggests the logistic function as a realistic choice for

F (obtained by drawing X from a logistic distribution with mean 0, scale 1/2). This
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is especially convenient when it comes to computing the gradient:

1

2
exiX

exi x -x ex xi

This helpfully satisfies the differential equation:

F' = F - F 2

hence,

Ox F(x - x3)(1 - F(x - x(I) [cig(1 - F(xi - x )) - cjiF(xi - x )]

Sz4 F -F'(xI - x -
E -x( - Fx -)) [cij - (cij + cji)F(xi - xj)]

jiF (xi - xj) (1 - F (xi - xj))

E [cij - (cij + cji)F(x, - xj)].

We compute the Hessian H for use in nonlinear optimization:

02L(-)

a xiaxi

(cij + cji)F'(xi - xy) for i 74 j

- i(n~cik + ck )F'(xi - xk) otherwise.

3.3.1 Active Ranking by Forced Comparisons

Suppose now that having a person taste the cakes is expensive. What can we do to

minimize the number of comparisons that must be made? We would like to maximize

the amount of information that is gained by each comparison (in expectation), so

let's try to minimize the entropy of the distribution P( I C).

Let's begin by considering the effect of including an additional comparison i >- j
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on the distribution of X':

=P(i > j, |,C)P(z | CQ
P(i >- j I C)

P(i >-J I )P(z | C)
P(i* >- j, | CQ

We would like to ask the user to compare the items i and j that will have the greatest

impact on the entropy in expectation:

E> [H(|I C U {i - j}) I C]

= P(i > j I C)H(ICU {i >- j})+P(j >- i IC)H(z|CU {j >-i})

= P(i >- j, |C)

+ P(j >- i C)

= 
Rn

I P(z|C U {i >- j}) log P(I C U {i >- j}) dz

IRfl
P(i >- j I z)P(- | C) log P(1 | C U {i >- j}) d

+ IR

P(i >- j I z-)P(z I C) log P(i >- j I z-) dzL

+ JRn

+ Rn

- J~

P(j >- i | z)P (z| C) log P(j >- i |) dI

P(i >- j | z)PQz | C) log P I( | C) d7

P(j >- i | 7)PQz | C) log P C) d

P(i >- j | )P( | C) log P(i >- j| C) dz

- P(j - i | z)P( I C)log P(j >- i |C)dz

= E4[H(i >-j |-) CI+H(I|C)-H(i >- jC).

Since H(z|I C) is independent of i and j, we simply choose the pair which minimizes

E [H(i - j | -) I C] - H(i >- j I C).
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This is difficult to compute analytically; however, it can be estimated to an arbitrary

degree of accuracy via importance sampling, using a multivariate Gaussian centered

on the maximum likelihood value of - and with a covariance matrix such that the

Gaussian has the same Hessian at the mean as L (i.e., with E = H-1-since the

nullity of H is one, eliminating any row will make H invertible). The full algorithm

is given in figures 3-2 and 3-3.

3.3.2 Previous Work

Forced choice methods were introduced in the late 20s by L. L. Thurstone, who

used them to measure social attitudes, and have been extensively studied in the

psychometric community, where they are used to measure human sensitivity to various

stimuli. They have also been used to develop guided decision-making processes based

on both objective and subjective criteria. Unexpectedly, the type of analysis that we

have gone about here does not (to the best of our knowledge) exist in the literature,

perhaps because the prevailing scenarios in these fields are directed at minimizing

computation instead of minimizing the effort of those surveyed.

Analogous models are also used to establish rankings for games, notably ELO

for chess and (much more recently) TrueSkill for multiplayer games on Xbox Live

[21]. It is rare to be able to select pairs for comparison in these scenarios, and these

models are generally restricted in that only the scores of the items compared should

be affected by a comparison, whereas in our case, a single comparison can affect all

of the scores.

We believe our model has wide application. A python version of library that uses

Amazon Mechanical Turk for data collection is available.

3.3.3 Consequences of Choosing a Bad Activation Function

Although scaling X does not functionally change F, changing G(p) = F(2F- (p))

does. Given a Lipschitz continuous bijection G : [0, 1] -+ [0, 1], there exists a unique F
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function FINDOPTIMALWEIGHTS(C):

- x random vector in [0, I]N

- i =0

- k 0
-ri VL(z-)

. d =-

- 8' = |r|2

. 0 = i'
- while i < imaflx and 8' > E2

.- 6D = Id12

S. = (E2 /D)/2 + 1

. - while j < jmax and a26D > E2.

- - - a = (VL(x-) -d)/(d. (H(X-)d))

- - . j-j+1

- - r=VL(7)
- - 60 6'

. . k~k+1

- - ifk==Nor r-d<0:

- - - d=U?
. - - k =0
- - i-i+1
- return '

Figure 3-2: Find the optimal scores based on counts; this is a nonlinear gradient
descent algorithm. 71 denotes the Hessian of L.
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do:

- FINDOPTIMALWEIGHTS(C)

- o ' with the first element removed

-h = Hessian of L at X- with the first row and column removed

- Diagonalize N, yielding R = QDQ'

S A= QD-1/2 (so that E = AA' = W- 1)
- initialize samples, an empty list of (sample, weight) tuples

- repeat many times:

S - o an (N - 1)-dimensional vector of unit normal samples

-- zo =Az~o + z
[|1||1 - ||YO1|1|I -] (augment the vector)

- - weight = exp (L(z)) - exp (-((Zo - Xo) A - zo))/2) /(27r)(N-)
- - samples.append((Z, weight))

- bestScore = -oc ; bestPair = None

- for i in [o,..., N - 2]:

- - for j in [i + 1, ... ,N- 1]:

- - - Z=0;h=0;f=0
- - . for Z, weight in samples:

S - - . si F(zi - zj)

- - - - h - h + (sij log sij + (1 - sij) log(1 - sij))- weight

. f + si- weight
- - - - Z Z+ weight

S - h = Z ; j= /Z

- - - score = h - (f logf + (1 - f)log(1 - f))
- - - if bestScore < score:

. . - - bestScore = score ; bestPair = (i,j)

- ask the user to compare the items in bestPair and update c

until convergence

Figure 3-3: Active ranker pseudocode to rank N items.
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(up to scaling) that satisfies this relation; this gives a way that one could (in practice)

argue for a particular choice of F.

Suppose that for some set of items, there is a true activation function G with true

scores 21, ... , N and we are training against an activation function F. Since log F is

concave, there is a path from the true values -1, ... , sN to the values optimized for F

zi, ... , XN. If the order of these values differs, then there will be some cross-over point

where all of the items are ordered properly except for one pair. However, in the limit

of infinitely many observations, this will make the likelihood decrease. Hence, in the

limit, the ranking of the items will be correct regardless of the choice of activation

function.

3.4 Mechanical Turk

As in the previous chapter, we make use of Mechanical Turk for our judgments. Once

again, the tasks are easy to complete (average time is ~30s), showing that they do

not impart a significant psychometric load suggesting that the results are reliable.

Once again we rely on a preposition test as proof that the workers have reasonable

English fluency and are giving the questionnaire some attention. An example question

including the test question is shown in Figure 3.4.

3.5 Results

When applying this technique to the machine translation task, we compared our

results to those obtained in the 2007 Meta-evaluation task, which obtained results

from human evaluators and a number of automatic metrics [9]. See table 3.3 for the

results.
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Fill in the blank (mark all the words that would result in a grammatical sentence):

I the supplier to divert the shipment.

wanted

know

saw
seemed

Please select the sentence that is closest in meaning to the italicized sentence.

It should be noted that this right to be different is nothing more than a demonstration of the
principle of equality, which also requires different treatment for anything that is different.

* This right of differentiation is nothing more than a result of the principle of equality,
which is also to deal with what is different.

This right of differentiation is nothing further as a result of the principle of equality,
therefore also the conditions to deal with what is different.

Figure 3-4: Sample Mechanical Turk Questionnaire including a test question.

CLAIRE (sigma) BLEU Human Evaluation
systran 0.23015 0.027 0.154 1
uedin 0.21232 0.026 0.277 2
liu 0.11797 0.024 0.263 4
nrc 0.08926 0.024 0.254 5
saar 0.06191 0.024 0.198 6
cmu-uka 0.01335 0.024 0.247 7
upC 0.00000 0.021 0.250 3

Table 3.3: Our proposed metric, CLAIRE, captures the results of the shared evalua-
tion and correlates strongly across different types of translation systems.
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3.6 Conclusions

We propose an alternative to BLEU and other automatic metrics, which we call

CLAIRE. CLAIRE is a method for performing evaluations of translation systems

which judges them without undue preference toward a single architecture. CLAIRE

scores can be obtained quickly, they are comparable against each other, and correlate

strongly with more traditional full-scale human judgments of quality. The benefits of

a clear and consistent design carry over from the automatic metrics, and the costs of

performing incremental evaluations are minimal (< $20 for a full evaluation).
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Chapter 4

Conclusions and Future Work

The question answered by a typical publication in NLP is: "does modelling (phenomenon)

improve (metric)?" Consequently, we have learned how to improve certain popular

metrics. Over time, differences between the metric and genuine measures of perfor-

mance yield designs that optimize the former at the expense of the latter.

In particular, we analyze BLEU, the dominant metric in statistical machine trans-

lation. We show differences between BLEU and human measures of performance,

issues with the papers that originally presented BLEU, and show how systems have

optimized BLEU scores to eventually yield diminished performance in human evalu-

ations. We argue that automatic metrics are just as difficult to design as automatic

systems. Consequently, we contribute a new metric based on inexpensive human

evaluations in the cloud guided by the psychometrics literature; our metric corre-

lates strongly with more expensive conventional human evaluations and is sensitive

to minor differences in performance.

We proposed a promising research agenda that can gradually draw us closer to this

goal, putting us hand-in-hand with modern linguistics efforts, and more realistically

promising systems that are broadly usable. We show ways of applying this technique

to parsing, word-sense disambiguation, and machine translation.

Invoking Fred Jelinek's quote from the introduction yields a second interpretation:

87



Every time I fire a linguist, the performance goes up!

The fruits of linguistics as a field extend beyond linguistic theories for the language

process: the many researchers devoted to evaluating the theories scientifically by pro-

viding counterexamples that falsify them. Language systems are a marriage between

linguistic theory and statistical model: these are scientific elements that warrant sci-

entific rigor. It is difficult to imagine an established scientific enterprise directed at

optimizing an automatic metric such as BLEU: physical models so motivated would

ignore bodies moving near the speed of light, and the strange behavior of very small

particles passing through narrow slits as rare events that are infrequently experienced.

How could we have progressed beyond Newtonian mechanics by ignoring the unusual

phenomena that lie at the fringe of our models?

As Fred Jelinek himself says, researchers have a right to devote themselves to the

solution of intrinsically interesting questions even during an era of senseless product

competition. We should be willing to accept an immediate reduction in performance

(even in our improved metrics) if we are building a principled system that can rea-

sonably offer enhanced performance in the long-run, and funding agencies should be

willing to accept this, too.

The members of ALPAC did not reserve all of their criticism for machine trans-

lation. ALPAC's chairman, John R. Pierce, wrote of speech recognition in 1969[41]:

Most recognizers behave, not like scientists, but like mad inventors or un-

trustworthy engineers. The typical recognizer gets it into his head that he

can solve "the problem." The basis for this is either individual inspiration

(the "mad inventor" source of knowledge) or acceptance of untested rules,

schemes, or information (the untrustworthy engineer approach)... The

typical recognizer... builds or programs an elaborate system that either

does very little or flops in an obscure way. A lot of money and time are

spent. No simple, clear, sure knowledge is gained. The work has been an

experience, not an experiment.
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It took decades for speech recognition to plateau, to exhaust the immediate grat-

ification that can be had by doubling the clock-speed of a server or the size of a

data-set; recent research in speech recognition begins to look like real science, includ-

ing explorations on the benefits of linguistic representation, a willingness to sacrifice

performance in the short-term for nuanced models that can capture the rare events

as well as the common ones. It has become a respectable scientific enterprise with

many applications and (with the pervasiveness of mobile phones) ubiquity. Research

agenda in hand, I have high hopes that machine translation can match and surpass

that success.
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Appendix A

EM Algorithm Reference

A.1 Definitions

C (8) = log P (X; E)
x

Q (E', ) = > Ey
x

H (8', )

KL (E', E)

Likelihood

(log P (X, Y; E') I X; E)

S- Ey (log P (Y I X; 8') | X; 6)

H (Ex, 8) - H (8, 8)

Cross-Entropy

KL-Divergence

E() = arg max Q (E,8(--)

A.2 Lemmas

Jensen's Inequality:

E(log(X)) < log(E(X))

An Obvious Identity:

Ex (P() J
Jxf(X) dX
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H(8, E) < H(E', 8)

Equivalently:

Proof:

KL(9', 8) > 0

V X 0 = log(1) =log (lfyP (Y IX; E')

log P (Y IX; ). P( Xj)

= log Ey (

dY)

P (Y X 8x)

> Ey log P(X;E)X-0
- P (Y |X; 8) 1 )

= Ey (log P (Y X;0')| X; E) - Ey (log P (Y IX; 8)| X ; 8)

Ex(0) = 0 > Ex (Ey (log P (Y I X; ') IX; E)) - Ex (Ey (log P (Y I X; 8)| X; E))

SH(, 8) - H(8',E).

H(8, 8) < H(8', 8)

A.3 EM is Nondecreasing

Theorem:

L (e()) < L (e®(i+1)

Proof:

= log P (X; 8)
x

E Ey (log P(X;
x

= 3 Ey (log P (X; E) I X; E()) - Q (0, E(')) + Q (0, 8('))
x
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V E, '
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(log P (X; 8) | X; 0) - Ey (log P (X, Y; 8) 1 X; 0)))

(log P(XY;9) + Q (8, 6()

L (9(+1)) _ L (6))

-: Ey (log P (Y I X; (9) 1 X; 8)(') + Q (8, 0'))
x

H (8, 6(')) + Q (8, 8()).

= [H (E(i+1), E()) - H (EP), E(8))]

+ [Q (E(0+1), W~)) - Q (W(+1), e())]

> 0.

Thus, the likelihood of successive EM parameter vectors is non-decreasing. (This

is a long way from convergence proof...)

Incidentally, we have also shown that, V E, 9':

L (6) = H (8, E') + Q (8, E')

A.4 EM on Multinomials

EM is easy in the special case when P(X, Y 9E) is a multinomial distribution; that

is, it can be written in the form:

N
P(X, Y; E)= 8 9 Countr(XY)

r= 1

This is a form that occurs very often in language processing tasks.

Let's go!

Q(8', 8) = Ey(log P(X, Y; 9') I X; 8)
x

N

Ey (Countr(X,
X r=1

Y) IX; 8) log E)
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N

(Z Ey (Countr (X, Y) I X; 8)) log 0'
r=1 X

It's easy to write an algorithm to maximize Q; we just have to set each 8' to its

coefficient and normalize (in ways corresponding to inherent constraints of the pa-

rameters):

E, oc ZEy (Count,(X, Y) X; 6).

x

Let's formalize the normalization; the indices r E {1, 2, ... , N} are partitioned

into disjoint subsets R 1, R2,.  , Rm such that ErERi ,r = 1. Now we set:

E / = EXEy (Countr(X, Y) IX; 8) V r E R-
r'ER, Jx Ey (Count,,(X, Y) X; 8)

A.5 Parametrizing Multinomials

Suppose we wish to further parametrize the parameters E) by another set of parame-

ters a; that is, we define a set of events Er and set 3r = P(Er; a) whilst preserving

the normalization conditions on Or (i.e., that ErcR, P(E,; a) = 1, V Ri); thus,

N

P(X, Y; a) =7 P(E,; a)countr(xY)

r= 1

We assume that we can easily find maximum-likelihood a given Er data (that is,

the number of occurrences of each event E,-not necessarily integral). We proceed:

Q (a', a) = )7Ey (log P (X, Y; oz')|I X; az)

N/

(EEy(Count(X,Y)|X;a) log P(E,; a')
r=1 t

Then, the EM update of a is simply the maximum-likelihood az' where event Er has

93



occurred this many times:

E Ey (Count,(X, Y) I X, a).
x

Note that these counts are pre-normalization! When the a, are "grouped" the same

way as the 0,, the normalization does not enter into the picture (that is, when

P(E,; a') = P(E,; o') Vr E Ri,

where the Ri are defined as above to be sets of 8 parameters that must be normalized);

consequently, the Q-maximizing 8, can themselves be used as counts to maximize

the likelihood of a. Again, if, for any i, we were to multiply the coefficients of E,

for r E Ri by a constant, the maximum likelihood values do not change; thus, no

normalization is necessary.

[It is easy to see that normalization can be harmful; consider, for instance, the

following experiment: we repeatedly select one of two biased coins to flip and record

which coin we flipped and the outcome. Then, the maximum-likelihood probability

that the first coin will flip heads, for instance, is the number of heads we got from the

first coin divided by the number of times we flipped the first coin. Suppose, however,

that we add the constraint that the coins are identically biased. Then the number of

times we flipped each coin is important; we cannot correctly estimate the probability

of heads with the unconstrained maximum-likelihood probability of heads for each

coin alone.]

A.6 EM on IBM2+1dG

Here we give the full derivation of the EM updates for the one-dimensional gaussian

framework described in Appendix D for the sake of the mathematically skeptical.

Let's begin by defining the model:
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e Training Data

The training data consists of several triplets (e, f, a).

1. e and f are English and French sentences, respectively, that are transla-

tions of each other (observed in training).

2. a E {,.. . , }m represents an alignment between the sentences, where =

lel and m = If I and a3 = i implies that the ith English word corresponds

to the jth French word (hidden in training).

* Parameters

1. T(f I e) for all French words f and English words e (the NULL word is

added to the English vocabulary).

2. pj,,m, oj,t,m for all French sentence lengths m, English sentence lengths

f, and French word indices j C {l, .1. . , m}, respectively the mean and

standard deviation of the index of the corresponding English word, given

that it is not the NULL word.

3. N(j, f, m) for all French sentence lengths m, English sentence lengths f,

and French word indices j E {l, ... , m}, the probability that that French

word is aligned to the English NULL word.

" Model
m

P(f, al e; T, y, o-) = JT(f I eaj)D(aj I j, f, m)
j=1

where

D (a I j, , m ) =
(1 - N(j, f, m)) - fg(aj I pje,m, oj,e,m)

N(j, E, m)

Note that this model is deficient; that is, we are not enforcing

malization constraints on D.

the proper nor-
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. Normalization conditions

LT(f l e) = 1 V e
f

* Parametrized Multinomial

P(f, a I e; T, y, o) = J T(f I e)countfe(ef,6) x 17 D(i l j, E, m)Countojm(e,f,a)

f,e iljelm

where

m

Countf,e (e, f, a) 6(f, fj)6(e, e,)
j=1

Countij,e,m(e, f, ) = (f, le|)6(m, lf|)(aj, i),

where 6(-, -) denotes the Kronecker delta function.

We parametrize T and D by T, y, a, and N. Thus, T is trivially parametrized

by itself, whereas D is parametrized as described above by P, a, and N.

We wish to maximize the function Q((T, p, o, N), (T', pi, o-', Ni)) given T, pi, a, and

N'. Since the model can neatly be factored into a term that depends on T alone and

a term that depends on D alone, we can optimize these parameters independently.

Clearly, the EM procedure for finding the optimal T is unchanged from Model 2;

thus, we need only focus on finding the optimal values for t, a, and N. We compute:

Q((p, a, N), (T', p', a', N'))

P ( ef,T',N/I',/p',o-')logP(f,le;N,Ayo)
e, f d

- [(z E (Counti,j,,m(e, f, d) e, f; T', p', a', N') log D(i l j, 1, )
iljlf'm e,f -

C(i,jf, m)

S C(0, j, , m)logN(j,E,m)
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+ 3 3 C(i, j, f, m) log[(1 - N(j, f, m))fg(i pi j'm, o-ij,e,m)1
jE'm i=1

- C(0, j E, m) log N(j, e, m) + C(i, j, , m) log(1 - N(j, f, m))
ji~m j,f,m i=1

+ C(i, j, e, m) log fg(i I pj,m, of,j,m).
j,f,m i=1

Thus, the optimal value of N is given by:

NUj, f, M) C(0,j, f, m)

Ei=o C(i, j, f, m)

and the y2 and o are optimized by their usual maximum-likelihood estimators:

pjfm = 3 i C(i, j, f, m) C(i, j, E, m)
i= 1 =1

o- -~m= ( - [p,m,)2 C(i, j, E, m) >3C(i, j, E, m)
i=1 i=1
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Appendix B

Information on the WSJ Corpus

Tagset

The annotations in the Penn treebank in general are quite difficult to interpret; the

manual that is distributed with it is a mere 300 pages or so. The early chapters

are extremely formal and handle "simple" sentences, but the last half of the book is

special cases and unusual structures that are difficult to analyze.

We'll begin with the nominal terminal tags, a list of all of the members of each

of the closed-class parts-of-speech, a list of the nonterminal tags, a list of the ex-

tended tags and their definitions, and a list of all of the combinations of extended

tags with representative examples that appear in the corpus. This final table suffers

contradictions and redundancies; clearly the order of the extended tags is important

in some situations, unimportant in others; the inconsistencies in the table reflect

corresponding inconsistencies in the corpus and are not errors.

B.1 Terminal Tags (Parts of Speech)

CC Coordinating Conjunction

CD Cardinal Number
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DT

EX

FW

IN

JJ[RS]?

LS

MD

NNP?S?

PDT

POS

PRP$?

RB[RS]?

RP

SYM

TO

UH

VB[DGNPZ]?

WDT

Determiner

Existential there

Foreign Word

Preposition/Subordinating Conjunction

Adjective

R Comparative

S Superlative

List

Modal

Noun (singular or mass)

P Proper

S Plural

Predeterminer

Possessive Ending

Personal Pronoun

$ Possessive Pronoun

Adverb

R Comparative

S Superlative

Particle

Symbol

to

Interjection

Verb (base form)

D past tense

G gerund

N past participle

P present, not 3rd-person singular

Z present, 3rd-person singular

Wh-determiner
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WP$? Wh-pronoun

$ Wh-possessive Pronoun

WRB Wh-adverb

B.2 Members of Closed-Class Tags

Punctuation

$ $ A$ C$ HK$ FFr M$ NZ$ S$ US$

-LRB- -LCB- -LRB-

-RRB- -RCB- -RRB-

SYM = @ * ** & a b c d e f r x z

Closed Class

CC & and and/or both but either et less minus 'n 'n' neither nor or plus so

times versus vs. whether yet

DT a all an another any both each either every half many neither no some

that the them these this those

EX there
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IN aboard about above across against ago a/k/a albeit along alongside amid

among amongst around astride at atop becase behind below beneath

beside besides between beyond but by despite down during except expect

fiscal for from in inside into lest like minus near nearer nearest neither

next notwithstanding of off on onto opposite out outside over par past

pending per plus post save so than that then though through throughout

'til till toward towards under underneath unless unlike until up upon v.

versus via vs. whereas whether while with within without worth

after although as because before how if once since than that though 'til

till until when where whether whilel

both... and, either... or, neither... nor, not only... but also, so... as

whether... or

LS 1 2 3 4 a b c d e f r x first second third

MD ca can could 'd dare 'll may might mighta must need ought shall should

will wo would

PDT all both half many nary quite such

POS ' 's

PRP 'em he her him his I it me mine one ours s 's she 't- t' theirs them they us

we ya y'all you herself himself itself myself ourselves themselves thyself

yourself

PRP$ her his its my our their your

RBR about down less less-perfectly more than worse

RBS best hardest highest least most worst

RP about across ahead along apart around aside at away back before behind

by down even for forth forward in of off on open out over through together

up upon with yet

TO to na2

WDT that what whatever which whichever

isubordinating conjunctions
2as in gonna
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WP what who whoever whom

WP$ whose

WRB how however when whenever where whereby wherever why

Other Things

UH ah alas amen aw bam boy damn egad heck hello howdy indeed man no

nope oh oink ok okay please quack say true uh uh-uh welcome well wham

whoopee wow yeah yes zounds

B.3 Nonterminals

ADJP Adjective Phrase

ADVP Adverb Phrase

CONJP Conjunction Phrase

FRAG Fragment

INTJ Interjection

LST List Marker

NAC Not A Constituent

NP Noun Phrase

NX NP head marker

PP Prepositional Phrase

PRN Parenthetical

PRT Particle

QP Quantifier Phrase

RRC Reduced Relative Clause

SBARQ Direct question

SBAR Subordinate clause

SINV Sentence, Inverted

SQ Sentence, Question (inverted yes/no, or the argument of a Wh)

S Sentence, Declarative

UCP Unlike Coordinated Phrase

VP Verb Phrase
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WHADJP

WHADVP

WHNP

WHPP

X

Wh-adjective Phrase

Wh-adverb Phrase

Wh-noun Phrase

Wh-prepositional Phrase

Unknown, Uncertain, or Unbracketable

B.4 Extended Tags

I took the next two tables from "The Penn Treebank: Annotating Predicate Argument

Structure" by Mitch Marcus et al [34].
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Text Categories

-HLN headlines and datelines

-LST list markers

-TTL titles

Grammatical Functions

-CLF true clefts

-NOM non NPs that function as NPs

-ADV clausal and NP adverbials

-LGS logical subjects in passives

-PRD non VP predicates

-SBJ surface subject

-TPC topicalized and fronted constituents

-CLR closely related; should be part of the VP

Semantic Roles

-PUT where something is put? (not in the Marcus paper)

-VOC vocatives

-DIR direction and trajectory

-LOC location

-MNR manner

-PRP purpose and reason

-TMP temporal phrases

B.5 Pseudo-Attachment/Null Element Markers

*ICH* Interpret Constituent Here

*PPA* Permanent Predictable Ambiguity

*RNR* Right Node Raising

*EXP* Expletive
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B.6 Examples of the Full Extended Tags

ADJP

ADJP

ADJP-ADV

ADJP-CLR

ADJP-LOC

ADJP-MNR

ADJP-PRD

ADJP-PRD-TPC

ADJP-SBJ

ADJP-TPC

ADVP

ADVP

ADVP-CLR

ADVP-CLR-MNR

ADVP-CLR-TPC

ADVP-DIR

ADVP-DIR-CLR

ADVP-DIR-TPC

ADVP-EXT

ADVP-LOC

ADVP-LOC-CLR

ADVP-LOC-CLR-TPC

Adjective Phrase

This is an enviably low level.

... Sarah Lee closed unchanged at 60 1/8.

falls flat, let loose, sat idle

ended mixed, closed higher

rated triple-A, increased nearly fivefold

the site adjacent to the refinery

It's better to sell private.

Growth is relatively small.

Conspicuous by its absence is California.

Bigger is better.

Not likely, I think.

Typical is this response:...

Adverb Phrase

Again, I think so, too.

The dollar finished lower.

No one else does.

goes further, leave them alone, broke loose

live together cooperatively

So says John, Along comes Bobby

shot up, go out

bring my prices down, trickle down, head off in some

direction

here comes the sun, along came Bob

It rose slightly, prolong somewhat,

Stop there, He bought elsewhere

It won't get there, He laid low, want out

therein lies the draw
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ADVP-LOC-PRD

ADVP-LOC-PRD-TPC

ADVP-LOC-TMP

ADVP-LOC-TPC

ADVP-LOC-TPC-PRD

ADVP-MNR

ADVP-MNR-CLR

ADVP-MNR-TMP

ADVP-MNR-TPC

ADVP-PRD

ADVP-PRD-LOC

ADVP-PRD-LOC-TPC

ADVP-PRD-TMP

ADVP-PRD-TPC

ADVP-PRP

ADVP-PUT

ADVP-PUT-TPC

ADVP-TMP

ADVP-TMP-CLR

ADVP-TMP-PRD

ADVP-TMP-TPC

ADVP-TPC

ADVP-TPC-PRD

CONJP

It was all over the place.

Here is an example.

Where and when it will occur *

Here is an example.

Here is an example.

Speak sincerely, quit suddenly

doing very well, do better

how and when the goals would be achieved * *

But as stock prices recovered, so did the US currency

Is it over? It was down a little, Give it back

get down in the dumps,

Here's a look at some of the alternatives:

It only pays when there's a catastrophe *

so did he, here's an idea, first on the list of ideas is...

Soon to feel the glare of attention are lawyers...

Why is this happening *?

Climate varies due to natural causes.

That put's us back in the soup.

Next door she put a glass house.

I want it now.

Finally, he got help.

It starts as soon as tomorrow, it didn't last long, why it

took so long, it begins soon

Why must it be so soon? That was early in our history,

The time is now.

Initially, the company said "hello."

He was hungry, or so it seemed.

John panicked, and so did Bob.

Conjunction Phrase
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CONJP as well as, rather than, not only, if not, but also, instead

of

FRAG Fragment

FRAG The game hasn't changed, only the name.

While no guarantee, an increased salary might improve

performance.

He yelled out "dolce! dolce!'

As usual, I'm going nuts.

FRAG-ADV Earthquake or not, If anything, Not only that, Who

knows?

FRAG-HLN

FRAG-PRD The answer is, "Yes, of course."

FRAG-TPC Not so fast, said Boris.

FRAG-TTL His magazine, "Cornhuskers," criticizes wheat farmers.

INTJ Interjection

INTJ Yes, they are.

He said no again.

It was, well, fake.

INTJ-CLR He's learning to say no.

INTJ-HLN

LST List Marker

LST 2. Provide better toilet paper.

NAC Not A Constituent

NAC MIT students study the wrong books.

Former president George W. Bush

NAC-LOC a Boston manufacturer, the Chicago office

NAC-TMP The Oct 12 editorial

NAC-TTL He engraved a "#1 Dad" plaque

NP Noun Phrase

NP
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NP-ADV

NP-BNF

NP-CLR

NP-CLR-LOC

NP-CLR-TMP

NP-DIR

NP-EXT

NP-HLN

NP-LGS

NP-LOC

NP-LOC-CLR

NP-LOC-HLN

NP-LOC-PRD

NP-LOC-TPC-PRD

NP-MNR

costing $280 a share; a dozen cases a year; will be billed

several weeks after the expenditure; climbed a solid 47%

pour me a cup of tea, buy the cat a present

take heart; follow suit; cost about $2; Thank Goodness!;

take several steps; make it past sth; etc.

the house, located about 50 yards from here, was de-

stroyed. (the only example)

spend two days working and two days in the yard (the

only example, and 'two days' from 'two days working' is

labeled as NP-TMP-CLR)

foolish to look the other way, sit here and wait

sales grew 16%; funds increased $13 billion

DISCIPLINARY PROCEEDINGS against lawyers open

to public in Illinois

Dow shot up 23 points, in part due to buy programs

generated by stock-index arbitrage

(Jacksonville, Florida) Some Headline Here

bills recently passed by the House and Senate, earnings

reduced by the sale of 4 million shares

Petrie stores, of Secaucus, N.J.; Brown and Platt,

Chicago

changes sweeping the East bloc; i once lived there

the earthquake was 50 miles to the south; you're right

there

here are some of the major components

he tries to have it both ways on the abortion issue; the

bigotry of seeing things only the Japanese way

the law should restrict citizens as little as is consistent

with good manners.
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NP-MNR-CLR

NP-PRD

NP-PRD-TPC

NP-PRD-TTL

NP-SBJ

NP-SBJ-TTL

NP-TMP

NP-TMP-CLR

NP-TMP-HLN

NP-TMP-PRD

NP-TPC

NP-TTL

NP-TTL-PRD

NP-TTL-SBJ

NP-TTL-TPC

NP-VOC

NX

NX

i swam in the lake - lake eerie, that is.

although it is good, Hollywood on the Hudson it isn't.

issues discussed were a, b, and c.

he calls cotton "the fabric of our lives."

titled "Comments from Students," it focuses on the real

shame of college athletics

the farmer leaves.

both deny wrongdoing.

"Feelings" is a good song.

she gave up running three times a week in favor of playing

golf.

company a was acquired last year by company b.

in a meeting last tuesday, we discussed stocks

expires November 16th, ended yesterday

it was a long time coming, it was 5:00pm when i started

working

"no wonder the competition's green with envy," said bob;

"wonderful!" said jim

the company stopped selling "the Big Earl;" I approached

"Mastergate" with trepidation

a movie called "Marmelade"; a speech titled "Marmelade

is Tasty"

"Baker's Boys" is both bluesy and funny

"Tivoli Motel," I read on the sign.

no, darling; move over, pornographic phone services; Hol-

lywood, you slay me.

NP head marker

Seems that this is intended to mark the head of a noun

phrase; I couldn't find anything terribly meaningful
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NX-TTL

PP

PP

PP-BNF

PP-CLR

PP-CLR-LOC

PP-CLR-TMP

PP-CLR-TPC

PP-DIR

PP-DIR-CLR

PP-DIR-PRD

PP-DTV

PP-EXT

Prepositional Phrase

He lived with her.

I'm out of bed.

He had lots of them.

He became angry in return.

There is hope of change.

He can live with little pleasures.

He prints ads exclusively for retailers.

beware of my dog, look at me, feed on, serve as emcee,

talked of the aftermath

used in these strategies, based in Houston,

expires on Dec 31 1990

Out of the mouths of revolutionaries are coming words of

moderation.

As factors contributing to the slowdown, he cited ...

The yield rose to 5.38%.

Fanuc gained 100 to 7,580.

We're not rushing into anything.

Mr. Bush returned to Washington Saturday night.

The family moves to another house at night.

China exported 65 million pounds of mushrooms, valued

at $47 million, to the U.S.

This will lead to increased litigation.

People say they swim, and that may mean they've been

to the beach.

If he wants $70K out of me, they have to take everything

I have.

They lied to me, They sent it to the Senate

Kyocera advanced 80 yen to 5,440.
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PP-HLN

PP-LGS

PP-LOC

PP-LOC-CLR

PP-LOC-CLR-TPC

PP-LOC-HLN

PP-LOC-MNR

PP-LOC-PRD

PP-LOC-PRD-TPC

PP-LOC-TPC

PP-LOC-TPC-PRD

PP-MNR

PP-MNR-PRD

PP-NOM

PP-PRD

PP-PRD-LOC

PP-PRD-LOC-TPC

PP-PRD-TPC

PP-PRP

PP-PRP-CLR

Buyouts may be curbed by two rules pending legislation.

Most sleep on the floor, Reform starts in the Pentagon

We took it on the chin, Politics got in the way, Mr. Bass

is based in Ft. Worth

At the core of all this stands a hotel.

It should open up channels of communications with the

Tigrean rebels through neighboring Sudan.

I'm out of bed. You're in good company. Help is on the

way.

Among the leading products is a flu shot, At the core is a

love for plants.

Behind the posturing lies a dispute.

Among the new issues was Massachusetts's debt.

He responded in kind.

This being typed in a standing position.

This will reduce spending in a very effective fashion.

The only way to find out is by listening.

He spent between $5 and $6.

That is for the future.

It looks like a holiday.

He remains on the board as director.

It's ironic that David Boren should be in the center of

this.

In the corner of the room is a desk.

Among the most upbeat was Bobby.

The shop is closed for a holiday.

She was jailed in a child custody case for refusing to reveal

the wheareabouts of her daughter.
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PP-PRP-PRD

PP-PUT

PP-SBJ

PP-TMP

PP-TMP-CLR

PP-TMP-PRD

PP-TMP-TPC

PP-TPC

PP-TPC-CLR

PP-TPC-LOC-PRD

PP-TPC-PRD

PP-TTL

PP-TTL-PRD

PRN

PRN

PRT

PRT

PRTIADVP

QP

QP

RRC

RRC

SBARQ

SBARQ

SBARQ-HLN

The rise was partly because of higher demand.

This put Mrs. Thatcher in a bind.

In 1985, it was warm; I'm done in two minutes.

He reset opening arguments for today.

The sentencing is set for Jan 5.

The change is since year-end.

Starting in September, the index started to slide.

Of 1500 people sent a questionnaire, 951 replied.

With that authority goes an accountability.

Among the possible suitors is Italy's Fiat.

Along with the exodus of shopping is an exodus of jobs.

Tomorrow's "On Sports" will look at another aspect.

The name of this column is "On Sports".

Parenthetical

The alternative -Giuliani-is ghastly.

The rest, as they say, is history.

Particle

He cashed in. Dream on.

Help the U.S. win back business.

Quantifier Phrase

He talked about 20 minutes. Not a peso is offered.

Reduced Relative Clause

Everyone at the Stick that day started out as a spectator

and ended up as a participant.

There are still some uncertainties, particularly regarding

possible side effects.

Direct question

But who knows?

WHO'S NEWS??
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SBARQ-NOM

SBARQ-PRD

SBARQ-TPC

SBARQ-TTL

SBAR

SBAR

SBAR-ADV

SBAR-ADV-TPC

SBAR-CLR

SBAR-DIR

SBAR-DIR-TPC

SBAR-HLN

SBAR-LOC

SBAR-LOC-CLR

SBAR-LOC-PRD

SBAR-MNR

SBAR-NOM

SBAR-NOM-LGS

SBAR-NOM-PRD

SBAR-NOM-SBJ

SBAR-NOM-TPC

SBAR-PRD

SBAR-PRD-TPC

now the interest is in what else can i do

the question is, what is stock worth?

why be a middleman? asked joe

the old refrain, "Who am I to judge"

Subordinate clause

as it turns out, John loves Mary; i can run if i need to

run.

if profits don't improve, we may need to close the com-

pany.

i feel as though i'm being watched; the agreement calls

for you to give me a lot of money

capital flows where it is needed; go where the money is

i hold that wherever Mary goes, John will follow.

WHO'S NE WS:

seems indistinguishable from SBAR-LOC-CLR

my parents will stay where they are.

that is where i first met my wife.

they didn't play the game on saturday as scheduled.

he has what all publishers wish for.

i hate answering questions about what would happen if

we went to war.

they are put off by what they consider to be restrictive

investment regulations.

that is what we did.

what is true for sheep is true for goats as well.

whatever peopl want to buy, i'll sell.

our hope is that the technique could identify diseased ves-

sels.

What counts is the bottom line.

113



SBAR-PRP

SBAR-PRP-PRD

SBAR-PUT

SBAR-SBJ

SBAR-TMP

SBAR-TMP-CLR

SBAR-TMP-PRD

SBAR-TPC

SBAR-TTL

SINV

SINV

SINV-ADV

SINV-HLN

S1NV-TPC

the charge didn't affect net for the quarter, as it was

offset by tax benefits.

we expect a large market in the future, so the long term

it will be profitable.

that is because John ran up the hill.

...put our resources where they could do the most; put his

money where his mouth is

he has made it clear that the issue is important to him

personally.

we want to make sure we hold on to our existing cus-

tomers.

where they lag behind the Japanese is in turning the in-

ventiveness into increased production.

i will be happy when terms are fixed Oct. 26.

it didn't help when she was charged with public drunken-

ness.

that was before the tax reform made things more compli-

cated.

he jailed them for several hours after they defied his order;

"When Harry Met Sally"; "When Irish Eyes Are Smil-

ing"

Sentence, Inverted

"I am hungry, " said Bob.

Says Joe, "I am hungry, too."

protected themselves against squalls in any area, be it

stocks, bonds, or real estate

seems same as SINV; just used when it is a headline in-

stead of a normal sentence

Offsetting the lower stake in Lyondell were high crude oil

prices, among other things.
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SINV-TTL

SQ

SQ

SQ-PRD

SQ-TPC

SQ-TTL

S

115

the children sang "Here Comes Santa Claus"

Sentence, Question (inverted yes/no, or the argument of

a Wh)

How the hell can you live with yourself?

What gets by me every time is has the milk expired?

Jimmy asked, "Can I go to the store?"

Is that the forecast? Is the government really not helping

anybody? Would I have done all those things?

"Is Science, Or Private Gain, Driving Ozone Policy?"

(article title)

Sentence, Declarative

A piece down, the computer resigned.

Investment bonds ended 1/4 point lower.

The company wouldn't elaborate, citing competitive rea-

sons.

It is the total relationship that is important.

"It's not very often something like this comes up," said

Ron.

It helps to be male. The farmer stands to go.

Share prices closed lower in Paris, and mixed in Amster-

dam.

JAMAICA FIRES BACK

At the end of the third quarter McDonald's had 10K

units operating world-wide.

Bonuses would be paid based on playing time and perfor-

mance.

He began his career peddling stock to individual investors.

He apologizes for sounding pushy. They don't flinch at

writing them.

S

S-ADV

S-CLF

S-CLF-TPC

S-CLR

S-CLR-ADV

S-HLN

S-LOC

S-MNR

S-MNR-CLR

S-NOM



S-NOM-LGS

S-NOM-PRD

S-NOM-SBJ

S-PRD

S-PRD-TPC

S-PRP

S-PRP-CLR

S-PRP-PRD

S-PRP-TPC

S-SBJ

S-TMP

S-TPC

S-TPC-TMP

S-TTL

S-TTL-PRD

S-TTL-SBJ

UCP

The insurance provided by purchasing puts is worthwhile.

It was followed by our driving to the nearest watering

hole.

That is gilding the lily.

Avoiding failure is easy.

That lawsuit is pending.

There is more volatility to come.

It is the New Journalism come to television.

Still to come are issues by Monsanto.

Mr. Gargan favors simply giving money to the SEC to

hire more staff.

Lotus Notes is designed to sort e-mail sent within work

groups.

The manufacturers said 14.2% of their spending is de-

signed to improve products, 17.5% is to cut costs, etc.

To provide for the restructuring's costs, Trinova took an

after-tax charge.

To watch your child die is an inhuman experience.

" Work hard, play hard" is advice best taken with caution.

Going into the fourth quarter the sales comparison will

be more difficult.

The market changed, he adds.

A year ago you'd spend two days working and two days

in the yard, he recalls.

He stressed the "always working" theme.

The theme of the conference will be "take a pension fund

manager to lunch."

It's possible that "Look Who's Talking" isn't as enter-

taining as it seems.

Unlike Coordinated Phrase
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UCP

UCP-ADV

UCP-CLR

UCP-DIR

UCP-EXT

UCP-LOC

UCP-LOC-PRD

UCP-MNR

UCP-PRD

UCP-PRD-LOC

UCP-PRP

UCP-TMP

UCP-TPC

VP

VP

VP-TPC

VP-TTL

WHADJP

WHADJP

WHADVP

WHADVP

WHADVP-TMP

WHNP

WHNP

WHPP

This requires regulatory and shareholder approval.

consumer and other goods

Third and most important

Stocks closed lower but above intraday lows

They moved away from one thing and toward another.

We will stay through the skiing season or until the money

runs out.

The cuts will be made half within Germany and half

abroad.

It was mentioned very briefly and in passing.

Long dollar bonds were flat to up 3/8 point.

The SEC is closer to the markets and in a good position

to sing.

Growers bred them more for looks and to satisfy deamnds

of long-term storage.

The next day or even an hour later, this year and in 1990

Verb Phrase

He dies.

Also baking a cake is his mother.

This newspaper's Heard on the Street column

Wh-adjective Phrase

How strong is Mr. Mohammad?

Wh-adverb Phrase

How, Why, How quickly, etc.

When

Wh-noun Phrase

Who, What, Whom, Which

Wh-prepositional Phrase

117



WHPP by how much, under what weight, for whom

X Unknown, Uncertain, or Unbracketable

X the closer they got, the more the price rose

the stock tumbled, to end at

the earthquake was

the crowd shouted, "viva peace, viva."

c- list item 3

i struggled to to eat my sandwich.

i am married, no children.

it was a funny time, what with the vietnam war and all.

i was hungry to begin with

X-ADV the more extensive the voir dire, the easier you make it.

the more he muzzles his colleagues, the more leaks will

pop up.

X-CLF

X-DIR earnings declined by $120 million last year's robust levels.

X-EXT exports from canada jumped 11% while imports from

canada rose only 2.7%

X-HLN

X-PUT mr. bush's veto power puts him a commanding position

in the narrowly divided house

X-TTL
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Appendix C

Modifying the Bikel Parser

The Collins-Bikel parser is a very heavily optimized chart parser. The algorithm for

the parser is described in the appendices of Collins' PhD thesis [16], and remains

the basis of Bikel's implementation. The main modification that is done is to add an

equivalentItems list to each element in the chart and to store every item and link that

would have been pruned away either by the search or just by virtue of the dynamic

program (which is looking for the top-scoring parse). In the Bikel parser, this change

should occur in the add method of the Chart class.

Following this, any calculations that need to be done (to compute inside and

outside probabilities, for example) can be done in Decoder.parse once the entire

forest has been computed. This is also the appropriate point for the parse forest to

be emitted.
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Appendix D

A Massively Simpler Alignment

Model

D.1 Motivation

Assuming that a random variable is Gaussian is a natural choice when the distribution

is unknown, because Gaussians have many nice properties. In particular, they are

an especially good choice for use in EM algorithms since the maximum likelihood

estimates for a Gaussian can be written in closed form. Furthermore, assuming that a

variable is Gaussian is often a good approximation due to the Central Limit Theorem,

which states that a sum of independent and identically distributed variables with finite

mean and variance tends to be Gaussian as the number of addends approaches infinity,

and particularly due to the fuzzy Central Limit Theorem, which states that data

influenced by many independent sources of noise are roughly normally distributed

[48].

For instance, the number of words in English sentences in the EUROPARL corpus,

depicted in Figure D-1, is roughly Gaussian. One could explain this based on that

fuzzy Central Limit Theorem by imagining a number of independent sources of noise

that would influence the length of an English sentence, including such things as
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Figure D-1: The length of English sentences drawn from the English translation of

the proceedings of the European Parliament appears to have a Gaussian distribution.

the connotation of certain phrases (which influences the author's choice and thereby

influences the length of the sentence) and the author's desire to be precise. In fact,

the distribution of English sentence lengths for a fixed German sentence length also

appears to be Gaussian (see Figure D-2). Most relevant to us, however, is that when

one trains an IBM2 model to translate from German to English, the distribution

of the index of the word in a, say, 25-word English sentence that the 13th German

word of a 25-word German sentence is aligned to also suggests the Gaussian shape, as

Figure D-3 shows. This can again be argued using the fuzzy Central Limit Theorem:

all else equal, we imagine that a word is most likely to remain in the same relative

spot within a sentence; for each transformation that would move it to one side, we

imagine there is another transformation that is likely to move it to the other side.

Ultimately, the reasons for a translator's choices are innumerable and will be written

off as noise here.
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English Sentence Length for German Sentences of Length 25
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Figure D-2: (a) The length of English sentences whose German translations are

twenty-five words long appears to have a Gaussian distribution. (b) The length of

sentences in English and German appears to have a bivariate Gaussian distribution.
All things are indeed Gaussian.
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English Word Alignment for German Word 13 from Sentences of Length 25
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Figure D-3: Our motivation: The indices

Gaussian.
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of aligned words can be approximated by a

123



One might argue that the best way to model a random variable of unknown

distribution is by simply modeling a probability for each of its possible values. This

technique is certainly flexible; unfortunately, it is a byword in the machine learning

community that one must pay for added flexibility with more training data to avoid

over-fitting. Given that even the most sophisticated machine translation models are

far from perfect and that they demand massive amounts of training data, our approach

is to begin by further constraining existing models instead of creating more flexible

ones.

In accordance to this intuition and our guess that alignments look Gaussian,

instead of modeling every possible value for each alignment as a separate probability,

we will model the alignment probabilities by a single Gaussian. The mathematical

formulation for IBM Model 2 is changed by the addition of the second line:

m

P(f, d e) = T(fj I ej)D(aj j, e, m)
j=1

D(aj j, f, mn) = fyr(aj | pj,f,m, 0-j, ,m)

K=0 f( I pj,mI ilfm)

where fg(-|p, o-) denotes the density of the gaussian with mean p and standard

deviation o-, 1/(v270~) -exp ((p - -)2/(2o 2 )). That is to say, we replace D(aj l i, , m)

for a= 1,... , with pj,e,m and o-j,j,m as our parameters. This typically results in

fewer than 10% as many alignment parameters as IBM Model 2.

D.1.1 Algorithm

IBM Model 2 is a multinomial model; consequently, the EM updates are very easy to

compute. The type of extension we are discussing ("parametrizing the parameters")

corresponds to a simple addition to the algorithm in this case. The full derivation is

discussed in the appendix.

Let's begin by casting the model in the standard form: each observation consists

of a sentence pair (e, f) generated from a hidden alignment a E {0, ... , }m . The IBM
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Model 2 probability is:

m

P(f,dle;T,D) fj T(fj l eaj)D(a|j, em)
j=

1

171 T(f I e)countfe(ef,) X 1 D(i I j f, m)countem(e,f,d)

f,e i,j,f,m

where

m

Countf,e(e, f, d) := j(f, fj)(e, eaj)
j=1

Countij,f,m(e, f, I ) := (f, leI)6(m, Ifl1) 6(aj, i),

and 3(-,-) denotes the Kronecker delta function (1 if the two parameters are equal,

and 0 otherwise). The probability model we propose is:

P(f, aI e; T, y, o-) 171 T(f I e)counte(effa) x J N(j, £, m)countoim(efa)

f,e j'e'm

x 17 ((1 - N(j, f, in)) -f(i I tj,f,m, Oj,,m))Countjifm(e,f,d)

Here, N(j, e, m) is the probability that the jth French word aligns to the NULL

English word (we do not wish this probability to be modeled by some slot in the

Gaussian, because no position corresponds logically to the NULL word; thus we

separate it in this fashion). Note that the fg term is unnormalized-that is, the

model is deficient under this framework for the sake of mathematical convenience.

Model 2 clearly falls under the multinomial framework; consequently, this new model

falls under the parametrized multinomial framework described in the appendix.

Therefore, the addition we made to the mathematical formulation in the last

section results in a single, easy change to the IBM Model 2 algorithm: after each

EM iteration, the old D values are replaced by their maximum-likelihood Gaussian
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counterparts. That is to say, we transform the D's obtained from Model 2 as follows:

pj,em = . D(i j, f, m)
i= 1

-m =j2 - D(i j, em) - pIt,m

Adding the constraint that the alignment variables are samples of univariate Gaus-

sians corresponds to an altogether simple change to the algorithm; the full algorithm

is shown in Figure D-4. (We let the Oth word, eo, of every English sentence be the

NULL word to simplify the notation.)

Our argument for this Gaussian approximation is only based on the idea that the

alignment variables look like one-dimensional Gaussian densities and that Gaussians

are easy to deal with; this is clearly not the only approximation that satisfies these

properties. In fact, there are two other obvious choices based on the Gaussian: "trun-

cated" Gaussians and "integrated" Gaussians. Here they are in math beneath our

original formulation:

vanilla: D(aj I J, f, m) = fg(aj| tj,e,m, Oj,e,m),

truncated: D(ajj| j, ,m) = fyr(aj I pj,e,m, aj,f,m)

fg( i I j,e,m, oj,e,m)trucatd: ~a j,~ m f a_ /NI-j,e,m, O,e,m)d

and integrated: D(aj j, f, m) =fa f jfI m Ije m) di

f f(i I Pj,e,m, oj,e,m) di

In both the vanilla and truncated models, the alignment variable a3 can take on

the values 1, ... , f; the difference is that, for mathematical simplicity, the vanilla

version is deficient, assigning probabilities to values outside this range (i.e.,that

D(aj L j, m) < 1). Although we obviously cannot align words outside of the

sentence, we allow the algorithm to assign non-zero probability mass to those align-

ments; we recover by normalizing over legal alignments afterward. We can instead

make this restriction in the algorithm itself. Unfortunately, the M-step of the EM

algorithm is no longer a beautiful closed form, but instead requires numerical opti-
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Initialize t(f I e) and D(i f j, E, m)

do:
- zero t'(f e) and D'(i j, f, m)
- for (e, f) in corpus:

- - m-If1,f=le
- - forJ=1...m:

- - - for i= ... :

S - - - ai= t(f lej) -D(ilj,f, M)

- - - ai = ai/(Ei, air)

. . - for i=0.. . f:

- - - - t'(f I ei) = t'(fj | ej) + ai

S- D'(i j, f, m) = D'(i j, f, m) + ai

- t'(f I e) t'(f I e)/(Ef, t'(f' | e))
- D'(i I j, , n) = D'(i j, £, m)/(Z2 , D'(i' I j, e, n))

S t= t', D = D'

- for f, m:

- - for j=1... m:

* .* - 1(i lij m)~ - i ( - D(
t- f i-=1 ~ '' I // \ \ I

- -1 (Z'=,D(i l j, f, m) - (i -(1 - D(O fj, ,m))
- - - for i=1... f:

- - - - D(i j, E, m) = exp(-(i -/p)2/2o-)

- - - D(i j, m) = D(i fj, ,m) - (1 - D(O |j, f, m))/(E ,=1 D(i' I j, e, m))

until convergence

Figure D-4: The Vanilla Gaussian Algorithm.
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mization. Although this is still tractable, it is undesirable and the results are not

sufficiently improved to warrant this computational burden (our experiments showed

virtually identical results to the vanilla model).

Likewise, the integrated version is very attractive intuitively, but the shape of the

density is so close to that of the vanilla edition that any improvements are minute and

are outweighed by the added computational complexity, as the Q-function in EM must

once again be optimized by a numerical optimization technique. For completeness, we

explain how one would perform such optimization; in this case, just as in the vanilla

algorithm, the change only amounts to "fitting" (in the maximum-likelihood sense)

the appropriate density to the intermediate D-values after each EM step. We can

compute the gradient of the likelihood function in both of these cases, so we optimize

it using a gradient optimization technique. In our experience, the likelihood functions

tend to have long, narrow valleys, so we find that optimizing using conjugate gradient

descent is faster than just using steepest descent. (Note again that we do not include

the NULL parameter D(O | -, , ) in the fit.)

We have to fit a curve to each set of D-values, so fix j, f, and m. Define D

D/(1 - Do) to reflect the fact that we are not including the NULL word position in

our model and to thus further ease the notational burden. We wish to maximize the

log-likelihood, so let's begin by writing it down:

Ltruncated = D(i j, m) log fK(aJ | p u3 ,e,m)
E fg(i I pj,i,m, oj,,m)

-- (i pI )2  f
=ne e >D(i l j, m) log - log fi l Pie,m, 0-ofem)

S1A _1fg (Z I I'j,e,m, I-j,t,m) di
Eintegrated D(i lj, E, M) log fa

fo' fAi l Psj,f,m, O-j,rnm) di

=3D(i f j, E, m) - log(Fg(i I pj,j,m, oj,e,m) - FN(i - 1 At j,e,m, a~j,e,m))

- log(Fg(I |Pj,t,m, 0-j,t,m) - Fg(O I pj,f,m, Uye,m)),
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where F denotes the cumulative distribution function. We evaluate the gradient:

& truncated

D9Ctruncated

B'Cintegrated
OPt

- f (i I 'jAm, Ujfm) 2

- DK . _1 f (i I Pj,e,m, oj,e,m)

- -(i - V)22
1n 2 r4

ji f A|jam, gj,,m) 2o4

fAr(i l j,e,m, Oj,f,m)

f=(i 1jIme Oj,e,m) - fAr(i l Ij,,m, oJe,m)

Fg(i I PIjm Oje,m) - FN(i - I Pj,fm,0,rm)

-V 92. fg(O I Pj,i,m, Q3,fm) - f( -je,m, j,,m)

FM(E I Pj,e,m, aje,m) - FAO I i,e,m, 0j,e,m)

= ~D(i jm). 4 2
fr(i - 11 PI'j'm, O0,-,m) - fN(i yI Ie,m, oj,e,m)
FN(i I [ tj,#,m, j,,m) - FN(i - 1 I Pjf,m, 0I,e,m)

1 fg(O I pUJy,m, O-,e,m) - f I'(j,i,m, Uj,f,m)

40 2 FN(L Iym, 0j,m) - Fg(O Pje,m, 0j,,m)

We apply the conjugate gradient descent algorithm to the D values [43]:

Given D E R m

- Select Yo (I, U2 ) E R 2 at random

-i = 0, #0 = Exo) ho =-0

- do:

- - Ai = arg minA>o E(zi + Ai hi)

-- i+1 = XiY + Ai hi

- . = VE(xi+1)

S- ( + - ) i+1/l -I l2

S i+1 -- +1 + 7h hi

- - i-i+1

- until convergence

return Xi
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D.1.2 Implementation and Evaluation

The dataset used to evaluate our system was the standard EUROPARL set of K6hn

et al. We used German-English as a representative language pair, as translation

is neither especially easy nor especially difficult [29]. The data was aligned at the

sentence-level using the standard tools and sentences of vastly differing lengths were

removed. Finally, we trained the system on the data and produced Viterbi alignments

for each sentence pair. These alignments were output to the K6hn phrase-based

system, which itself produced a phrase dictionary. This dictionary was applied to

the Pharoah decoder (with a language model trained on the entire available training

set). Finally, we applied the system to the standard test set chosen by K6hn in [29].

The resulting translations were compared to the human-translated reference using

the BLEU metric of [40].

The BLEU metric is a standard method for evaluating machine translation sys-

tem performance by comparing translations to one or many human translations. The

translations are compared by precision and recall on n-grams of successively greater

length; the BLEU score typically refers to a smoothed 4-gram comparison; mathe-

matically, it can be described by the following formula:

BLEU = e<,-(l-r/c) . PiP2PsP4,

where r is the length of the reference corpus, c is the total length of the candidate

translation produced by the system being evaluated, r is sum of the lengths of the

reference sentences that most closely match the lengths of the candidate sentences,

Ic<r is 1 if c < r and 0 otherwise, and pj refers to the j-gram precision of the test set.

We evaluated our technique using the EUROPARL corpus [29] and the applied a

BLEU scorer to our model's output on the standard section 24 test set. Our results

(when training is done on the full data set) are shown in Table 1. Our results are

clearly very competitive with IBM Model 2.

Considering the small number of parameters in the one-dimensional gaussian
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German-to-English Machine Translation (Based on the EUROPARL Corpus)
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Figure D-5: The performance of the alignments induced by the one-dimensional gaus-

sian model is similar to those induced by the IBM-2 model. This graph shows the

BLEU metric of the two models when applied to the EUROPARL training data and

standard test set for the German-English language pair.

model, intuition suggests that it should converge to its limiting BLEU score with

less data. If this is true, it is an insignificant effect, as Figure D-5 shows; we believe

that this is due to the still overwhelming number of translation parameters in the

model. The performance of the one-dimensional gaussian model is, in fact, indistin-

guishable from that of Model 2.
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