
Language Technologies in Speech-Enabled Second Language Learning Games:

From Reading to Dialogue

By

Yushi Xu

S.M. in Electrical Engineering and Computer Science (2008)

ARCHIVES
MASSACHUSETTS INfWE7i

oF TECHNOLOGY

UL 2012

7 P ES

Massachusetts Institute of Technology

Submitted to Department of Electrical Engineering and Computer Science

in Partial Fulfillment

of the Requirements for the Degree of Ph.D

at the

Massachusetts Institute of Technology

June, 2012

© 2012 Massachusetts Institute of Technology

All rights reserved

Signature of the author

Department of Electrical Engineering

, /

and Computer Science

February 28, 2012

Certified by -
6/ V/V

()

Accepted by

Stephanie Seneff

Senior Research Scientist

Thesis Supervisor

Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

71 ,

Language Technologies in Speech-Enabled Second Language Learning Games:

From Reading to Dialogue

By

Yushi Xu

Submitted to Department of Electrical Engineering and Computer Science

In February 28, 2012 in Partial Fulfillment

of the Requirements for the Degree of Ph.D

in Electrical Engineering and Computer Science

ABSTRACT

Second language learning has become an important societal need over the past decades. Given

that the number of language teachers is far below demand, computer-aided language learning

software is becoming a promising supplement to traditional classroom learning, as well as

potentially enabling new opportunities for self-learning. The use of speech technologies is

especially attractive to offer students unlimited chances for speaking exercises. To create helpful

and intelligent speaking exercises on a computer, it is necessary for the computer to not only

recognize the acoustics, but also to understand the meaning and give appropriate responses.

Nevertheless, most existing speech-enabled language learning software focuses only on speech

recognition and pronunciation training. Very few have emphasized exercising the student's

composition and comprehension abilities and adopting language technologies to enable free-form

conversation emulating a real human tutor.

This thesis investigates the critical functionalities of a computer-aided language learning

system, and presents a generic framework as well as various language- and domain-independent

modules to enable building complex speech-based language learning systems. Four games have

been designed and implemented using the framework and the modules to demonstrate their

usability and flexibility, where dynamic content creation, automatic assessment, and automatic

assistance are emphasized. The four games, reading, translation, question-answering and dialogue,

offer different activities with gradually increasing difficulty, and involve a wide range of

language processing techniques, such as language understanding, language generation, question

generation, context resolution, dialogue management and user simulation. User studies with real

subjects show that the systems were well received and judged to be helpful.

Thesis supervisor: Stephanie Seneff

Title: Senior Research Scientist

3

Acknowledgments

I would like to express my sincere gratitude to my supervisor Stephanie Seneff, who has given

me guidance and enormous encouragements. Her earnest in research and kindness as a supervisor

and a colleague strongly influence me during my Master's and Ph.D courses, and will continue

having impact on me in a longer term. I would also like to thank my committee, Regina Barzilay

and Victor Zue, for giving me helpful suggestions on the thesis.

This thesis would not be completed without my collaborators and colleagues. I would like to

thank Scott Cyphers and Lee Hetherington for offering all kinds of hardware and software

support. I would like to thank Ian McGraw for his generous help on WAMI. I would like to thank

Anna Goldie for her ideas and effort in helping creating the question-answering game. I would

like to thank both Ian and Anna for appearing in the video demo of the game systems. My

gratitude also goes to all those who participated in the user study, and/or gave comments and

suggestions about the systems.

I would like to thank Jim Glass and all those who are or were a member of Spoken Language

Systems Group during my course of study. I would like to thank Marcia Davidson for providing

various administrative assistance. I would like to thank my lovely officemates and ex-officemates,

Ibrahim Badr, Carrie Cai, Han-pang Chiu, Ann Lee, Jingjing Liu, and Rabih Zbib for creating

such a nice and enjoyable office environment. I would also like to thank Hung-an Chang, Chia-

ying Lee, Ekapol Chuangsuwanich, Yaodong Zhang, and other students in the SLS group for

academic discussions and social activities.

I am thankful to all my friends, both in China and in the US, who have offered me help and

shared my joy and upset.

Finally, I would like to give my gratitude to my parents, who have been supporting their only

daughter to come to the other side of the world to pursue graduate study. Without their love and

vision, I would not have established my first interest in computer science in my childhood, and

later entered this renowned institute.

This thesis was supported by MIT, and partially by Quanta Computer, Inc. through the T-Party

Initiative.

5

6

Table of Contents

List of Figures ... 12

List of Tables... 17

URLs of D em onstrative Videos .. 18

Chapter 1 M otivation and Background... 19

1. 1 M otivation ... 19

1.2 Background ... 21

1.2.1 Com m ercial CALL systems .. 21

1.2.2 Research works... 22

1.3 Thesis outline .. 27

Chapter 2 Com puter as a Learning Partner .. 29

2.1 Functionalities of a language learning system .. 29

2.2 Speech-enabled architecture with W AM I .. 31

2.3 Three-layer conceptualization ... 32

2.4 Im plem entation w ith turn m anager .. 35

2.5 Sum m ary ... 38

Chapter 3 Tem plate-Based Content Creation.. 40

3.1 Tem plate representation of contents.. 40

3.2 N on-CFG tem plates... 42

3.3 Bilingual tem plates... 43

3.4 Tem plates with lessons.. 45

3.4.1 Organizing tem plates into lessons ... 45

3.4.2 Blending lessons... 47

3.5 Sum m ary ... 48

Chapter 4 The First Three Games: Reading, Translation and Question-Answering............... 50

7

4.1 The reading gam e ... 52

4.1.1 G am e overview ... 52

4.1.2 Contents... 54

4.1.3 A ssessm ent .. 54

4.1.4 G am e control... 55

4.2 The translation gam e .. 56

4.2.1 Gam e overview ... 56

4.2.2 Parse-and-paraphrase paradigm for automatic translation 58

4.2.3 Judging a translation by m eaning ... 62

4.2.4 System diagram ... 64

4.3 The question-answering gam e ... 65

4.3.1 Gam e overview ... 65

4.3.2 Q uestion generation using fram e transform ation .. 67

4.3.3 Answer judgm ent via sim plified context resolution.. 70

4.3.4 Contradiction detection ... 77

4.3.5 System diagram ... 79

4.4 Im plem entation details .. 80

4.4.1 Im plem enting the three gam es as a whole.. 80

4.4.2 A lternative input m odality: text.. 84

4.4.3 U ser database... 85

4.5 Evaluations of the gam es.. 85

4.5.1 In-lab evaluation phase... 86

4.5.2 Public evaluation phase ... 88

4.6 Sum m ary ... 94

Chapter 5 Entity-Constraint-Based Dialogue Management 96
5.1 Overviewnt...

5.1 O verview ... 98

5.2 Dialogue-m anager-centered fram ework ... 99

8

5.3 Entity-constraint-based reasoning ... 102

5.3.1 A n exam ple.. 103

5.3.2 Declaration .. 108

5.3.3 D ialogue execution.. 112

5.4 Statistical inference and tutoring ... 121

5.4.1 M odel and specification .. 122

5.4.2 Tutoring and backdoor .. 123

5.5 Supporting m ulti-m odality .. 125

5.6 Application exam ples .. 129

5.6.1 Flight-reservation system .. 129

5.6.2 Drug side-effect query system ... 135

5.7 Sum m ary ... 137

Chapter 6 The Fourth Gam e: Dialogue.. 138

6.1 U ser sim ulation with personalities .. 138

6.1.1 Scenario generation ... 140

6.1.2 M em ory state... 142

6.1.3 Tem plate-based response generation.. 143

6.1.4 Responses with personalities... 146

6.1.5 Sim ulation experim ents ... 148

6.2 Perform ance assessm ent.. 150

6.3 Gam e im plem entation ... 152

6.3.1 The M ercurial system .. 152

6.3.2 Scenario generation with difficulty levels ... 156

6.3.3 Feedback and assistance functions .. 157

6.4 Im proving recognition perform ance.. 158

6.4.1 D ata collection... 160

6.4.2 N -best selection ... 163

9

6.4.3 N-best fusion ... 164

6.5 User study.. 168

6.6 Sum m ary ... 171

Chapter 7 Sum m ary and Future Directions.. 174

7.1 Contributions ... 174

7.1.1 Fram ework... 174

7.1.2 Generic m odules for spoken language processing... 175

7.1.3 Four gam es .. 176

7.2 Future directions.. 177

7.2.1 Larger-scale and customizable learning m aterials... 177

7.2.2 Paragraph reading com prehension... 178

7.2.3 M ore dialogue activities .. 179

7.2.4 CALL system evaluation ... 180

7.2.5 N atural tutoring ... 181

7.3 Conclusion... 181

Appendix A DCTL Manual .. 183

A. 1 Overview ..DCT .M a ... 183

A.2 Running a DCTL script.. 184

A .3 DCTL script scr ... 186

A .4 Com m on DCTL operations ... 192

A .5 Advanced techniques... 199

Appendix B D ialogue Specification (D SPEC) .. 204

B. I Overview ... 204

B.2 Top-level options... 205

B.3 Knowledge sources.. 206

B.4 Nations... 211

B.5 Entities... 213

10

B.6 M eta information ... 220

B.7 Specification for statistical inference .. 221

B.8 Adding a dom ain-dependent dialogue library ... 222

Appendix C User simulation specification .. 226

C.1 Overview ... 226

C.2 Scenario .. 226

C.3 Response Strategies .. 230

C.4 Other resources ... 236

References ... 237

11

List of Figures

Figure 2-1. The system architecture with WAMI, including the client side, the speech recognizer,

the speech synthesizer and the language processer on the server side. 32

Figure 2-2. Three-layer conceptualization consisting of the language layer, the meaning layer and

the tutor layer from bottom to top. The language layer serves as a natural language interface. The

meaning layer provides semantic processing. The tutor layer handles application-specific

behavior and provides language learning features. ... 33

Figure 2-3. An example Galaxy frame, which represents the semantic meaning of the sentence

"th is is a fram e.".. 35

Figure 2-4. An example DCTL script to parse and paraphrase an input sentence. 36

Figure 2-5. Branch and iteration using the DCTL script.. 37

Figure 3-1. A template representation of content consisting of two levels. 41

Figure 3-2. Multi-level templates written using the GALAXY frame format........................... 41

Figure 3-3. An example of utilizing separate sub-templates and rewrite rules to fix verb

in flectio n s...........................:.. 4 3

Figure 3-4. A bilingual version of the templates in Figure 3-2. ... 44

Figure 3-5. An example of bilingual templates with word order differences............................. 44

Figure 3-6. A more complex example of bilingual templates with word order differences.......... 45

Figure 3-7. A template frame with two lessons.. 46

Figure 4-1. A screenshot of the reading game in the middle of a round. The sentence that has been

read correctly is marked with red and displayed in English. A demonstrative video is available at

http://people.csail.mit.edu/seneff/scill/reading-game.wmv. .. 52

Figure 4-2. System diagram of the reading game... 53

12

Figure 4-3. A screenshot of the translation game in the middle of a round with reference

translation for the first sentence. Red marks the sentence that has been completed. A

demonstrative video is available at http://people.csail.mit.edu/seneff/scill/translation-game.wmv.

... 5 7

Figure 4-4. The parse-and-paraphrase paradigm for paraphrase and translation. 59

Figure 4-5. An example of generating translation and grammar points simultaneously............ 59

Figure 4-6. Tw o-stage parsing... 61

Figure 4-7. Tw o-stage generation.. 61

Figure 4-8. Parse frames and key-value frames. .. 63

Figure 4-9. System diagram of the translation games. ... 65

Figure 4-10. A screenshot of the question-answering game in the middle of a round. The student

has already answered one question correctly. Red marks the corresponding statement of that

question. The Chinese characters in the dialogue history box translate into (from bottom up)

"System: Welcome. Please read the following statements and answer my question. When does the

bank close? User: (It) closes at five thirty. System: Very good. Which restaurant's food is too

sweet?" A demonstrative video of the system is available at

http://people.csail.mit.edu/seneff/scill/Q&A.wmv... 66

Figure 4-11. Two examples of using the transformation rules to rewrite the parse frames and

generate questions. Underlined text marks the difference from the original frame after the

tran sform ation ... 69

Figure 4-12. Examples of obtaining complete answer ky-frames from short answer ky-frames and

question ky-fram es. ... 73

Figure 4-13. Answer augmentation with pronominal referral... 74

Figure 4-14. Handling negations in the judgment. .. 75

Figure 4-15. Generation of a follow-up question ... 77

Figure 4-16. System diagram of the question-answering game (initialization)......................... 79

13

Figure 4-17. System diagram of the question-answering game (game play). 79

Figure 4-18. Flow chart during the initialization of a round with the three game modes

consolidated into one system ... 82

Figure 4-19. Flow chart during the game play with the three game modes consolidated into one

sy stem .. 8 3

Figure 4-20. Performances of the users in the translation game. Users are arranged left-to-right in

order of decreasing proficiency .. 87

Figure 4-21. Distribution of the question types in 42 game rounds of the question-answering

g am e 8 8

Figure 4-22. Distribution of the types of answers from 732 utterances. 88

Figure 4-23. Sentence recognition error rate by subjects. Subjects are arranged left-to-right in

order of decreasing proficiency .. 90

Figure 4-24. Normalized average number of utterances per match with the logarithmic trend line

for the reading/translation game. Subjects are arranged left-to-right in order of decreasing

pro ficien cy ... 92

Figure 4-25. Normalized number of rounds to reach Level 3 and Level 4 for reading/translation

game (left), and from Level 2 to 4 for the question-answering game (right). The subjects are

sorted by decreasing human-judged proficiency... 92

Figure 4-26. Levels subject #18 achieved in different game sessions for translation game (left)

and question-answering game (right)... 93

Figure 4-27. Some of the comments from the subjects.. 94

Figure 5-1. Communication between the dialogue manager, the user, and the database. 100

Figure 5-2. Illustrative dialogue specification of the flight-reservation domain......................... 105

Figure 5-3. Reasoning and planning for the user input "I want to fly to Boston."................. 107

Figure 5-4. Loop of task execution.. 116

14

Figure 5-5. Process of tutoring.. 124

Figure 5-6. Correcting an incorrect statistical inference result.. 124

Figure 5-7. The domain logic of the flight-reservation domain. ... 130

Figure 5-8. Cumulative number of manual corrections in the tutoring stage.............................. 133

Figure 5-9. An example dialogue in the flight-reservation domain... 135

Figure 5-10. An example dialogue in the drug side-effect domain... 136

Figure 6-1. An example of scenario generation. ... 140

Figure 6-2. An exam ple scenario with phases... 141

Figure 6-3. Post processing of the element date in instantiated scenario.................................... 142

Figure 6-4. Examples of response templates... 144

Figure 6-5. Four different types of users. (a) An aggressive user; (b) a lazy user; (c) a cooperative

user; (d) an uncooperative user. "S" stands for "systems", and "U" stands for "user............... 146

Figure 6-6. Number of turns vs. cooperativeness in the roundtrip scenarios. 148

Figure 6-7. Two examples of simulated dialogues. (a) A more aggressive and more cooperative

user. (b) A less aggressive and less cooperative user. "S" stands for "system", and "U" stands for

"u ser".. 14 9

Figure 6-8. A screenshot during a dialogue in the Mercurial game. The student has successfully

booked the outbound flight according to the scenario, but a mistake was made on the return date.

A demonstrative video of the system is available at

http://people.csail.mit.edu/seneff/scill/dialogue-game.wmv. ... 152

Figure 6-9. A screenshot after completing a dialogue in the Mercurial game............................. 153

Figure 6-10. System diagram of Mercurial (initialization).. 154

Figure 6-11. System diagram of Mercurial (game play). .. 155

15

Figure 6-12. Self-ranked Chinese proficiency of the nonnative subjects (1-very poor, 5-native-

like). Letters in the parentheses indicate the gender.. 160

Figure 6-13. Word error rates and concept error rates of the top recognizer hypothesis. The

subjects are ordered by increasing speaking proficiency. Letters in the parentheses indicate the

g en d er.. 16 2

Figure 6-14. Normalizing and flattening of an eform. .. 162

Figure 6-15. The subjective questionnaire given to the subjects... 169

Figure 6-16. Average scores of Question 1 (interest value), Question 2 (difficulty), Question 3

(helpfulness), and Question 6 (recommendation).. 170

Figure 6-17. Average scores of helpfulness of various tutoring features.................................... 170

Figure 6-18. Average scores of Question 1 (interest value), Question 2 (difficulty), Question 3

(helpfulness) and sub-items in Question 5 (helpfulness of the features) by the two nonnative

proficiency group 17 1

16

List of Tables

Table 2-1. Independence properties of the language layer, the meaning layer and the tutor layer.

... 3 4

Table 4-1. Examples of accepted and rejected translations. Asterisks mark the utterances that are

rejected by the system . .. 64

Table 4-2. Examples of different ways to answer a verifying question and a wh-question.......... 70

Table 4-3. Error rates of the system responses in the public evaluation phase. 90

Table 5-1. Pre-defined messages and continuants... 114

Table 5-2. B ackdoor com m ands.. 126

Table 5-3. Five customized actions in the flight-reservation domain. .. 132

Table 5-4. Manual judgment of the system's replies. .. 133

Table 6-1. WER and CER of the N-best selection methods. Bold indicates statistically significant

im provem ent over 1-best m ethod.. 164

Table 6-2. CER of different oracle algorithms for N-best selection and N-best fusion. 165

Table 6-3. Features used in the SVM classifier for N-best fusion... 167

Table 6-4. CER of the fusion methods. Bold shows the statistically significant results against the

selection m ethod (p < 0.01)... 167

17

URLs of Demonstrative Videos

Reading Game: http://people.csail.mit.edu/seneff/scill/reading game.wmv

Translation Game: http://people.csail.mit.edu/seneff/scill/translation game.wmv

Question-Answering Game: http://people.csail..mit.edu/seieff/scill/Q&A.wmv

Dialogue Game: http://people.csail.mit.edu/seneff/scill/dialogue game.mp4

18

Chapter 1 Motivation and Background

1.1 Motivation

Computers have dramatically changed many aspects in our lives. Since the popularization of

personal computers during the 1990's, these electronic machines have been shrinking in size,

gaining more capabilities in computation and memory, and, becoming more intelligent. The

ubiquitous existence, not only as desktops and laptops, but also as smart phones, game consoles,

etc., together with the cheaply available Internet, has led to a new style of casual life. If people

want to shop, they go to online boutiques; if they want to meet with friends, they dial a video call

from their computer; if they want to cook a new dish, they find recipes provided by people all

over the world; but if they want to learn a language, they probably go into a physical classroom.

This is not to say that computers have not been helping out in the area of education, more

specifically, in the area of language learning, but the changes are very limited. Back in the early

90's when software was delivered in floppy disks, there already existed software that helped

people prepare tests for various subjects. These programs usually loaded multiple-choice

exercises from a database, and allowed the user to type A, B, C or D, but fancier versions for

middle school geometry, for example, even allowed the action of adding auxiliary lines in the

figures. In those days, it was very exciting to use these kinds of software, because personal

computers were still a rare thing at that time, and because they provided a way to eliminate the

necessity of turning the pages of the exercise books back and forth to check the answers.

Viewed from today, it is obvious that there was little technology in those kinds of software.

Nevertheless, looking at the language learning software in today's market, Rosetta Stone, one of

the bestsellers, or EnglishTown.com, the largest online language learning institute, or other

smaller online or offline software, most are simply a prettier version of those text-based ones run

in the DOS era. They certainly have colorful interfaces, cute animations, and carefully designed

contents, but the exercises are still in the styles of multiple choice and fill in the blanks, of which

the answers can be judged by a simple string match.

19

When speech technology came to the commercial market, many realized that it would be a new

attractive feature to include speech recognition in the software. It is, however, an attractive

gimmick, rather than a useful modality, and hardly intelligent, for students are not expected to

speak other than the pre-designed answer, and nothing beyond a string match is performed. No

wonder people still prefer to attend face-to-face classes, if their goals are not only remembering

vocabulary and grammar, but to be able to effectively use the language.

But the need is so great. Take Mandarin Chinese for example. According to the Chinese

Ministry of Education, more than 30 million people worldwide were learning Mandarin Chinese

in 2007, and the number would reach a hundred million by 2010 [1]. Another report has predicted

the number to approach 150 million by 2013 [2]. The same report estimated a global shortage of

over 5 million Chinese language teachers, while in comparison, only 10 thousand teachers in

China possess the teaching license on Chinese as a foreign language. This is an opportunity for

language learning computer systems, as well as a big challenge, for simply providing electronic

texts and multiple choices is not satisfactory. It can, perhaps, replace the traditional textbooks, but

not any human tutors, and people believe computers should be able to do much more than that.

And they should. The advancement in artificial intelligence has been proving many

possibilities, including understanding human languages. The algorithms may not be clever

enough yet to be compared with humans, but they surely provide a way to go much farther than to

do string comparisons. What is missing is a flexible framework that can accommodate various

speech and language processing modules and clearly define the functionality of each of them, as

well as those modules, which are designed within a language-learning context, while at the same

time generic enough to be shared among different systems.

This is where this thesis is situated. We will discuss the roles that the computer, or the artificial

intelligence algorithms, should take, leading to a three-layer conceptualization that describes

intelligent interactive systems for language learning. The framework will be utilized to show a

series of four Chinese learning games, reading, translation, quesiton-answering, and dialogue,

where each sets the foundation for the next one. Critical modules that solve various kinds of

technical difficulties are developed. We extend the template-based content generation approach to

allow bilingual templates and lesson-like organizations. In the translation game, we improve the

existing paradigm for generating reference translation and meaning comparison to handle inputs

from more generic domains. In the question-answering game, new approaches are proposed to

generate questions from statements, and to judge the student's answer by using context resolution.

20

In the dialogue game, a new entity-constraint-based dialogue manager is designed for goal-

directed mixed-initiative dialogues. A user simulator that incorporates personality model is also

proposed and implemented. We also design algorithms to generate appropriate dialogue scenarios

and to provide comprehensive assessment.

We conduct user studies for the four games with real subjects. We will describe the

experiments and include discussions on the results found in the studies and experiments.

1.2 Background

The world of computer-aided language learning (CALL) seems to be separated into two sides: the

commercial side and the research side. The two sides are like two separate continents, each

developing software and technologies in vastly different aspects with minimal communication

with each other.

1.2.1 Commercial CALL systems

On the commercial side, the focus of the companies are whole systems that can be deployed on a

large scale. These systems used to be delivered via CD-ROMs, and nowadays they are moving

towards Internet-based online systems, such as Rosetta Stone Online [3], English Town [4],

Fluenz [5], and Chengo Chinese [6]. These systems usually have nicely designed lesson materials

and user interfaces. The typical scenario of a lesson is that, the student is first shown a text in the

format of paragraphs, animations or videos, followed by a list of important vocabulary and

grammar points. After that, manually prepared exercises are presented. These exercises are

mostly static and objective: multiple choices, pair matching, filling in the blanks etc., and if not,

the students' answer is usually not graded. Popping up a message saying "you have completed

this exercise" is all it does. Most of the recent software has incorporated speech technologies.

However, when speaking exercises are selected, the system either expects an exact speech input

from the student, or sets up a video conference connection between the student and a human

teacher.

Large companies usually have strong teams responsible for creating the texts and exercises,

investigating students' behaviors and progress, and creating new pedagogically effective ideas,

which make their software rich in context and strong in design. New speech and language

technologies appear in their advertisements, but they are more like a future direction than the

reality. Through interactions with a large language learning software company, we noticed that

21

the speech recognition technologies were used in very primitive ways, and engineers in the

company did not have a good understanding of the speech recognition engine. Despite their

willingness to take on new technologies, they were merely ignorant of the existence of the whole

research continent opposite their own continent.

1.2.2 Research works

Computer-aided language learning is a relatively new interdisciplinary field. The mix of

pedagogy, linguistics and computer science creates many different sub-areas for researchers. As

many see speaking ability as the bottleneck for traditional classroom teaching, it rises naturally to

use automatic spoken language technology, which has been researched for over four decades, to

improve students' speaking performance. Pronunciation training thus becomes a prevalent

research topic. A considerable number of papers have been published which experimented with

different models to predict students' pronunciation proficiency, and to give feedback. Some

examples are Goodness of Pronunciation which calculates the likelihood ratio between the actual

pronounced phone and the canonical pronunciation [7], extended recognition network with

phonologically motivated rules that model common pronunciation errors [8][9], and the novel

structure-based model which assesses the structure formed by all the vowels as a whole instead of

every single vowel [10]. These effort, focus on phone level errors. Their goal is to teach a

nonnative speaker to pronounce the sounds as closely to a native speaker as possible. Other

research has investigated sentence level fluency and intonation [11][12]. A system emphasizing

prosody is exemplified by [13] which integrates pitch, phones, timing and stress together. But in

all of these works, the measurements are purely acoustic. The syntax and vocabulary learning are

implicitly contained in the materials that the students read aloud, and the systems do not pay

attention to the verbal content of the students' speech.

It is arguable that poor pronunciation is the major factor that hinders the students' speaking

ability. Even for native speakers, people have accents due to their living environment.

Spontaneous speech is a combination of language composition and speech production in a short

time, and thus we consider the composition ability to have equal importance with the

pronunciation. Nevertheless, in the research area, compared to the amount of research done in

pronunciation training, much less has been done that involves composition ability. Part of the

reason might be, compared to the solid achievement in speech representation, the modeling of

semantics still remains a difficult research problem. There exist, however, a few systems that try

to target composition ability. The flight-reservation domain translation game previously

22

developed in our group is an example. In a translation activity, the students have to express the

meaning using their own words, and spoken translation specifically involves both sentence

composition and speech production. In this translation game, students are expected to give spoken

translation in Chinese of the displayed English sentences related to flight reservations. The game

is very domain specific. It uses a domain-specific grammar to understand the student's speech,

and evaluates the translation based on the domain-specific meaning slots such as source city and

destination city.

HELEN [14][15] is another system that exercises students' composition ability from a more

comprehensive aspect. In this system, authors can input texts, and the system automatically

generates comprehension tests from the text materials. Semantics is involved, so that appropriate

interrogative words can be picked to form questions. Rather than multiple choices, the system

expects answers in natural sentences. The system supports speech synthesis to play back the

questions, but speech recognition is not available. Students must enter the answers through text

input.

Researchers from Kyoto University also developed a system that requires students to form their

own sentences [16]. The system asks the student questions, and the student needs to answer

according to the pictures he sees on the screen. The questions and the sentence patterns that

students practice are based on the lesson points, and the speech recognizer includes models that

try to predict possible errors.

Spoken translation and spoken question-answering provide better exercises than simple reading,

but neither of them is the ultimate exercise people desire for language learning. Students need to

speak more: not to read aloud some given text, but to speak spontaneously; and not to speak

isolated utterances, but to talk in a context. This leads to the obvious answer: spoken dialogue

systems.

The research field of general spoken dialogue systems emerged about two decades ago. People

develop systems in the hope that they can replace human operators in some service industries. In

recent years, statistical methods have gained popularity in the field. Markov decision processes

and Partially Observable Markov decision processes (POMDP) have been the focus of a number

of papers [17][18][19][20]. These approaches turn the dialogue interaction strategy into an

optimization problem. The dialogue manager selects the actions prescribed by the optimal policy;

i.e., the one that maximizes the reward function [21]. This machine learning formulation of the

problem enables the automation of system development. The models are learnt from large

23

amounts of conversational data. Developers are thus freed from hand-coded rules, which require

expertise and are usually difficult to design to cover the entire space. In the Spoken Dialogue

Challenge (SDC) 2010 [22] in which the participants implemented the "LET'S GO" dialogue

systems to provide bus information in Pittsburg, U.S., a dialogue system using POMDP is

demonstrated [23]. Another statistical dialogue system [24] demonstrated in the same challenge

adopted a belief state tracking strategy over multiple dialogue states to achieve more robustness

to speech recognition errors.

However, looking into the spoken dialogue systems for language learning, the situation is

different. The prevalence of data-driven methods and machine learning has reached various

aspects of spoken language processing, but dialogue management for language learning is one

exception. Three reasons can be considered to account for the situation. First, obtaining data is

difficult. Machine learning algorithms rely highly on the amount and quality of the data. The

most preferable data for dialogue management used in language learning would be the

conversations between a nonnative speaker and a native speaker. Apparently, it is very hard and

expensive to obtain such kinds of data, and it might be even harder and more expensive to clean

and annotate all sorts of errors nonnative speakers make.

The second reason is the system behavior. Data-driven statistical dialogue systems relieve

developers from rule-writing, but on the other hand, they keep the human farther from

understanding and controlling their behavior. In a statistical framework, to alter the output might

involve modifying the reward function, the objective function, state transition matrix, etc. [25].

The opaqueness of how the change of one parameter will affect the final output is very

unattractive to language teachers. Better control is preferred in the educational setting, because

language teachers usually have specific pedagogical objectives embedded in the dialogues, which

should be presented in a rather faithful way.

Third, users of general spoken dialogue systems and students using the CALL systems have

very distinct purposes. The former group uses the systems for obtaining information or getting

assistance. They are usually tolerant of minor system errors. For the CALL systems, however,

errors are a serious issue. Students have high expectations of the systems' accuracy, since they

themselves do not have enough knowledge to distinguish the incorrect from the correct in the new

language. Under the assumption that the systems always teaches the correct usage of the language,

errors in the systems would mislead the students, which betrays the purposes of teaching.

24

Therefore, the dialogue management for language learning systems takes very different

approaches which seem out-of-date in the trend of "statisticalization". The simplest case is the

scripted dialogue model, which is now largely used in most of the commercial systems. The

system displays a prompt at each turn, and asks the student to speak the prompt. A later model

shows multiple prompts, but still only one of them is correct. The dialogue proceeds when the

student has successfully spoken the correct candidate. Another variety is that no candidate is

displayed. The student has to compose a response by himself. But since there still exists a unique

correct answer, oftentimes the activity becomes a guessing game and frustrates the students.

An improved version in the research area used a finite state dialogue network instead of the

one-route dialogue, as adopted in Subarashii, a system that teaches Japanese [26][27]. Instead of

one unique correct response, multiple responses are acceptable at a given state, and each transits

the dialogue to a different state. This makes the dialogue more interesting and less scripted, but as

a trade-off, the amount of human effort in creating the dialogue structure increases. In the

Subarashii system, an interface was created to collect pivot dialogue data in text mode. Authors

then use the data to create appropriate finite state networks that model those dialogues. Even

though the four dialogues in the system were very simple, the initial evaluation showed that about

half of the students' input fell out of the designed networks.

Scripted dialogue systems are easily manageable by non-experts. They also have an advantage

in high speech recognition accuracy, because the answer space is extremely limited. Similarly, no

real-time language processing is required, for the system only matches the recognition hypotheses

against the response candidates.

However, the flexibility of the allowed inputs is greatly constrained in the scripted dialogue

systems. Researchers have been exploring ways to allow freer inputs so that the system's

behavior is more human-like, which requires reliable speech recognition, language understanding

and dialogue management modules. To assure high accuracy and good controllability, the

dialogue management is usually rule-based; and to further lower the complexity, the dialogues are

usually goal-directed, and are commonly confined to a pre-defined domain for a given system.

Researchers at CMU have developed a telephone-based bus schedule dialogue system LET'S GO

[28], and adapted it to language learning [29]. The system uses a generic dialogue management

framework RavenClaw [30], which separates the architecture into a domain-dependent "Dialog

Task Specification" layer and a domain-independent "Dialog Engine". A tree of dialogue agents,

each of which handles different dialogue actions, is specified to control the dialogue progress. For

25

language learning purposes, the dialogue system is capable of giving feedback on incorrect inputs,

assuming that a list of correct inputs exists beforehand. The incorrect input is aligned with the

closest correct input, and the difference is emphasized through speech synthesis.

Another language learning dialogue system is the EqualParty system [31], originally

developed under the GALAXY framework [32], which used ordered system actions along with a

set of trigger conditions as a control script. Systems developed using GALAXY include the flight

domain MERCURY [33] and weather domain JUPITER [34], and EqualParty was specially

designed for language learning purposes. The system is called "EqualParty" because there is a

symmetry between the human and the computer sides of the communication, in contrast to

systems where the computer plays the role of an agent. The system generates a persona and time

schedule for the student, and asks the student to negotiate with the system to find a common time

for an activity that they both "like". The system maintains a very specific dialogue component

that handles dialogue turns in this domain. One interesting design of the system is that it divides

the learning procedure into five stages. Assuming the student has no previous knowledge about

the language, the first stage is to eavesdrop on a dialogue between two computer parties, followed

by the second stage of parroting one computer party. As the student gradually progresses, in the

final stage, he will be able to conduct a dialogue with the computer completely on his own. This

five-stage design not only serves as a strategy for language learning, but also helps students learn

about the system and know what is expected, which constrains the inputs from the user side.

Wik and his colleagues have been developing animated avatars to aid Swedish learning. In

their system Ville [35], an avatar teacher guides, encourages and gives feedback on pronunciation

and perception exercises. As a free-standing part of Ville, they also have developed a dialogue

system called DEAL [36]. The system sets up a flea-market scenario with visual displays of the

merchandise. The student's task is to negotiate with the shopkeeper to buy a set of specified items

using the money given. The input is processed through Higgins [37], a spoken dialogue system

that includes modules for semantic interpretation and analysis. The dialogue action is chosen

according to a set of simple rules based on episodic knowledge structure, and certain heuristic

haggling strategies. The uniqueness of this system is that it calls on the student's observation

skills, as pointing out the defects of the merchandise would lead to a lower price.

There are many other sub-areas in computer-assisted language learning. Eskenazi has written

an informative review paper on spoken language technology for education, and specifically for

language learning [38]. Most of the work reveals that spoken language technologies for language

26

learning is a separate research area from general spoken language research. Simply applying the

methods developed for general spoken language application does not suffice, when it comes to

nonnative and erroneous inputs and the demand of highly accurate outputs. It also reveals that

very few systematic frameworks exist for semantically-involved whole systems. Some systems

are adapted from systems built for native speakers, and most only provide one type of activity,

which should not be true, if the modules in the system are truly generic and they are organized in

a non ad-hoc way.

1.3 Thesis outline

The rest of the thesis is organized as follows:

Chapter 2 Computer as a Learning Partner: In this chapter, the functionalities that a

computer system should have in a language learning setting are elucidated. In what aspects can

the computer help us? How can we put the functionalities together in a reasonable and flexible

way? The discussion leads to a framework at the end of the chapter.

Chapter 3 Template-Based Content Creation: Preparing content is a huge job. We try to

move from traditional flat text-based contents to a more compact representation. The

representation also allows the content creator to encode two languages with different word orders

in the same file.

Chapter 4 The First Three Games: Reading, Translation and Question-Answering: This

chapter discusses implementations of full systems, as well as individual components. Using the

framework described in Chapter 2, we design and implement games in which the difficulty level

rises gradually, both for the students and for the developers. Three games are included in the

chapter, alongside their underlying generic modules: parsing, language generation, meaning

rewrite, and context resolution. The details of these modules will be explained, together with how

they are utilized to fulfill the language learning functionalities. The chapter concludes with

system evaluation and a user study.

Chapter 5 Entity-Constraint-Based Dialogue Management: Dialogue management is an

indispensible module for a dialogue game. This chapter introduces a newly designed entity-based

dialogue manager. Applications in the flight-reservation domain and the drug domain are

included.

27

Chapter 6 The Fourth Game: Dialogue: A template-based user simulator and the module for

performance assessment are first introduced in this chapter. A dialogue game is built using these

modules. Based on the real data we collected, methods for improving system performance are

discussed.

Chapter 7 Summary and Future Directions: A final discussion is given.

28

Chapter 2 Computer as a Learning Partner

2.1 Functionalities of a language learning system

Before we begin, we should first ask one basic question. What do we expect the computer to do in

the language learning setting? The answer is rather obvious, and is agreed on by both the

commercial leaders and the researchers: to replace the human teachers. But this answer is very

idealistic. While we are talking about language learning systems, nobody will imagine, at least in

the near future, a school with a computer room and no language teachers to offer English lessons,

or a self-study student to master the speaking, listening, reading and writing abilities solely by

learning with a computer. People clearly realize that the current technologies are not yet adequate

to simulate human behavior in all aspects. That is why the field is call computer-assisted

language learning, rather than computer-based language learning. Thus, a more realistic answer

to our question would be, to replace the human teachers to some extent.

But to what extent? What is the best we can do? To answer this question, we need to first

examine the teacher's job. The human language teacher's job can be summarized into three

aspects: preparing core materials, presenting content, and answering questions.

By core materials, we mean the key grammar points and vocabulary items, sometimes

including a set of example sentences, but not including the exercises. These materials need to be

divided into lessons with increasing difficulty at a reasonable pace, and thus the preparation

requires great understanding of both linguistics and pedagogy. The authors of the textbooks

usually take the larger part in the preparation, and the rest is managed by the teacher in the

classroom. This aspect is almost fully occupied by human intelligence, and there is very little

attempt to have computers involved besides as a typing machine. The core materials presented to

the students need to be very precise and well-selected. It is not surprising that people regard

computers as incompetent in this aspect, since this is far beyond the current advancement of

artificial intelligence.

Once the core materials are designed, the best way to present them depends on the teacher who

actually interacts with the students, and thus varies a lot from teacher to teacher. However,

29

exercises are the common method that most teachers adopt. Well-designed exercises can

implicitly cover new sentence patterns and vocabulary, and can help students memorize the new

materials.

Computer systems have great potential in this aspect. Not only can they display the exercises

created by a human, they should also be capable of generating exercises by themselves, once the

underlying vocabulary and sentence patterns are given. The students can complete the exercises

by typing. But since speaking is the ability that many language teachers emphasize and cannot be

practiced alone, the most rewarding exercise would be having the student answer by speech.

Given that spoken language technologies have been improving over the years, the computer

should be able to handle students' various speech input in natural sentences.

Automatic grading is the other task that comes with exercise generation, for exercise without

grading does not make a lot sense. If the computer can create exercises, judge the correctness,

and give verbal feedback, it then makes the interaction more similar to a classroom situation

where the teacher calls on a student to finish an oral exercise. There should not be only one single

form of exercise, either, for different activities have different degrees of emphasis, which can

help improve students' language proficiency in different ways.

Providing and assessing exercises is not the end of the story. As the ancient Chinese scholar

Han stated "a teacher is the person who transmits wisdom, imparts knowledge and resolves

doubts," [39] being able to answer students' questions is another crucial responsibility of a teacher,

and failure to do so by computers is one major reason why people perceive human teachers as a

better teaching resource than computers. This completely dynamic activity is truly a difficult task

for computer systems. Extremely high-level language understanding must be involved.

Nevertheless, if we simplify the problem a bit, it is possible to have the computers provide clues

or hints dynamically in the exercises. Creating proper scaffolding will make the computer

systems more person-like, and make the students less frustrated.

To summarize, in order to make a computer system more similar to a human teacher, and to

lessen the manual effort by the largest degree, the computer should have the following three

functionalities in a single activity: dynamic exercise creation, i.e., generating dynamic exercise

problems using the given core materials; performance assessment, i.e., judging the correctness of

the answers in one exercise and monitoring the student's performance over time; and assistance,

i.e., giving appropriate clues and hints when the student gets stuck. There is a fourth functionality

implied by these three functionalities: language understanding, whether spoken or written, so that

30

the activities will have natural language interfaces. The student can then see the exercise in

natural language, complete it using spoken natural language, and receive feedback in (spoken)

natural language.

The fifth functionality is that multiple types of activities are desired, such as reading exercises,

translation exercises, and dialogue exercises. The framework should be flexible to extend existing

activities and add new activities, so that different language abilities are practiced, and the students

do not get bored by a single type of exercise.

There are other aspects that help the computer become more human-like, such as incorporating

visual input and building human-like robot teachers. These are beyond the scope of this thesis,

and will not be discussed.

2.2 Speech-enabled architecture with WAMI

Having discussed the desired functionalities, this section considers the architecture of a system

that can potentially fulfill the functionalities. Such a system involves several components, the

speech recognizer, the speech synthesizer, the graphical user interface (GUI) and the language

processing component. To integrate them together, we use the WAMI toolkit [40]. This toolkit

provides easy application programming interfaces (API) to create speech-enabled Web-based

application. It has been successfully used to build several speech-enabled applications, such as

CityBrowser [41], WordWar [42], Rainbow Rummy [43], as well as to enhance existing web

applications with speech capability, such as the Voice Race [44] and Voice Scatter [45] games

provided by Quiziet [46].

Under the WAMI architecture, the speech recognizer, speech synthesizer, and language

processing component run on the server side. The user interface on the client side is typically a

webpage containing a WAMI applet. As illustrated in Figure 2-1, WAMI mediates the

communication of the components. A typical turn starts with the applet on the user interface

capturing the input speech and transmitting it to WAMI. WAMI sends the waveforms to the

recognizer, receives an N-best recognition hypothesis list, and sends it to the language processing

component. The language processing component then produces a response based on the input. If

the response contains a speech synthesis instruction (synthesis dispatch), WAMI communicates

with the speech synthesizer, and sends the synthesized waveforms to the client for playback. If

the response contains a user interface update (GUI dispatch), WAMI updates the webpage on the

client side with proper information. Text inputs and mouse clicks on the user interface are

31

captured and processed in similar ways, except that the speech recognizer is not involved in this

case.

CLIENT SIDE

speech waveform

text inputs

Internet

synthesized waveform
GUI dispatch

syi
w

SERVER SIDE

Speech

Recognizer

recognition hypotheses
text inputs

dispatches (responses)

sis dispatch

Language
Processer

Speech

Synthesizer

Figure 2-1. The system architecture with WAMI, including the client side, the speech

recognizer, the speech synthesizer and the language processer on the server side.

2.3 Three-layer conceptualization

Under the WAMI architecture, the speech recognizer and the speech synthesizer have very

specific functionalities. The functionalities of the language processor, however, vary from activity

to activity. For example, in a reading activity, the language processing is as simple as string

comparison, while in a dialogue activity, complex language processing is necessary to understand

the meaning of the input and generate an appropriate response. To support multiple activities and

have them share similar processing steps, the entire language processor needs to be broken down

into smaller modules. The modules are most desired to be generic in all three dimensions:

language, domain and activity. Language independence enables the possibility of handling both

the student's first language (Li) and the language to be learnt (L2), as well as porting the activity

to other language pairs. Domain independence allows the activity to be extended to other domains

32

of interest without much effort, for example, from a travel domain translation activity to a

restaurant domain translation activity. Activity independence enables the re-use of the modules in

different activities. For example, a language understanding module can be shared by a translation

activity and a dialogue activity.

Nevertheless, since the final system implements a language learning activity that has specific

behaviors for a specific second language, the independence criteria cannot be satisfied by all the

modules. To maximally conform to the independence criteria, we propose a conceptualization

that groups the modules into three layers: the language layer, the meaning layer, and the language

tutor layer, as shown in Figure 2-2.

CotnIeeain efrac

TutorLayerContent generation, performance
assessment, procedure control, etc.

Meaning Layer
Meaning rewrite, meaning comparison,
context resolution, dialogue

management, user simulation, etc.

Language understanding, language
generation, etc.

user

Figure 2-2. Three-layer conceptualization consisting of the language layer, the meaning

layer and the tutor layer from bottom to top. The language layer serves as a natural

language interface. The meaning layer provides semantic processing. The tutor layer

handles application-specific behavior and provides language learning features.

The language layer sits on the bottom. The modules on this layer interact with the natural

sentences in a specific language, and converts them from/to meaning representations. Typical

33

]

modules are language understanding (parsing) and language generation. Though the modules deal

with sentences in a particular language, the modules themselves can be both language- and

domain independent, with the rule files specific in the language, and/or in the domain. This layer

is the closest to the user. It creates the natural language interface for the user, and can be used in

many activities.

In the middle is the meaning layer. The modules on this layer, such as meaning rewrite,

meaning comparison, context resolution, dialogue management and user simulation, work with

meaning representations, and thus are language-independent. The domain dependency again can

be enforced by domain-specific configuration files, so that the modules remain domain

independent. As the modules on this layer usually provide general language processing

functionalities and are not designed for one particular language learning activity, they can be

potentially used by different activities in a flexible way.

Table 2-1. Independence properties of the language layer, the meaning layer and the tutor

layer.

Language Domain Activity
Layer

Independent Independent Independent

Modules Maybe Maybe No

Tutor

Layer External Maybe Maybe No
rules/configuration

Modules Yes Yes Yes

Meaning

Layer External Yes No Yes
rules/configuration

Modules Yes Yes Yes

Language

Layer External No No Yes
rules/configuration

34

As we can see, the language layer and the meaning layer are general-purpose; they can be used

to create systems for purposes other than language leaming. The top layer, the tutor layer, covers

modules that are uniquely required for language learning systems. The modules include content

creation, performance assessment, as well as procedure control of the activity. These modules are

mostly activity-dependent, and some are domain- and language-dependent. Table 2-1 summarizes

the independence properties of the three layers.

2.4 Implementation with turn manager

The three-layer conceptualization is implemented using a turn management framework. This

framework evolved from the GALAXY II framework [47], in which a central hub communicates

with various components in the system, including a turn management component, which in turn

runs from a set of dialogue control rules. The new turn manager consolidates the hub and the

former turn management, and uses a control scripting language to replace both the hub's PGM

(program) script and the original turn manager's control rules.

In the turn management framework, a turn is defined as the period between when the turn

manager receives a message and when it sends out the return message. Usually, the message is a

representation of the user's input, and the return message is the system's response. The message

is processed through a list of operations provided by various modules, with an order dictated by

the dialogue control (DCTL) script. The turn manager maintains two shared states: a turn state

that transmits information between operations in one turn, and a session state which stores global

variables of an entire session.

{ c statement

:topic { q pronoun

:name "this" }
:pred { p copular

:topic { q frame

:quant "indef" } } }

Figure 2-3. An example Galaxy frame, which represents the semantic meaning of the

sentence "this is a frame."

Both the control script and the turn/session state are coded in the Galaxy frame format. Figure

2-3 shows an example Galaxy frame. Details of the format can be found in [47]. In short, a

35

Galaxy frame is enclosed by a set of curly braces, and starts with its type followed by its name.

The type can be one of the following three types: "c" for clause, "p" for predicate, and "q" for

topic (quantified set). The content of the frame includes two types of elements: predicates and

keys. A predicate is a p-type frame led by a ":pred". Multiple predicates are allowed in one

Galaxy frame. A key has a name and a value. The name can be any string that starts with a colon

except the special key, ":pred", and the value can be an integer, a string, a double, another Galaxy

frame, or a list of any of the above value types. In the example, ":topic" is a key of the statement

frame, and ":name" is a key of the pronoun frame. Only one instance of a given key can appear in

a frame. In the rest of the thesis, the term "frame" will be used to denote Galaxy frames.

Figure 2-4. An example DCTL script to parse and paraphrase an input sentence.

36

{c dctl
:initial-frame {c frame

:domains "newPhrasebook"

:languages "english" }
:rules ({c rule

:variables {c variables

:rules ":parseandparaphrase" }
:operation "subroutine_call" })

:parse and paraphrase

{c rule

:conditions ":input string"

:variables {c variables

:input-key ":inputstring"

:domain "newPhrasebook"

:outputkey ":parse_frame" }
:operation "createframe" }

{c rule

:conditions ":parse_frame"

:variables {c variables

:input_key ":parse frame"

:domain "newPhrasebook"

:language "english"

:outputkey ":paraphrasestring" }
:operation "paraphrase-frame" }) }

:rules (
{c rule

:conditions ":x"

:variables {c variables

:rules ":then" }
:operation "subroutinecall" }

{c rule

:conditions "!:x"

:variables {c variables

:rules ":else" }
:operation "subroutine-call" }

:then

:else

(a) Branch

:rules (
{c rule

:variables {c variables
:set ":counter 0" }

:operation "nop" }
{c rule

:variables {c variables
:rules ":Ioop" }

:operation "subroutine-call" })
:loop

{c rule
:variables {c variables

:counter key ":counter" }
:operation "incrementcounter" }

{c rule
:conditions ":counter < 10"
:variables {c variables

:rules ":loop" }
:operation "subroutine-call" })

(b) Iteration

Figure 2-5. Branch and iteration using the DCTL script.

The turn state and session state are represented by two frames. Each key in the frame denotes a

variable. A new frame for the session state is created upon a new session. It maintains all the

global variables, as well as a finite history list of some important state variables. A new frame for

the turn state is created in the beginning of each turn, and the entire frame is destroyed at the end

of the turn.

The control script DCTL consists of two parts: an "initial frame" and lists of ordered rules.

Figure 2-4 gives an example DCTL script which parses and paraphrases an input sentence. The

initial frame specifies the arguments for the turn manager. A full list of the valid arguments can

be found in Appendix A.

The rules are grouped into several lists, with the root list led by the key :rules. When a turn

starts, rules in the root list are executed sequentially. Each rule contains three basic

37

elements: :conditions, :variables, and :operation, which indicate the conditions to trigger the

operation, the arguments of the operation and the name of the operation. An operation can be

viewed as a handler provided by a specific module. Some special control operations initiate

subroutine calls, which load another list of rules led by the specified key, and run the rules in the

new list sequentially. Upon finishing, the program will restore the original rule list and the

position that has been run through, and start from the next rule.

The DCTL script provides a powerful and flexible capability to organize the operations to

perform desired functionalities. Like traditional programming languages, branch and iteration can

be realized, as illustrated in Figure 2-5. The framework also allows rule lists in one DCTL file to

be shared with a second file using a key :insert_files in the top level of the second file. This

capability allows multiple systems to share common subsets of rules defining macros.

2.5 Summary

In a language learning system, the computer needs to fulfill three functionalities: creating

exercises, assessing student's performance, and giving proper assistance. To automate all these

three aspects, deep speech and language processing is indispensable. Furthermore, the processing

needs to be properly modularized, so that new activities can take advantage of the existing

modules to reduce the development time.

We use the WAMI toolkit to construct the overall system architecture with a Web-based user

interface, speech recognizers, speech synthesizers and a language processor. Within the language

processor, a three-layer conceptualization is introduced to abstract the processing procedure. The

language layer takes in a natural text input, which can be the recognition hypothesis, and converts

it into a meaning representation. The meaning layer then performs processing on the meaning

level, such as meaning comparison, context resolution and dialogue management. The result of

the meaning processing enters the tutor layer for application-specific handling, such as game

control and performance assessment. The system's responses then go down to the meaning layer

and the language layer to be transformed into natural sentences. Components on different layers

have different language-, domain- and activity independent properties. In short, components on

the language and meaning layers are easily sharable among different language learning activities.

The tutor layer contains components that tend to be activity-dependent.

The three-layer conceptualization is implemented in the turn manager framework. In this

framework, handlers are provided by various modules as operations, and a scripting language is

38

utilized to instruct the turn manager of the order of the operations. The scripts consist of

conditioned rules organized into lists, and this makes the framework much easier to maintain than

its ancestor framework. The operations and modules are easily extendable as well, so that

different systems can have their unique behavior by combining existing common modules and

application-specific modules.

Having discussed the architecture and the three-layer conceptualization, now we will begin to

discuss the modules on the three layers in more detail. We will start with content creation in the

next chapter.

39

Chapter 3 Template-Based Content Creation

The contents of the exercises are the meat of any language learning system. Although new

technologies in speech and language can help more students learn better and faster, they are

merely equations and algorithms without contents, and will not transfer into any real systems.

Contents come from various sources. Existing textbooks can be a good source. Alternatively,

many commercial companies and research groups ask experienced language teachers to create

contents specially designed for the particular systems. In either way, a reasonable representation

is necessary to store the contents in computer files for system access. This chapter discusses using

templates to represent the contents. Several improvements are proposed for the template-based

approach to handle non-context-free content generation and bilingual content generation.

Methods to generate contents in a lesson mode which gradually introduces new materials are also

discussed.

3.1 Template representation of contents

In many language learning activities that focus on sentence structure and composition ability,

contents appear in the form of phrases and sentences. For example, students are asked to read

sentences in the reading activity, or to translate sentences in the translation activity. The sentences

contain important grammar points, which are usually sentence patterns, as well as vocabulary of a

specific level. One can imagine the formation of such sentences as filling the vocabulary into the

sentence patterns, and thus templates have been used to represent the contents in some of the

previous systems [48] [49].

Figure 3-1 shows an illustration of the template representation. The template on the top

represents a sentence pattern. The two slots in the template are associated with different

vocabulary choices. This template is able to generate six distinct sentences.

The template representation is not restricted to a two-level hierarchy. Sub-templates can be

introduced to create intermediate levels. The sub-templates and the vocabulary can then be shared

by multiple super-templates, which makes the templates similar to a context-free grammar (CFG).

40

To encode such multi-level templates, we use the GALAXY frame format, shown in Figure 3-2.

In this format, each key defines a sub-template list, and a special key :templates introduces the

root template list. Within each template, tokens starting with a colon indicate a slot, which should

be instantiated with a corresponding sub-template.

They _ (not) like _ (sports).

0 don't swimming playing tennis jogging

They

They

They

They

They

They

like swimming.

don't like swimming.

like playing tennis.

don't like playing tennis.

like jogging.

don't like jogging.

Figure 3-1. A template representation of content consisting of two levels.

Figure 3-2. Multi-level templates written using the GALAXY frame format.

This template representation is compact and simple for non-experts to compose. The root

template list can be instantiated into an exponential number of unique sentences via

straightforward algorithms, which can be used to generate both the exercise contents and training

corpora for language models. However, this simple representation has its limitations. In the next

two sections, we discuss improvements over the simple template representation to achieve a more

powerful representation.

41

{c template

:templates

"They :not like :sports ."

":ballsports is his favorite sport."

:not ("" "don't"

:sports ("swimming" "playing :ball sports" "jogging")

:ballsports ("tennis" "soccer" "basketball") }

3.2 Non-CFG templates

As mentioned above, the templates resemble a context-free grammar, i.e., the instantiations of the

slots in a template are independent of each other. Nevertheless, the context-free property prohibits

the representation of certain contents. Consider the following two templates.

I was born in :city. In other words, :city is my hometown.

I'm going to :city from :city.

In the first template, the two occurrences of :city should be instantiated into the same city,

while in the second template, they should be different cities. To produce the desired sentences, a

context is necessary during the instantiation to record the instantiation of each sub-template. To

distinguish the equivalent instantiation, i.e. the first case, and the distinct instantiation, i.e. the

second case, a syntax is created such that equivalent instantiation is adopted by default, and the

distinct instantiation is denoted by a one-digit suffix of the slot. According to the syntax, the

distinct instantiation is expressed as follows. Note that :city] and :city2 are both instantiated from

the same sub-template list, with the added constraint that they cannot be the same value.

I'm going to :cityl from :city2.

We also observe the difficulty in capturing the correct inflections and agreements in languages

like English, due to the hierarchical structure. To provide an easy fix for these templates, a set of

rewrite rules are allowed to perform final amendments on the instantiated sentences. Figure 3-3

exemplifies two solutions to produce sentences with correct subject-verb agreement by creating

separate sub-templates for singular verbs, and by using the rewrite rules.

Following is the algorithm outline to generate a sentence from the non-context-free templates.

A context is created and used to record all existing slot instantiations for the template in order to

handle the equivalent instantiations and distinct instantiations.

1. Create an instantiation context c.

2. Randomly pick a template t from the root template list.

3. Find the first slot s in t, and instantiate it according to context c; or if s does not exist

in c, replace s with a randomly item v from the corresponding sub-template list, remove

v from the sub-template list, and record (s,v) in c.

4. Repeat Step 3 until no slot is left in t.

5. Apply rewrite rules on t.

42

Figure 3-3. An example of utilizing separate sub-templates and rewrite rules to fix verb

inflections.

3.3 Bilingual templates

Oftentimes when preparing the contents, bilingual contents are useful. Consider a reading

exercise where the student is asked to read a list of sentences in L2. It is useful if the L2 sentences

are paired with Li sentences, so that the students can easily be provided with a translation of what

they are reading. Bilingual sentence pairs can also be used directly to create activities such as pair

matching, where the sentences in two languages are shown on two sides of the screen, and the

students need to match those with equivalent meaning together. Therefore, it would be helpful if

the templates can encode contents in two languages, and instantiate bilingual sentence pairs

simultaneously.

The straightforward idea is to replace the monolingual strings in the template with bilingual

strings. We use a vertical bar as a separator between the two languages, and parentheses for

appropriate grouping. Figure 3-4 is a bilingual version of the templates in Figure 3-2. These

templates can generate the following sentence using the algorithm described in the last section.

(They / ff/17/) (don't | F) (like | fff{) (playing | fT) (soccer | A J$).

A bilingual sentence pair can be easily formed by picking apart the left and right item of each

group. After applying the rewrite rules to the left language and the pair rewrite rules to the right

language, we have the following sentence pair.

43

{c template

:templates

":pronoun is a student."

":pronounthird :verbsg ."

":pronounother :verb .")

:pronoun (" :pronounother" ":pronoun-third")

:pronounother ("I" "You")
:pronounthird ("He" "She"

:verb ("walk" "run" "sing" "dance"

:verb sg ("walks" "runs" "sings" "dances"

:rewriterules ("I is" "I am"

"You is" "You are") }

Figure 3-4. A bilingual version of the templates in Figure 3-2.

{c template

:templates

"(They | Ithff'1) :timeR (won the game | j T LL#) :timeL ."

:time ("yesterday | FFY" "last week I ±J?]") }

Figure 3-5. An example of bilingual templates with word order differences.

They don't like playing soccer.

This syntax assumes the two languages follow the same word order, which is rarely true. For

example, the underlined temporal phrases in the following pair appear at different positions.

They won the game yesterday.

f f/7 H9 7 bbo .

We need a way to express the different word orders that is both easy and effective. Suffixes _L

and _R are introduced to solve the problem.

The two suffixes stand for the instantiation of only the left/right language for this blank,

leaving the other side empty. As shown in Figure 3-5, :time_L and :time_R are put in different

positions. The immediate instantiation result would be the following sentence.

44

{c template

:templates

" (They | 4taff) :not (like I 4X)) :sports ."

":ball sports (is I A) (his favorite sport | t i (J i) ."

:not ("" "(don't | T)"

:sports ("(swimming I M) " " (playing I fT) :ball_sports"

"(jogging I RI/) "

:ballsports (" (tennis I IlI)" "(soccer j ,j)"

"(basketball I i])")
:pairrewriterules (" ,T I4" "1 JE") }

(They| f/ 7) (/ | X) (won | ,40 T) (the game | b'N) (yesterday /).

After picking apart the two sides, we have the sentence pair with correct word orders.

The syntax with _L and _R is very simple, yet adequate to describe complex reordering

between the two languages. Figure 3-6 illustrates an example which can generate sentence pairs

with very different word orders.

{c template

:templates

":adjunctL (He I) :adjunct R (wants I) :todo"

:adjunct (":conjL :action :conjR (, |)")

:conj (" after I) " " before I 'Hi"

:action ("graduation I $l-A\ " " work I IF")

:to_do ("(to I) :to placeR (travel | 1IA1) :to_place L")

:to_place ("(to |)(China | ±I) ") }

After graduation , he wants to travel to China .

Figure 3-6. A more complex example of bilingual templates with word order differences.

3.4 Templates with lessons

3.4.1 Organizing templates into lessons

Having the ability to generate both monolingual sentences and bilingual pairs from the templates,

now we consider how to improve the organization of the templates and sub-templates. In

traditional textbooks or exercise books, materials are usually divided into lessons. Earlier lessons

introduce easier contents, and later lessons add more complexity and difficulty. We would like to

organize the templates in a similar way, so that, when instantiating the templates, it is possible to

control the difficulty of generated sentences, and to have them contain patterns and vocabulary at

the appropriate level in a frame.

45

Figure 3-7. A template frame with two lessons.

To implement this idea, we group the templates into lessons, with each lesson having its own

root template list. Figure 3-7 shows a template frame with two lessons. The sentence pattern of

lesson two is more complex, but the vocabulary overlaps with the previous lesson. This is a

common situation. Thus, we designed the algorithm so that later lessons can have access to the

sub-template lists introduced in the previous lessons. In addition, later lessons can augment an

existing sub-template list. In the example, two more sports and three more ball sports are

introduced in the :sports and :ball-sports lists respectively in lesson two. They will be combined

with those already defined in lesson one. Therefore, the following sentence is a possible

instantiation of the template in lesson two.

He prefers swimming to playing baseball.

But at the same time, earlier lessons retain their smaller size of vocabulary, and thus it is not

possible to generate either of the following sentences from lesson one.

They like yoga.

Table tennis is his favorite sport.

46

{c template

:lessonl {c template

:templates (

"They :not like :sports ."

":ballsports is his favorite sport."

:not ("" "don't"

:sports ("swimming" "playing :ball sports" "jogging")

:ballsport ("tennis" "soccer" "basketball") }

:lesson2 {c template

:templates (

"He prefers :sportsl to :sports2 ."

:sports ("yoga" "ballroom dancing")

:ballsports ("baseball" "volleyball" "table tennis") } }

3.4.2 Blending lessons

In real activities, for example translation, a set of exercises consists of multiple sentences. We

would want the sentences to be generated from the specified lesson, but sometimes also cover a

certain amount of review materials. This section discusses a blending method to achieve this

purpose and maximize the coverage of the materials given a fixed number of generated sentences.

Given a lesson K, to generate a sentence, a template is selected from all the possible templates

based on the weights defined below

Wk K-k 1 k K (3-1)
0 k>K

Where k is the lesson index in which the template is defined, and a is a fading coefficient which

takes value between 0 and 1. Thus, templates defined in lesson 1 up to lesson K have non-zero

weights, and the more recent lessons have larger weights. By adjusting the coefficient a, we are

able to control the proportion of review materials we want in the generated sentence set. The

weights also apply to the sub-templates, which means that the sub-pattern and vocabulary

introduced in more recent lessons are more likely to be chosen as the instantiation than the older

ones. This is desired, since we want the student to focus more on the new vocabulary.

On the other hand, given a fixed number of sentences in one exercise, it is preferred that the

sentences cover as many patterns and as much vocabulary as possible. We want to avoid the

situation where one particular template repeatedly occurs, and the student loses the chance to be

exposed to other templates. The algorithm used in previous systems assigns uniform probability

distribution over all the templates in one template list. We modified the algorithm to adjust the

probabilities according to the number of times the particular template has been chosen.

Equation 3-2 shows the detailed calculation of the probability assigned to template t in a

template list L, where # is a coefficient ranging from 0 to 1, and c(-) is the count of template ti

being previously chosen. The more times it has been chosen, the less likely it will be to choose it

again, so the counts for all templates will be more balanced.

gpc(t)
P(t) = (3-2)

iet flc(t')

Combining Equation 3-1 and Equation 3-2, we have the complete probability calculation for

each template t in template list L, which originally defined in lesson k, when the current lesson is

K.

47

)= w(k)ftc(t)

LitLw(ki)flc(ti)(3)

w(k)=aK-k 1 k K
0 k > K

When instantiating a template, the sub-templates are drawn according to their probability

distribution, so that students are more likely to see patterns and vocabulary they have not seen in

previous sentences. In actual applications, coefficients a and p are both set to 0.5. Thus the

generation output consists of approximately half review materials and half new materials.

The following gives a brief algorithm for generating n sentences from lesson k of a template

frame.

1. Blend the templates from lessons 1 to k.

2. Initialize a count array for every template list.

3. Create an instantiation context c, randomly pick a template from the root template list,
and instantiate it with lesson weights and count arrays.

4. Update the count arrays according to the records in context c.

5. Repeat Step 3 and Step 4 for n times.

3.5 Summary

Creating contents for language learning systems is no easy job. Small amounts of contents would

result in frequent repetition while students use the system, but on the other hand, the task of

content creation becomes very tedious when the amount of contents increases. We consider part

of this problem to lie in the representation of the contents. With a better representation, the human

effort should be able to be reduced.

We use the template representation to encode the contents. Several improvements have been

introduced to allow the templates to represent more flexible contents. Non-context free templates

are enabled by using an instantiation context and rewrite rules. We also invented a simple left-

right suffix syntax to encode bilingual contents in a single template and to efficiently address the

word order differences in the two languages.

For use in language learning systems, the templates are organized into lessons. Sub-templates

defined in previous lessons are sharable with the later lessons. The instantiation result of a

particular lesson consists of materials from this lesson, as well as review materials from previous

lessons. The expectation of the ratio of new and review materials is controlled by a fading

coefficient. The instantiation algorithm also adjusts the probability distribution of the items in a

48

template list according to the number of times they have been chosen, in order to have the

generated sentences cover a larger set of patterns and vocabulary more evenly.

In the next chapter, the templates will be used to provide contents for the language learning

systems. Three systems will be introduced: the reading game, the translation game, and the

question-answering game.

49

Chapter 4 The First Three Games: Reading,

Translation and Question-Answering

We have talked about the architecture and conceptualization in Chapter 2, and the contents in

Chapter 3. This chapter concerns the task of building real systems. But what kind of systems do

we want to build? To build systems that help the student learn a second language means two

things. First, the system provides educational materials. Second, the system attracts the student.

The second point is not trivial, for only if students are motivated to use the system for a long

enough period of time can the carefully designed educational materials be of real use. The new

technologies behind the system can potentially be of value, but the form in which the students

learn is equally important. Presenting the exercises as a test is not very interesting, since tests

usually imply stressfulness and strict rules. To make the learning process more fun and relaxing,

we consider games as a good way to present the exercises.

In a game, the player's performance is usually measured using game points. Although a score

is also produced for tests, the ideas behind the scores for a test and for a game are rather different.

The score of a test usually have an upper-bound. If a test is taken twice, the two scores are not

additive. However, in many games, there is no upper-bound of the game points. Scores from

different game plays can be cumulative, which gives the players motivation to repeat the game -

the game points never decrease by playing more. We consider this as important, for motivation is

the most important factor [50], so that the students would use the system and learn by using.

Another common feature of games is levels. Players are usually confronted with easy tasks in

initial levels, and the complexity gradually increases in later levels. This goes well with the

design of difficulty-graded lessons.

With the game points and levels, performance assessment can be incorporated smoothly. We

divide the assessment into two parts. Utterance-level assessment offers judgment, for example, of

whether the translation spoken is correct or not, while the overall assessment measures the

performance over a longer period of time, e.g., a round or multiple rounds. The game points and

50

levels fit well into the overall assessment: when the student performs well enough for several

rounds, he should be able to collect enough points to progress to the next level.

Using this idea, we design a series of language learning games using the architecture described

in Chapter 2. All the games are web-accessible and speech-enabled. All the processing is done on

the server side. The student only needs a web browser to access the systems.

The games cover a wide variety of activities, and provide exercises for different students from

advanced beginner level, i.e., knowing some basic knowledge of the language, to intermediate

level, who have two or three years of experience with the language. As mentioned in previous

chapters, the games focus on the student's composition and comprehension abilities, rather than

pronunciation accuracy. The vocabulary build-up is inherent in the contents; as the student is

exposed to more materials, the vocabulary size should increase accordingly.

The four games are designed in such a way that, within each game, multiple difficulty levels

are provided, and across the games, a gradual increase in difficulty is provided, where each game

prepares the student for the next one. For advanced beginners, we would like the students to learn

the pronunciation of the words, and obtain some impression about the sentence structures and

vocabulary in the language. Thus, we design a reading game as the first game, where the student

is only asked to read out aloud the displayed L2 text. When he is able to read sentences fluently,

he then moves on to the second game, translation, where he needs to come up with the sentences

in L2 by himself, by using the prompt in Li. In the third game, question-answering, the LI

prompt is further eliminated. Listening exercises are also included. The student is presented with

texts in L2, and is required to understand both the texts and the spoken questions in L2, and then

provide a spontaneous answer. After the student is able to listen and answer well in the third

game, he is challenged in the last game, dialogue, to complete a multi-turn dialogue with the

system. A dialogue task is given, and natural dialogue interaction is expected with the system to

accomplish the task. Successful completion of this game demonstrates that the student is able to

communicate on this topic through speech.

In this chapter, we describe the first three games in detail, together with the critical technical

solutions to generating reference translations, judging translations, generating questions and

judging answers. The dialogue game will be described in the next two chapters. All the games are

demonstrated in a setting of Chinese learning for English speakers, but, as we will see, the

approaches can be used in other language pairs because of the language independence properties

of the modules.

51

+ people.csail.mitedu\.i i. lation htrrI

Icomprekended it as: feiji.
Lcomprekeaneditas: 1fA e
User, -M1
system: Congratulations!
Icopnrelenied-it as: shtin if canguin bi6 yuin.

Send inpt

reading

Give If you want to give up on the rest of the senterces, click the Give Up button,

Utterance List

Hel2p . ~t * O ~f . M T t 4I

(W] 3. The beach is not far from the restaurant

Reference: felj winduin le liung ge bAn xigoshi

the plane is two and a haff hours late

INSTRUCTIONS:
Record your speech by HOLDING down the green recording button.
Click the associated Help button for any utterance to access help.
You can also type your sentence using Pinyin into the input box. E.g. ni3 hao3 ma.5 (t will attempt to repair tone errors)

Figure 4-1. A screenshot of the reading game in the middle of a round. The sentence that

has been read correctly is marked with red and displayed in English. A demonstrative video

is available at http://people.csail.mit.edu/seneff/scillreadinggame.wmv.

4.1 The reading game

4.1.1 Game overview

Our concept of the reading game builds on the assumption that the beginner student has certain

initial knowledge of the L2 language. Given a sequence of spellings (Pinyin representations in the

case of Mandarin Chinese), the student is able to produce some pronunciations, though not

necessarily correct pronunciations. The reading game helps the student practice the pronunciation

through listening to the synthesized speech and reading aloud the given text. It also helps the

student get a sense of the sentence structures and accumulate simple vocabulary in L2 by

providing parallel sentences and grammar points in LI.

52

Figure 4-1 shows a screenshot of the reading game. The game task is very simple. In each

round, the system presents the student a list of sentences which are randomly generated from the

corresponding lesson templates, and the student tries to read off each of the sentences. To make

the system appear more flexible, the student is allowed to read the sentences in arbitrary order.

The speech recognizer is not constrained to recognize only the sentences displayed, either. Once a

sentence is correctly pronounced, the system gives praise and flips the display of the sentence to

its parallel counterpart in Li.

When difficulty is encountered, the system provides assistance by synthesizing the specified

sentence, as well as displaying an equivalent sentence in Li, and/or other helpful information for

pronunciation and understanding. A "give up" button is also available for the student to quit in

the middle of a round.

Figure 4-2 illustrates the system diagram. The reading game is a rather simple system in the

sense that it does not involve the meaning layer. In initialization of each game round, the content

generator generates a list of sentences for the current round as the game sentences. In every game

turn, the student's utterance is sent to the performance assessor. The result from the performance

assessor goes to the game controller to produce a system act. The language generator is used to

generate both a system's response and an updated GUI encoded in HTML, based on the game

sentences in the initialization stage, or the system act in each turn.

Tutor Content Game Performance
Layer Generator Controller Assessor

Meaning Game System
Layer sentences Act

Language Language Generator
Layer Eor

System's response HTML Student's
(synthesis dispatch) (GUI dispatch) utterance

WAMI Interface

- - - Game round initialization

Game turn

Figure 4-2. System diagram of the reading game.

53

4.1.2 Contents

The contents of the game are generated from templates described in the previous chapter. There

are three choices of the language used to compose the templates: LI, L2, or parallel LI and L2.

Bilingual templates are slightly more complex to prepare than monolingual templates. However,

in order to generate both the L2 sentences for the student to read, and the LI sentences for the

student to understand the meaning, using monolingual templates would require an extra

translation step to obtain the corresponding sentences in the other language. The advantage, on

the other hand, is that the person who prepares the templates can be a monolingual speaker.

Particularly, if the templates are in L1, the student himself can potentially be the content provider,

and thus the contents can focus on whatever he is interested in.

As a result, we allow two choices of the template language: Li or parallel Li and L2. For

bilingual templates, the Ll side of the generation outputs is displayed to the student for reading,

and the L2 side for the parallel sentences. For templates written in LI only, we need a method for

automatic translation. We will leave the discussion of the translation method in the section on the

translation game.

4.1.3 Assessment

The utterance assessment of the reading game is very straightforward: string comparison between

the student's utterance and the list of displayed sentences. The utterance assessment outputs one

of the following three options: a match if one of the unmatched sentences in the list is matched

with the student's utterance; a repeat if the student's utterance matches one that has already been

correctly spoken; or a none if no match is found.

When a game round is completed or aborted, a round score is computed to reflect the student's

performance in this round. The score is based on three factors: the number of sentences

completed, the number of turns the student took, and the number of times the student asked for

assistance. If all sentences are completed, each took only one turn, and no assistance is accessed,

a score of 100 is given. The exact round score R is calculated using the following Equation 4-1,

where n is the number of sentences in each round, t is the number of turns the student took for the

sentence, and d is the maximum turns allowed for a sentence in order to obtain some points.

54

100 min (0,d-t+ 1)
R=n d (4-1)

sentence
completed

The round score R translates to an increment of the overall points AP using Equation 4-2,

where b is the break-even score, or the pass score. A round score below the break-even score

results in a deduction in the overall points.

100(R - b) R b

AP = 100 - b (4-2)
100(R - b) R<b

b

The overall points are accumulated across multiple rounds. When enough points have been

collected, the student is advanced to the next level, which corresponds naturally to the next lesson

in the templates. Equation 4-3 defines the level adjustment AL, where m is the number of root

templates in the current lesson, and n is the number of sentences in each round. AL is correlated

with m, so that lessons with more contents require more rounds to complete. In the case that the

overall points are negative, AL is set to -1, meaning that the system should lower the level by one.

m
1 A P - -100

n
AL =m (4-3)

0 0 < AP < -- 100

-1 AP < 0

4.1.4 Game control

The game control module takes in the results that the assessment module produces, and outputs

the system act. Three system acts are defined.

Correct: when the utterance assessment result is match, and there is at least one sentence in the

round that has not been matched. The correct act produces a praise response, such as "good job"

and "well done", and replaces the matched sentence in the user interface with its parallel sentence

in LI, so that the student can understand the meaning.

Repeat: when the utterance assessment result is repeat. This act produces a prompt to indicate

that this sentences has already been completed.

Newround: when all the sentences are matched. The system shows the round score R, and

adjusts the level according to AL. A preview of the next round is generated, and the student is

asked whether he would like to try another round.

55

The reading game is a very simple game. It, however, verifies the feasibility and easiness to

use the proposed framework and architecture to build speech-enabled language learning systems.

It also serves as a basic prototype for more complex systems. As we will see in the next two

sections, the design of the translation game and the question-answering game is very similar to

that of the reading game. By incorporating more modules on the meaning layer, the reading game

can be extended to much more complex games.

4.2 The translation game

4.2.1 Game overview

When the student is familiarized with the pronunciation, as well as some simple sentence

structures and vocabulary in L2, the next activity we provide is translation. In the translation

game [51], the student's task is to provide sentences in L2 with an equivalent meaning of the Li

sentences displayed on the screen. This task imposes difficulty on the student in that the student

has to memorize the corresponding L2 vocabulary, and to come up with a grammatical L2

sentence. It puts challenge on the system, too, for there is no unique correct answer for translation.

The utterance assessment is much more complicated than that in the reading game. Furthermore,

providing assistance becomes more complicated as well. It is easy to offer assistance in the

reading game, because the pronunciations of the words can be looked up in the dictionary easily.

In the translation game, however, the student might want to ask about the translation of a portion

of a sentence. To prepare a translation for every word and phrase appearing in the sentence list is

tedious and almost impossible. Thus, an automatic method is necessary.

Figure 4-3 shows a screenshot of the translation game. The interface is very similar to that of

the reading game, except that the game sentences are shown in Li. Since an automatic translation

component is necessary anyway, the templates used in this game are monolingual, more

specifically, in Li. In practice, the translation game and the reading game can share the same

templates, so that there is a smooth transition from the reading game to the translation game for

the students.

As in the reading game, the student is allowed to provide translations of the game sentences in

any order. The system judges the correctness of the translation against the sentence list. To

minimize the impact of mis-recognition. The system first echoes and paraphrases the student's

56

translation to tell the student what it thinks the student said. It then provides a translation back

into Li, so that if the translation is incorrect, the student can have a clue of the mistake. If the

student's translation is correct, an encouragement is given and the matched sentence is marked.

At the end of the round, the system computes a round score and the level adjustment in the same

way as it does in the reading game.

4 d & people~csal.mnit.edu/ us ilaraon htroil

systemn: Congratulations!

It means: I don't like this.
I comprehended it as: wo ha xhuan zhs g.
I_compreheniled-it as: tt T30 ig -1t ,
User: A T -IZ 4 tvI

Send

Gve UIf youwant to give up on the rest of the sentences, click the Give Up button.

Utterance List

1. The restaurant only serves breakfast and lunch

2. It is very cheap

3. I don't like this

4. I don't like to watch tennis

5. Do you like this

Reference: cinguin zbi g6ngying ziocin h wncn.

the restaurant only serves breakfast and lunch

INSTRUCTIONS:
Record your speech by HOLDING down the green recording button.
Click the associated Help button for any utterance to access help.
You can also type your sentence using Pinyin into the input box. E.g. ni3 hao3 ma5 (It will attempt to repair tone errors)

Figure 4-3. A screenshot of the translation game in the middle of a round with reference

translation for the first sentence. Red marks the sentence that has been completed. A

demonstrative video is available at

http://people.csail.mit.edu/seneffscill/translation game.wmv.

Two kinds of assistance are provided in the translation game. The first is similar to the

assistance function in the reading game. The student can click on the "help" button associated

with each sentence to see and hear a reference translation. The student can also ask for a

translation of a word or a phrase by typing the Li words into the input box.

57

4.2.2 Parse-and-paraphrase paradigm for automatic translation

One of the important capabilities of this system is to automatically generate translations to help

the students. Although many statistical machine translation (SMT) methods [52], [53], etc., have

been developed and proved quite efficient in the past decades, this domain of interest is different

from the domains in which SMT techniques are usually developed. Errors are not tolerable when

the automatic translations are used as teaching materials for the student. Besides, for our system

is mainly targeted at low-level learners, we can expect that the sentence structures are relatively

easy. Thus, we adopt a parse-and-paraphrase paradigm for automatic translation.

The parse-and-paraphrase paradigm has been successfully used in the previous domain-specific

version of the translation game [48]. The basic idea is to decompose the translation process into a

parsing step and a generation step, interfaced via an interlingua. In our system, this is realized

using the language understanding module TINA [54], and the language generation module

GENESIS [55]. TINA is a context-free grammar (CFG) parser augmented with non-context-free

features such as traces (overt movement restoration), verb-arguments, and other features to

improve parsing efficiency on bottom-up languages [56]. Statistical models are trained for the

temporal-spatial structure of the parse tree, so as to decide the most likely parse among the

ambiguous parses. TINA produces a parse tree and later converts the tree structure into a frame

representation, called a parse frame. The parse frame contains a mixture of syntactic and semantic

information, and discards the temporal word order in order to be more source-language-

independent.

GENESIS, on the other hand, reads in a frame and produces a string according to a set of

generation rules and a lexicon. With proper rules and lexicon, GENESIS is capable of producing

strings in natural languages, as well as in formal languages such as HTML. Figure 4-4 illustrates

the parse-and-paraphrase paradigm. When the input is in English, choosing the English

generation rules results in an English paraphrase. If the Chinese generation rules are used instead,

the output string becomes a Chinese translation.

With carefully tuned parsing grammar and generation rules, the parse-and-paraphrase paradigm

is able to produce translations with good quality. This paradigm also allows an easy generation of

grammar points together with the paraphrase/translation. Because the generation is produced by

stepping into each constituent (subframe) in a specific order, the grammar points can be encoded

into the generation rules of certain constituents, or in the lexicon of a certain vocabulary item. An

58

example is shown in Figure 4-5, where the raw generation output has a grammar point (hint)

embedded. The hint, relating to the translation of the verb "play", is separated from the translation

in a post-process, and displayed to the student when he asks for assistance.

Let's meet at the
stadium at ten.

ftl +h&N$

Let's meet at the
stadium at ten o'clock.

English

grammar

kTINA

Chinese
generation

rules
translation

G E NESIS

paraphrase
English

generation
rules

{c request
:pred {p let

:comp {p meet
:pred {p at

:topic {q stadium
:quantifier "def" } }

:pred {p temporal
:pred {p at-time

:prep "at"
:topic {q clockjtime

:pred {p clockhour
-topic 10 } } } }

:topic {q pronoun
:name "us" } }}

Figure 4-4. The parse-and-paraphrase paradigm for paraphrase and translation.

He likes to play tennis.

Translation via Parse-and-Paraphrase

4 rX K ~<hint> "Play" is translated into +T (da3) when the object
is a kind of game played by hand, e.g., basketball, cards, video
games, etc. </hint> MJ*

I Post-processing

Reference Translation: 'ftk +T M)T P
Hint: "Play" is translated into +T (da3) when the object is a kind of
game played by hand, e.g., basketball, cards, video games, etc.

Figure 4-5. An example of generating translation and grammar points simultaneously.

59

Although the parse-and-paraphrase paradigm is a good solution for our game, ambiguity in

parsing and generation often makes things tricky. When parsing longer sentences, it is harder for

the correct parse to appear as the top parse, since the number of ambiguous theories grows

exponentially with the length of the sentence. In generation, the choice of words given a meaning

is sometimes ambiguous. The dependency on the context oftentimes makes it a difficult problem

to handle by manual rules. To better deal with the ambiguities, we extend the language

understanding and generation modules into two-stage processes respectively.

Two-stage parsing

To reduce ambiguity in parsing, we reduce the length of the input sentence by a tagging process.

A special tagging grammar is used, which defines two classes of root nodes tagged and

not-tagged. The tagging process is then carried out by the regular parser with the tagging

grammar, except that the parser does not try to produce a parse for the entire sentence, but only

tries to parse a maximum length of word sequences ws, ... , Iws. from a given starting word w,. The

resultant parse tree is stored as an "elemental tree" if its root node r belongs to the tagged class,

and the corresponding word sequence w,, ... , ws,+ in the input sentence is replaced by a tag <r>.

The parse starts again from the next word vt,+12. If no parse can be produced from word ws, word

ws is skipped, and the parser tries again from ws..

After the tagging process, the tagged sentence is sent to the parser to parse using the regular

grammar. The parse tree is then completed by replacing the leaf nodes which are tags with the

corresponding elemental trees. Figure 4-6 illustrates the whole procedure. The nodes that are

tagged in the first stage are usually low ambiguity phrases by themselves but can cause great

ambiguity when parsed in the whole sentence, such as a complex date and time expression.

Two-stage generation

The context-dependent word choice in the language generation is further aided by using a

language model. In the first stage, instead of generating one simple string from an input frame,

the generation module outputs a string which encodes all possible choices of the surface words.

For example, the choice of "how many" and "how much" depends on the following noun, and it

is tedious to specify the countability of all nouns in the lexicon. Therefore, in the first stage, the

generation module outputs the following string to include both possibilities.

How (many / much) money is it?

60

1St pass tagging

& <#temporal> J <#locative>

2 nd pass parsing

sentence

subject predicate

adjunct verb obcobj

<#temporal> - <#locative>

temporal

a-date atime

month day

Tree composition

sentence

subject predicate

R adjunct verb oc obj
I I I

temporal

a date atime

month day ~F4
I I

+-A _4

locative

a city

Figure 4-6. Two-stage parsing.

Figure 4-7. Two-stage generation.

In the second stage, the string is converted into a word graph. An n-gram language model is

then used to rank order the different paths in the word graph. The path with the best score is

61

locative

a_city

chosen as the final generation output. We use a finite state transducer (FST) representation of the

n-gram language model, and thus the n-gram ranking and selection is turned into a standard FST

search problem [57]. The whole procedure is illustrated in Figure 4-7.

4.2.3 Judging a translation by meaning

Another challenge in the translation game is the utterance assessment, i.e., how to judge the

correctness of the student's translation. For we do not want to force the student to provide an

exact translation as the reference translation (which many commercial systems do), the judgment

has to be based on two aspects: grammaticality and meaning.

The grammaticality of the student's translation is checked by parsing. If the translation

produces a full parse, it is considered as a grammatical sentence.

To compare the meaning with the game sentence, although the sentence in Li and its

translation in L2 should have the same meaning, they may differ in sentence structure due to

different language characteristics. For example, the equivalent meaning of "it is windy today" is

commonly expressed as "today the wind is big" in Chinese. Comparing the meaning of such a

sentence pair is a very challenging task, for we have to go to deep semantics to draw a conclusion.

Therefore, instead of comparing the translation against the original sentence, the comparison is

done between the translation and a reference translation generated using the parse-and-paraphrase

approach, so that the two sentences have much more similar structures.

The student's translation and the reference translation are parsed to obtain their parse frames.

The parse frame catches the overall sentence structure such as subject-verb-object relationships,

but since it does not keep the temporal word order, it allows a reasonable amount of variation on

the surface form. Based on the parse frames, we further analyze the elements and produce a frame

that better represents the semantics of the sentence. We refer to this frame as the key-value

frames (kv-frames). The keys in the kv-frame can be very domain-dependent, but since the

approach we design is meant to be usable for general lesson materials, general semantic roles,

such as agent, action, patient, time, and location, are used as the keys in the ky-frame. Words that

belong to the same meaning class are collapsed, such as adjectives "good" and "nice", to provide

more robustness. In the situation that the word sense is hard to disambiguate, multiple word

senses are kept and separated using a vertical bar to form a disjunction. If an element is omittable,

a special value *NONE* is included as one of the disjunctive values.

62

The generation of the ky-frame from the parse frame is accomplished via GENESIS. GENESIS

produces a string representation of the key-value pairs, and a simple algorithm then converts the

string into a frame format. Figure 4-8 shows several kv-frames together with their original parse

frames.

{c statement
:negate "not"
:topic {q cat

:quantifier "this" }
:pred {p copular-vp

:copular "link"
:pred {p adjcomplement

:adj "red" } } }

{c eform
:clause "statement"
:loc "here I *NONE*"J
:agent I topic {c eform

:name "cat"
:dem "this" }

:negate 1
:complement {c eform

:color "red" I

'This cat is not red"

{c statement
:topic {q shop}
:pred {p open

:pred {p temporal
:pred {p fromtime

:topic {q clock-time
:pred {p clock-hour

:topic 8 } I }
:pred {p totime

:topic {q clock time
:prep "to"
:pred {p clock-hour

:topic 10 } }}}}}

{c eform
:clause "statement"
:agent I topic {c eform

:name "shop" }
:negate 0
:action "open"
:time ({c eform

:dir "after"
:time-point {c eform

:clockhour 8 }}
{c eform

:dir "before"
:timepoint {c eform

:clockhour 10 }}) }

"The shop opens from eight to ten"

Figure 4-8. Parse frames and key-value frames.

An algorithm goes through the keys in the ky-frames of the student's translation and the

reference translation. A key is matched if one of the disjunctive values in one frame is the same

as one of the disjunctive values in the other frame, or if the *NONE* value is contained in its

value in one frame, and the key does not appear in the other frame. A substitution error is

recorded in the case that the key appears in both ky-frames with different values. An insertion

error is recorded in the case that the key appears in the ky-frame of the student's translation but

63

not in the reference kv-frame. A deletion error is recorded in the case that the key exists in the

reference ky-frame, but not in the student's kv-frame.

The two kv-frames match if there is no substitution, deletion or insertion error. The utterance

assessment produces a match if the kv-frame of the student's translation matches any of the kv-

frames of the unmatched reference translations. A repeat is signaled if the kv-frame of the

student's translation matches one of the kv-frames of the already matched reference translations.

Otherwise, nomatch is produced.

Using this approach, the system is able to accept more than one correct translation. The

translations can have reasonable word order and word choice differences from the reference

translation. Table 4-1 exemplifies some accepted and rejected translations of two English

sentences.

Table 4-1. Examples of accepted and rejected translations. Asterisks mark the utterances

that are rejected by the system.

The museum opens at ten thirty. Let's meet at the stadium.

I tm+ $q [] H III Correct i fJ W WlMA l Correct

NVA +J-*--it&R fl Correct pfJdW QM Correct

f$T@ # f r] Correct * Ungrammatical

+,--t4@M f Correct * & OMPL Missing subject

* fA Im f]+ Ungrammatical

4.2.4 System diagram

With the methods to automatically generate translations and judge translations being introduced,

the system diagram of the translation game is shown below in Figure 4-9. Compared to the

diagram of the reading game, this game involves modules on the meaning layer. In addition, the

modules on the language layer are used more heavily.

In the beginning of every game round, the sentences generated from the templates are

processed through the language understanding and language generation modules to produce the

64

reference translations, which are then stored in the session state. After the student has spoken a

translation, it is parsed and paraphrased/translated into three things: a paraphrase in L2, a

translation in LI, and a string representation of the kv-frame. The ky-frame is then passed to the

meaning comparison module to be compared with the reference translations. The performance

assessment and game control modules produce a system act according to the comparison result.

The system's response and the updated GUI generated based on the system act, if any, are sent to

the user via WAMI, following the paraphrase and translation of the student's utterance.

Figure 4-9. System diagram of the translation games.

4.3 The question-answering game

4.3.1 Game overview

The third game [58] we developed puts the student in a more interactive L2 environment. In the

reading game, the student has seen the sentences in L2 and gotten familiar with the pronunciation.

In the translation game, the student has practiced constructing L2 sentences given the Li

counterparts. In the third game, the system displays the game sentences in L2 again, and, in order

to force the student to read through and understand the sentences, the system poses spoken

questions in L2 based on the sentences, and requires the student to provide answers in L2. We

name this game question-answering, which can be viewed as a simplified and spoken version of

65

-- Game round initialization

P_ Game turn

the traditional reading comprehension exercise. This game exercises a number of language

abilities including reading comprehension, listening comprehension, sentence composition and

pronunciation, in a complete L2 environment.

system::IRO. PJll*Ott 0% At 7T ?
Icomprehendeditas: w6 diIn bin guin.
Iconiretendeditas: I A *I**
User I a :
system: d!test. Fff it/4pto Yci l ? K

R Foret what you've just heard? Click the Repeatbutton or type repeat to listen to the sentence again.

vesp If youwant to give up on the rest of the sentences, click the Give Up button.

Number of questions left: 4

Utterance List

4 I k f it Ili Irt MR T

5 The bank closes at five thirty

INSTRUCTIONS:
Record your speech by HOLDING down the green recording button
Click the associated Help button for any utterance to access help.
You can also type your sentence using Pinyin into the input box. E.g. ni3 hao3 ma5 (It will attempt to repair tone errors)

Figure 4-10. A screenshot of the question-answering game in the middle of a round. The

student has already answered one question correctly. Red marks the corresponding

statement of that question. The Chinese characters in the dialogue history box translate into

(from bottom up) "System: Welcome. Please read the following statements and answer my

question. When does the bank close? User: (It) closes at five thirty. System: Very good.

Which restaurant's food is too sweet?" A demonstrative video of the system is available at

http://people.csail.mit.edu/seneff/scil/Q&A.wmv.

Figure 4-10 shows a screenshot of the question-answering game in the middle of a game round.

Again, this is a very similar interface with the previous two games. For each round, the system

generates a list of game sentences in L2. To simplify the design of the system, the templates used

in this game are bilingual, to eliminate the necessity of the automatic translation when providing

66

Speople.csail.mitedu/yushu/t rti ion.html

assistance. The templates are also written in a way such that all the instantiated sentences are

statements, for which questions can be posed (and thus the game sentences are referred to as

game statements from now on).

The system generates one question for each game statement. Unlike the previous two games in

which the students takes control of the order of game sentences to practice, in the question-

answering game, the control is in the system's hand. The system poses the questions in a random

order. The student needs to read all the statements displayed on the screen to find out the one that

corresponds to the question, and provide a spoken answer. The answer can be in any legal form:

abbreviated, complete, or any other legal form between the two. The system then judges whether

the answer is correct both syntactically and semantically. If it is correct, the system highlights the

corresponding statement of the last question, and moves on to the next one. If the answer is

partially correct, i.e., the student provided some but not all of the expected information, the

system composes a follow-up question to guide the student towards an expected answer.

Otherwise, the student is given two more chances to try. If he fails all three times, the system

speaks the answer, and moves on to the next question. Unlike the reading game and the

translation game, in this game only the statement corresponding to the last question is highlighted

and shown in LI, to prevent the student from cheating by only looking at the unhighlighted

statements for the later questions in a round.

The assistance function in this game is inherited from the previous games. A "help" button

associates with each game statement to show the translation into Li.

As we can see from the explanation of the game, there are two critical problems to solve to

make the game happen: generating questions from given statements, and judging the correctness

of an answer given the context. The next two subsections explain our approaches.

4.3.2 Question generation using frame transformation

At first glance, converting a statement into a question seems to be as easy as replacing a word or a

phrase in the statement with a corresponding interrogative word. But thinking more carefully, in a

language that has overt wh-movement such as English, the interrogative word needs to be moved

to the front, and an appropriate auxiliary word needs to be added if there is not any in the original

statement. In Mandarin Chinese, although there is no such kind of movement, word order and

word choices for a statement and a question are not always the same. For instance, examine the

different positions of the character " T " (a tense auxiliary word) in the following three sentences.

67

1{ & _7' (He bought a book.)

k K _Z7 ff ? (What did he buy?)

M# 3C- 7 '-M? (Did he buy a book?)

Furthermore, the choice of the interrogative word not only depends on the word or phrase

being questioned, but also depends on the syntactic/semantic role of the word/phrase in the

sentence. As in the following example, when questioned on the word "hotel", "what" and "where"

are chosen for the two sentences respectively.

There is a hotel on the corner. -; What is there on the corner?

It is near to a hotel. 4 Where is it near to?

Therefore, we need an approach that is more than string surgery.

The solution turns out to be rather simple. As indicated in the above sections, the parse frame

that the language understanding module TINA produces preserves the syntactic hierarchy of the

sentences, as well as containing certain explicit semantic elements. In the translation game,

generation rules have already been created to turn a parse frame into a string in the original

language to perform a paraphrase. Generating a question under these circumstances means that

we only need to perform a parse frame modification to change the type of the clause, and for wh-

questions, to replace certain elements with the interrogative form. After that, the generation rules

will handle the word order and word choice issues automatically. This is also a language

independent solution, because the parse frames are, for the most part, source language

independent. Thus, whichever language the statement is in, the same types of parse frame

modification can be applied.

The modification of the parse frame is realized by applying a set of formal rules, called

"transformation rules." Each rule has three basic clauses, which describe the conditions under

which the rule should be triggered, the part to be transformed, and the result after transformation.

Wildcard values like ANY, NONE, SELF, etc., are adopted in the syntax to make the rules simple

to write but powerful to express all kinds of transformations. [59] provides a detailed description

of the syntax of the transformation rules. The transformation rules can have a simple function

such as changing the value of a key, or may describe a complex operation, especially when rules

are combined in sequence. They also support some randomness, allowing alternative outputs

depending on a randomly generated outcome.

Two examples using this approach are given in Figure 4-11. In the first example, the topic

"hotel" under predicate "from" is changed into a generic object with a trace (the nomenclature

68

derives from English wh-movement) "where". Then the name of the clause is changed to

"wh-question" by a default setting. The macro "<#loc_noun>" specifies a set of location nouns to

share the same transformation rules. The result of the transformation produces a question "where

is the beach very far from?" from the original statement "the beach is very far from the hotel."

{c statement
:topic {q beach }
:pred {p copular vp
:pred {p from

:topic {q hotel } }
:pred {p adj complement

:adj "far"
:degree adv "very" } } }

"The beach is very farfrom
the hotel."

{c statement
:topic {q dog
:dem "that" I

:pred {p copular-vp
:pred {p adjcomplement

:adj "black" I } }

"That dog is black."

{c transformation-rule
:in {p from

:topic {q <#Ioc noun>
+ :*submatch* 1

:*focus* 1}
:replace "*SELF*"
:with {q object

:trace "where" } }

+

{c transformation-rule
:in {p adj_complement

:adj "<#color:" }
:replace ":adj"
:with "*ONE OF<#color>*
:set ":verifyn" I

{c transformationrule
:when ":verifyn"
:in {c statement}
:replace "*SELF*"
:with {c verify

:false statement I
:*rest* 1 }}

{c wh question
:topic {q beach }
:pred {p copularvp

:pred {p from
:topic f a obect

:trace "where"}}
:pred {p adj complement

:adj "far"
:degree adv "very" I) I

"Where is the beach very far
from?"

{c verify
:topic {q dog
:dem "that" }

- :pred {p copular vp
:pred {p adj complement

:adj "white" }
:false statement 1 }

"Is that dog white?"

Figure 4-11. Two examples of using the transformation rules to rewrite the parse frames

and generate questions. Underlined text marks the difference from the original frame after

the transformation.

The second example exemplifies the generation of a "false" verifying question, with a special

key :falsestatement added to be distinguished from a "true" verifying question. The frame for "is

that dog white?" is obtained from the original frame representing "that dog is black" by changing

the name of the top frame and replacing the color with another color defined in the macro

"<#color>." Note that randomness is involved in this transformation. The value of the key :adj

can be any color on the macro list.

69

4.3.3 Answer judgment via simplified context resolution

There are many correct ways to answer a question given a statement. The length of the answer

can vary from a one-word answer, to the full length of the statement. This is especially true for

languages that have a freer grammar, such as Chinese. Table 4-2 summarizes different ways to

answer a verifying question and a wh-question in Mandarin Chinese.

Table 4-2. Examples of different ways to answer a verifying question and a wh-question.

(Do you like to drink beer?) (What do you like to drink?)

A0. (yes) 49o (beer)

4Xk (like) IQ % (drink beer)
AXA W o0 (like to drink) -$4XXvV*X (like to drink beer)

f$k- (I like) -R XI 4X.O (I like to drink beer)

-RXkvo (I like to drink)

X 4 (I like to drink beer)

In addition to the length variation, the words used in the answer might be different from the

statement. One obvious example is the pronominal referral, where pronouns are used in the

answer instead of the explicit person or object. Another example shown below has to do with

negation and antonym.

Statement: The hotel is close to the beach.

Is the hotelfar from the beach?

No, not far.

To properly judge the correctness of the answer, both the length variation and the word

variation need to be taken into consideration. The method we developed divides the judgment

into two steps. First, analogous to context resolution, the student's answer is augmented with the

information in the question to form a complete answer. Then, the complete answer is compared

with the original statement to output the utterance assessment result.

4.3.3.1 Answer augmentation

The answer augmentation works as a simplified context resolution algorithm. The algorithm is

applied on the kv-frames, and does not depend on any domain-specific knowledge. It is treated as

70

a discourse phenomenon, i.e., later information (the student's answer) overwrites the earlier

information (the question). Since the ky-frames are still hierarchical, and the question and answer

ky-frames are very likely to have different sizes and depths (the answer ky-frame is usually

smaller and shallower), the two ky-frames need to be aligned before overwriting information

from one to the other.

To align two frames s and t means to find the correspondence of every subframes in s with the

subframes in t. Once the subframe correspondences are established, the alignment of the elements

within one aligned subframe can be easily figured out by the name of the keys. For general frame

alignment, similarity of the elements in the frames is a good feature. In this particular case,

however, there is a stronger cue of how the question kv-frame and the answer ky-frame should be

aligned. We observe that, for wh-questions, the question kv-frame must contain one key which

has the special coded value "*question*", and in the kv-frame that derives from any utterance that

tries to answer the question, the same key with a concrete value must appear. We call this key an

anchor key, i.e., after the two ky-frames are aligned, the anchor keys from the two frames should

be overlapping.

For verifying questions, there is no such key with the value "*question*", so the alignment is

done using the similarity of the frame content alone, while both the anchor keys and the similarity

are used in the case of a wh-question. We define a set of keys called "useful keys" which exclude

less important keys for the alignment, to calculate the similarity of frame content. Equation 4-4

defines the matchedness score m for a given question kv-frame Q and an answer ky-frame A

based on the similarity of the content sim(-) and na , the number of unaligned anchor keys in Q.
For verifying questions, na is always zero. The similarity is computed using Equations 4-5 and

4-6, where nQ is the number of useful keys in Q, k is a key, and v is the value of the key k in the

frame.

1
m(Q, A) = (n)sim(Q, A) (4-4)

sim(Q, A) =- s(Q, A, k) (4-5)
kEQnA

0 k i Q or k i A
1 k E A, vQ = " * question * "

s(Q, A,k) = V2 vAv are frames (4-6)

1 vQ = vA,vQ and vA not frames
0 otherwise

71

Using the matchedness score m, the best alignment can be found. Assuming that the size and

depth of the answer kv-frame A are always smaller or equal to those of the question kv-frame Q,
the algorithm to find the best subframe in Q to be aligned with A goes as follows (except one-bit

yes-no answer for verifying questions, which will be explained later).

1. Compute mrop = m(Q A)

2. For every subframe si in Q, find the best subframe in si to be aligned with A, with score

Mi.

3. Find the subframe sub with the best score.

4. If mtop>msub, return Q with score mrop; otherwise return ssub with score msub.

Once the question kv-frame and the answer kv-frame are aligned, a complete answer ky-frame

is obtained by overwriting the elements in the question kv-frame with the corresponding elements

in the answer ky-frame, and adding new keys from the answer kv-frame that do not exist in the

question ky-frame. Two examples are shown in Figure 4-12, with the aligned parts of the frames

underlined.

The first example is a simple case for a verifying question " XftaWX R P 4 ? " (does he like

to drink beer). The ky-frame of the answer "AXA" (like) only contains two keys: the clause type,

and the action "like". The alignment result aligns the answer ky-frame with the top frame of the

question ky-frame. After overwriting the elements, the resulting complete answer kv-frame,

except for the type of the clause, is exactly the same as the question ky-frame, which represents

the meaning of "he likes to drink beer."

In the second example, the question is a wh-question. The ky-frame of the question contains a

key with the value "*question*", which serves as the anchor key. The same key can be found in

the answer ky-frame, and as a result, the two subframes containing the anchor key are aligned

together. Notice that in this example, the top level frame of the answer frame is not aligned to any

part of the question kv-frame, which is only allowed when the top level of the answer ky-frame

only contains one useful key (:clause is not a useful key). This rule is made especially for short

answers of wh-questions, because in short answers, the word or the phrase, especially the noun

phrase loses its syntactic/semantic role in the question, which usually results in a different top-

level key from expected (:topic in the example, rather than :from). Therefore, it is allowed to skip

the top-level frame, and directly align the second-level subframe.

72

{c eform
cuae. "vmfyr"

:agentItopic {c eform
:person "he" }

:comp {c eform
:action "drink"
:patient {c eform

:name "beer" } I }

Question: "Does he like to
drink beer?"

{c eform
:clause "whquestion"
:agentItopic {c eform

:name "beach" I
:complement {c eform

:adj "far"
:degree "very" }

:from I{lQnIfM
:name "*question*" } }

Question: "Where is the
beach veryfarfrom?"

{c eform
+ :cluse "statement"

Answer: "Like"

{c eform
:clause "statement"
:topic jceform

:am"he hotel"}

Answer: "The hotel."'

{c eform
:clause "statement"
:agentItopic {c eform

:person "he" }
:action "like"
:comp {c eform

:action "drink"
:patient {c eform

:name "beer" }})
Complete Answer: "He likes to

drink beer."

{c eform
:clause "statement"
:agent Itopic {c eform

:name "beach" I
:complement {c eform

:adj "far"
:degree "very" I

:from {c eform
:name "hotel" }

Complete Answer: "The beach is
very far from the hotel."

Figure 4-12. Examples of obtaining complete answer kv-frames from short answer kv-

frames and question kv-frames.

The following paragraphs discuss some handling methods for several special issues.

Augmentation for one-bit yes/no answer

If the answer to a verifying question only contains a "yes" or a "no", the augmentation is simple.

The question ky-frame is used as the complete answer ky-frame, changing the clause type from a

verifier to a statement. If the answer is "no", a negation is added to the top level of the frame.

Pronominal referral

The pronominal referral problem is solved by assigning a special transparent property to the

pronouns. When overwriting elements in the question kv-frame with those in the answer ky-frame,

the pronouns in the answer kv-frame are transparent, i.e., they will not overwrite the values of

corresponding keys in the question ky-frame. However, if there is no corresponding key in the

question kv-frame to overwrite, the pronouns will survive in the final complete answer ky-frame.

73

Figure 4-13 gives an example, where in the answer a pronoun is used to refer to the subject. In the

complete answer kv-frame, the agent is resolved to the original person name in the question.

{c eform
:clause "verify"
:agentttopic {c eform

:person "Alice" I
:action "like"
:comp (c eform

:action "drink"
:patient {c eform

:name "beer" } I I
Question: "Does Alice like to

drink beer?"

{c eform
:clause "statement"

-- :agentItopic {c eform
:person "she" }

:action "like" I

Answer: "She likes." (Lit.)

{c eform
:clause "statement"
:agent Itopic {c eform

:person "Alice" }
:action "like"
:comp {c eform

:action "drink"
:patient {c eform

:name "beer" } I }
Complete Answer: "Alice likes to

drink beer."

Figure 4-13. Answer augmentation with pronominal referral.

4.3.3.2 Utterance assessment and game control

After the ky-frame of the student's answer has been augmented into a complete answer ky-frame,

it is compared to the ky-frame of the original statement. The approach is a variant of the one we

have introduced in Section 0 for the translation game, with more flexibility to interpret negations,

as well as including an additional check for self-contradictory answers to verifying questions.

Negations

Consider the example we have shown at the beginning of this section. When the student is given

the statement "the hotel is close to the beach", and then asked "is the hotel far from the beach,"

answering "not far" is natural and correct. To accept this answer, the system interprets "not far"

and "close" to have the same meaning by propagating the negation at the clause level to the lower

levels, as exemplified in Figure 4-14. The exclamation mark indicates the negation of the value.

In the comparison, "!far" and "close" are considered to be a match, and the degree "very" in the

statement is ignored because of the negation.

74

{c eform {c eform
:agent I topic {c eform :agent I topic {c eform

:name "beach" } match :name "beach" }
:complement {c eform :complement {c eform

:adj "close
:degree "ve :

C; ; m e :from e orm
o:name "hotel" I }

name "hotel" ~Complete Answer: "The beach is
Statement: "The beach is not far from the hotel."
very close to the beach."

Figure 4-14. Handling negations in the judgment.

Self-contradictory answers to verifying questions

There are three possibilities for an answer to a verifying question. It can be a short "yes" or "no,"

a statement, or the combination of the two. In the case of the combination answers, there is the

possibility that the answer by itself is a contradiction. For example, the student is asked "is that

dog white," and he answers "yes, it is black." This is not an acceptable answer, since the two

parts of the utterance lead to contradictory meanings. The system rejects this kind of self-

contradictory answers by splitting the utterance in two, one part containing only the word "yes"

or "no", the other containing the remaining statement. The split two pieces are then augmented

independently, and a meaning comparison is carried out between the two augmented ky-frames.

If they do not match each other, a contradiction flag is set.

Pronouns "you" and "I"

There is a switch of the pronoun "you" and "I" in the question/statement and the answer. If the

question asks about "you", the student should answer with "I" with the proper case, and vice

versa. For correct comparison, the pronouns "you" and "I" in the statement are replaced by each

other, to match the student's angle.

Utterance assessment result and game control

Four result types are defined for the utterance assessment in the question-answering game.

Nomatch: if the augmented complete answer kv-frame does not match the ky-frame of the

original statement, or the answer is a self-contradiction.

75

Incomplete: if the complete answer ky-frame does not match the kv-frame of the original

statement, and all the errors are deletion errors. This usually happens for wh-questions, where the

student left out a part of the information in the answer such as a degree adverb.

Match_false: if the augmented complete answer ky-frame matches the kv-frame of the original

statement, but the question is a false verifying question and the answer simply denies the false

information without providing the true information. For example, the student is given the

statement "the dog is white" and asked "is the dog black?" The answer "no, it is not black" is

considered as incomplete. The expected answer would be "no, it is white."

Match: otherwise.

The game control module takes in the result of the utterance assessment, and produces one of

the following five system acts. More acts are defined for this game than the previous two games,

since the utterance assessment module produces more detailed results.

Correct: the utterance assessment result is match, and there is at least one question left for the

round. The system marks the corresponding statement, and goes on to the next question.

More-precise: the utterance assessment result is incomplete, and the student still has more

chances to answer the question. The system prompts the student to give a more precise answer.

Followup: the utterance assessment is matchfalse. In this case, the system generates a

follow-up question to help the student provide a complete answer. The follow-up question is

essentially the difference between the kv-frame of the statement and the augmented complete kv-

frame of the answer, as shown in Figure 4-15. It is first produced in the ky-frame representation,

and later paraphrased into a natural sentence via the language generation module. This is an

interesting situation, for the follow-up question extends the question-answering into a multi-turn

interaction, and makes the exercise closer to a dialogue.

Try-again: the utterance assessment is no-match, and the student has not used up all the three

chances. The system repeats the question and asks the student to try again.

Nomorechance: the utterance assessment is incomplete or no-match, the student has used up

all the three chances, and there is at least one question left for the round. In this case, the system

speaks the correct answer, and moves on to the next question.

76

Newround: the system is ready to move on to the next question either because the utterance

assessment is match, or because the student has used up all the three chances, but there is no

question left for the round. The system computes the student's round score and the level

adjustment, and shows a preview of the next round.

{c eform {c eform
:clause "statement" :clause "statement"
:agent topic {c eform :agentItopic {c eform

:name "dog" } :name "dog" }
:complement {c eform :complement {c eform

:color "black } },olr }white}

Statement: "The dog is black." Answer: "The dog is not white."

{c eform
:complement {c eform

:color "*question*" } }

IGENESIS

So what color?

Figure 4-15. Generation of a follow-up question.

4.3.4 Contradiction detection

So far, it seems that every problem has been solved to build the question-answering game.

Nevertheless, as soon as we started to test the system using some toy templates, we noticed one

piece missing. Remember that the game statements are generated from the templates in a random

fashion. For small lesson templates, it is highly probably to generate two statements from the

same template and containing contradictory information. For example,

Statement: The dog is white.

The dog is black.

Question: What color is the dog?

This results in a confusing situation for the student, for the student is not able to tell which

statement he is supposed to use as the reference. To avoid this kind of situation, a detection

algorithm is designed to reject a list of game statements which contains contradiction.

77

The detection applies on the kv-frames of the game statements. A set of ordered "dominant"

keys is defined. The keys are dominant if different values can be used to distinguish different

events among which contradiction should not happen. For example, if the agents are different, the

two statements should not contradict because they are talking about different events.

The dominant keys are specified in an ordered sequence, where the order represents the ranks.

Multiple keys are allowed on the same rank. The algorithm judges contradiction rank by rank. For

a given rank, there are three situations: the values from the two ky-frames are different for all of

the keys on the rank, the values are partly different, and the values are all the same. In the "all

different" case, the algorithm concludes with no contradiction. In the "partly different" case, the

algorithm signals a contradiction. In the last case, the decision is deferred to the lower ranks. To

be more intuitive, in practice, the key :agent is placed on the highest rank, followed by

keys :action and :time on the second rank. If the agents of the two statements are different, the

two statements do not contradict. If the agents are the same, the algorithm checks the next rank. If

both :action and :time have different values for the two statements, which means the same agent

is doing different things at different times, the algorithm concludes with no contradiction. But

if :action has different values but :time has the same value, a contradiction is signaled because the

same agent should not perform two different actions at the same time. The other situation

where :action has the same value but the :time has different values does not always produce a

contradiction in the real world, but for some actions, it does result in a contradiction. For example,

"the shop opens at nine" and "the shop opens at ten" are a contradictory pair. Thus, the algorithm

signals a contradiction whenever a portion of the keys on the same rank have different values in

the two statements.

The algorithm goes through all the ranks of the dominant keys. Keys that do not appear in

either of the ky-frames are skipped. If no conclusion has been made after all the dominant keys

have been examined, the algorithm checks the non-dominant keys. Any difference in the values

of the non-dominant keys results in a contradiction.

The dominant key list is specified manually. However, the list is rather simple (the final list

only consists of five ranks with altogether less than ten keys), and we consider the list to be

generic to any domain.

78

4.3.5 System diagram

Now that we have introduced all the important modules for the question-answering game, Figure

4-16 presents the system diagram of the game.

Figure 4-16. System diagram of the question-answering game (initialization).

Figure 4-17. System diagram of the question-answering game (game play).

When initializing a game round, the content

the templates. The statements go through the

generator produces a list of game statements from

language understanding and language generation

79

modules to produce their kv-frames for contradiction detection. If any two statements contradict

each other, the content generator is asked to produce another list. The process loops until a

healthy list is obtained. Then, one random question is generated for each statement using frame

transformation. The question list is scrambled and saved in the session state.

After all the preparation is done, the system starts to ask the first question. When the student's

utterance is received, the system augments it with the question, and compares it to the statement.

Depending on the comparison result and the final system act outputted by the game control

module, the system either moves onto the next question, asks the student to try again, or finishes

the round. The speech response and the updated GUI are generated by the language generation

module, and sent to the user via WAMI. The diagram is shown in Figure 4-17.

Following is an example conversation between the system and the student.

Statement: iO f .?@(That dog is black.)

PXAt&Z(You like to eat vegetables very much)

System: ,$Yif6IZ$ 04I ? (Is that dog white?)

Student: T-FM ,, FRZI i5(No, not white.)

System: 5W A ff /Dz ? (So what color is it?)

Student: 990 (It's black)

System: IJO f Y$XR Z- ? (Good job. Do you like to eat vegetables?)

Student: #Yt (I do. [Literally, like.])

System: fN {$ (Please be more specific.)

Student: RM$Xy "{(i like to eat vegetable very much)

4.4 Implementation details

4.4.1 Implementing the three games as a whole

In the previous three sections, the design of the three game systems together with the critical

algorithms used in the systems have been introduced. This section focuses on more

implementation details.

Although the three games offer different activities and have different modules involved, they

share some commonalities. The interfaces are very similar, i.e., all display a list of game

utterances. They are also procedurally similar. In the beginning of a round, some utterances are

prepared. During the game play, the student's utterance is processed into the ky-frame

representation, and is compared with the reference. The game control module uses the

80

comparison result to output a system act. The system act is converted into a natural language

response and an updated GUI via language generation. Given that they are so similar, in the

actual implementation, they are implemented as a unified system using one DCTL script.

When the student accesses to the system, a login page is shown. The student can select the

game mode, the prompt language, the game domain, and the level to start with on the login page.

The system is implemented in the setting of Chinese learning for English speakers; thus, three

prompt languages are available: English, Chinese characters, and Chinese Pinyin (the Roman

representation of the characters). Three game modes are available: reading, translation and Q&A.

For reading, the student can choose the prompt language to be characters or Pinyin. For

translation, there is no choice for the prompt language but English. For Q&A, the student can

choose one of the three choices. We developed lesson templates in multiple domains. The reading

game and the translation game share the same templates in Li English, including a set of travel

domain templates and a set of flight domain templates, both of which comprise 12 lessons. The

Q&A game has its own bilingual 7-lesson travel domain templates.

After the student has made the choices on the login page, the system loads up the

corresponding templates and initializes the first game round. The flow chart is illustrated in

Figure 4-18. Depending on the language used in the templates, a list of Li sentences, or two lists

of Li and L2 sentences can be produced. In the situation of the monolingual templates, the L1

sentences are processed through the language understanding and language generation modules to

obtain their reference translations into L2. The initialization is finished at this point for the

reading game. For the other two games, the sentences in L2 are parsed and the ky-frames are

stored in the session state to avoid repeated processing later during the game play. The question-

answering game further uses the ky-frames to detect any contradiction, and if the sentence list is

healthy, questions are generated from the parse frames.

During the game play, as illustrated in Figure 4-19, the student's utterance for the reading

game is sent to a string comparison module directly. The utterance for the other two games are

parsed and generated into a kv-frame, augmented for the question-answering game, and passed to

a frame comparison module. The outcome of the comparison modules goes to the performance

assessment and game control modules. Finally the system act is generated into a natural response

and an updated HTML via the language generation module.

81

Domain, level

-----> Game Mode = Reading - - Game Mode = Q&A

-- -> Game Mode = Translation -- Common

Figure 4-18. Flow chart during the initialization of a round with the three game modes

consolidated into one system.

The English and Chinese grammars involved in the language understanding process are all

based on generic grammars that cover a relatively wide space of sentence structures, and

augmented with additional lexica according to the specified domain. For language generation,

four sets of generation rules (languages) are used: Chinese, English, kv, and HTML. The

language kv is used to convert a parse frame into a ky-frame, and the language HTML is used

when producing an updated GUI from a system act.

In all the three game modes, the student talks in L2, i.e. Mandarin Chinese. A single segmental

based recognizer [60] is used for all game modes and domains. Because the task is to recognize

nonnative speech, there is a choice of the acoustic models. Obviously, it would be easier to

recognize the student's accented speech by using models trained on nonnative data. Nevertheless,

82

Generate game sentences-

No
Bilingual?

Yes Parse Li and translate into L2

Parse L2 and obtain kv-frames

Detect contradictions

Contradiction? .

Yes
*No

Generate questions

L1&L2 sentences L1&L2 sentences L1&L2 sentences
KV-frames KV-frames

Questions

as mentioned previously, the systems designed in this thesis do not focus on detailed

pronunciation assessment, which means for the pronunciation, the system only distinguishes

intelligible (recognized correctly) and unintelligible (misrecognized). We consider using acoustic

models trained on nonnative data would be a too relaxed constraint for intelligibility. Thus, the

acoustic models trained on native data are adopted, so as to encourage the student to pronounce as

closely as possible to the native sounds.

Student's utterance
(N-best)

Parse and obtain

Augmen

Compare strings Compare me

Comparison result

Assess performance

kv-frames

t answers

aning

Selected best hypothesis (echo)
Paraphrase/translation of best hypothesis

System's response
Updated HTML

------- Game Mode = Reading

-- -> Game Mode = Translation

- -+ Game Mode = Q&A

)- Common

Figure 4-19. Flow chart during the game play with the three game modes consolidated into

one system.

The recognizer also uses an n-gram language model to constrain the output hypothesis. The

language models we use for the three games are trained on a combined corpus generated from all

templates involved in the three games, as well as additional templates that model the possible

83

utterances from the student and some generic conversational sentences. The additional templates

are essentially variations of the lesson templates, for example truncating the statements to obtain

short answers. The resulting size of the language model vocabulary is approximately 9.5K.

The recognizer outputs an N-best (10-best by default) hypothesis list for each utterance, ranked

by a combination of the acoustic and language model score. Due to the accent in the nonnative

speech, the correct hypothesis is less likely to appear as the top choice. In order to select the best

hypothesis, the game context is taken into consideration. A heuristic selection method is adopted

as described below. First, every hypothesis on the list is processed and compared with the game

sentences one by one. If a hypothesis leads to a match as the comparison result, this hypothesis is

selected as the best hypothesis. If no hypothesis is able to result in a match, the top hypothesis on

the hypothesis list is selected as the best one. By doing so, the system maximizes the possibility

of recognizing a correct answer from the student. Although this introduces the possibility of

choosing an incorrect hypothesis that happens to match with one of the game sentences, it is

imaginable that with a relatively generic recognizer of vocabulary size 9.5K, the probability of

recognizing a wrong answer into a correct hypothesis is rather small.

The selected best hypothesis is echoed via a synthesizer. There are switches that enable the

paraphrasing and translation of the selected best hypothesis to provide more feedback to the

student on how the system interprets the input.

Two off-the-shelf synthesizers are involved in the system for English and Chinese respectively.

Dectalk [61] is used to synthesize English, and a synthesizer provided by the Chinese Academy

of Sciences is used to synthesize Mandarin Chinese.

4.4.2 Alternative input modality: text

Although speech is one of the major features of the games, an alternative text input modality is

provided. This modality is particularly useful in two ways. When the environment is noisy and

the speech recognition performance is degredated, the student can still practice other language

proficiency aspects using text inputs. Besides, the text inputs also come to help when the student

has trouble with one particular sound that prevents him from moving forward.

The text input box in the system accepts either Li English or L2 Chinese. When English is

typed in, it is considered as pursuing assistance. A Chinese translation is generated and shown to

the student. When Chinese is received from the text input box, it is taken as the student's

84

utterance. For this particular implementation, because the L2 language is a character-based

language and is not easy to input, the text input is expected in the roman spelling form (Pinyin)

with tones, and characters are automatically proposed by the system. Acknowledging that the

tones tend to be very difficult for foreigners, the system provides a tone correction mechanism.

The input Pinyin sequence is expanded into a word graph to include all possible tone alternatives

in the lexicon. The word graph is then composed with a Pinyin-to-character finite state transducer

(FST) [57], and a character n-gram language model FST to find the best path. The two FST used

are the exact ones used in the recognizer; thus turning the Pinyin text input into characters can be

viewed as a tone-less recognition process with a given phoneme sequence. The original Pinyin

input is then compared with the Pinyin of the proposed characters, and any differences between

the two are highlighted, in order to alert the student of the tone mistakes.

4.4.3 User database

User databases are maintained for the games. The user databases keep records of the user's scores

and levels of a particular domain and game mode, and allow the user to continue playing on the

level he left with last time, if he does not specify the level to start with. The user databases go

with the lesson templates; i.e., each set of lesson templates is associated with a database. The

databases are updated at the end of each game round. The level, the number of sentences in the

round, the round score, etc. are recorded. Although not implemented yet, it is possible to have the

student access the database, and look at his performance over the time.

4.5 Evaluations of the games

We conducted the evaluation of the three games in two phases. In the first phase, we recruited

several subjects to come to our lab, and gave them detailed instructions. In the second phase, we

advertised our games to a list of users who are interested in Chinese learning games and asked

them to play the games by accessing a public URL via the Internet. We offered them gift

certificates based on the amount of data they provided. They were less instructed on the games,

and they might play the game in various environments. Due to the different settings of the two

phases, we provide separate analyses for the two data sets. In both phases, we focused our

evaluation on the system's performance, rather than proving pedagogical effectiveness. The

reading game was not evaluated, because of its simplicity and similarity to the translation game in

terms of the architecture and the game procedure.

85

4.5.1 In-lab evaluation phase

4.5.1.1 The translation game

The two implemented domains for the translation game, i.e. travel and flights, were not

distinguished during the evaluation. We recruited 5 subjects, 3 females and 2 males, to come to

the lab. Each subject started at the first level, and was given five randomly generated utterances to

translate in each round. We recorded the waveforms and the system's activity, as well as

watching their behavior throughout their play. Advice was provided when they got stuck.

Altogether, 615 utterances were collected from these five subjects.

We calculated the false rejection and false acceptance rate based on manual judgment. The

false rejection rate was 8.6%, with almost all of the cases being caused by recognition errors. We

listened to all of these waveforms and determined that most of the mis-recognized utterances

were pronounced poorly or disfluently by the learners. The false acceptance rate was 0.9%. All of

the false acceptances occurred when there was a minor syntactic problem in the sentence that was

not identified by the system. For example, the user used an incorrect measure word for the noun.

Encouragingly, we found that in the Chinese paraphrase the system gave back to the student, the

syntactic problem had been automatically fixed, and we observed that the subjects did notice the

implicit correction.

We calculated the average number of utterances the users spoke to complete one round, the

average number of rounds they took to advance one level, and the average number of times per

utterance they asked for assistance. The results are shown in Figure 4-20. The users are sorted on

the horizontal axis to indicate their Chinese proficiency judged by a native speaker. The leftmost

user is a native Chinese speaker. We can see that there is a good correlation between their real

proficiency and the three values we measured. The users with lower proficiency tend to produce

more utterances in one round, and tend to ask for assistance more frequently. The two numbers

are the major factors for the system to assess the student's performance and to decide whether to

adjust the game level. The result is that the poorer students tend to stay longer in the same level,

as illustrated in the figure.

The game received positive feedback from the users. The users liked the feature that the system

praised them, and they also appreciated the gradual introduction of new vocabulary and sentence

patterns.

86

8

6

5 N Avg #utts/round
4

3 Avg #rounds/level

2 - 0 Avg #help/utt

0

user5 user1 user3 user2 user4

Figure 4-20. Performances of the users in the translation game. Users are arranged left-to-

right in order of decreasing proficiency.

4.5.1.2 The question-answering game

The question answering game was evaluated in a similar way as the translation game, but, a

simulation phase was conducted as well to evaluate the quality of the questions and the coverage

of the question types. The lesson templates are composed of seven lessons. Forty frame

transformation rules were written to create 17 types of questions. We simulated 42 game rounds,

6 for each lesson. In each round, 5 statements and questions were generated. We determined

manually that all the questions were well-formed. The distribution of the question types is

illustrated in Figure 4-21. A fair percentage of yes-no questions and wh-questions were generated

in the 210 questions, and within the wh-questions, the different types of questions were

distributed reasonably.

For the game system evaluation, seven subjects, 3 males and 4 females, participated in the in-

lab evaluation. Three of them were native speakers. Although the participants accessed the game

from different computers, we ensured that they all used a high-quality microphone in a quiet

environment. A total of 732 utterances were collected from these subjects.

We categorized the utterances into three types of answers: blank-filling style short answers,

such as a single yes/no or a single noun; full answers which essentially are a repetition of the

statement in the list that answers the question; and other answers that are somewhere between the

short answers and the full answers. The distribution of the three types, shown in Figure 4-22, is

quite balanced.

87

Figure 4-21. Distribution of the question types in 42

game.

game rounds of the question-answering

Figure 4-22. Distribution of the types of answers from 732 utterances.

In the question-answering game, the system has several different responses instead of binary

choices. Due to this, we calculated the accuracy of the responses instead of the FAIFR rates. The

accuracy was 91.7%, with 57 out of 61 incorrect responses caused by recognition errors. The rest

of the errors were caused by ill-formed ky-frames, which were fixed before the public evaluation

phase.

4.5.2 Public evaluation phase

In this phase, we opened our games to the Internet users. An email message containing the URL

and some game instructions was sent to a list of possibly interested subjects worldwide. We

88

* verification
a what (subject)
* whose

who
n what (object)
N where
a distance
m what (action)
athow
* how many
* when
* which

what nationality
U price

what color
Ehow long
* verification-substitute

provided awards for the subjects who completed a certain number of game rounds. The subjects

were free to choose to play any of the three games they liked, as well as to select their own initial

game level. The number of utterances in each round was fixed at five.

In ten days, 23 subjects accessed our games, including three subjects whose data we discarded

in the analysis due to quality issues: subject #3 only provided two utterances in the middle of two

game rounds of subject #2; subject #11 recorded his almost inaudible speech in an extremely

noisy background; and subject #12 used a poor-quality microphone which output highly saturated

waveforms and resulted in a very high recognition error that was not comparable to that of any of

the other subjects. All of the remaining 20 subjects tried the translation games; 9 also played the

question-answering game; and 1 also tried the reading game. The 20 subjects include 7 females

and 13 males. We manually judged their Chinese proficiency on a 5-point scale based on their

pronunciation and intonation. Five points indicates a native speaker, and one stands for really

poor pronunciation. The average proficiency score was 3.1, with four of the subjects judged to be

native speakers.

From the 20 subjects, we successfully collected 1,754 utterances for the reading/translation

game, and 924 utterances for the question-answering game. We discarded 151 empty utterances

and 26 utterances that the turn manager did not receive due to communication problems. We also

discarded utterances related to one problematic game sentence pattern, which produced an

incorrect reference translation and led to confusion. This problem was fixed after the first two

days of the experiment. After pruning, we were left with 1,530 utterances for the

reading/translation game, and 875 utterances for the question-answering game.

The overall sentence recognition error rate for all three games was 29.6%. Although this

number is quite high, two factors played a critical role. Nearly a third (30.4%) of the mis-

recognized sentences were either not a Chinese sentence, an ungrammatical Chinese sentence, or

contained a totally mispronounced word. The other factor is that there were many repeated errors.

When an utterance was not recognized correctly, the subject usually spoke it again, essentially

repeated verbatim, and it was very likely that the second utterance would not be recognized

correctly as well. To verify this theory, we calculated the rate of repeated recognition errors. We

define the rate of repetition to be the total number of mis-recognized utterances divided by the

unique number of mis-recognized utterances. The unique number of mis-recognized utterance

with recognition errors were counted independently within each game round, so that two identical

misrecognized utterances in two different game rounds are distinguished. The rate of repetition of

89

the three games was 1.77, which means that each unique recognition error is repeated almost

twice. If the repeated errors are excluded, the sentence error rate for recognition goes down to

19.2%.

The recognition error rate also varies greatly among subjects, as shown in Figure 4-23. The

subjects in the plot are sorted by their human-judged proficiency. It is clear from the plot that the

recognition error is influenced greatly by factors other than their nativeness, which are likely to

be microphone quality and environmental noise.

0.6

0.5

0.4

0.3

0.2-

0.1

0
2 8 1022 1 6 13 7 17 19 21 23 14 20 4 5 15 16 9 18

Subject #

Figure 4-23. Sentence recognition error rate by subjects. Subjects are arranged left-to-right

in order of decreasing proficiency.

Table 4-3. Error rates of the system responses in the public evaluation phase.

Game Genre Error Type Error Rate % Caused by
Recognition Error

False Acceptance 2.0% 90.3%
Reading/Translation

False Rejection 11.6% 89.8%

Question-Answering Incorrect Responses 9.8% 88.3%

Table 4-3 shows the error rates of the system responses. As in the in-lab evaluation, we

calculated the false acceptance rate and the false rejection rate for the reading/translation game,

and we did not distinguish the detailed error type for the question-answering game. We can see

that the error rates were similar to those in the in-lab evaluation. Most of the errors were still

caused by recognition errors. Others were mainly due to incorrect or missing information in our

meaning representations. For example, "1ji)2" can mean either restaurant or hotel, but our kv-

90

frame only contains one of these interpretations. Also, we did not handle verb reduplication

appropriately, so that in the utterance "i M -M R " (please help me), we treated the two

occurrences of the verb "" as two different verbs, and falsely rejected the utterance.

In the public evaluation, it is more difficult to determine whether the subjects with poorer

Chinese got more practice from simple statistics like average number of utterances they took per

round. The problem is that the number of utterances per round is also dependent on

environmental factors such as microphone quality and background noise level. We also notice

that some subjects inexplicably repeated an already matched utterance, and thus had more

utterances in each round. To take these two factors into consideration, we define a normalized

average number of utterances per match as in Equations 4-7 and 4-8. In the equations, SER is the

sentence recognition error rate, SERsuebje, is the sentence recognition error rate attributed to

subjects' mistakes. SER - SERsubjc, gives the recognition error rate caused by other factors like

background, channel, and acoustic models. Thus, a high cor means the subject recorded in a

quiet environment with a high-quality microphone. On the other hand, a low cn,,, means the

subject probably used a poor recording device or played the game in a noisy environment.

_ #Total utterance (4-7)
Snorm #Total matches

Cnorm = 1 - (SER - SERsubject) (4-8)

Figure 4-24 shows a plot of a for the subjects who completed at least one round of the

reading/translation games. The subjects are sorted by decreasing Chinese proficiency. The

logarithmic trend line illustrates that it took more effort for the lower proficiency subject to

complete a match. Two anomalously low points for subject #7 and #16 result from their frequent

actions of asking for assistance. They clicked the "help" button every two utterances on average,

so their translations were mostly our reference translations, which were mistake-free and easy to

recognize. The high value of subject #17 is due to his multiple repetition of two wrong

translations which he probably thought to be correct.

For the question-answering game, we did not find a good correlation between ii and

proficiency. In examining the log files, we determined that many subjects were confused with the

pronoun reference of "you" and "I". Many subjects did not catch the conversational design of the

game, and answered "your father is Mike" when the system asked "who is your father?". This

91

confusion added much noise to a, which resulted in it not being representative of the proficiency

level.

Figure 4-24. Normalized average number of utterances per match with the logarithmic

trend line for the reading/translation game. Subjects are arranged left-to-right in order of

decreasing proficiency.

-S-# norm rounds to level 3
-r-# norm rounds to level 4

8 6 13 17 7 24 14 15 18
Subject #

7
6
5

4
3
2
1
0

-- # norm rounds from level 2 to 4

2 6 7 18
Subject #

Figure 4-25. Normalized number of rounds to reach Level 3 and Level 4 for

reading/translation game (left), and from Level 2 to 4 for the question-answering game

(right). The subjects are sorted by decreasing human-judged proficiency.

We also analyzed how closely the system's assessment is related to the subject's Chinese

proficiency. Since many subjects did not play enough rounds, and often quit the last round in a

session without completing it, it is not meaningful to calculate the average number of rounds per

level. Instead, we counted how many rounds they took in one game session to reach Level 3 and

92

1.6

1.4

1.2

1

0.8

0.6
2 8 10 22 1 6 13 7 17 19 21 23 14 20 4 5 15 16 18

Subject #

12
10
8
6
4
2
0

......................

Level 4 from Level 1 for the translation game. For the question-answering game, we noticed that

it took the subjects one or two rounds to understand how to play the game, as well as the

pronominal reference, so we discarded the information in Level 1 and counted the number of

rounds they took from Level 2 to Level 4. The numbers of rounds are normalized by coefficient

cnorm to reduce the differences in the recording conditions. The result is plotted in Figure 4-25. It

can be observed from the plots that as a whole, to reach the same level, subjects with lower

proficiency spent more rounds, which means that our game has a reasonable assessment

algorithm. The exceptional high number for subject #7 to reach Level 4 resulted from an

incomplete round at Level 3 which dropped him back to Level 2.

- 1st time -2nd time -++-3rd time - 1st time -- 2nd time

5 9
4 x73 -Awl=__

2 3

1 2 3 4 5 6 7 1 3 5 7 9 11 13 15 17 19
Round# Round#

Figure 4-26. Levels subject #18 achieved in different game sessions for translation game (left)

and question-answering game (right).

Several subjects accessed our system multiple times. Among them, we noticed a low-

proficiency subject who played a total of 70 rounds. We found her making a lot of progress

during these game plays. Figure 4-26 illustrated the levels she achieved in different game sessions.

We can see that for the same number of rounds she reached a higher level when she repeated the

game for a second and third time. The progress can be attributed to both increased acquaintance

with the game and improvement in Chinese proficiency. For example, she had trouble with the

syllable "chi" which she pronounced as "qi" causing much misrecognition. After several rounds,

she realized the problem and tried hard to correct it. Finally, she learned the correct pronunciation

and had it recognized correctly.

The subjects gave us considerable feedback on the games. In most of the feedback, the subjects

showed their fondness for the games. Figure 4-27 shows some of the comments we received from

the subjects. Most of the subjects found the games to be fun and helpful. They would like to play

again and recommend them to their friends. Some of the subjects also advised that the interface

93

should be improved to become easier for first-time subjects. Some of the subjects were very

careful and pointed out mistakes in the synthesized replies. Several subjects tried to explore the

space that our system is able to handle by speaking their own utterances. Their feedback was very

helpful for our future development.

"It's a confidence booster for one. When practicing speaking, it's nice to have it repeat back

what I said and to know I said it right. You can't really get that with a human, it would

probably drive them nuts."

"The hardest part of learning Chinese to me is finding someone to practice with. I haven't

used any tool thus far that had such a great amount of feedback."

"It's a good way to learn new words."

"I think this is just good. Besides you already have other games focusing on vocabulary.

Though for me building my vocabulary is important, making proper sentences in Chinese is

even (more) important and compelling."

"(The game helps) Recalling different ways of saying the same thing."

Figure 4-27. Some of the comments from the subjects.

4.6 Summary

Three games are introduced in this chapter. For a beginner level student, the reading game helps

the student to be familiarized with the pronunciation and basic sentence structures of the foreign

language, as well as to learn a few simple vocabulary items. The second game, the translation

game, then demands the student to compose sentences in L2 by himself. In the third game, the

question and answering game, the task is even more demanding. The student needs to read the L2

sentences, listen to questions in L2, and answer in L2 appropriately. All the three games use

templates described in Chapter 4 to generate game contents. Without much effort, the games can

share the same sets of templates to provide a smooth transition between the games.

The games are implemented as one system using the architecture we introduced in Chapter 3.

We see that being implemented as a whole, though different game modes offer very different

activities, many modules are shared. In other words, the modules are generic, and the games are

built up by putting together these generic modules in a certain way. Indeed, these modules are

general-purpose: not only designed for language learning systems, but can also be used in other

applications. The extensions to the existing language understanding and language generation

94

modules, the two-stage parsing and two-stage generation can be adopted in any parsing and

generation situation. The frame transformation, which is used here to generate questions from

statements, can also serve to perform other types of surgeries to any type of frames. The answer

augmentation is a simplified context resolution module which can be used to resolve abbreviated

answers given the question.

The three games are implemented in a setting of Chinese learning for English speakers.

Templates of multiple domains are designed to show that the system and modules are domain

independent. Although the system is only implemented for Chinese learning, the language

independency can be observed implicitly. Since the inputs and outputs of the modules on the

meaning layer are meaning representations, and the modules on the language tutor layer do not

perform any language processing, we only need to examine the modules on the language layer.

There are only two modules on the language layer: language understanding and language

generation. In the games, the same language understanding module is used to parse the game

sentences in LI, the reference translation in L2, and the student's utterance in L2. The same

language generation modules are used to produce the reference translation in L2, as well as to

translate the student's utterance back into Li. Therefore, we can see the modules are language-

independent. Moreover, grammars and generation rules for both Ll and L2 have been developed.

One can imagine that by switching the grammars and generation rules, the games can be easily

inverted into English learning games for Chinese speakers.

The games were tested in both a lab setting and a public setting. In both settings, the system

performed as expected most of the time. Positive feedback was received from the subjects, and

we observed one particular subject who played an outstanding number of rounds and made

progress during these rounds.

From the reading and translation to the question-answering, the system has increasing

interaction with the student. In fact, the interaction in the question-answering game can be viewed

as a one-turn dialogue. When there is a follow-up question, the dialogue develops into multi-turn.

But obviously, the dialogue is very constrained and system-initiated. In the next two chapters, we

will introduce a true dialogue game.

95

Chapter 5 Entity-Constraint-Based Dialogue

Management

Dialogue may be one of the most effective ways to help a student acquire L2 language abilities;

not only because participating in a dialogue involves comprehensive abilities from listening and

comprehension to composition and acoustic production, but also because the dialogues are a

much more real communicative use of the language. The uncertainties in a natural dialogue make

the activity interesting, as the student is challenged to face all sorts of unexpected context.

Building such a dialogue system for language learning is no easy job by any means. Scripted

dialogues are not the solution wanted, for they limit the student's response space to only a couple

of choices. But on the other hand, allowing freer dialogues introduces difficulties on the system's

side. Again, high accuracy is a key issue here. Designing a dialogue manager that is able to

provide a highly appropriate response under any context is extremely difficult. Judging the

student's performance would be a difficult challenge as well. But if we narrow down the type of

dialogue to only goal-directed dialogues, the problem becomes more solvable in terms of both

dialogue management and performance assessment.

Goal-directed dialogues refer to the dialogues in which the participants have a goal to reach.

The goal is pre-defined, and is commonly understood by both dialogue parties before the dialogue.

(Since we are focusing on a one-to-one learning situation, multi-party dialogues are not

considered.) A typical example of goal-directed dialogues is information accessing systems, for

example booking flights. In such a system, the goal is to book a flight, and both the system and

the user understand the goal, so that the dialogue is carried out along a path which is by and large

efficient to reach the goal. The two dialogue parties are not necessarily modeled as an agent and a

customer; they may have equal status, such as two friends trying to set up an outing schedule. The

goal may not be concrete, either. The important idea is that the course of the dialogue has a

direction, and is predictable to some extent, which makes it different from non-goal-directed

dialogues, i.e. chat-style dialogues.

96

Goal-directed dialogues are a good choice for building language learning systems. The

particular goal naturally becomes the task for the student. The student is allowed to conduct

natural dialogues with the system, but, because the task is given, the dialogue can be expected to

move within a certain space that the dialogue manager can handle. It is also feasible to assess the

student's performance in this situation, for, in addition to sentence level intelligibility and

grammaticality, the distance between the current dialogue state and a successful conclusion can

be measured in terms of the completeness of the goal.

Based on these discussions, a dialogue game for language learning can be outlined as follows.

The student is given a task, which can be completed by conducting a dialogue with the system.

The system assesses the student's performance, gives feedback and provides assistance when

necessary. Here we see that the system has two distinct roles: dialogue partner and language tutor.

In the reading game and the translation game, each exercise, i.e. reading aloud one sentence or

translating one sentence, is independent and requires only one turn to complete. The system only

serves as a language tutor to provide feedback and assistance. In the question-answering game,

although the interaction mimics one-turn conversations, the system still behaves more like a

language teacher asking the student questions, and giving feedback after the turn finishes. But in

the dialogue game, the role of a dialogue partner distinguishes itself from the role of a language

tutor. The dialogue partner does not need to know anything about the language learning task. It

handles the dialogue as if the student is indeed seeking information, purchasing an order, etc.

Meanwhile, in the other role, the language tutor monitors the dialogue between the student and

the dialogue partner, points out the student's mistakes, and offers hints. This role does not care

about how to respond to the student's utterance and carry on the dialogue. Its only responsibility

is to evaluate the student's utterance in the dialogue context and provide necessary assistance.

Once the separation of the two roles is made clear, the necessary modules are also clear. For

the dialogue partner role, a dialogue manager is required. For the language tutor role, a

performance assessor is inevitable. Besides, a module that can produce a task, track the dialogue

state, and generate possible responses on behalf of the student to serve as example utterances is

also necessary. This is exactly a user simulation module. In this chapter, we will discuss the

dialogue management. In the next chapter, modules that embody the language tutor role, as well

as the dialogue game will be presented.

97

5.1 Overview

The dialogue manager is a module that takes in a user's utterance, usually in a meaning

representation form, as input, and outputs a system reply, which is a system's response in a

meaning representation form. More precisely, for goal-directed dialogues, the dialogue manager's

functionality is to produce system replies that can help reach the pre-defined goal efficiently. As

discussed above, because of the separation of the two system roles, the dialogue manager does

not need to include any language learning features. It, however, needs to be generic, so as to

enable development of systems in different domains. In sum, what we want to design here is a

generic dialogue manager that can be used in language learning systems, as well as in other goal-

directed conversational systems.

In Chapter 2, we have already mentioned the statistical approaches to dialogue management

that have become prevalent in recent years, along with the problems of adopting such approaches

in language learning systems. The difficulties can be captured in three aspects: heavy data

dependency, controllability issues and error-recovery. The dialogue manager being discussed here

not only serves the language learning systems, but it also needs to be easily usable in the language

learning systems to provide highly accurate system responses with very few or even no pre-

existing data. Therefore, statistical approaches are not suitable as the backbone in this case.

On the other hand, looking into the existing rule-based dialogue management approaches,

systems that can handle complex mixed-initiative dialogues tend to be vey domain-dependent.

The two existing dialogue systems developed under the WAMI/TurnManager architecture, the

MERCURY system [33] and the CityBrowser system [41] , both can produce complex and natural

dialogues, but were developed with large amounts of domain-dependent rules and code. For

example, MERCURY consumes over 250 DCTL (dialogue control) rules and about 18K lines of

code, which makes the maintenance extremely difficult.

Generic rule-based dialogue managers use a domain specification in addition to the generic

framework to realize dialogues in a particular domain. The specification usually provides the

action/task structure of the domain, as in [30] and [62]. But this approach tends to sacrifice the

flexibility and forces a system-initiative configuration, as the system has a specified agenda that

decides what to ask first and subsequently.

So the problem is how to make a rule-based dialogue manager more generic without sacrificing

the complexity and flexibility in the dialogues. Apparently, the "abstract management and domain

98

specification" idea is correct. But is specification alone sufficient? We consider the answer as

"no". Every dialogue domain has its own unique properties and entity relations. Some may be as

subtle as the definition of time periods, and others may be as complex as "the destination airport

of the next flight should be initialized as the source airport of the previous flight for roundtrip

itineraries, as the source airport of the first flight in multi-destination itineraries, and as blank

otherwise." If all the subtleness and complexity can be expressed in one specification, the

specification itself would be daunting and complicated. It would be better to supply some small

amount of code to describe such details, with a mindful design to keep the domain-dependent

code simple and at a minimal size.

Lastly, while the dialogue is managed in a rule-based fashion, it must be admitted that

statistical methods offer great power and robustness in solving problems with uncertainty. It is

useful and worthwhile to incorporate statistical inference abilities into the rule-based framework

as a tool in dialogue management, as well as for possible future extensions.

The final dialogue manager, FAUNA', is an entity-constraint-based model supplemented with

a statistical tutoring mechanism, which allows the developer to train the system using fairly

natural interaction. Domain specifications are written in a declarative way, and the domain-

dependent code provides customized actions for the entities in the domain. The overall

framework has a unique design that treats the user as one of the knowledge sources, and multi-

modality input is also taken into consideration. In the following sections, we will elucidate the

different aspects of FAUNA in detail. Two implementation examples using FAUNA are given at

the end of the chapter.

5.2 Dialogue-manager-centered framework

Before going into the discussion of how to handle the input and produce responses, this section

examines an overall relationships among the dialogue manager, the user, and others.

When considering a dialogue management framework, it becomes apparent that the two-party

dialogue involves more than the user and the dialogue manager. Information access systems are

the most obvious example where databases, which store the real information, are also an essential

part of the whole framework. From the user's perspective, the dialogue manager and the

databases are unified as the "system". But from the dialogue manager's perspective, the user and

The feminine form of Faun or Faunus, the forest goddess.

99

the databases are both independent identities that it needs to communicate with. The dialogue

manager itself does not contain any concrete knowledge about flights, merchandise, etc., for such

knowledge is usually domain-dependent, and thus must be maintained outside the abstract

dialogue manager. We refer to the sources that provide such knowledge as "knowledge sources"

(KS). The knowledge sources are not limited to databases. They can also be servers or programs

that offer computation abilities, for example to resolve an ambiguous date expression to a unique

day. Given these knowledge sources, the dialogue manager's role can be better described as a

mediator, which integrates the current known information, works out a plan so as to advance

closer to the goal, and communicates with the user and knowledge sources accordingly.

A typical diagram of the communication between the dialogue manager with the user is shown

in the upper left part of Figure 5-1. The utterance from the user in English or another natural

language, is converted into some kind of meaning representation that can be understood by the

dialogue manager. Upon finishing the dialogue managing, the output system reply, encoded in a

similar format as the input meaning representation, is re-generated into the natural language. Thus,

on the user's side, he always speaks and hears his own native language, and on the dialogue

manager's side, the meaning representation is the only format for interfacing. The natural

language understanding and natural language generation modules between the two serve as an

interpreter to translate between the human's natural language and the dialogue manager's

meaning representation.

Figure 5-1. Communication between the dialogue manager, the user, and the database.

100

The lower left part of the figure illustrates the other communication case between the dialogue

manager and the database. The dialogue manager sends a message, and a query generator

converts the message into a valid database query. Before the query result reaches the dialogue

manager, a post-processing routine usually exists to check the validity of the results, or perform

certain reformatting.

Without much difficulty, it can be observed that the two communication cases are highly

symmetric. The database can be considered to have its own language, and the query generator and

the post processor work exactly the same way as the natural language generation and natural

language understanding modules. Furthermore, thinking of the content in the communication, the

dialogue manager receives information from the database, and it also receives knowledge from

the user, though in the latter case, the knowledge is conventionally recognized as constraints.

Both the database and the user have knowledge about the final goal; for example, the database

stores the detailed flight information and the user knows the source and destination of the final

itinerary. The dialogue manager gathers pieces of knowledge to complete a final solution. In this

sense, the user can be viewed as just another knowledge source, and the communication diagrams

can be collapsed into one, as shown on the right hand side of Figure 5-1.

Each knowledge source speaks its own language. The language understanding and language

generation modules translate the knowledge sources' languages from/to the dialogue manager's

language, "eform" (electronic form). In the implementation, each knowledge source is given a

nationality, which defines the input and output language specifications. The input and output can

consist of multiple perceptions. For example, the user can both hear and see the system's

response, and the contents of the two can differ. The language understanding of a language can be

done through parsing (TINA) or through any other specified program handlers. Similarly, the

language generation can be using the standard generator GENESIS, or using other specified

program handlers. Details of the implementation and the format of the specification can be found

in Appendix B.

Viewing the user as one of the knowledge sources leads to a dialogue-manager-centered design.

The dialogue manager receives a message from one knowledge source, compiles the information

included in the knowledge source, and figures out another knowledge source to request for more

information until the goal is reached. Handling the information coming from the user is ideally

the same as handling the information from other knowledge sources. However, due to the

implementation issues, the current version of FAUNA does need some special processing for the

101

user, for example to signal the start and the end of a turn, and pause and wait for the user's

response.

5.3 Entity-constraint-based reasoning

Having described the dialogue-manager-centered design of FAUNA, this section touches on how

FAUNA internally organizes the information retrieved from the knowledge sources, and plans the

dialogue according to the given domain specification.

To explain more intuitively, we will use the flight-reservation domain as the example

throughout this and the following sections. The dialogue scenario in the flight-reservation domain

is that the user wants to book an itinerary for a known source, destination and date. Airlines,

departure time and other constraints can be specified according to the user's preference. The

itinerary can be a one-way flight, two roundtrip flights or other multi-destination itineraries.

The most straightforward thinking of specifying the dialogue in a particular domain is by

specifying the actions, in other words, specifying what the system should ask for and respond

with in a certain condition. In the flight-reservation domain, this approach would be to say "ask

for the source first. When the source is given, ask for the destination, followed by the departure

date. When the three pieces of information are all collected, send a database query." It is not

difficult to do so at first, but when the dialogue situation becomes more complex, this is not a

preferable way, as the instructions of the actions become sophisticated very quickly. In fact, in the

MERCURY system, most of the over 250 DCTL rules were written to capture the conditional

actions, and after a while, they became unmanageable.

Thinking of why specifying the actions is tedious, it is soon realized that actions are

consequences instead of causes. Giving explicit action specifications is equivalent to giving

instructions without telling it the reason. Thus, the human developer needs to consider carefully

all the possible conditions and use human intelligence to decide what to do in those conditions.

But in fact, it is not impossible to tell the dialogue manager about the causes of those actions, and

have it do the reasoning to decide the appropriate actions by itself.

Let us examine the flight-reservation domain again. Why does it need to ask for the source,

destination and departure date of the flight? The most probable reason is that the flight database

demands those fields in order to perform a reasonable search. Why does it need to ask the flight

database for a search? Because that is the only knowledge source that contains information about

102

the flights. Why does it need the information about the flights? Because the pre-defined goal in

the domain is a flight itinerary, and a flight itinerary needs to have one or more flights. Going

through this logic, it can be noticed that the actions are determined from two aspects: the entity

structure in the domain and the constraints set by the knowledge sources. The entity structure

determines that a complete itinerary must contain one or more flights, as well as that a flight

contains attributes such as source, destination, and date. The knowledge source constraints

determine that the detailed flight information can only be obtained from the flight database, and

the source, destination and departure date must be filled before the query from other knowledge

sources, i.e. the user. Once the entity structure and the knowledge source constraints are properly

specified, the dialogue manager should be able to figure out the next action according to the

current dialogue state using logical reasoning.

Based on this idea, a declarative specification is designed for FAUNA. All the available

knowledge sources are declared, along with the knowledge they provide and the constraints called

"prerequisites". The entity types are defined by elucidating the members and the complete

conditions. One entity type is appointed to the goal entity. The reasoning process starts from the

complete conditions of the goal entity, computes the satisfied part and not-yet-satisfied part, and

issues a task according to the unsatisfied condition. The tasks are associated with action functions,

which can be fully customized. In the execution of the action function, another task can be issued

as a subtask or a sibling task, which creates a tree-structured task hierarchy. The leftmost leaf task

is called for execution every time, until one of the stop conditions is met. Then, the system reply

produced during the execution of the tasks is picked up and sent out.

5.3.1 An example

Before going into the details, an intuitive example is given below. Figure 5-2 shows an

illustrative dialogue specification of the flight-reservation domain. Four knowledge sources and

two entity types are declared. The knowledge sources besides the user handle the flight

information, airport resolution and date/time resolution respectively. The user is assumed to know

everything that cannot be obtained from any other knowledge sources, but with very high cost.

The two entity types are itinerary, the goal entity, and flight. Entity itinerary has two member

attributes: flights and price. Entity flight is simplified to contain five member attributes: source,

destination, date, airline and flight number. The key :goal leads to the self-explanatory logical

expressions for the complete conditions.

103

{c dspec
:knowledgesources

{q user
:nation "US" }

{q flightdb
:nation "db"
:knowledge ({q flight

:attributes ("flightnumber"
:prerequisite ("destination" "source" "date"

:handler "flight_db_query" })
{q itinerary

:attributes ("price"
:prerequisite (":flights"
:handler "pricequery" }) }

{q datetime
:nation "eform"
:knowledge ({ q date

:handler "resolvedate" }
{q time

:hanlder "resolvetime" }) }
{q airport

:nation "eform"
:knowledge ({q airport

:handler "resolve-airport" }) })
:knowledgesourcepriority ("datetime" "airport" "flightdb" "user"
:nations (

{q US
:inputperceptions (":hears")
:output-perceptions (":speaks")
:reads {q string

:genesislanguage "English" }
:speaks {q string

:tina_grammar "English" } }
{q db

:input {q string
:genesislanguage "SQL" }

:output {q eform
:handler "postprocess_db_result" } })

:goal "itinerary"
:entities (

{q itinerary
:definition {c definition

:flights "list-of-flight"
:pred {p price} }

:goal "#:flights > 0" }

104

Figure 5-2. Illustrative dialogue specification of the flight-reservation domain.

Figure 5-3 depicts the course of reasoning and planning after the user has spoken "I want to fly

to Boston." Via language understanding, the English utterance is conveyed to FAUNA in

language eform which looks like the following:

{c eform

:destination "Boston"]

The eform input is first digested into FAUNA's internal memory state. Because destination is

declared as an attribute of entity flight, a floating attribute destination with a candidate owner

flight. Then the reasoning begins. A root task fidfill-goal is issued automatically. The following

describes what happens in each step in the figure.

1. Executing fulfill-goal. The goal entity is itinerary. Since no such entity can be found in

the memory state, an empty itinerary is created and a subtask complete entity(itinerary)

is issued.

2. Executing complete-entity(itinerary). The completion condition "number of flights

greater than zero" is not satisfied, so issue a subtask addentity(itinerary, flights).

3. Executing addentity(itinerary, flights). The type of member flights is a list of entity

flight. No entity of type flight exists, so create a new flight and issue a subtask

complete-entity(flight).

4. Executing complete-entity(flight). The floating space is first checked. It finds the floating

attribute destination, and thus issues a subtaskfill-attribute(flight, destination).

5. Executing fillbattribute(flight, destination). The declaration of attribute destination

indicates a format, but the current attribute does not match the format. FAUNA finds the

knowledge source airport which can possibly resolve this confusion, and issues a subtask

inquire ks(airport, destination).

105

{q flight

:definition {c definition

:pred {flightnumber }
:pred {p source}

:pred {p destination }
:pred {p date }
:pred {p airline } }

:goal "flightnumber & date" }) }

Floating attributes Task hierarchy Floating attributes Task hierarchy

{p destination fulfill-goal {p destination fulfillgoal

:destination "Boston" } I ----- -- :destination "Boston" } completeentity(itinerary)
complete entity(itinerary):omlteniytnra)

add entity(itinerary, flights)

Entities Entities

{q itinerary } {q itinerary

(1) (2)

Floating attributes Task hierarchy Floating attributes Task hierarchy

{p destination fulfillgoal {p destination fulfillgoal

:destination "Boston" } completeentity(itinerary) :destination "Boston" } completeentity(itinerary)

add entity(itinerary, flights) add entity(itinerary, flights)

Entities [completeentity(flight) Entities completeentity(flight)
{q itinerary }-------------------- {q itinerary }._L
- - - ----- | fillattribute(flight,
{q flight } {q flight destination)

(3) (4)

Task hierarchy Task hierarchy
Floating attributes Floating attributes

fulfill goal Ifulfilgl
{p destination {p destination _goal

destination "Boston" } complete entity(itinerary) :topic {q airport completeentity(itinerary)
:name "BOS" }}

addentity(itinerary, flights) ~~-~ -~ -~~~ addentity(itinerary, flights)

Entities completeentity(flight) Entities completeentity(flight)
{q itinerary } {q itinerary }

fillattribute(flight, fill attribute(flight,
{q flight } destination) {q flight destination)

I -------- - - -

Inquire ks(airport, Inquireks(airport,

destination) destination)

(5) (6)

Floating attributes Task hierarchy Floating attributes Task hierarchy

fulfill _goal fulfill _goal

Entities completeentity(iti nerary) Entities completeentity(iti nerary)

{q-tinerary }_____--- _ addentity(itinerary, flights) {q itinerary } add entity(itinerary, flights)

{q flight c {q flight .completeentity(flight)

:pred {p destination entity(flight) :pred {p destination _ _ _ _

:topic {q airport fill_attribute(flight, :topic {q airport fill attribute(flight,
:name "BOS" }name "BOS"} } flightnumber)

(7) (8)

106

Floating attributes

Entities

{q itinerary

{q flight
:pred {p destination

:topic {q airport
:name "BOS" }}}

Task hierarchy

fulfilgoal

complete-entity(itinerary)

add entity(itinerary, flights)

completeentity(flight)

fill attribute(flight,

flight number)
_i--------------------I
Inquireks(flight-database,

flight number)~- -~ -~-~ -~~- ~~--------

(9)

Floating attributes

Entities

{q itinerary }

{q flight
:pred {p destination

:topic {q airport
:name "BOS" }}}

Task hierarchy

fulfilgoal

completeentity(itinerary)

addentity(itinerary, flights)

completeentity(flight)

fill attribute(flight,
flight number)

Inquireks(flight database,

flight number)

fillattribute(flight, source)

10)

Floating attributes

Entities

{q itinerary }

{q flight
:pred {p destination

:topic {q airport
:name "BOS"}}}

Task hierarchy

fuifillgoal

completeentity(itinerary)

add_entity(itinerary, flights)

completeentity(flight)

fill_attribute(flight,
flight number)

Inquireks(flight database,
flight-number)

fill attribute(flight, source) E*

{c reply
:messages (

{c need attribute
:topic {q flight

:pred {p destination
:topic {q airport

:name "BOS" } }})
:continuant {p need source } }

"Where are you leaving from?"

(11)

Figure 5-3. Reasoning and planning for the user input "I want to fly to Boston."

6. Executing inquire-ks(airport, destination). The attribute destination is sent to the

knowledge source airport, and an updated one is sent back. This task finishes and is

removed from the task tree.

7. Executing fill-attribute(flight, destination). This time the attribute destination conforms

to the format. Entityflight adopts it, and the task finishes.

107

I

8. Executing complete-entity(flight). The completion condition states "flight number and

departure date are required." Neither of them has been filled. FAUNA issues a subtask

according to the first unsatisfied condition, which isfillattribute(flight, flight-number).

9. Executing fill-attribute(flight, flight-number). No existing flightnumber is available

from the memory space. FAUNA turns to the knowledge sources, and figures out that the

flight-database contain this information. Thus, a subtask inquire-ks(flight database,

flightnumber) is issued.

10. Executing inquire-ks(flightdatabase, flight-number). The prerequisite of the

flight-database, "source and destination and departure-date," is not satisfied; thus, a new

subtaskfillbattribute(flight, source) is issued.

11. Executing fillattribute(flight, source). When trying to find out an attribute source,

FAUNA does not see any other knowledge source that can provide this information, and

therefore has to turn to the last knowledge source, user. A system reply

needattribute(flight, source) is produced, and an end-of-turn is signaled.

Now that FAUNA notices the end-of-turn signal, it stops executing the tasks. The system reply

generated from the last task is sent off to the language generator. The user then hears the English

response, "Flights to Boston. Where are you leaving from?"

We can see that without explicating the actions in the domain specification, FAUNA figures

out and asks for the incomplete information. Moreover, nothing more needs to be specified when

the user first tells the source, the date, a combination of the constraints, or no information at all.

The reasoning and planning follows similar paths.

Now we will go into more details about the declaration and dialogue execution.

5.3.2 Declaration

The declaration, or the dialogue domain specification (DSPEC), provides information about a

particular dialogue domain. The DSPEC is written in the GALAXY frame format, and includes

four major sections of declaration: knowledge sources, nations, entities and meta information. A

complete syntax and available attributes are listed in Appendix B. Following is a brief description

of each of the four sections.

108

Entities

Entities describe how the information in the domain is structured and related. Dialogue planning

is centered around the entities, and discourse relationships are fully determined by the entity

declarations. Entities usually represent objects in the real world, but can also be designed for

abstract objects, analogous to the classes in object-oriented programming languages.

The declaration of an entity includes two required elements, definition and completion

condition, and several optional elements: governing relationships, modifiers, customized actions

and commands.

Definition. The definition lists the members of the entity. Usually, a name and a type is

necessary for each member. The type can be simple types, i.e., int, string, double, etc., another

entity type, or a list of another entity type, for example:

:num_flights "in t"

:flights "list-of-flight"

A special type of members called attribute is declared using the predicates.

:pred [p destination

:knowledgedomain "airport"]

Attributes are members that have complex information, but not complex enough to become an

entity. The attributes can be assigned a knowledge domain, so that FAUNA can find out

appropriate knowledge sources to contact when the attribute needs extra processing. If the

attribute is declared as an "auto update" attribute, the corresponding update task will be issued

whenever the entity has been changed.

Completion condition (goal). The goal of the entity indicates the conditions when the entity is

considered as complete. It is expressed in a logical expression, for example:

:goal "flight number & departuredate"

Modifiers. Modifiers are constraints on the attributes which have effect when there are a set of

candidate entities. The only currently implemented modifier is the superlatives, for example

"earliest", "latest", etc.

109

Governing relationships. The governing relationships state the discourse relationships among

the members of the entity. If member A governs member B, a change in A would result in a

removal of the previous B values. For example:

:governing relationship [c relationship

:flights ("price") }

The member flights in the entity itinerary governs the member price, and thus if there is a change

in flights, the existing price is removed. The governing relationship can be unconditioned, or

conditioned on specific values of the members.

Commands. Explicit commands in the input, usually from the user, are declared to show their

mapping into tasks. For example:

:commands {q commands

:pred {p delete

:tasks [q removeentity

:entity name "itinerary"

:param ":flights"

:value "*SELF*" J J J

The command delete maps to the task remove-entity, which removes itself (aflight entity) from

the memberflights of an itinerary entity. One command can map to a single task or a list of tasks.

The task is abstract in the declaration, and is instantiated with real entities at runtime.

Customized actions. Customized actions of the tasks for the entity are specified in a way

similar to events in the modern programming languages. The actions can correspond to the

reserved tasks, as well as tasks specific to the domain. If the task takes a parameter, the actions

can be customized with respect to a particular value of the parameter. For example:

:on_fill attribute "customizedjfilL attribute"

:onjill date "customized filLdate"

The first customization says for the taskfill-attribute, regardless of which attribute is being filled,

use the action customized_fill-attribute. The second customization says that when the attribute

being filled is date, use the action customizedfillbdate. More specific customizations have

priority over more general customizations.

110

Knowledge sources

This section declares a list of available knowledge sources and their usage. Each knowledge

source is declared with the following elements: name, type, nation it belongs to, domains of

knowledge it handles, and optional initializer. The type indicates the way the knowledge source

can be accessed, whether it is available in a locally linked library, or it requires external

dispatches. The nation specifies the language it uses, and should be one of the nations defined in

the nation section.

A knowledge source can offer multiple domains of knowledge. There are two types of

knowledge: the entity-level which corresponds to the entities in the domain, and attribute-level

which corresponds to the knowledge domains of the attributes. For example, the flight database

provides the entity-level knowledge flight, and the knowledge source airport provides the

attribute-level knowledge airport, which corresponds to attributes destination and source of the

entity flight. The type of the knowledge is inferred from the name of the knowledge, i.e. whether

the name matches an entity or the knowledge domain of certain attributes. For either type of

knowledge, a function handler is necessary for FAUNA to call. It may also include prerequisites,

a comparator and a summarizer. The comparator is used to compare two instances in the

knowledge domain and tell their relative order. The summarizer is used to summarize a list of

instances.

The user is a special knowledge source. The type is set to be "GUI". No domains of knowledge

are declared under user, as the user is assumed to know everything that other knowledge sources

do not know about.

The knowledge sources are ranked by priority. Higher priority implies low cost in

communication. When one domain of knowledge is provided by two knowledge sources, the one

with higher priority is communicated with first. Only when the first one does not provide a

satisfactory result would the second one be communicated. The user is by default considered to

have the lowest priority. FAUNA turns to the user only when no other knowledge sources can

provide the necessary information.

Nations

Nations are the specification of the language parameters. Knowledge sources belonging to the

same nation share the same set of language parameters.

111

Each nation has one or several input perceptions and output perceptions. The input and output

are respective to the knowledge sources rather than to the dialogue manager. For each perception,

format and processing parameters are declared. For example, the following nation US, used by

the knowledge source user, has two input perceptions and one output perception. The two input

perceptions correspond to the synthesized voice and the text display, which are generated by

GENESIS using two sets of generation rules. The output perception is the user's speech, which

should be parsed by TINA using grammar English, and further converted to a key-value

representation (eform) using GENESIS's generation rules dialogue.

{q US

:input perceptions (":hears" ":reads")

:output perceptions ":speaks"

:reads {q string

:genesislanguage "English text"]}

:hears fq string

:genesislanguage "English synth"}

:speaks {q string

:tinagrammar "English"

:kvlang "dialogue" }]

In addition to the declared nations, an implicit nation eform exists for the knowledge sources

that can communicate with FAUNA directly and do not require any extra language processing.

Meta information

The meta information specifies the functional keys and values in the input to FAUNA. The

information includes the keys used to indicate nth, truth values (yes/no), quantifiers, as well as

their corresponding values, for example the values to indicate "yes" and "no".

5.3.3 Dialogue execution

Input and reply

The input to FAUNA after language understanding and the raw reply from FAUNA before

language generation are both in language eform, a meaning-level frame.

The content of the input eform resembles the entity structures, with the keys representing the

members. The input can be a single attribute such as:

112

{c eform

:destination "Boston"]

Or an explicit entity, the type of which is indicated by the key :topic. (Note that in an eform, the

names of the top frame and subframes are all by convention "eform", and thus are not used for

meaning specification.)

{c eform

:topic "flight"

:destination "Boston"}

Indicating an explicit entity, as in the above example, places constraints for the owners of the

attributes, i.e., the owner entity of the attribute destination is constrained to be aflight, whereas in

the first example, the owner of the attribute is determined according to the entity declaration.

Entities can be given a nickname by using a parent key, so that in later turns, this particular

entity can be referred to unambiguously using the nickname. For example, the following input

expresses aflight entity with the nickname "return_flight".

{c eform

:return_flight [c eform
:topic "flight"

:destination "Boston"]

The input eform may also contain the key :command for any explicit user commands, and/or

keys of meta information, such as nth, truth values, and quantifiers. Keys that do not express

declared entities, attributes, modifiers, commands, or meta information are discarded.

The reply eform consists of zero, one or more messages, and a continuant. The messages

represent a statement that describes the current dialogue state or the most recent action, and the

continuant represents a system suggestion or request. For example:

:eform to ks {c reply messages
:messages (

{c needattribute
:topic {q flight

:destination [p destination
:topic {q airport

:name "BOS"] } }})
:continuant [p needsource } }

113

Table 5-1. Pre-defined messages and continuants.

Message/Continuant Description

Notask/None The task hierarchy is empty.

Unable-to-proceed/None The same task is called for execution twice in a row and

thus the system enters a finite loop situation.

ShowInfo/None The message contains a certain entity /attribute

Needattribute/need_AITTR An attribute is necessary. Suggest the user to provide

the attribute ATTR.

Attributenotunderstood The attribute provided does not conform to the format

/A TTRnotunderstood declaration, and no knowledge source is able to resolve

it.

Nochoice/change-condition These can be generated when a list of candidates are

Inadequate/proceed orchange available for selection. If the length of the list is zero,

Needconfirm/confirm-entity nochoice is generated. If the length of the list equals

Needselect/selectn the number of selection slots, needconfirm is

Needselect/too-many-options generated. If list length is smaller than the number of

slots, inadequate is generated. Otherwise needselect is

generated. Needselect can be paired with the

continuant selectn or toomany-options. The latter one

appears when the candidate list is too long.

Needconfirmaction/confirm_action These two are the action versions of the above. The user

Needselectaction/selectaction is asked to confirm an action (task) or to select one

action from the options.

This reply contains one message and one continuant. After language generation, it can be

converted into the following final output.

114

:toks [
:ks "user"

:hears "Flights to Boston. Where are you leaving from?"]

The messages are usually paired with the continuants. Table 5-1 Lists the pre-defined messages

and their continuants. In messages containing a list of entities/attributes larger than a certain

length, summarizers are called to offer a summarization of the information. In addition to the pre-

defined ones, domain-dependent messages and continuants are also allowed.

Dialogue state

The dialogue state is a combination of the current entitylattribute status, the current task hierarchy,

and other relevant information. These elements are stored in FAUNA's internal memory space.

Each of the entities, attributes and tasks has a unique id number to be referred with, as well as a

turn id to indicate its temporal position in the history.

Attributes and modifiers are extracted from the input of the knowledge sources, and remain

floating until some entities pick them. The floating attributes and modifiers have certain

constraints on the entities that can pick them, either derived from the entity declaration, or

derived from the hierarchy of the input. When a satisfactory entity appears, corresponding tasks

are issued to remove them from the floating space and put them into the owner entity. If the entity

already owns an attribute with the same name, the new attribute replaces the old one, and the old

attribute is put into the obsolete space.

Entities are created from the input, if there is an explicit expression of an entity, or by tasks like

fitdfill-goal and addentity. When creating an entity, members with initial values are created at

the same time. Later manipulations of the members of the entity are typically through explicit

tasks like add-entity, fillattribute, etc. The entities are stored in such a way that the current

active entity is on the top, and those that have not been mentioned at the bottom, so that, when

searching for an entity which meets certain constraints, the most recent entity that is mentioned is

found first.

In addition to the normal entities, a list of repository entities is also maintained for entity

candidates. The candidates are typically results coming back from the database that required

further selection. The repository entity list serves as a cache to reduce repeated communication

with knowledge sources. The query conditions are also stored, so that, if the conditions of a new

query is a superset of the previous conditions, FAUNA searches in the repository entities directly

115

rather than issuing a task to inquire the knowledge source again. The entities in this list are kept

for a certain number of turns. Repository entities older than this turn limit are cleaned.

Tasks

Tasks carry out the manipulations of the entities, searches for more information and

communications with the knowledge sources. The tasks are stored in a list, with each task

optionally having recursive subtasks, which forms a forest structure. The execution of the tasks is

a loop which executes the leftmost leaf task every time, until one of the following three

conditions is met: the task hierarchy is empty, the same task is called for execution twice in a row,

or an end-of-turn flag is set. Under any of these conditions, the reply eform produced during the

task execution is sent out. Figure 5-4 illustrates the execution process.

Figure 5-4. Loop of task execution.

Each task is associated with an action, either pre-defined or customized, which in turn maps to

two functions in the code: a prepare function and an action function. The prepare function gathers

116

all necessary information to perform the task, for example, to look for the concrete attribute in the

task fill-attribute, and returns whether the task is ready to perform or not. Then the action

function performs the real action, e.g., changes the ownership of the attribute and updates the

entity. The action function reports whether the task is completed, and if completed, how the entity

has been modified. FAUNA takes advantage of the report and updates the task hierarchy by

removing out-of-date tasks, and then executes the current leftmost leaf task if the stop criterion is

not met.

A task can be issued as one of four types: a command task, a priority task, a subtask and a

subsequent task. A command task is issued when the task is derived from a command. A priority

task is issued when the task requires immediate execution. Both the command tasks and priority

tasks are system-level tasks and are issued by FAUNA directly. Individual task actions are not

allowed to issue these two types of tasks.

In the task actions, new tasks can be issued as either a subtask or a subsequent task. The

subtask is a child task of the current task. Tasks that have subtasks cannot be completed until all

of the subtasks are completed. The subsequent task is the right sibling task of the current task,

which is executed after the completion of the current task.

Multiple sibling tasks can also be grouped into a task group. The task group prevents any new

task from inserting between two tasks in the group. If a task in a group issues a subsequent task,

the new task is added as the right sibling of the last task in the group.

During the execution of a task, a system reply can be produced. If multiple tasks generate

system replies, only the latest continuant is retained. Meanwhile, all previous messages can

survive as long as they do not conflict with the newer ones.

Following are some reserved tasks, most of which are pre-defined with default actions.

Fulfill-goal. This task is automatically issued at the beginning of the dialogue, and serves as

the ancestor of most tasks. The task reads the goal entity of the domain, and issues a

complete entity task on the goal entity if the goal entity has not been completed.

Complete-entity. The task can take an entity id or an entity type. If the entity id is not

provided and no entity of the specific type exists, a new entity is created. The completion

condition of the entity is checked, and if the entity is not complete, appropriate tasks are issued

according to the unsatisfied conditions. In the case of a conjunctive completion condition, the first

117

unsatisfied clause translates to a new task. In the case of a disjunctive completion condition, a

special or-task is issued, in which multiple subtasks run in parallel and the task completes if one

of the subtask completes.

Addentity, remove-entity, alterentity. These three tasks manipulate the member entities of

a parent entity. The member entities are the members of which the value is an entity type or a list

of entities. The task looks for the appropriate member entity, and performs corresponding actions.

In the task addentity, if no such entity exists, a new entity is created, and a subtask

complete-entity is issued on the new entity.

Fillattribute, drop-attribute, change-attribute. Similar to the above three, these three tasks

manipulate the attributes of an entity. In the task fillattribute, if no suitable attribute can be

found, appropriate knowledge sources are consulted, and a subtask inquireks is issued. If a new

attribute already exists for the tasks fill-attribute and change-attribute, the format of the attribute

is checked if applicable, and the corresponding knowledge source is consulted upon a check

failure.

Update-attribute. Unlike the other reserved tasks, update-attribute does not have a default

action. It must be customized when one or more attributes in the entity are declared as "auto

update". The task is issued when the entity is modified in any way.

Addmodifier, removemodifier. These two tasks carry out the addition or deletion of

modifiers in an entity.

Inquire-ks. This task first verifies the prerequisites of the knowledge source. If the

prerequisites are not met, appropriate tasks are issued as subtasks. Otherwise, the information is

packed in an eform, and sent to the knowledge source together with a session-info. FAUNA

keeps a session-info for each knowledge source, which can be used for the knowledge sources to

record information that needs to be carried over turns.

Showentity. This task simply produces a system reply without a continuant that contains the

specified entity.

118

Pending objects

When there exist more than one candidate choices, or when confirmation is necessary, the system

may send out the reply need_select or need_confirm. In such a case, a pending list is stored in the

dialogue state. The objects in the pending list may be entities, attributes, or tasks. In the next turn,

based on the input, different operations may be carried out.

a) Positive selection. For example,

- Can you choose one of them?

- The second one.

Or,

- Do you want to add this flight?

- Yes.

In this case, the appropriate item from the pending list is selected, and the pending list is removed.

b) More constraints. For example,

th
- Flightsfrom Boston to Chicago on December 12t. I have Would one of them work?

- I want a morning flight.

In this case, upon the incorporation of the new information into the flight entity, the pending list

is also refined. After refinement, another system reply, need_select, need-confirm or nochoice,

is generated according to the number of items left on the refined list.

c) Negative selection. For example,

- Do you want to add this flight?

- No.

In the case of a negative selection, the corresponding task is discarded, and the relevant

entity/attribute is added into a denial list. Other possible choices are searched, and if none can be

found, a nochoice reply is generated.

d) Other non-relevant input. For example,

- Flights from Boston to Chicago on December 12 . i have Would one of them work?

- I want to leave on the 15th

Or,

119

- I have found these flights...... Would one of them work?

- Delete my first flight.

In such situations, the pending list is removed, and the dialogue proceeds according to the new

information or command.

Quantifiers

Quantifiers from the input eform are used to disambiguate entities or place/remove constraints on

the entities and attributes. FAUNA defines five categories of quantifiers, and three of them are

currently handled.

Demonstrative, e.g. this, that, etc. These quantifiers indicate an object that is being shown or

has been shown in the history. For example,

I want that American flight.

The pending list is first looked up to see if there is any entity that matches the constraint. If not,

FAUNA looks into the recently mentioned entities to find such an entity.

Other. This quantifier can act on either entity or attribute. It indicates a rejection of the current

options and requests other choices. Thus, the pending list is removed, and all the items on the

pending list are put into the denial list.

Any. Any can also act on either entity or attribute. For example,

{c eform
:topic "flight"

:quant "any"]

Or,

[c eform
:departure time "any"]}

Any serves as a constraint remover, which drops the corresponding attribute, and/or clears the

denial list of an entity.

120

Meta commands and exceptions

Meta commands refer to the user commands that are domain independent, such as "clear history".

Since these meta commands involve operations on the history state, they are handled on a higher

level using separate DCTL operations.

The meta commands are indicated in the eform using the key :action to be distinguished from

normal commands. Currently, three meta commands are handled.

Clear history: clear the entire dialogue history and start over.

Scratch that: remove one previous turn.

Repeat that: repeat the system reply of the last turn.

Several exceptional cases are handled using separate DCTL operations, such as no parse

(language understanding failure), and no reply (dialogue management failure).

5.4 Statistical inference and tutoring

As it can be seen from the last section, the dialogue execution in FAUNA is analogous to finding

a solution to a problem based on the given conditions. For a goal-directed dialogue, this kind of

reasoning provides an efficient guideline to achieve the goal. Nevertheless, in real life, experience

also contributes in problem-solving. Such experience may be hard to express by rules, but usually

can be modeled statistically. Therefore, FAUNA incorporates a statistical classification engine to

support decisions which are easier to make by statistical inference.

It should be made clear that the statistical engine is designed only for specific small

classification problems. A typical example is that, in some domains, certain tasks might require

the user's confirmation before execution. The conditions of when confirmation is necessary can

be too complicated to write down, and thus the statistical engine can help. Even though the

statistical engine can be used in various places, it is not designed to solve complex problems, or

to replace the overall reasoning-based framework.

121

5.4.1 Model and specification

The model of the statistical inference is base on the nearest neighbor model. Given a dataset X =

XIX 2... X" and the corresponding labels Y = y 1 y 2 .y.n, the label of a test data point x is

computed using the following equation:

f(x) = argmax a'tfsim(x, Xi) - (Yi, yj) (5-1)

where yj indicates all possible labels, sim(-) indicates a similarity measure of the two data points,

and 6(-) is the delta function which is 1 when the two inputs are identical and 0 otherwise. a and p
are two coefficients in the equation. a is the temporal fading coefficient which takes value

between 0 and 1, and is raised to the power of ti, the age of the data point. Thus, older data points

would have less influence. P is the correction weight, which will be explained later in this section.

The similarity measure is calculated from each feature dimension of the data points. The

equation is given in (5-2), where d(-) is the distance between the two values, and wi is the weight

of each dimension, which is proportional to the number of distinct values of the feature dimension

and the mutual information between the feature dimension and the labels of the data points. If the

two data points are identical, the similarity is denoted by a large constant, S.

x * x'
sim(x,x') = 0 wdz x' 1:) (5-2)

S x =x

wi oc c(Dj)H(Df(D))

The values of the feature dimensions are not limited to numbers. Strings and lists are also

acceptable. Appropriate distance functions for each feature dimension d(-) can be specified to

provide meaningful measurement.

For each dialogue domain, multiple classifiers are allowed. Each classifier is given a name, and

the possible labels and features are specified. FAUNA takes one or multiple frames as input to

calculate the values of each feature. The features can be as simple as the value of a key in the

input frame, or can be more complex and calculated by a customized function. Following is an

example of the specification of a classifier called taskneedsconfirm. The classifier takes two

frames as input, and uses the name of the first frame ($core[0]), values of two keys from the first

frame (:confirmed[0], :param[01), and values of two keys from the second frame

(:shown[]], :hasowner[1]) as features. The output label is either 0 or 1.

122

:taskneedsconfirm {cfeature

:values (0 1)
:ninputjframes 2

:features ("$core[0]" ":confirmed[0]" ":param[0]" ":shown[1]" ":has owner[1]")

5.4.2 Tutoring and backdoor

Developing a statistical system is usually divided into two stages. In the training stage, the

models are obtained using certain amount of training data. In the test or deploying stage, the

trained models are loaded to carry out the designed functionality. Data can be collected in this

stage to re-iterate the training stage for a better performance. However, obtaining the initial data

is not easy, especially for applications like dialogue systems. Although FAUNA's statistical

engine is designed for small problems, matching data usually do not exist before the particular

dialogue system is implemented.

Another problem with the training-test schema is that the system's behavior in the test stage is

static. If an incorrect response is produced, the error cannot be corrected until another iteration of

training is done. Furthermore, at the time of the new training process, the error might have been

forgotten. It would be ideal if the statistical engine can run without initial data, be corrected

immediately after any mistakes, and learn from the correction. The idea is similar to the process

of teaching a child. The child is born knowing nothing, and is expected to make mistakes. But

then, the adult corrects the mistake, and gradually the child learns what to do in different

situations. By doing so, there is no explicit training stage, as the child can learn and perfect his

behavior throughout his life, and we call this way of building statistical models "tutoring".

Using tutoring, the classifier starts with no initial data. Under that circumstance, the best it can

do for classification is to guess an output. If the output happens to be correct, no measures need

be taken. The features and the output label become the first data point. If, on the other hand, the

guess is incorrect, a human then corrects its mistake, and this corrected data point is stored with a

higher weight. For a dialogue system, when an incorrect classification result is produced, it would

lead to an undesired system reply. The human tutor notices the undesired reply, rolls back one

turn, and provides a correct answer. The process is illustrated in Figure 5-5.

Ideally, tutoring should be incorporated in the dialogue naturally. Nevertheless, at the current

stage, we only explore the feasibility of the idea using special typed commands in a "backdoor"

access to the system.

123

Data ManualProceed to the Any undesired Roll back c tn
corectio

end of the turn reply? one turn

Data Data
Classification Proceed to the

result (guessing) next turn

Figure 5-5. Process of tutoring.

This is an intervenable point.
The current situation is:
(c situation

:conf 0.999524
:feature_values (0

0
"fulfillgoal"
"itinerary"
-10000
0)

:spec {c feature
:datafilename "../System/mercury/stat-inferencedataeval. frame. taskneedsconfirm"
:features (":confirmed(0]"

":is iauth task[0]"
"$core[0] "
":param[0]"
":entity_shownil]"
":hasowner[l]"

:ninputframes 2
:values (0

1)}
:unseen 0

My proposed result is:
0
confidence: 0.999524
bkdoor>> intervene
The current situation is:
(c situation

:conf 0.999524
:feature_values (0

0
"fulfillgoal"
"itinerary"
-10000
0)

:spec (c feature
:datafilename ". . /System/mercury/stat_inferencedataeval. frame. taskneedsconfirm"
:features (":confirmed[0]"

":is iauth task[O]"
"$core[0]1"
":param[0]"
": entityshown[l]"
":has_owner[1]"

:ninputframes 2
:values (0

:unseen 0 }

My proposed result is:
0
confidence: 0.999524
Manual solution>> 1
Input recognized as an int: 1. Is that right? (Enter to confirm, otherwise retype)
Press Enter to confirm>>

Figure 5-6. Correcting an incorrect statistical inference result.

The backdoor is a debugger-like tool provided by FAUNA to allow the developers to monitor

the dialogue execution, as well as to provide correction for the statistical inference.

124

The backdoor is operated using special typed commands starting with "bkdoor". When the

input is recognized as a backdoor command, it is not counted as a normal dialogue input and thus

the turn id will not be incremented. When the backdoor is open, the dialogue execution may be

paused or "intervened".

In the paused state, a command prompt "bkdoor>" is displayed. Developers can use commands

to view the information of the current dialogue state, set or remove breakpoints, or step forward.

The position where the dialogue execution can be paused is called a "landmark", which covers

issuing a new task, executing a task, changing an entity, finishing a statistical inference, etc. New

landmarks can also be added in the customized action functions. Each landmark has a label and a

related object id. The developer can use a print command to see the current and past landmark list.

Breakpoints can be placed on the landmarks using a substring of its label.

In the "intervenable" state, the dialogue execution can be intervened by providing manual

correction for the statistical inference result. The state is enabled when the backdoor is in the tutor

mode. The dialogue execution is paused after a statistical inference, and a command prompt

"bkdoor>>" is displayed. The developer can view the feature values and the proposed

classification result, and correct the result if it is not desired. Figure 5-6 shows a screenshot of

correcting an incorrect inference result.

Table 5-2 lists some frequently used backdoor commands and their description. The commands

can be typed in when the system is waiting for a normal dialogue input, or used directly when the

dialogue execution is paused and the backdoor command prompt is displayed.

5.5 Supporting multi-modality

One of the recent trends in dialogue systems is that the systems are becoming multi-modal. The

user interacts with the system in more than one input modality: not only speech, but also gestures.

The gestures can be simple mouse clicks, or more complicated drawings. In one of the previous

dialogue systems CityBrowser [41], the user is able to drawing a line or a circle on the map, and

at the same time speak to the system to inquire about the restaurants near the position he draws.

In order to implement such dialogue systems, FAUNA also provides multi-modality solutions.

125

Table 5-2. Backdoor commands.

bkdoor info Print out verbose information during the dialogue execution.

bkdoor silent Stop printing out verbose information.

bkdoor open Open the backdoor.

bkdoor step Pause at the predefined landmark actions during the dialogue

execution.

bkdoor tutor [unseen] Pause at the end of statistical inference. If option "unseen" is used,

[conf score] only pause at unseen data points. If option "conf score" is used,

pause only when the confidence score is below score.

bkdoor tutor off Stop pausing at the end of statistical inference.

bkdoor close Close the backdoor.

bkdoor print type [id] Printing the current dialogue state, tasks, entities, etc. A help

message is displayed if no type follows the command.

bkdoor break name Set a breakpoint at a landmark action, where the label of the

landmark contains name.

bkdoor [break] del i Delete the breakpoint with id i.

Since the user is one of the knowledge sources, and the nationality of knowledge source

defines its input and output language parameters, the multi-modality fits naturally into the

handling of the nations. Each nation may have multiple output perceptions (output from the

knowledge source, and thus input to FAUNA), which already promises the possibility of multi-

modality. However, we shall see that this alone cannot solve the entire problem.

There are two types of multi-modality activities: independent and cross-referred. Independent

multi-modal inputs stand for input that can completely express itself in a single modality.

Although multiple modalities are offered in the system, for example the user can either speak or

click on a map, each spoken utterance and each click forms a complete input, and the system is

126

able to respond to the input. In this case, the speech and the mouse click can be handled easily as

two independent perceptions, or even as one perception if cleverly designed.

The situation is more complex in the cross-referred inputs, when more than one modality is

used to express a single meaning. For example, the user draws on a map and says "I want to go

here." The drawing alone does not contain any semantic information, and the speech alone cannot

be fully interpreted either. Moreover, the timing of the two input modalities is tricky. One might

speak first and then click, or click before speaking. It rarely happens that the two inputs are

simultaneous, since they obviously have different durations. Therefore, additional support is

necessary, and parasite perceptions are defined for this purpose.

In cross-referred inputs, we first separate the main modality from other modalities. The main

modality is the modality that can trigger a system response. All the other modalities are auxiliary,

and are not considered as an input unless the main modality also represents an input. The

auxiliary modalities are called "parasite modalities". For example, in the speech-drawing example

above, the speech is considered as the main modality, and the mouse drawing is the parasite

modality. Each parasite modality is given two asynchronous constraints: asynchronous lifetime

and asynchronous latency. The asynchronous lifetime defines the time period an input is allowed

to survive while waiting for an upcoming input in the main modality. The asynchronous latency

defines the maximum latency until an input may come after the input in the main modality.

The input in the main modality may contain place holders to refer to corresponding information

from other parasite modalities. Here is an example where the user first draws a line on a map and

then speaks "I want to go from here to here." The perception draws is defined as a parasite

perception, whereas the perception speaks is the main modality. The line is captured as two points

with x and y coordinates respectively on the GUI. The input of this perception looks as follows.

{c eform

:draws ({cframe

:point (104 225) 1

{cframe

:point (293 300) 1)

For the speech input, after language understanding, the eform looks as follows.

[C eform

:speaks {c eform

:from "<:point 1>"

127

:to "<:point 2>" } }

The angled brackets indicate the place holders. Inside the brackets, the first token is the key that

matches the input from other modalities. The second number is a temporal index, so that in the

example, the value for the key from should be the one that comes earlier. The indices need not be

continuous, as they merely provide relative temporal order.

FAUNA processes these inputs in the following steps:

1. Check in all inputs from the parasite modalities with the current timestamp, whether they

come before the main modality, after the main modality, or together with the main modality.

2. If any input remains after Step 1, they are from the main modalities. Merge them if inputs

from multiple main modalities are presented.

3. If the result of Step 2 is not empty, or there is a previous incomplete input stored:

3.1 If place holders exist in the input, check out the live inputs from the parasite modalities

accordingly and replace the place holders with real values.

3.2 If place holders still exist after Step 3.1, remove the keys with the place holder and flag

an incomplete-input signal.

3.3 Proceed to dialogue execution.

3.4 If the incomplete-input flag is set, output the system reply with an additional note to

allow for time t delay, where t is the maximum asynchronous latency of all parasite modalities. If

within time t, a new input comes, the system reply should not be presented to the user. Otherwise,

present it after time t.

3.5 Clear all checked-in inputs from parasite modalities.

Applying to the example above, the drawing inputs in the first eform are checked in. Since no

speech input is contained in the first eform, no dialogue execution is performed. The second input

is the input from the main modality, and thus the drawing inputs are checked out to fill the place

holders in the speech input. The final eform that goes into the dialogue execution looks as follows.

{c eform

:from (104 225)

:to (293 300) } }

128

5.6 Application examples

FAUNA has been used to implement two English dialogue systems in distinct domains. In both

systems, the architectures are very similar. Dialogue specifications together with small amounts

of code define the domains and lead to different system behaviors.

5.6.1 Flight-reservation system

Domain description

The flight-reservation domain has been used as the example in the previous sections. A more

detailed description of the domain is given as follows. In the domain, the system takes the role of

an agent and helps the user to find out an itinerary that satisfies the user's need. The itinerary can

be one-way, roundtrip or multi-destination. The dialogue is mixed-initiative, meaning that both

the user and the system can lead the dialogue. Despite the source, destination and date of

departure, the user is also able to provide preferences of airlines, departure time using a specific

value or an ambiguous phrase (e.g. earlier, morning, later in the afternoon, etc.) Flights can be

added to or removed from the itinerary.

Implementation

Three knowledge sources besides the user are declared for the domain: one for resolving

complex date and time expressions, one for looking up airport/city codes, and the third one for

providing flight information. The knowledge sources date/time and city/airport are potentially

useful in other domains, and thus are implemented locally as generic knowledge sources with

nation eform. The flight knowledge source is a local simulated database with nation db.

The date/time knowledge source handles two types of knowledge: date and time. A

specification file is loaded during the initialization to define the names of the months, names of

the week days, holidays, time intervals, etc. The handler for knowledge date accepts an eform of

date expression, and returns a unique date with year, month and day. If not specified, the date

calculation is based on the current calendar year and the next year to come. The knowledge

source is able to resolve relative dates (e.g. today, tomorrow, etc.), the holidays (e.g. Christmas,

Thanksgiving, etc.), offset dates (e.g. four days after August second, etc.), and relative week days

(e.g. next Sunday, the last Monday in May, the Tuesday after Thanksgiving, etc.) Once a date

expression is successfully resolved, the date is record in the session-info as the base date. When

129

the expression does not explicitly state the base date for offset dates and relative week days, e.g.

four days later, the following Monday, etc., the base date in the session info is used for

calculation. A comparator handler is implemented to provide the comparison of two dates.

The handler for the knowledge time accepts a time expression and resolves it into a time point

with hours and minutes (e.g. three thirty pm), or an open time interval with one end (e.g. after

eight pm), or a closed time interval with two ends (e.g. from two to four pm). Day parts such as

morning, afternoon, evening are resolved into corresponding closed time intervals. For the

ambiguous time expressions which do not contain explicit "am" or "pm", the knowledge source

attempts to resolve the ambiguity in the case of a closed time interval by making the interval

minimal and falling within the daytime. For example, the expression "from one to three" is

resolved to "from one pm to three pm". A comparator and a summarizer are also available for

comparing two times and summarizing a list of times respectively.

M C t B , M em ber

Necessary member

nntd-> Knowledge Flow

Figure 5-7. The domain logic of the flight-reservation domain.

The knowledge source city/airport accepts an eform containing the name or code of a city or an

airport. The knowledge source disambiguates the input into a city code or an airport code. A

comparator is defined to compare two cities or airports.

The simulated flight database generates a list of random flights at the beginning of each

session. When generating the fake flights, the locations of the source and destination are carefully

taken into consideration, so that the duration of the flight is close to real. The knowledge source

provides the information for a single flight, as well as the price information for an entire itinerary.

The handlers accept a query string, and return the appropriate flight list or the price information.

130

Two nations are declared. The nation db is defined for the flight database, which utilizes

GENESIS to generate the eform into a query string for the input perception, and a post-processing

handler for the output perception. The nation US is defined for the user. GENESIS is used for

language generation (the input perception), and TINA for language understanding (the output

perception).

The entity declaration includes two entity types: the goal entity itinerary, andflight. Figure 5-7

illustrates the simplified domain logic of the domain. The necessary members refer to those that

compose the completion condition of the entity. The entity itinerary contains a list of flights, the

expected number of flights which is controlled by the itinerary type, and the price, with a

completion condition "#flights > 0 & #flights = #flights-expected". The entity flight contains

attributes such as destination, source, date and flight number, as well as "auto update" attributes

such as duration and connection time. The completion condition is "date & flight#".

The statistical engine supports the classification for the following two problems.

Task confirmation: whether a task requires the user's confirmation. For the tasks such as

adding a flight or removing a flight, the system should ask for the user's explicit confirmation

under some circumstances. The features used for this problem include the name of the task, the

parameter of the task, whether the task has been confirmed by the user, whether the relevant

entity for the task has been shown to the user, whether the relevant entity has a parent, etc.

Focus list: whether the user refers to the entity list or the pending list. When the user's input

contains an ordinal number, it may indicate an entity on the pending list, e.g. "I want the second

one," or it might refer to an entity on the entity list, e.g. "delete my second flight." The features

used for this problem include the name of the command, whether the ordinal number is within the

length of the two lists, whether the two lists are writable, etc.

Nine customized actions are defined, including four update actions for the "auto update"

attributes such as flight duration and connecting time. The other five customized actions are

described in Table 5-3. It can be discovered that what the customized actions handle are domain

specific features, and most of them are simple extension on the default actions. The customized

actions took less than 400 lines of code. Together with the implementation of the simulated flight

database, all of its handler, and language processing handlers of its nation db, the domain specific

code sums up to less than 2,000 lines. Consider an old flight reservation dialogue system [33]

131

which used more than 250 rules and over 15,000 lines of domain-specific code, the new system

achieved a substantially smaller size of domain-specific coding.

Table 5-3. Five customized actions in the flight-reservation domain.

complete-itinerary
Call the default action. After an itinerary is complete, issue a

fill-attribute task to find out its price.

Call the default action. After a flight has been added into the itinerary, set

up the defaults for the next flight. For example, in the roundtrip, set the

add-flight destination and source of the second flight to be the source and

destination of the first flight respectively, and issue a domain-specific

askreturndate task to ask for the return date.

askreturn_date Produces a system reply need-returndate.

Call the default action. After the price attribute is successfully filled,

produce a system reply to show the price.

fill-flight-cycle Set the expected number of flights according to the flight cycle.

Evaluation

An evaluation is conducted in two stages: the tutoring stage and the testing stage. In the tutoring

stage, a developer interacted with the system, which had no initial data, and corrected its behavior

via special commands when necessary. Altogether 210 turns from 18 conversations were

conducted. Figure 5-8 shows the number of manual corrections that happened during these

conversations. The number of new manual corrections steadily decreased, and none was

introduced during the last third of turns. The total number of manual interventions was about 7.6%

of the total number of turns.

132

20 1

Figure 5-8. Cumulative number of manual corrections in the tutoring stage.

Table 5-4. Manual judgment of the system's replies.

Inappropriate due to

Appropriate
Parsing problems Insufficient tutoring Other causes

672 (92.2%) 20 (2.7%) 16 (2.2%) 21(2.9%)

In the testing stage, the system was tested against a user simulator. The user simulator creates

random scenarios at the beginning of each conversation, and simulates user utterances of different

personality (cooperative, uncooperative, aggressive, unaggressive) using a probabilistic template

based method. The details of the user simulator will be discussed in the next chapter. Fifty

conversations were conducted between the simulated user and the system. The average number of

turns in each conversation was 14.58, with a high standard deviation of 8.2, due to the variety of

the scenario complexity and the differences in the personalities of the simulator users.

For each turn, a manual decision was made to classify the system's reply to the user into

appropriate and inappropriate. The result, shown in Table 5-4, indicates that even when an

uncooperative user is simulated, the system was able to handle most of the user's input

appropriately. For a total of 729 turns, the system responded appropriately 92.2% of the time.

One third of the failed turns were due to parse failures. Another third resulted from insufficient

tutoring, where the situations were not well covered in the tutoring phase, but can be easily fixed

through a few more manual corrections. The rest of the errors came from various causes. Most,

133

15

Q 10

0
0 70 # Turns 140 210

however, were domain dependent, for example, the source and the destination should not be the

same airport. Some other errors were due to defects in the simulator.

In Figure 5-9, an example dialogue showcases the capabilities of the system. The system is

able to handle rather complex dialogues, keep track of the information (e.g. "the next earliest

flight" after the user deletes the first flight), and manage the domain-dependent logic (e.g. when

the user changes the source of the outbound flight, the destination of the inbound changes

accordingly) with a rather small amount of domain-dependent code.

User: i want a flight from boston to chicago

System: Flights from Boston to Chicago. What date will you be travelling?

User: next monday

System: There are 5 flights to Chicago O'Hare on Feb fifteenth departing between 6 am

and 5 pm. There are 4 United flights, and 1 American flight. Can you be more

specific?

User: are there morning flights from boston

System: I have an American flight departing at 6:57 am arriving at 8:24 am on Feb

fifteenth. Do you want to add this into the itinerary?

User: how about afternoon

System: I have a United flight from Boston to Chicago O'Hare departing at 3:50 p.m.

arriving at 5:09 p.m., (other flights) ... Is one of these okay?

User: choose the earliest flight in the afternoon

System: United flight 409 has been added to your itinerary. You depart from Boston at

12:05 p.m. and arrive in Chicago O'Hare at arriving at 1:26 p.m. What date will

you be returning on?

User: the last sunday in march

System: I have a United flight from Chicago O'Hare to Boston departing at 9:24 p.m. on

Mar 28 arriving at 12:34 am on March 29, (other flights). Please select one.

User: delete my first flight

System: United flight 409 from Boston to Chicago O'Hare has been removed from your

itinerary. The next earliest flight from Boston to Chicago departing between noon

and 6:00 p.m. on Mon Feb fifteenth I have is a United flight departing at 3:50

p.m. and arriving at 5:09 p.m. Would that work?

User: how about from new york to chicago

134

System: The earliest flight from New York City to Chicago departing between noon and

6:00 p.m. on Mon Feb fifteenth I have is a Delta flight departing from Newark

Airport at 4:28 p.m. and arriving at 5:26 p.m. Would that work?

User: okay

System: Delta flight 481 has been added to your itinerary. (Flight summary) For the return

leg, I have a Delta flight from Chicago O'Hare to Newark departing at 9:45 a.m.

on Mar 28 arriving at 12:39 p.m. on Mar 28, (other two flights).Would one of

these work?

User: book the flight arriving around twelve thirty p m

System: Delta flight 480 has been added to your itinerary. (Flight summary). You have 2

flights in your itinerary. (Itinerary summary) Do you want to find out how much

your trip will cost?

User: yes

System: The price for the itinerary is $443.70. Is there something else you'd like to know?

Figure 5-9. An example dialogue in the flight-reservation domain.

5.6.2 Drug side-effect query system

Domain description

The second dialogue system implemented using FAUNA is a drug side-effect query system. The

user asks the system about the side-effects of a drug class or a specific drug. The system looks up

in the preprocessed review database [63], summarizes some common side-effects and presents a

list of reviews which mentioned the side-effects.

The review databases currently include two drug classes, statin drugs and antidepressant drugs.

The reviews are preprocessed and summarized into side-effect keywords. The side-effects are

further categorized into side-effect categories, such as heart problems and cognitive problems.

The user is able to query for a specific side-effect or a side-effect category, as well as frequent co-

occurrence between different side-effects.

Multi-modality is involved in this system. The user has the option to inquire via speech, click

on the side-effect tree to retrieve the related reviews, or click on a human body figure to access to

the side-effects involving the particular body part.

135

Implementation

The domain logic for this system is simpler than in the flight-reservation domain. Besides the user,

only one knowledge source, the review database, is involved. The knowledge source loads up an

initial database at initialization, and switches to other databases when the user inquires about

other drug classes. It processes eforms directly, and thus does not require any nation declaration.

The nation definition for the user is similar to that of the flight-reservation domain, including

one output perception and two input perceptions. The language understanding of the output

perception is handled via TINA, with a drug domain grammar augmented from the generic

English grammar. The language generation of both input perceptions, i.e. the spoken system

response and the displayed HTML, is accomplished by GENESIS. The multi-modal inputs are

treated as independent inputs, i.e., the mouse clicks on the side-effect tree and the body part are

treated as a complete input. When there is a mouse click on the side-effect tree or the body part,

the GUI sends a string containing the side-effect or the body part as an input, and the successive

processing is exactly the same as if the user inputs it via speech.

User: What side effects do Statin drugs cause?

System: Some of the side effects that show up frequently on Statin drugs are memory

problems, difficulty walking, liver damage and all body aches.

User: Can you show me some reviews on memory problems?

System: Some of the drugs in reviews that mention memory problems are Mevacor,

Pravachol, Crestor, Lovastatin and Zocor. I've sampled a few reviews relevant to

memory problems. (Top-relevant reviews are displayed on the screen.)

User: What side effects may co-occur with memory problems?

System: Some side effects that often co-occur with memory problems are kidney damage,

muscle problems and Parkinson's disease.

User: What antidepressant drugs can make me gain weight?

System: Some of the antidepressant drugs that mention weight gain are Lexapro,

Arnitriptryline hcl, Serzone, Anafranil and Tofrannil-pm. Other side effects in this

category are weight loss, inability to lose weight and weight fluctuation. (Reviews

that are most relevant to weight gain are shown on the screen as well.)

Figure 5-10. An example dialogue in the drug side-effect domain.

136

The entity structure is simple. One entity type query is declared for the domain. The entity

contains attributes drugclass, drug-name, sideeffect, side effect category, review posts, etc.,

with a completion condition that requires the existence of the reviewposts. The customized

commands are declared, listsideeffect and listcooccur side effects, which correspond to two

domain-specific tasks respectively. Including the actions for these two tasks, three actions in total

are customized. The amount of the code for both the customized actions and the database does

not exceed 2000 lines.

Evaluation

Human subjects were recruited to evaluate the system. For details of the evaluation, refer to [64].

Figure 5-10 shows an example dialogue in this domain.

5.7 Summary

So far, a dialogue manager FAUNA for goal-directed dialogues has been discussed. The goal of

designing such a dialogue manager is to eliminate the domain-dependent effort as much as

possible, and enable easy development of new dialogue systems without pre-existing data. The

two applications in different domains demonstrated that it is possible to use FAUNA to build

dialogue systems with a relatively small amount of domain-dependent code.

Generally speaking, FAUNA should be classified into rule-based dialogue managers.

Nevertheless, the statistical engine included can be potentially used extensively, and thus

transform the behavior of the system from hard decisions to a more probabilistic way. The

tutoring mechanism also has much space to extend, for example to be utilized to personalize the

system behavior to different users.

FAUNA is developed for general purposes. Undoubtedly, dialogue systems for language

learning are among the applications. More precisely, as the roles of the system in the language

learning dialogue game have been divided into a dialogue partner and a language tutor, FAUNA

can be used in a straightforward way as in other conventional dialogue systems.

In the next chapter, we turn to the other role of the system, the language tutor. Two modules,

the user simulator and the performance assessor are discussed.

137

Chapter 6 The Fourth Game: Dialogue

In a language learning system, being able to converse alone is not enough. The difference

between a conventional dialogue system and a dialogue system for language learning is

analogous to that between an average foreigner and a foreign language teacher. It is highly likely

that the student and the system end up with mutual misunderstanding if it is merely a

conventional dialogue system designed for native speakers. Therefore, the other role of the

system, the role as a language tutor is equally important.

In the beginning of the previous chapter, the functionalities of the system as a language tutor

were mentioned. Briefly speaking, this role needs to provide appropriate assistance when the

student encounters difficulty during the dialogue, and to evaluate the student's performance from

a language learning perspective. Providing assistance in a dialogue activity is different from what

was required in the previous three games. As the most likely situation of a student asking for help

in a dialogue is that he does not know how to proceed in the current dialogue state, the assistance

must be dynamic according to the current dialogue state. The system should provide example

sentences from the standpoint of the student, which is exactly a user simulation process. We will

introduce a user simulator in Section 6.1.

Assessing the student's performance in a dialogue is also an important problem. A simple

pass/fail decision at the end of a dialogue is not adequate and convincing. We will discuss the

heuristic assessment module in Section 6.2. The discussion of the user simulator and performance

assessor will be followed by a description of the implementation of the game system in Section

6.3, as well as experiments and evaluations conducted with the game system in Sections 6.4 and

6.5.

6.1 User simulation with personalities

Techniques in user simulation have been investigated for many years in the conventional dialogue

system area. The two major uses of a user simulator are to test a dialogue system and to generate

training data for a data-driven dialogue system. Compared to dialogue management, the behavior

of the user typically contains more randomness and variance. To model such randomness and

138

cover a large variety, statistical approaches have been prevalently used in user simulation, such as

n-gram based simulation [65] [66], graph based simulation [67] [68], Bayesian network based

simulation [69], and HMM-based simulation [70]. In most research work, the user goal is

assumed unchanged throughout the conversation. Simulation performed on the intention-level is

able to capture the consistency of the user intention. However, the style, or the personality of the

user is not guaranteed to be consistent. For instance, the simulated user may appear very

cooperative at first, and suddenly switch to behave very uncooperatively later.

In a dialogue system for language learning, a user simulator has another kind of use. As the

simulator maintains a consistent user intention and simulates the user behavior based on the

intention, it can naturally be used in two ways. First, the method that produces a user intention for

a simulation is similar to the one needed to generate a dialogue task for a student to solve.

Second, the behavior simulation can serve as a helper when the student asks for assistance. In

order to provide meaningful assistance, i.e., the example sentences for the students, we would like

to control the style of the simulated user. Generally in a language learning system, we would like

the simulated user to behave normally and cooperatively. But there might also be cases where

simulating ill-behaved users are useful. For example, the responses from ill-behaved simulated

users could be mixed with the appropriate ones, and the student could be asked to distinguish

between them. At the same time, simulating ill-behaved users can also serve as a stress test that is

very useful for developing dialogue systems.

To produce such different types of simulated user, we design a user simulator that explicitly

models the personality of the user. The simulator generates a user intention, or a scenario, based

on provided templates and post processing instructions. During the dialogue, the simulator

accepts the dialogue manager's reply, updates its internal memory state, and generates a response

from the response templates based on the personality and the current conditions.

The user simulator is specifically designed to work with the dialogue manager FAUNA,

described in Chapter 5. The input and output formats are designed according to FAUNA's

specification. It takes the eform representation of FAUNA's reply, and produces a user's response

also in eform format. It also shares some of the knowledge source handlers with the

corresponding dialogue system to allow complex user intention generation.

In this section, we will describe the simulator in a generic way, focusing on the scenario (user

intention) generation and personality-incorporated response generation. The special use in the

139

language learning system will be described later in the implementation of the game system in

Section 6.3.

6.1.1 Scenario generation

The scenario represents the user intention and preferences. For example, in the flight reservation

domain, a scenario expresses when to travel and where to go. The user simulator needs to

maintain a scenario so as to produce consistent user responses, but on the other hand, the scenario

can still be changed during the conversation as if the user changes their mind.

To produce a scenario, the developer provides a list of scenario templates. The user simulator

loads the templates and randomly picks one to instantiate. After that, a check is performed to

ensure the instantiated scenario satisfies certain criteria. Additional post processing is also

allowed if specified.

{c scenario
:source ("nselect=l"

("Boston" "Chicago" "New York"))
:destination ("nselect=1"

"Boston" "Chicago" "New York"))
:date {c eform

:unit "days later"
:ndays ("nselect=1"

(1180)) }
:departureinternal ("smooth=l"

("morning"
"afternoon"
"evening"))

:airline ("'smooth=l"
"AA" "UA" "DL")) }

{c scenario
:source "Boston"
destination "Chicago"
:date {c eform

:unit "days later"
:ndays 17)

departureinternal (("morning" 0.38)
"afternoon" 0.19
"evening" 0.35)
"*al* 0.08)

a irl ine ("AA" 0. 28
("UA" 0.32)
("DL" 0.12)
("*all*" 0.28))

Figure 6-1. An example of scenario generation.

Figure 6-1 demonstrates a simple scenario template together with a possible instantiation in the

flight-reservation domain. The template consists of a set of elements, an enumeration of all the

possible values of the elements, and the instantiation parameters for the elements. During

generation, each element is instantiated into a single value or a list of probabilistic values

according to the parameter. In the example, the elements source, destination and date are

instantiated into a single value following the parameter "nselect=1". The element

departure-interval, however, is instantiated into a list with a smoothed probability distribution

over the values, which represents the user's preferences over these choices. The special value

140

"*all*" stands for no constraint on this element. The following steps describes the instantiation

procedure.

1. For each possible value, assign a random probability.

2. Normalize the probabilities to sum to one.

3. Smooth the probability distribution by raising each probability to the nth power, where

n is the smoothing parameter. Normalize the probabilities.

4. If parameter "nselect" is specified, or the probability of one value exceeds a single-

value threshold, choose the top "nselect" values. Otherwise, add the special value "*all*"

and renormalize the probabilities.

{c scenario
:source ("nselect=1"

("Boston" "Chicago" "New York"))
:destination ("nselect=1"

"Boston" "Chicago" "New York")) Phase 1:
:date {c eform initial

:unit "days later"
:ndays ("nselect=1"

(1 180) }
:date%flight2 {c eform

:unit "days later"
:ndays ("nselect=1"

(130)) }
departureinternal ("smooth=1"

"morning"
"afternoon"
"evening"))

:airline ("smooth=1"
"AA" "UA" "DL")) }

Phase 2:
flight2

{c scenario
:source "Boston"
:destination "Chicago"
:date {c eform

:unit "days later"
:ndays 17

:departure internal "morning" 0.38)
(afternoon" 0.19

("evening" 0.35)
1e*all*P 0.08)

:airline (("AA" 0.28)
("UA" 0.32)

"DL" 0.12)
(i"*all*"l 0.28)

{c scenario
:date {ceform

:unit "days later"
:ndays 5 }}

Figure 6-2. An example scenario with phases.

In a more complex situation, the scenario can be written to contain phases. Phases are useful

when an element carries different values in different stages of the dialogue. For example, in an

itinerary with multiple flights, the elements source and destination have different values when the

conversation enters different stages. An initial phase *init* is presumed. Each phase has an

entering condition and a finish condition. Each element can be specified to belong to a particular

phase using a "%" mark followed by the phase name, or be phaseless by listing it in an out-phase

list. An element which neither has a phase indication nor is on the out-phase list is considered to

belong to the initial phase. An example is given in Figure 6-2, which describes a roundtrip

itinerary. In the phase flight2, the scenario only contains one element date, as no information

141

other than the return date needs to be conveyed to the dialogue system in the case of booking a

return flight.

After the scenario is instantiated, a check against the scenario constraints, specified in a logical

expression, is performed to ensure the scenario is healthy, e.g., the destination is not the same as

the source. If the instantiated scenario fails to satisfy the constraint, a new scenario is instantiated

until the constraints are satisfied. Post processing handlers, which are the knowledge source

handlers defined in FAUNA, are called to carry out further modifications on the elements of an

instantiated scenario. Figure 6-3 shows an example, where the date goes through a date resolution

followed by an "expansion" to produce a list of alternative expressions for that particular date.

Date Date :date (

:date {c eform resolution :date {c date expansion {c date
:month "Nov" :month "Nov"

:unit "days later" :day-number 28 :day_number 28
:ndays 171 }:day "Mon" } :day "Mon" }

{c eform
:month "Nov"
:nth -1
:day "Mon" }

{c eform
:namedday "Thanksgiving"
:prep "after"
:unit "days later"
:ndays 4})

Figure 6-3. Post processing of the element date in instantiated scenario.

6.1.2 Memory state

After a scenario is generated, it is stored in the simulator's memory state. The memory state

stores the user's knowledge, as well as information obtained from the dialogue manager, such as

the flight that has been booked.

When a dialogue manager's reply is received by the user simulator, the memory state can be

modified using some conditioned rules. Following is an example that states that, when the reply is

flight-added, the value of the key :topic, which is the newly added flight, should be added into

the key :*itinerary* in the memory state.

[c rule

:conditions "': *reply* flight added"

142

:save ":topic"

:into ":*itinerary*"]

6.1.3 Template-based response generation

Given a generated scenario, upon the receipt of the dialogue manager's reply, the user simulator

needs to produce a user response. The choice of the response depends on multiple factors: the

dialogue manager's reply, the user's current knowledge, i.e., the memory state, and the user's

personality. We use the word "strategy" to describe how these factors would have impact on the

user response.

The strategy is expressed by a list of rules. The rules describe the most preferred way to

respond in a certain situation, as well as the most likely way for a user with a particular

personality to respond. More specifically, each rule consists of a condition and a list of response

templates. Each response template is instantiated into a response according to the scenario, and

assigned a score based on the personality description in the template and the condition test against

the dialogue system's reply and the current memory state. After all the response templates are

instantiated, one is chosen by random sampling based on the scores.

In this subsection, we will first introduce the response generation without personality,

including the condition test, the response contents and actions. The next subsection will focus on

incorporating personality features into the response generation.

Condition test

Each strategy rule optionally specifies a condition. The condition is test against the combination

of the dialogue manager's reply and the current memory state. The testing produces one of the

following four results.

Result 1: not satisfied. The condition is not satisfied.

Result 2: no condition. The rule does not contain a condition.

Result 3: weak condition. The condition can be satisfied when testing against the simulator's

memory state alone. In other words, the reply from the dialogue manager does not influence the

appropriateness of the responses in the rule.

143

Result 4: satisfied. The condition is satisfied when testing using both the simulator's memory

state and the dialogue manager's reply.

A heuristic score, which can be specified by the developers, is assigned to each of the four

results. Lower score means lower probabilities that the templates in the rule will be chosen as the

final response.

Response contents

The response contents describe the body of the user response. They are expressed using templates,

which means the actual values in the responses are dynamic according to different scenarios and

different dialogue states.

{c rule {c rule

:conditions ":continuant needsource" :conditions ":continuant need $attr"

:responsecontent(:response-content(

{c eform {c eform

:source ":source[:*scenario*]" } :$attr ":$attr[:*scenario*]" }
) }{c eform

:$attr ":$attr[:*scenario*]"

:*other* ":*other*[:*scenario*]" }) }

(a) (b)

Figure 6-4. Examples of response templates.

The templates adopt a very flexible syntax. In Figure 6-4(a), a simple example is shown, which

states that, when the dialogue manager asks for a destination in the continuant, the destination

should be provided according to the scenario. The string value ":source[:*scenario*]" indicates a

reference to the value of the key :source in the frame :*scenario*, where the instantiated scenario

is stored. In this case, the key :source usually has a single value. If the key referenced has a list

value instead, one value from the list is picked by sampling according to the probability

distribution. Using the scenario in Figure 6-1, the response template will be instantiated into:

[c eform

:source "BOS"]

The same meaning can be expressed using a more generic expression, shown in Figure 6-4 (b).

The string starting with a dollar sign denotes a variable, the value of which is the match result

144

from the condition. Therefore, this single rule can provide corresponding information when the

system asks for different types of information. In the second response templates of this rule, an

additional key :*other* is also included. This special key can be instantiated randomly into one or

multiple elements, among which at least one element has not yet been conveyed to the dialogue

manager. Thus, assuming the (simulated) user has only spoken about the destination, the

following two responses are both possible instantiations of the second response template.

[c eform

:source "BOS"

:airline "AA" }

[c eform

:source "BOS"

:departure interval "morning"

:destination "CHI" }

The syntax of the response templates also includes functions like random(, which can produce

a random number in the given range. For example, the key :nth in the following template is

declared to take on an integer value between 1 and the value of :npending.

[c eform

:nth "random(1, :npending)"]}

Response command and response action

Each rule may also contain some response commands and a response action. The response

command is essentially the frame name of the response. They are made explicit for the purposes

of reducing manual effort in composing the rules. A rule with n response contents and m response

commands is equivalent to a rule with nm response contents, if the frame names of the responses

are specified directly in the templates.

The response action is an action that can possibly change the memory state, including the

scenario. For example, in the situation where no suitable flights can be found, the user might want

to change his preference. A rule with a response action is shown below. Although the action takes

place before the instantiation of the response content procedurally, the action only affects the

responses in this rule, and does not have real effect until one of the response templates in the rule

is selected as the final response.

145

{c rule
:conditions ":continuant change_ condition"
:response action [p changescenario

:change "':airline"]
:response content ([c changed

:airline ":airline[: *scenario*]"])}

6.1.4 Responses with personalities

The response rules describe the conditions, contents and actions of all the possible responses.

Since the condition test only classifies the responses into four classes, in most cases, multiple

instantiated responses are scored equally, and thus have equal likelihood to be selected. For a real

user, however, the final response is not chosen randomly. Users with different personalities tend

to have different behaviors when producing a response. Figure 6-5 exemplifies some possible

responses for users with different personalities. We would like to model such differences in the

generation of the response.

S: How can I help you? S: How can I help you?
U: I want to go from Boston to Chicago U: I want to go to Chicago.
next Tuesday morning by United airline. S: Where are you departing from?

U: Boston
S: What date are you leaving?
U: next Tuesday.

(a) An aggressive user (b) A lazy user

S: I have three United flights. They are... S: I have three United flights. They are...
U: Book the first one. U: Show me the fifth one.

(c) A cooperative user (d) An uncooperative user

Figure 6-5. Four different types of users. (a) An aggressive user; (b) a lazy user; (c) a

cooperative user; (d) an uncooperative user. "S" stands for "systems", and "U" stands for

user

To start with, we first describe the personality as a multi-dimensional vector, in which the

number of dimensions and the underlying meaning of each dimension are determined by the

developer. Each dimension represents a personality feature, and takes a value between 0 and 1.

Here, we use a two dimensional vector as the example, with the two dimensions representing

"aggressiveness" and "cooperativeness" respectively. An aggressive user tends to provide a lot of

146

information in a turn, and make decisions quickly; on the other hand, a less aggressive user

behaves more passively, and only speaks the information that is asked for. A cooperative user

follows the system's prompts carefully; on the other hand, an uncooperative user might give

responses that are not meaningful given the dialogue context.

To simulate a user with a certain personality p*, the simulator computes a strategy personality

p according to the responses chosen so far and the candidate response, and selects with a high

probability a candidate response that can minimize the distance between p and p*. Formally, the

probability of choosing response ri in the k turn is defined as follows, where z is the

normalization coefficient, c is the condition score obtained from the condition test, and d(.) is the

Euclidean distance.

c
P(ri) = (pp*)

(6-1)
p = f(pk-1, M(r 1))

The strategy personality in the k turn, p, is calculated from that in the last turn, pkl, and a

personality move M(r) results from choosing the particular response r. The personality move is a

vector with the same number of dimension as the personality vectors. The integer value in each

dimension indicates the number of moves in the specific personality dimension. For instance,

M(r)=[2, -1] in our example stands for two moves towards aggressiveness, and one move towards

uncooperativeness. The value is calculated according to two aspects: the general personality

descriptions and the response-specific personality descriptions. The general descriptions, which

are a set of logical expressions associated with corresponding personality moves, apply to all

responses. For example, for any types of response, if the response contains more than three

elements, it is considered as more aggressive, and thus the aggressiveness dimension gains one

positive move. The response-specific descriptions are specified in the response templates or the

response commands. Each dimension of the personality can have one positive move, no move or

one negative move. For example, when the dialogue manager asks to confirm an entity,

responding "no" results in a negative move in terms of aggressiveness. The rule is as follows:

{c rule

:conditions ":continuant confirmentity"

:response content ([c truth

:truthvalue "no"

:aggressiveness "-" })}

147

The total personality move of the response is the sum of its response-specific descriptions and

all the moves of the satisfied general descriptions.

The new personality vector p,= f(pk, M(r)) is a nonlinear curve of M(ri) . For each

dimensionj,

1 -f(p,m- 1)
S

f(p,m) = p

f(p,m + 1)- f(p,m + 1)
S

m > 0

m = 0

m < 0

(6-2)

where s is the j' dimension of a constant vector which defines the size of a move in each

dimension. Therefore, the increment is smaller near the two extremes, and the new value always

stays in the range of 0 and 1.

The final response is chosen by sampling according to the probability distribution of all the

possible responses, and pk is updated to the new value according to the choice.

6.1.5 Simulation experiments

The simulator was tested with FAUNA in the English flight-reservation domain. The simulator's

specification contains three scenario templates corresponding to one-way itineraries, roundtrips,

and multi-destination itineraries with two flights. Two personality dimensions, aggressiveness

and cooperativeness are defined. Altogether 22 rules are written as the response strategies. After

the simulator produces a response in the eform representation, it is converted into an English

string using GENESIS with deterministic generation rules, i.e. rules and a lexicon without

randomness, and sent to FAUNA.

1

0.8

0.6

o 0.2 -
0

0 5 10 15 20 25
Turns

Figure 6-6. Number of turns vs. cooperativeness in the roundtrip scenarios.

148

U: I'd like to fly to Chicago from Boston

S: flight from Boston to Chicago. What date will

you be travelling?

U: one way the friday after February twenty two

by any airlines

S: There are 5 flights from Boston to Chicago ...

Can you be more specific?

U: Show me the latest flight

S: The latest flight is ... Do you want to add this

into the itinerary?

U: yes

S: Delta flight 164 has been added to your

itinerary ... Do you want to find out how

much your trip will cost?

U: price itinerary

S: the price for the itinerary is 178.0. Is there

anything else?

(a)

U: Show me one way flight to Chicago
S: flight to Chicago. What city does the flight

depart from?
U: Are there any flights from Boston
S: flight from Boston to Chicago. What date will

you be travelling?
U: a flight that leaves on the last friday of

February
F: There are 5 flights ... Can you be more

specific?
U: Choose the seventh flight
S: Sorry, I didn't understand what you said.

There are 5 flights ... Can you be more
specific?

U: I'd like to go to Chicago by United
S: I have a United flight ... and a United

flight ... Would one of these work?
U: Show me that flight
S: I have a United flight ... and a United

flight ... Do you like any of these?
U: I want the earliest flight
S: the earliest United flight is ... Do you want to

add this into the itinerary?
U: no
S: the next earliest United flight is ... Would that

work?
U: I want to book that flight
S: United flight 503 has been added to your

itinerary ... Do you want to find out how
much your trip will cost?

U: no
S: Is there something else you'd like to know?

(b)

Figure 6-7. Two examples of simulated dialogues. (a) A more aggressive and more

cooperative user. (b) A less aggressive and less cooperative user. "S" stands for "system",

and "U" stands for "user".

Fifty dialogues were generated between the simulator and FAUNA. In each dialogue, the

simulator simulates a user with a random personality. In the 729 turns of the 50 dialogues, 272

unique sentence patterns were found after replacing the detailed cities, airlines, month names, day

names, etc., with corresponding tags. On average, each rule was able to generate 12.4 different

sentence patterns, and this number can be further increased when the rules for the language

generation system are extended to include more alternative patterns.

149

To test the effect of the personality in the simulation, we looked at the cooperativeness

dimension. Ideally, a cooperative user would have a shorter conversation than an uncooperative

user. Figure 6-6 shows the relation between cooperativeness and the number of turns for the most

typical roundtrip booking scenario. The number of turns in a dialogue is influenced by the

scenario and the availability of the flight. Nevertheless, it can be observed that, when the

cooperativeness is below a certain value, the number of turns of a dialogue is generally greater.

Two example dialogues are shown in Figure 6-7. On the left is a more aggressive and more

cooperative user. On the right is a less aggressive and less cooperative user. The lengths of the

two dialogues are clearly different. We can observe a couple of uncooperative responses (e.g. the

seventh flight) in the second user, and he appears less decisive than the one on the left.

6.2 Performance assessment

We have discussed dialogue management in the previous chapter, and user simulation in the

previous section. The last module indispensable for a dialogue game is the performance

assessment. This module gives feedback to the student about how well he is doing. We aim for

real-time and comprehensive assessment, i.e., assessment for each turn rather than a pass/fail

decision at the end of the dialogue, so that the student can see his performance in the course of the

dialogue, and hopefully benefit from both positive and negative assessment to perform better in

the rest of the dialogue. Again, syntactic and semantic aspects are our focus, and the

pronunciation is not assessed in detail.

The assessment of each utterance in the dialogue context is not easy. The assessment of a

whole dialogue might be a lot easier, for at least the system can tell whether the student completes

the task or not. Breaking the dialogue down, the utterances in each turn do not have any ground

truth answer. The order of providing information differs from student to student, and the sentence

structures are changeable. Nevertheless, good utterances should be well-formed by themselves,

and contribute to the overall progress of the dialogue. Based on this idea, the turn assessment is

designed to include the following three aspects with heuristic scores for each aspect.

Sentence wellness: whether the utterance is grammatical. The grammaticality is judged by the

language understanding module, i.e. the parser. If the parser is able to produce a full parse and a

non-empty eform from the utterance, the utterance is considered as grammatical. In order to

encourage more complex sentence structures, this part of the score also involves the sentence

150

complexity, approximated by the length the sentence. A longer grammatical sentence thus

receives a higher score than shorter sentences.

Context wellness: whether the utterance fits well in the context. Although the dialogue

manager may be flexible enough to handle all sorts of unexpected inputs, as a language learning

system, we would like the student to listen carefully to the system's reply and respond

accordingly. If the system asks for one type of information, and the student provides another type

of information, a deduction is given. For verification and suggestive system replies, however,

since the appropriate response can vary a lot in the expression and sometimes the meaning is

implicit (e.g. responding to the question "do you want to book this flight" with "are there any

other flights"), the assessment is relaxed. The student is also allowed to correct any mistakes

made in previous turns without penalty, regardless of the system's reply.

Dialogue progress: how the utterance advances or retrogrades the dialogue progress. The

dialogue progress measures how far the current dialogue state has advanced towards a successful

conclusion. It is assessed by first extracting key points from the scenario, and computing how

many of them have been correctly achieved. The key points include both the elements in the

scenario and the entities that are expected to be completed. Every correctly achieved key point is

worth one point, while an incorrect key point results in one point deduction. For example,

completing one flight is awarded one point, and saying a wrong destination loses one point. The

dialogue progress score for each utterance is the difference between the overall dialogue progress

after this turn and that of the previous turn.

The scores of the above three aspects add up to a turn score. The assessment of the whole

dialogue is the sum of the scores in each turn, plus an independence bonus and a scenario bonus if

the student successfully completes the task. The independence bonus is designed to reward

students who complete the dialogue on his own. The scenario bonus is proportional to the

difficulty and complexity of the scenario.

As we can see, the turn score is usually positive, which means a longer dialogue would produce

more points than a shorter one. A normalization using the number of turns would work if the

scores were to be used to compare two dialogues horizontally. However, we consider it to be

more important for the student to speak more than to complete a scenario in a minimum number

of turns. Therefore, the score is not normalized. The student earns more points when he speaks

more well-formed sentences in the domain. The scores for single dialogues are accumulated

across dialogues, and when enough points are collected, the student is advanced to the next level.

151

6.3 Game implementation

6.3.1 The Mercurial system

So far, all the modules necessary to build a dialogue game for language learning have been

discussed. The system's role as a dialogue partner is supported by the dialogue manager, as well

as the language understanding and language generation modules. The role as a language tutor is

fulfilled by the user simulator and language generator, and the performance assessor. Putting

these modules together, a dialogue game for language learning is ready to work.

Figure 6-8 and Figure 6-9 show the screenshots of an implemented system for Chinese learning

[71] during a dialogue and after completing a dialogue. The system, implemented in the flight-

reservation domain, is named Mercurial after the previous flight reservation system Mercury.

During the dialogue, the student sees a scenario expressed in a natural paragraph in the upper area.

Below the scenario is a checklist, which gathers the key points from the scenario. As the dialogue

proceeds, the items in the checklist are marked with a green check or a red cross according to the

correctness of the information conveyed. The current itinerary is shown on the right part.

user -t 1 WW

Here's your scenario SCORE: 15

On the second wednesday in January, you want to fly from h h toCic . and return on the
saturday after January 17. You would lik to fly with A Chin.

Try to fix your return date. Your Cnrent Itinerary

Shanghai Pudong to ORD Emove
You~ + -b
Systees M -t * rgz e P AWT JaNwary II CA964

number offlights booked WrA±(-±B lrp,)L -$t-
t b & t. dLt+e* . M ITZ4? DEPART Shanghai Pudong 1122 am

Xierem dat ARRIVE ORD 3:54pm

Figure 6-8. A screenshot during a dialogue in the Mercurial game. The student has

successfully booked the outbound flight according to the scenario, but a mistake was made

on the return date. A demonstrative video of the system is available at

http://people.csail.mit.edu/seneff/scill/dialogue-game.wmv.

152

system: ZEW - T?
User: X
sstem:n A M W4 n Ift t. WqtMftI - -. 9 1 L+-A +-4 R a9 t"WRIF a*s 6Y I it. .-La1"1+=eftN-A) As.see-e

Well Done!

You hAve acrmanlated 43/100 points for this level.

Yowscenari:

On the second wednesdayin January, you want-to fly from M1hangh to Chcago, and return
onthe saturday afterJanuaryl7 Youwouldlike to fly*M w tk Qajf.
The itierary you achdewe:

Shangha Pudong to ORD

Jaxxary 11 CA 94

DEPART Shanghai Pudong 11 22 am

ARRIVE ORD li4pm

ORD to Shanghai Pudong

January 21 CA 95

DEPART ORD 11:24am

ARRIVE Shanghai Pudong 6:12 p+t1 day

Unr: *,*S A ±4 IN!$ 2 4

User: - M 1+ 4sysamn+-ettWr lmaam nJ , n- tnWsme

1-=+=,T am e , -mee

User.n 2em~eaam .a
22

Unr - + t W 2

sys t I E 4- + - * 4 R A F f * t A mft If t

2 .,S - +

Sys*=mo4ON JK -1 jRl b U"z6 m± 4

User: - +fi2 2

sym ma se- A +e* 'AT PAe P s Z We0

*±, Ra i me+a +e, a #±Z±*A+ Z.

Progress Score: 8

ContextDeductioa 0

TotaScore Sentence Score: 21

ScenarSo Bonus' 4

Totat 33

Figure 6-9. A screenshot after completing a dialogue in the Mercurial game.

153

Figure 6-10. System diagram of Mercurial (initialization).

We have been emphasizing the two independent roles of the system in the dialogue game. At

the same time, it is not a pleasant experience to be interrupted during the dialogue in order to hear

feedback from the language tutor. Therefore, the outputs of the dialogue partner and the language

tutor are presented in two modalities. The student hears the reply from the dialogue partner, while

the feedback from the language tutor is displayed on the screen. The pink box in the center

contains a feedback message commenting on each dialogue turn. The content of the message can

be words of praise, or a hint for correction. The current score of the dialogue is shown on the top

right corner.

Below the feedback area is the assistance area, where the "repeat" buttons allow the student to

hear the system's voice again in the foreign language or in the native language, and the "example"

link opens up a list of contextual utterances which the student can say at the current dialogue state.

When the scenario is successfully accomplished or is aborted by the student, the system

summarizes the complete dialogue between the system and the student, and shows the student the

detailed scores in each scoring aspect. When enough points have been accumulated, the student

will be advanced to the next level, in which more complex scenarios are presented.

Looking under the hood, the system diagrams are illustrated in Figure 6-10 and Figure 6-11. At

the initialization of each game play, the user simulator instantiates a scenario from the scenario

templates. The scenario is reviewed by the game controller and modified to adapt to the current

difficulty level. The language generator then receives the scenario, and paraphrases it into a

natural paragraph using a random choice of wordings.

154

Figure 6-11. System diagram of Mercurial (game play).

During the game play, after language understanding, the meaning representation of the

student's utterance is sent to the dialogue manager to produce the dialogue partner's reply. The

dialogue manager is fed with a domain specification that is almost the same as the one used in the

flight-reservation domain dialogue application discussed in Section 5.6.1, except that the

nationality of the knowledge source user is changed from "US" to "China". The tutoring

mechanism for the statistical engine is turned off, and the two classifiers for task confirmation

and focus list (see Section 5.6.1 for details) use the data collected in the experiments of the

English version flight-reservation dialogue system.

The reply from the dialogue system is sent to three modules: (1) the language generator to

generate a response in natural language; (2) the performance assessor and game controller to

produce the language tutoring feedback; and (3) the user simulator to output multiple possible

user responses as example utterances. The language tutoring feedback and the possible user

responses are then composed into the updated HTML via language generation.

As in the previous three games, TINA is used for language understanding in the two-pass parse

setting with a generic Chinese grammar augmented with specialized flight reservation domain

vocabulary. GENESIS is used for language generation with alternative rules and lexicon which

enable outputs (in Chinese) of different wordings for the same input.

155

6.3.2 Scenario generation with difficulty levels

Being a game, difficulty levels are an indispensable feature. The idea of the difficulty levels of

dialogues is to have easier and shorter dialogues in lower levels, and more complicated and

longer dialogues in higher levels. Although the complexity and length of the actual dialogues

depend on various factors, the complexity of the scenario is among the most critical ones. Fewer

constraints in the scenario usually result in simpler dialogues, and when the type and number of

constraints increase, more turns with more sentence patterns and vocabulary are naturally

involved.

To generate a scenario that meets the current difficulty level, the game controller takes in the

raw scenario produced by the user simulator, and refines the elements in the raw scenario. Each

scenario template has a base difficulty level dbae, and each element in the scenario is also

assigned a difficulty level di. The refined scenario is obtained by drawing as many elements as

possible from the raw scenario in a random order, such that the difficulty level of the scenario D

does not exceed the current difficulty level of the game. D is defined by the following equation.

D = 10g 2(2 dbase + 2 di) (6-3)

From the equation, it can be observed that D is dominated by the highest difficulty level of the

elements and the template, but is also affected by the number of elements. A level two element

and a level one element result in a level two scenario, and two level two elements result in a level

three scenario.

After the elements are selected, the values of the elements are determinized. For elements that

takes a probabilistic list as a value, the value with the highest probability is selected. The refined

scenario is then sent to the language generator for a natural language paraphrase.

It should be noticed that the generation of the scenario is independent from the dialogue

manager, i.e., independent from the flight database. This independency sometimes leads to an

unsatisfiable scenario. This is of course solvable by verifying the satisifiability against the

dialogue manager in advance, but in Mercurial, it is handled in another interesting way. The

unsatisfiable scenario is presented to the student, and if the student interacts with the system

properly, the dialogue manager would reply with zero matches at some point. At that time, the

game controller notices the zero match, and it then adjusts the scenario by changing or dropping a

constraint, and notifies the student of this change via the feedback message. The scenario

156

difficulty is increased, which would add to the student's final score as a bonus if the dialogue

concludes successfully. We consider this scenario update feature interesting, because it clearly

presents the distinction of the system's two roles: one that helps the student find the flights, and

the other that is ignorant of the flight information, but pays attention to the dialogue, notices what

is happening, and makes appropriate comments. This also provides greater entertainment value to

the student.

6.3.3 Feedback and assistance functions

After the dialogue manager's response is sent to the performance assessor, the assessment result

is visualized in two ways in addition to the score: the checklist and the feedback message.

The checklist summarizes the key information in the scenario which is essentially the elements

in the refined scenario. All items in the checklist are initially unchecked, and become checked

with a green tick if the student conveys the information correctly, or marked with a red cross if

the wrong information was communicated. Since the items in the checklist, in other words, the

elements in the scenario, are usually the attributes of certain entities defined in the dialogue

domain specification, the judgment of correctness is done through calling comparators of

corresponding knowledge sources, if available. The checklist gives an intuitive view of the

overall dialogue progress. The student is able to know what else they need to say and what to

correct by looking at the checklist.

The feedback message, on the other hand, comments on the previous turn. The message

includes the following possibilities:

Encouragement: when the student's utterance fails in language understanding.

Context reminder: when the student's utterance fails to follow the system's reply.

Correction hint: when the student provides incorrect information about the itinerary.

Praise on progress: when the student's utterance advances the dialogue progress.

Praise on sentence: when the student's utterance gains a great sentence score.

Assistance is also provided in various ways. Four assistance functions are implemented to offer

assistance at different levels. In the comprehension aspect, the system's voice response can be

replayed not only in L2, but also in LI to help understanding. This assistance function is

157

implemented almost at no cost, since the dialogue manager works on the meaning layer, and the

language generation rules for Li English have been developed for the English flight-reservation

dialogue system. The last dialogue turn is also displayed on the screen, with Pinyin notations for

each word revealed with mouse-over. The student can take the time to read and learn the

pronunciation of any new words. This also protects them from getting stuck.

In the composition aspect, the student can ask for assistance at the word level or at the sentence

level. For the word level, the key words in the scenario are displayed as a hyperlink. The

translation of the word can be seen upon mouse-over, and would be synthesized when clicked. If

sentence level assistance is needed, the student can look at and hear the sentences generated by

the user simulator. In this game, the user simulator simulates a very cooperative user by setting

the condition score of the test result "condition not matched" to 0, so that each response it

produces is contextually appropriate and meaningful. The response strategy rules cover both the

possible responses at the current dialogue state and possible responses to correct any previous

errors. Three responses are chosen randomly from all the possible responses, and paraphrased

into L2 using a variety of wordings.

6.4 Improving recognition performance

In the previous sections, various features have been discussed to make the dialogue game

plausible. Nevertheless, there is yet another fundamental problem that every speech-enabled

system needs to face: the recognition performance. Without a satisfying recognition performance,

the merits of the system fade away, and it only makes the student frustrated. Moreover, since this

system is designed for language learning, the speech inputs are expected to be highly accented. It

is extremely necessary to design certain approaches to optimize the recognition performance.

There are two problems: what to optimize and how to optimize. Word error rate (WER) has

been widely used as the most common metric for assessing recognition performance. This is a

straightforward metric which compares the recognition hypothesis with the true transcript, and is

reasonable to evaluate the recognizer performance regardless of the application. However,

considering the performance of the entire system, especially for conversational systems like this,

word error rate is not the best metric. WER treats every word as equally important when

calculating the figures, which is obviously not true in the context of a dialogue. Errors in many of

the stop words are unimportant for language understanding, while misrecognized content words

are very likely to cause misunderstanding. In this case, the concept error rate (CER) is more

158

useful than WER. Instead of calculating the error rate in the words, CER calculates the error rate

of the concepts contained in the sentence. The concepts are similar to the elements in the eform

sent to the dialogue manager, which are exactly the things that need to be correct for proper

dialogue progression.

Now comes the second problem: how to optimize the CER. Speech inputs differ from text

inputs not only in that they are errorful, but also because the recognizer has the option of sending

multiple hypotheses to the understanding components for consideration. Since the user usually

expects one single response from the system, the subsequent modules have to perform a multi-to-

one mapping to map the N-best list into a single hypothesis. Conventionally, the mapping is a

selection process. One common method used in spoken systems is to select the top hypothesis

with a threshold. If the confidence score of the top hypothesis is above the threshold, it is passed

to the subsequent modules for processing, otherwise, the entire N-best list is rejected. This

method relies mainly on the recognizer's capability. Since the recognizer does not have any clue

on the meaning of the hypothesis, the rankings of the hypotheses are only based on acoustic

scores and language model scores. Selecting the top hypothesis clearly does not necessarily

optimize the concept error rate.

Other selection approaches try to defer the decision until subsequent modules have produced

useful cues. In the previous Mercury dialogue system [33], the decision is made by the parser.

The top hypothesis on the N-best list that yields a full parse is selected as the best hypothesis.

This ensures that the selected hypothesis is at least grammatical, and thus has a better chance of

producing a correct meaning representation. In [72], features obtained from the dialogue manager

and the domain knowledge are used in addition to the acoustic features, to classify the hypotheses

into accept, clarify, reject or ignore. The top hypothesis classified as accept is selected. If no

hypothesis is classified as accept, the top one with a clarify label is selected, and so on. In their

later work [73], a statistical user simulator that measures the likelihood that the user would say

each hypothesis in the current context was further incorporated. [74] adopted a similar approach

by using features derived from the recognition score, distributional aspects of the N-best list, and

the system's response. But instead of classifying the recognition hypotheses, the classification

was optimized based on the system's response.

These works reveal the usefulness of considering syntactic, semantic and discourse information

in the decision. In considering the Mercurial system, the situation is slightly unusual in that the

speech inputs are highly accented, which makes the acoustic scores more unreliable, but on the

159

other hand, the context is much better known than in conventional dialogue systems. The exact

scenario is known at the time of the conversation, which provides strong cues for recognition. To

verify this, several N-best selection experiments were conducted. In addition, we also consider a

fusion approach to map the N-best list to a single input. Unlike the selection approaches which

discard the information in the non-selected hypotheses, the fusion approach fuses the N-best list

into a single hypothesis so that information in all hypotheses can be integrated.

6.4.1 Data collection

We first conducted a data collection effort using the Mercurial system for the subsequent

experiments. Three native speakers of Chinese and nine learners were recruited to participate in

the data collection. Five of the participants contributed to the study voluntarily, and the rest

received a gift certificate for their participation.

In order to conduct a meaningful study, we requested the nonnative subjects to have at least

two years of Chinese classes or similar experience. They were also asked to self-rank their

Chinese proficiency for all four language aspects, shown in Figure 6-12. The nine subjects have a

fair distribution in terms of their proficiency. The average scores of the reading, writing, listening

and speaking are 2.4, 2.8, 3.0 and 3.0 respectively.

Figure 6-12. Self-ranked Chinese proficiency of the nonnative subjects (1-very poor, 5-

native-like). Letters in the parentheses indicate the gender.

160

5

4

3 - - _ _ _

3
UReading

2 0 Writing

1 tListening

Speaking

0

Each subject completed 2 to 10 scenarios. The scenarios were randomly generated from several

written templates that include different itinerary types (one-way or roundtrip) and different

constraints. Each subject started from level 1, and gradually advanced to higher levels according

to their performance.

As in the other games, the acoustic models of the SUMMIT speech recognizer were trained

from native speech data, to encourage better pronunciation. An n-gram language model trained on

a flight-domain corpus is used to constrain the recognizer search space. The recognizer outputs 10

best hypotheses for each utterance, ordered by decreasing total score from both the acoustic

model and the language model. The language understanding module TINA then produced the

eform representation (key-value representation) for each hypothesis. All the hypotheses were sent

to the dialogue and performance assessment module.

The utterances collected were manually transcribed and classified into four categories: empty

utterances, out-of-domain utterances (e.g., subjects making fun of the system), problematic

utterances (ungrammatical, wrong pronunciation, stuttering, etc.), and good utterances. The

empty utterances and out-of-domain utterances were excluded from the analysis. This left us with

148 native utterances and 509 nonnative utterances. The average lengths of the native utterances

and nonnative utterances were 8.7 characters and 7.0 characters respectively.

Figure 6-13 shows the WER and CER of each subject by choosing the top recognizer

hypothesis. The WER and CER are calculated using the following equations. The subjects are

ordered by their increasing speaking proficiency.

#wordins + #worddel + #wordub (6-4)
W ER =(64

#wordref

#SlOtsins + #SlOtSdel + #SlOtSsub
CE R = #t(6-5)

#slotsref

For Chinese, the WER is calculated on the character base. The CER was calculated against

reference eforms by a human expert. Since the eform key-value representation is hierarchical, it is

first normalized and flattened for a more convenient evaluation. Figure 6-14 shows an example of

the process. A substitution is counted if both the reference and the hypothesis contain the same

key but with different values. An insertion is counted if the hypothesis contains a key that does

not appear in the reference. Likewise, a deletion is counted if the reference contains a key that

does not show up in the hypothesis.

161

100%
90%

80%
70%
60%
50%
40%

30%
20%

10%
0%

-.

r-1 (N4 00 O0) -
a) (U M 'tr Ln(D) 10 W W) U) U N m
> > W) U U) U> > > CU a)

4 4-J 4-
Mu ru 4-' 4-' 4- M- 4-Mu u 4-' 4-J

~ c u Cu C C C Z Z u C

o 0 C C C C C o 0
z z o 0 a 0 z zzZ Z Zz

Figure 6-13. Word error rates and concept error rates of the top recognizer hypothesis. The

subjects are ordered by increasing speaking proficiency. Letters in the parentheses indicate

the gender.

{c eform
:source "NYC"
:departure date {c eform >

:month "OCT"
:day_number 3 } }

{c eform
:source "NYC"
:departure date month "OCT"
:departure date day.n umber 3 } }

Figure 6-14. Normalizing and flattening of an eform.

We can see from Figure 6-13 that the speaking proficiency does not necessarily correlate with

the WER or CER. However, native speakers on average had lower WER and CER than the

nonnative speakers. The concept error rates are usually much higher than the word error rates

because of small denominators and strictness to make a match. For example, if the utterance "I

want to go from Boston" is mis-recognized as "I want to go to Boston", the WER is 0.16, but the

CER is 2.0 (inserted a destination, deleted a source). It is also noticeable that the CER does not

necessarily correlate with the WER either (Nonnative3, Nonnative7 and Native2).

162

-A WER

--- WER native avg

WER nonnative avg

.. *-CER

-- CER native avg

----- CER nonnative avg

6.4.2 N-best selection

To improve the recognition performance, the first set of experiments adopted the idea of N-best

selection. Different cues from different stages of the language processing were incorporated to

choose the best hypothesis from the N-best list. Four selection methods were designed and

compared.

Top recognizer hypothesis (1-best). The top hypothesis on the N-best list is selected.

Top full parse (parse). The top hypothesis that produces a full parse is selected.

Best dialogue score (dialogue). We first filter out the hypotheses that fail to produce a full

parse. For the remaining hypotheses, a dialogue score is computed based on the output of the

performance assessor. As described in previous sections, the performance assessor produces

scores for an input for four different aspects: sentence wellness, context wellness, dialogue

progress and student independency. Since the sentence wellness is implicitly covered by filtering

out the non-parsable hypotheses, and the selection task has nothing to do with the independency,

the dialogue score used for N-best selection is the sum of the dialogue progress score and a

variant of the context wellness score. The context score is not directly used because it only

distinguishes inputs which are absolutely wrong from those that are okay. Among the latter, the

likelihood is not the same for all inputs. For example, responding to "do you want to book this

flight" with "are there any other flights" is okay, but responses like "yes" and "no" are more

likely. The variant of the context score distinguishes three situations: "wrong context" with a

score of -1, "highly expected" with a score of 1, and "neutral" with a score of 0.

Combined score (combined). The combined score combines the dialogue score and the

information from the recognizer. In the first phase of data collection, the acoustic scores were not

logged; therefore we assign heuristic N-best rank scores to the hypotheses. The top three

hypotheses receive three points, the next three receive two, and the rest receive one.

Table 6-1 lists the WER and CER of the four N-best selection methods. It is clear from the

table that using the dialogue score helps both the WER and the CER. Statistically significant

improvements were obtained in terms of both WER and CER for both native and nonnative when

the dialogue scores and the N-best rank scores were both incorporated. Especially for the

nonnative CER, over 12% absolute improvement was gained. We also experimented with real

163

scores from the recognizer (the acoustic score plus the language model score) for the combined

method. The results showed no significant difference from using the N-best rank scores.

Table 6-1. WER and CER of the N-best selection methods. Bold indicates statistically

significant improvement over 1-best method.

Native WER Nonnative WER Native CER Nonnative CER

1-best 15.3% 19.3% 42.5% 56.5%

parse 15.3% 19.0% 41.4% 56.3%

dialogue 14.0% 17.3% 35.0% 45.0%

combined 13.9% 17.2% 33.3% 43.7%

6.4.3 N-best fusion

6.4.3.1 Oracle experiments

The N-best selection experiments verified that using context cues to select the best hypothesis

improves the CER. However, selecting a single best hypothesis ignores the information contained

in the rest of the N-best list. It is conceivable that fusing the N-best list by selecting information

most likely to be correct in different hypotheses into a single hypothesis would further improve

the performance.

Since we are more concerned with correctly understanding the user's meaning, the approach

explored here fuses the N-best list at the level of eform representations, i.e., selecting appropriate

key-value pairs from the entire N-best eforms to form a final result. With the eform

representations, the unimportant information, such as carrier words, has already been discarded

during language understanding, resulting in fewer distractions for the fusing process.

As a validation of the feasibility of this idea, an oracle experiment was first conducted. The

oracle works as follows: for every key-value pair in the reference, if it exists in one of the N-best

eforms, the algorithm adds it into the final fused result. Therefore, the oracle algorithm does not

produce any substitution or insertion errors. All the possible errors are deletion errors.

164

Table 6-2 shows the CER of the oracle algorithm, in comparison with the N-best selection

oracles that optimize the WER and CER respectively. WER is not calculated, since the fusion

algorithm might produce a result that is not in the original N-best list, and it would be challenging

to rebuild the utterance from a fused eform representation.

Table 6-2. CER of different oracle algorithms for N-best selection and N-best fusion.

The fusion oracle substantially outperforms both selection oracles in terms of the CER, which

is promising for exploring real fusion methods.

6.4.3.2 Heuristic Fusion

To fuse the N-best eforms into one, appropriate key-value pairs need to be selected from the N-

best candidates. Observing a bit more closely, it can be noticed that the keys and the values in the

eforms represent different types of information. The keys are usually derived from syntactic

structure, while the values usually correspond to content words. For example, the keys :source

and :destination are derived from two prepositional phrases, and their values are the objects of the

prepositional phrases. Thus, the keys should be more robust than the values, because the

vocabulary to form the syntactic structures is much smaller than that of the content words, and

usually is well covered in the language model. To take advantage of this property, we would like

to separate the tasks of selecting the keys and selecting their values.

On the other hand, the dialogue scores obtained from the system are attributed to the key-value

pairs, not the keys alone or the values alone. Therefore, the final algorithm we came up with

scores both the key-value pair as a whole, and the keys and values separately.

Key-value pair scoring

The key-value pairs are scored according to their contribution towards the dialogue scores.

However, it is not easy to obtain the dialogue score for each key-value pair for two reasons. First,

165

Native Nonnative

Selection (WER) 27.8% 33.9%

Selection (CER) 16.9% 23.8%

Fusion 11.9% 16.9%

due to the uncertainty embedded into the system, it is very hard to reproduce exactly the same

scenario and the same dialogue. Secondly, certain dialogue progress is credited toward a

combination of multiple key-value pairs, rather than a single pair. For example, the combination

of a correct month and a correct day number leads to one credit in the dialogue score. Therefore,

instead of trying to obtain the dialogue score for every single key-value pair, the correlation

between its occurrence in the N-best list and the dialogue score of each hypothesis is calculated.

The detailed formulation is as follows, where C is the occurrence vector, and D is the dialogue

score vector for the N-best hypothesis. If the key-value pair exists in the ith hypothesis, its

occurrence ci is assigned 1. If the key appears in the hypothesis but with a different value, the

occurrence is assigned -1. Otherwise, zero is assigned to ci.

SkVAk,v) = corr(C,D)

1 (k, v) E hypi (6-6)
Ci = -1 (k,v') E hypi,v' # v

0 otherwise

Key and value scoring

Each key (or value) is scored by its weighted count. The equation is shown in (6-7), where wi is

the weight for each N-best hypothesis calculated using the dialogue score and the N-best rank

score discussed in the previous subsection.

Sk(k) = 6(k, i)wi

(6-7)

S(k,i) = 1 k appears in hypi
l 0 otherwise

Selection

To produce a fused eform, the key-value pairs that either have high contribution to the dialogue

score or have a high weighted count are selected. Formally, the pair (kv) is selected if it satisfies

either of the following two criteria.

(1) sk(k, v) > threskv

(2) sv(k) > thresk Ei wi, and for any other possible values v' of k, sv(v) > sv(v')

Notice that the hierarchy of the eform is not taken into consideration for the fusion process.

The selection of the key-value pair only works for the leaf key-value pairs. To re-create the

hierarchy, the most frequent parent, if any, is assigned to the pairs.

166

6.4.3.3 Fusion with SVM

Another approach we experimented with is fusion using an support vector machine (SVM)

classifier [75]. The classifier classifies each key-value pair into POSITIVE or NEGATIVE, and

the POSITIVE pairs are selected to form the fused eform. If multiple pairs with the same key are

classified into POSITIVE, the one with a higher confidence score is retained. Table 6-3 lists the

features used for classification.

Table 6-3. Features used in the SVM classifier for N-best fusion

Feature For the pair (k, v) For the key k

Percentage of occurrence in the N-best list

Index of first occurrence in the N-best list

Sum of dialogue scores of the hypotheses it appears in

Sum of recognizer rank scores of the hypotheses it
appears in

Correlation with the dialogue scores

Table 6-4. CER of the fusion methods. Bold shows the statistically significant results against

the selection method (p < 0.01).

167

Native Nonnative

Selection (combined) 33.3% 43.7%

SVM Fusion (5 features) 31.7% 44.0%

SVM Fusion (9 features) 32.8% 47.6%

Heuristic Fusion 32.0% 40.2%

Manual Fusion 27.2% 34.3%

6.4.3.4 Results

Table 6-4 shows the CER result of the two fusion methods in comparison with the N-best

selection method. For heuristic fusion, we chose thresk-=0.8 and thresk=0.6. We used a linear

kernel For the SVM experiments. Due to the small amount of data we have, the SVM fusion

results were obtained via leave-one-speaker-out cross validation. We trained the classifiers with

all the nine features mentioned above, as well as with a reduced feature set which only contains

the five features for the pair (k, v). The classifiers with the reduced feature set gained better

results than the ones with the full feature set, probably because the amount of data was not

sufficient for the additional features. The heuristic fusion method gained statistically significant

improvements on the nonnative data. For the native data, the CER was lowest using the SVM

fusion, but the result was not statistically significant.

Compared to the oracle results, the figures reveal a considerable gap. However, it should be

noted that the oracle was optimized for the CER. In the case of a misrecognition where all the

hypotheses are wrong, the oracle produces a result that minimizes the CER regardless of the

frequencies and all other observable features of the key-value pairs. To make a fairer comparison,

we also did a manual fusion experiment with an expert. The human did not have access to the true

transcript, and produced a fusion result only by looking at the N-best eforms, as well as the

dialogue scores. The result showed that the human still performs better than both methods. One

significant difference we noticed is that the human takes into account the existence of other keys

when deciding whether a particular key should be selected or not. This is not modeled by either of

the methods, and can be a potential topic for future work.

6.5 User study

A subjective evaluation was conducted by the subjects participating in the data collection. A

questionnaire was given to each subject. The questionnaire, shown in Figure 6-15, contained

seven questions asking about the interest level, difficulty and helpfulness of the game. Various

features are also assessed in terms of their helpfulness. We also asked the subjects about their

previous experience with computer-based Chinese-learning software. Four out of the nine

nonnative subjects responded that they had used such software such as Rosetta Stone, and Fluenz.

The subjects responded positively about the game. Figure 6-16 and Figure 6-17 show the

average scores of the questions in the questionnaire. The average scores for the interest value and

168

helpfulness of the game are both 4.3. The aspects where the subjects considered the game helped

most are speaking, sentence patterns, vocabulary and reading. Some other aspects that the

subjects mentioned in which the game is helpful are discourse and practical application. All

subjects would recommend the game to other learners of Chinese. The top five popular features

were the checklist, the level advancement, the example utterances, the feedback message and the

scores.

1. Was the game interesting to you? (1 - Not interesting at all; 5 - Very interesting)

2. Was the game difficult to you? (1 - Very easy; 5 - Very difficult) __

3. Was the game helpful in learning Chinese to you? Or if you're a native speaker,

do you think it would be helpful for students learning Chinese? (1 - No help at

all; 5 - Very helpful) _
4. In which aspects do you think the game is most helpful? (Multiple selections)

a. Vocabulary b. Sentence patterns c. Reading

d. Speaking e. Listening f. Other

5. Did you find the following features helpful/useful?

(1 - I didn't notice this feature at all; 5 - It's very helpful/useful)

a. The feedback message in the center

b. The example sentences in text

c. The example sentences in speech

d. "Repeat" in Chinese

e. "Repeat" in English

f. The checklist on the left

g. The scores you get

h. Level advancement

i. Different scenarios within each level

j. Different scenarios across levels

k. Dialogue summary at the end

6. Would you recommend the game to other people who are learning Chinese?

a. Yes b. Not sure c. No

7. Any other comments you want to share?

Figure 6-15. The subjective questionnaire given to the subjects.

169

Figure 6-16. Average scores of Question 1 (interest value), Question 2 (difficulty), Question

3 (helpfulness), and Question 6 (recommendation).

Figure 6-17. Average scores of helpfulness of various tutoring features.

We are also interested in how subjects with different Chinese proficiency responded differently.

We classify the nine nonnative subjects into two groups according to the average scores of their

self-ranked proficiency of the four language aspects. Subjects with an average score lower than 3

are classified into the lower proficiency group, and subjects with an average score higher than 3

are classified into the higher proficiency group. The average scores of the questions of the two

groups are shown in Figure 6-18. The lower proficiency group considered the game to be more

interesting and more helpful. Most of the tutoring features appeared to be more helpful to the

lower proficiency group, especially the feedback message and the repeat in English. However,

170

6
5.0

5

4

3

2

1 -

0o-

Interest Value Difficulty Helpfulness Recommend?

4.5
4

3.5
3

2.5
2

1.5
1

0.5
0

&

synthesizing the example utterance seems to be more attractive to the higher proficiency group.

This could be due to the speaking rate of the synthesized voice. Some of the nonnative subjects

with lower proficiency actually complained about the synthesized voice speaking too fast, so they

would rather read the text on the screen than listen to the speech.

Some subjects were amazed by the level of automation and intelligence of the system. One

subject commented that there are only four or five minutes for one person to speak in one Chinese

class, but with this automated system, he can practice speaking a lot more. Another subject asked

whether the system would be made available soon to the public. Other subjects suggested that we

should extend the system to other domains, as well as slow down the synthesized voice for them

to practice listening more effectively.

Figure 6-18. Average scores of Question 1 (interest value), Question 2 (difficulty), Question

3 (helpfulness) and sub-items in Question 5 (helpfulness of the features) by the two

nonnative proficiency group.

6.6 Summary

Dialogue is a comprehensive and challenging activity for language learning. Unlike the previous

three games in which the content of the utterance to speak is given in either LI or L2, in a

dialogue activity, the student has to comprehend the dialogue partner's speech, and based on that,

compose a spontaneous response. Due to the complexity of handling the dialogues, dialogue

171

5
4.5

4
3.5

3
2.5

2
1.5

1
0.5

0

U Higher proficiency groupU Lower proficiency group

0,00,

exercises in existing language learning software are dominated by scripted dialogues or semi-

scripted dialogues.

This chapter presented a dialogue game with full-functional natural language processing. The

role of the system is divided into two parts. It converses with the student as a dialogue partner,

and it provides assessment and feedback to the student as a language tutor. The first role makes it

a dialogue system, and the second role distinguishes it from conventional dialogue systems

designed for native speakers. The separation of the roles also makes it possible to develop more

generic modules that can be used not only in language learning systems, but also in other general-

purpose systems.

In order to handle the dialogue, a new dialogue manager FAUNA for goal-directed dialogues

has been introduced in the previous chapter. In short, FAUNA handles the dialogue in a problem

solving manner according to a declarative entity and knowledge source specification. A statistical

classification engine is embedded in FAUNA so that statistical decision making can be

incorporated. FAUNA has been used in two English dialogue systems for native speakers, as well

as in the flight-reservation domain dialogue game Mercurial for Chinese learning. These three

applications demonstrate its language independency and domain portability.

In parallel with FAUNA, a user simulator is also developed. The user simulator creates the user

intention based on the scenario templates. The responses are generated according to the strategy

rules, which encode the conditions and response templates. User personality is also modeled, so

that different responses are assigned different probabilities when simulating users with different

personalities. The user simulator can be used to simulate dialogues in conjunction with FAUNA,

or to provide user suggestions without affecting the real dialogue. The two ways have been tested

in an English domain and a Chinese language learning environment respectively.

The whole framework for the dialogue game is completed with a control module and an

assessment module. The control module controls the level advancement and revises the scenario

according to the current difficulty level. The assessment module evaluates the student's

performance on the basis of five aspects: sentence wellness, context wellness, dialogue progress,

independence, and scenario complexity.

With all the modules developed, a real dialogue game in the flight-reservation domain,

Mercurial, is presented for Chinese learning. This system is the most sophisticated and full-

function dialogue system for language learning in the field as far as I know. The student talks

172

with the system in fully natural language, receives feedback from a checklist, feedback messages,

and a score, and has access to assistance contextually and bilingually.

The system was evaluated by real subjects. Three native subjects and nine nonnative subjects

were recruited to interact with the system. Based on the data collected, experiments to improve

the recognition performance were conducted. We compared four N-best selection methods and

two N-best fusion methods, and concluded that using the dialogue context cues can significantly

improve the recognition performance, especially under the circumstances where the nonnative

speech is highly accented.

The system received positive feedback from the subjects participating in the evaluation.

Statistics from the questionnaire showed that the subjects consider the system interesting and

helpful. The system is especially helpful in practicing their speaking abilities. The subjects would

recommend the system to their friends, and they would like to see the system being extended to

other domains and being available to the public.

173

Chapter 7 Summary and Future Directions

This thesis has investigated the area of computer-assisted language learning, particularly using

language technologies to create activities that exercise the students' comprehension, composition

and speaking abilities. A series of four language learning games, reading, translation, question-

answering and dialogue, featuring semi-automatic content creation, automatic assessment and

automatic assistance generation, was discussed and implemented. This chapter will summarize

the major contributions of the thesis, and point out possible future research.

7.1 Contributions

The topics of this thesis center around systems for computer-assisted language learning, and

cover a wide space in the area of spoken language processing. The methods we explored and

developed were aimed to be generic, while at the same time, certain amounts of pragmatics were

included to enable building real systems.

The contributions of this thesis can be organized into three main aspects: the framework, the

modules, and the game systems.

7.1.1 Framework

To build any language learning system, whatever the activity is, several functionalities must be

implemented. In Chapter 3, we discussed the responsibilities of traditional language teachers, and,

derived from that, summarized three key functionalities of a computer system for language

learning: content creation, assessment, and assistance. These three functionalities involve

different language processing technologies, and may also differ for different activities. In order to

allow maximum sharing of the various modules among different activities, a three-layer

conceptualization is proposed which clearly defines the language- and domain- independency of

the modules on each layer: the language layer serves as the natural language interface in a

specific language, the meaning layer handles the semantics with a language-independent property,

and the language tutor layer controls the activity procedure and provides application-dependent

tutor features, including assessment. The concept is implemented using the DCTL framework,

174

and the entire architecture is completed with the WAMI toolkit to support a web-based user

interface and communication with recognizers and synthesizers. By arranging the modules

differently via the DCTL script, different applications can be built with different levels of

language processing. This also serves as a basic architecture for all kinds of WAMI-based

systems that involve heavy natural language processing. Many of the sub-DCTL files written for

the language learning systems, such as producing synthesis/HTML dispatches, handling a

dialogue turn, and handling multilingual inputs from the input box, are generic, and can be

utilized by other systems, not necessarily involving language learning.

7.1.2 Generic modules for spoken language processing

In order to create exercise contents and to understand and process the student's input, a number of

language processing modules that cover a wide space of language processing technologies were

developed. These modules were developed in a generic way so that applications other than

language learning systems may also use them as a part of the whole system.

In Chapter 4, a template-based content generation method was described. The method reduces

human effort in providing domain-dependent contents. The contents can be generated in

monolingual or bilingual form. Blending and balancing models enforce a good coverage of both

new and review materials. The method can be used to generate corpora other than lesson

materials as well, for example a corpus for language model training and system testing.

In Section 5.3.2, a transformation approach was proposed to automatically pose questions from

statements. The approach works from the meaning level, and can be applied not only to

statement-question transformation, but also other to types of meaning/structural modification of a

given sentence. Section 5.3.3 proposed a simplified context resolution method via alignment to

help judge the correctness of an answer to a question. The method can be applied in other

question-answer situations to expand the abbreviated answers into full context.

In Chapter 6, a brand new dialogue management model was proposed and implemented. The

dialogue manager uses the entity goals and knowledge source constraints in a declarative domain

specification to plan the dialogue progress as a problem-solving procedure. Statistical classifiers

supplement the entity-constraint-based management to handle decisions not easily describable by

rules. The tutoring mechanism built inside the dialogue manager allows the developers to teach

the system appropriate behaviors by interacting with it and correcting it when the statistical

engine makes a mistake. The dialogue manager has been successfully used to implement dialogue

175

systems in two distinct domains and two distinct languages to demonstrate its domain portability

and language independence.

This new dialogue manager provides a new model for handling goal-directed dialogues.

Developers are able to build dialogue systems in a specific domain in a reasonably short period of

time and with a small amount of domain-dependent code. The combination of reasoning and

statistics is also a novelty that allows the developers to have good control of the system behavior,

while still making use of the statistical power. The novel tutoring mechanism for building the

models enables the system to be developed without any pre-existing data. The mechanism also

sets the foundation for future system personalization through the interaction between the end-user

and the system.

In Section 7.1, a user simulator was described that models the personality of the user. A

specification file guides the instantiation of user intention, and the user responses are chosen

based on both the current dialogue state and the specified personality of the simulated user. In

experiments with a two-dimensional personality feature vector, obvious differences could be

observed between a less cooperative and less aggressive user and a more cooperative and more

aggressive user. This simulator was used to generate user suggestions in the dialogue game. It can

also be used for generating dialogue corpora and testing a dialogue system. The novel personality

model makes it especially suitable for stress-testing the dialogue systems by simulating "ill-

behaved" users.

Other minor contributions in terms of the language processing modules include improvement

to the parsing and language generation performance (Section 5.2.2), and detection of semantic

contradiction in a set of statements (Section 5.3.4), etc. All of these modules were designed in a

generic fashion to serve general purposes. Various applications can be developed with the help of

these modules.

7.1.3 Four games

Four real web accessible games for Chinese learning were implemented ranging from reading and

translation to question-answering and interactive dialogue with increasing difficulty. In the

reading game (Section 5.1), the student sees a list of randomly generated Chinese sentences, and

is asked to read them out loud in any order. In the translation game (Section 5.2), the system

shows a list of English sentences, and asks the student to compose and speak Chinese sentences

with equivalent meanings. In the question-answering game (Section 5.3), a list of Chinese

176

statements is displayed. The student listens to the questions spoken by the system and provides

spoken answers based on the statements. Finally in the dialogue game (Chapter 7), the student

converses with the system naturally to fulfill a task given by the system. Various kinds of

assistance and hints are provided in these games. Assessment is given for each utterance, as well

as for a longer period of game play in the form of game points, which allow the student to

advance to the next level when enough points have been collected. These systems are very unique

in the field in that they focus on the student's comprehension and composition abilities, and

process the student's speech to understand the meaning and give feedback. Students are thus

allowed to interact with the system using natural and flexible speech, with access to versatile

hints and rich feedback.

The games were evaluated using real subjects. The overall system performance was satisfying,

and the subjects considered the systems as interesting and helpful. Using the data collected,

several experiments were conducted to improve the recognition performance via the N-best

hypothesis selection and N-best meaning fusion. Experimental results showed that including

context cues helps reduce the concept error rate of the recognition outputs, and N-best fusion was

able to achieve a lower concept error rate than N-best selection.

These games demonstrated feasibility of building complex systems for language learning. The

model they created can be borrowed to develop similar systems, or be extended for other types of

activities. Besides, these four games also provide a platform for future user studies on computer-

assisted language learning. Researchers can utilize the systems to create different conditions and

analyze the user behavior.

7.2 Future directions

Many aspects of the work in this thesis can be extended. Five possible future directions are

described below.

7.2.1 Larger-scale and customizable learning materials

Given the successful implementation of the games in the flight and travel domain, one natural

extension is to develop the systems in other domains. Comparatively speaking, the first three

games are easier to port to other domains than the dialogue game. We would like to have

language teachers to be involved and prepare lesson materials in larger scale to create games that

can be put into real use. An attempt has been made to create a question-answering game for a

177

video clip obtained from a summer Chinese language learning camp. The content of the video

clip was manually summarized to make up a lesson template, and the system was set up

successfully in two days with only minor grammar revisions mainly to incorporate more

vocabulary to cover the content. This demonstrated the portability of the system, as well as the

potential to support learning materials in more languages. In fact, the model of the translation

game has been adopted by other researchers to create multi-lingual translation games [76] [77].

Customizable learning material is another direction. In traditional language learning, the

materials are created by the teacher. A web-based CALL system like this, however, can be a

tradition-breaker. The student can possibly be a content creator to compose lessons that have

particular interest value to himself. An example has been shown in the Word War game [42] for

vocabulary learning in which the student can create and share their own sets of flash cards. In

games for learning at the sentence level, it is more challenging to have the student be the content

creator. But, as mentioned in this thesis, the lesson templates for the reading and translation

games were written in Ll. This implies that the student can possibly use their native language to

create lesson materials, and have the computer translate the materials and generate proper

exercises. An interactive interface can be developed to allow people without any training to

compose lesson templates. With automatic grammar and language model training, students would

be able to create and learn using their own personalized lessons instantly.

7.2.2 Paragraph reading comprehension

The question-answering game can possibly be extended into a full reading comprehension

exercise. The idea is the same: the system shows the student some texts in L2, and asks questions

based on the texts. In the current version of the question-answering game, the texts are isolated

statements. It would be more interesting and challenging for the students if the contents were

coherent stories or paragraphs. There are two possible ways to realize the idea: generating

coherent paragraphs and using existing texts from various sources. Both ways impose challenges.

Generating paragraphs requires techniques to produce coherent and natural sentence sequences

with appropriate ellipsis and coreference, while still maintaining the variety of the generation

outputs and low human effort required to compose the materials. On the other hand, using

existing texts requires mechanisms to analysis the texts, resolve the ellipsis and coreferences, and

summarize the main idea, so as to be able to generate questions both on the sentence level and on

the higher paragraph level.

178

7.2.3 More dialogue activities

This thesis demonstrated a dialogue game in the flight domain where the student is asked to

conduct a dialogue with the system to achieve a flight itinerary which meets the given scenario.

Using the dialogue manager and other modules developed in this thesis, more dialogue activities

can be created in terms of both domains and forms. A similar domain to the flight reservation

domain could be ordering at a restaurant, where the student is given the dietary and budget

constraints, and is asked to order from a menu, satisfying the constraints.

The dialogue activity can also be carried out in a different way, in which the system as the

language tutor does not give feedback after each turn; instead, the student is asked to answer

some questions after the conversation. For example, the student interacts with the system about

the weather tomorrow. Afterwards, he is required to answer questions such as the temperature or

the likelihood of precipitation. The questions may be in the written form, or more challengingly,

also in the spoken form. Compared to the one implemented in this thesis, such a dialogue system

would have a more sophisticated design, in which the computer plays three roles: the dialogue

partner (information provider), the language tutor, and the information seeker. An even more

complicated dialogue activity, however, can be imagined by combining multiple dialogue

activities. For example, in the first scenario, the student talks with the system, which acts as his

friend, to set up a dinner schedule. Then in the second scenario, the student interacts with the

system to find a suitable restaurant and make a reservation. In the final scenario, he orders the

dishes according to the given preference and budget.

The discussion above is all centered on goal-directed dialogues. Another direction of the

dialogue activity is goal-less dialogues, in other words, chatting-style dialogues. One way is to

use data-driven methods, such as the "chatbots" for instant messaging services on the Internet.

However, these chatbots are mainly designed to amuse users. Because they do not distinguish

valid and invalid inputs and they are not guaranteed to produce meaningful responses, they are

not suitable in the language learning setting. In the work of [78], a framework for building

chatting-style dialogues for language learning was proposed. The idea originated from the casual

chat between a shopkeeper and a customer in the free market, where a friendly banter might lead

to a better bargain. The system was able to produce dialogues using a template-like structure to

track the customer model and the shopkeeper model. Nevertheless, it generally still remains

179

challenging to handle dialogues reliably where there is no particular goal, and thus the scope of

the input utterances is too large to model.

7.2.4 CALL system evaluation

Another interesting topic to explore is the evaluation of computer-assisted language learning

systems, especially for complex systems. Objective evaluation can be performed for some system

components, for example, the word error rate and concept error rate of the speech recognizer, or

the percentage of appropriate system responses. However, these measurements do not reflect the

entire performance of the system. As the main purpose of a language learning system is to help

the student improve language proficiency, the pedagogical effectiveness and user satisfaction are

major concerns. These, however, are very hard to measure quantitatively. Most work relies on

questionnaires to gather users' opinions, such as [79] and [49]. In [49], a pre-test disguised as a

warm-up exercise and a post-test disguised as an extra data-collection session were also

conducted to test the student's improvement. The results showed that the average time-on-task

decreases in the post-test compared to the pre-test for every subject, but since the contents of the

pre-test and post-test were a subset of what the students practice with the system, it is hard to tell

whether the improvement was due to short-term memory. In [80], similar pre-test and post-test

exercises were carried out to evaluate the educational value of a vocabulary learning system. The

post-test was conducted several days after the students had used the system, to minimize the

effect of short-term memory. Such tests are informative, but at the same time very expensive to

conduct. With the recent rise of crowd-sourcing and examples of using crowd-sourcing to

evaluate conventional dialogue systems [81], researchers in the CALL field have started to look

into this new possibility. [82] investigated the validity of using crowd-sourcing to conduct CALL

system evaluation. The results showed that it is not very difficult to identify "scammer" workers,

and most of the data they collected were from the "serious" workers.

While the power of crowd-sourcing may bring subjects and data collection to a lower cost,

there still exists the problem of metrics. As we have mentioned above, questionnaires and pre-

test/post-test exercise are two commonly used, and probably the only evaluation methods

typically used. The contents of the questionnaires and the tests are usually put together in an ad-

hoc way for each particular system, which makes it hard to compare horizontally among different

systems. It would be a useful but challenging future research topic to establish a metric or a

standard questionnaire, so that different CALL systems can be more easily compared with each

other.

180

7.2.5 Natural tutoring

In addition to computer-assisted language learning, the last future direction of possible interest is

to improve the tutoring mechanism embedded in the dialogue manager FAUNA towards a more

naturally usable design. The current tutoring mechanism requires the developer to use special

commands to intervene and correct the system behavior. If these operations can be replaced by

natural commands, the tutoring would become more straightforward. Furthermore, with a natural

tutoring capability, end users will be able to tutor the dialogue systems and personalize the system

behavior.

The challenges lie in two aspects. First, language understanding: describing and correcting an

undesired system behavior involves complex language. Understanding such language requires a

generic and robust language understanding module. Second, since the system's reply is a result of

a sequence of small decisions, pinpointing the exact step in which the mistake takes place is also

challenging. One possible way is to create a graph where each node represents one decision. Then

the graph can be searched according to the confidence score to identify the node that leads to the

least confident path. This decision could then be reversed to test whether a different reply can be

derived as a consequence.

7.3 Conclusion

In this thesis, several systems for interactive games to help a student learn a foreign language

were developed, including reading, translation, question-answering and dialogue. We designed a

framework to allow different language processing modules to cooperate and be shared among

different applications, as well as the modules to perform various types of language processing,

such as template-based content generation, transformation of meaning representation frames,

context resolution via alignment, entity-constraint-based dialogue management, user simulation

with personality, etc. Although the four games successfully developed using the framework and

the modules focused on the language pair English-Chinese, we have shown that the modules are

language-independent, and thus the games can be easily reversed to teach English to Chinese

speakers. Likewise, it is also possible to swap in other LI or L2. The techniques are also suitable

for developing more interesting language learning systems. We hope this thesis can provide some

181

inspiration for researchers and product developers to reach forward for the next generation of

language learning software.

182

Appendix A DCTL Manual

A.1 Overview

DCTL (Dialogue Control) is a script to coordinate various language processing units. Although

the name implies dialogue processing, the use has been generalized beyond dialogue.

The object of the processing indicated by the DCTL, as well as the DCTL script itself, is a

GALAXY frame ("frame" by short). A Galaxy frame is enclosed by a set of curly braces, and

starts with its type followed by its name. The type can be one of the following three types: "c"

for clause, "p" for predicate, and "q" for topic (quantified set). The content of the frame includes

two types of elements: predicates and keys. A predicate is a p-type frame led by a ":pred".

Multiple predicates are allowed in one Galaxy frame. A key has a name and a value. The name

can be any string that starts with a colon except the special key, ":pred", and the value can be an

integer, a string, a double, another Galaxy frame, or a list of any of the above value types.

The execution of a DCTL script takes in an input frame called input token, and outputs an

output frame called output token. The entire execution from receiving an input token to producing

an output token is called a turn. All the processing that is gone through in a turn are called

operations. A dialogue state, in the format of a frame, is created to store temporary information

during the execution. The elements in the input token, output token, and the dialogue state are

conventionally called variables. Predicates do not usually appear as top level elements in these

three frames. The dialogue state is shared by all operations in the script, unless special operations

are used. The initial dialogue state does not necessarily contain variables from the input token,

nor does the dialogue state become the output token, unless the corresponding option is set. After

the completion of one turn, the dialogue state is destroyed. Variables in dialogue state do not

automatically transfer to the next turn, unless specified. Variables which need to be used across

turns should either be stored in the session state, or be specified as state variables.

The execution of the operations in a turn follows the order of the rules in the DCTL script.

Each rule represents a conditioned operation; when the condition test against the dialogue state

183

yields TRUE, the operation is executed. The rules are organized into groups, called rule lists,

represented by a GalList using parentheses. The execution of a turn always begin with the rule

list :rules. Special operations allow the execution to jump to other rules lists defined in the script,

and execute these essentially like a subroutine call.

The source code of loading and execution a DCTL can be found in

$GALAXYROOT/nlcore/src/libtumer. The library also includes code for common operations.

Code for domain dependent operations should be found in the source code directory for each

application domain under $GALAXYROOT/tiny-nl/src.

A.2 Running a DCTL script

As of the time this manual was written, a DCTL script can be run by two executable programs.

Tinybrain, which is a python wrapper, loads a DCTL script, and opens a port to listen for

incoming input tokens via XMLrpc. It is used when the DCTL is a part of an entire system.

Newturnmanager obtains input tokens from text files or standard input, and outputs into another

file or standard output. It has no ability to connect to recognizers or synthesizers, but is suitable

for offline process and debugging.

The two programs have different arguments. Slightly different options should be specified in

the DCTL script as well. But it is possible to include options necessary for both programs in one

DCTL script, so that the script can be run by either program.

Running with tinybrain

The source code of tinybrain is located in $GALAXYROOT/tiny nl/python-tinybrain. To run,

use the following command:

python $PYTHONPATH/tinybrainserver.py --port port number --domain

domainname --dctl DCTL_filename --fork

The command creates a server and listens at the given port number. A domainname is

necessary, but does not have any actual effect. The argument --fork allows forking new threads

for every incoming token to handle simultaneous requests. But, due to the nature of forking, the

forked threads are not debuggable. This argument should be omitted if the program is run in the

debug mode.

184

To run a DCTL script properly with tinybrain, a list of return variables needs to be specified

in the script using :returnvariables at the top level, or to specify :always-copyjtoken in the

initial frame to output everything in the dialogue state. The latter is not recommended as it would

increase unnecessary communication cost.

Running with newturnmanager

The source code of newtummanager is located at

$GALAXYROOT/tiny_nl/src/newturnmanager. To run with a text file input, use the command:

newturnmanager -dialoguescript DCTL filename

The commonly used optional arguments are listed below.

-dctlfile DCTL_filename Same as -dialogue-script.

-stdin Use standard input to provide input strings. The input string is

wrapped with an empty frame with a key :input-string to serve as

the input token.

-utts input-filename Use a text file to provide inputs. The text file can be in one of the

two modes. In the string mode, each line of the text file is the

input string for one turn. The input token is a frame with a

key :input-string. In the frame mode, the input file should start

with "FRAMES" as the first line, followed by a frame which

contains a key :frames with a list of input frames as value. Each

input frame is the input token for one turn.

-n n Combine with argument -utts. Use only n inputs from the input

file.

-starti i Combine with argument -utts. Start loading from the i-th input

string/frame in the input file.

-copy-token Clone the input token to be the initial dialogue state.

Recommended for most situations.

185

-outfile output-filename Specify the output file.

-outstate Output the entire dialogue state at the end of each turn into the

output file. The dialogue states are separated by a line of dashes.

-out-key key-name Output only the value of one specific key at the end of each turn

into the file.

-textconversation Print out the input string (:input-string) and reply string

(:reply-string or :output-string) from the dialogue state at the end

of each turn, and wait for any keyboard input to continue to the

next turn.

The input token of each turn only contains the input string/frame from the text file or the

standard input. To allow variables created/modified in the previous turn to be carried over to the

next turn, they must be specified under the key :historyvariables in the initial frame of the

DCTL script (see next section).

A.3 DCTL script

A DCTL script file is one GALAXY frame, called the "DCTL frame". The type and name of the

frame, as well as those of any subframes do not carry any actual meaning. Conventionally,

different subframes may have different frame names, but it is not a part of the DCTL syntax.

The script consists of three parts: top-level options, an initial frame, and rule lists. The top-

level options and the initial frame specify the initialization and global parameters. The rule lists,

which are the core component of the DCTL frame, specify the conditioned operation sequences.

Following is an example that parses the input string. The detailed meaning of the keys in these

rules will be explained later in this section.

{c dctl

:returnvariables (":hubsession-vars" ":dispatches"

:initialframe {c frame

:alwayscopytoken 1

:domains "english" }
:rules (

186

{c rule
:conditions ":inputstring"

:variables {c variables

:rules ":parse " }
:operation "subroutine-call" }

:parseandparaphrase

{c rule

:variables {c variables

:inputkey ":inputstring"

:outputkey ":parseframe"

:domain "english" I
:operation "create-frame" }) }

Top-level options

Top-level options are written as top-level keys in the DCTL frame. Two options are currently

available.

:insert-file ("filenamel" "filename2" ...)

:returnvariables (":keyl" ":key2" ...)

Include other DCTL files. The rule lists defined

in other DCTL files can be called. If rule lists

with the same names exist in both the current

DCTL file and the inserted DCTL files, the lists

in the current DCTL file are retained. Top-level

options and the initial frame in the inserted

DCTL files are ignored. However,

the :insert-file option in the inserted DCTL files

is effective.

Effective option when running with tinybrain.

Specify the keys in the dialogue state to be sent

out at the end of a turn in the output token. If this

option is not specified, and :always-copytoken

is set in the initial frame, the output token would

be a copy of the dialogue state plus the session

state at the end of the turn.

Initial frame

187

Initial frame is the frame under the key :initial-frame. Keys inside the initial frame are used for

global settings and initialization.

Global settings

:always-copy-token binary

:historyvariables (":key1" ":key2" ...)

:statevariables (":key1" ":key2" ...)

:autoretrieve (":key]" ":key2" ...)

If this key is set with a nonzero value, the input

token is copied to be the initial dialogue state for

each turn (except reserved keys for system use,

e.g. :hubsessionvars). If no return variables are

specified, the final dialogue state is copied to

become the output token. It is recommended to set

this key in order to access the information from

the input token in an easy way. At the same time,

it is also recommended to set the return variables

in order to reduce unnecessary data

communication between servers.

Effective option when running with

newturnmanager. Specify keys to be carry over

to the next turn.

Specify the state variables. State variables are a

subset of session variables, whose values can be

carried over turns. The difference between state

variables and normal session variables is that a

finite history of the values of the state variables is

maintained as well, while normal session

variables only have one current value stored. State

variables are necessary to perform meta history

commands like "scratchthat" (roll back one

turn).

Automatically retrieve the most recent value of

the state variables in the beginning of a turn, and

put them into the dialogue state.

188

:usehubsessiontmstate binary

:subtumindicators (":key1" ":key2" ...)

:convert-import "encoding"

:convert-export "encoding"

Store the state variables in a special space in the

session state. Recommended to be set if the

application needs to perform meta history

commands.

Specify the sub-turn indicators. If the input token

contains any of the sub-turn indicators, the turn is

not considered as a new turn, i.e., the history is

not shifted.

Convert the encoding of the input token to the

specified one. The encoding of the raw input

token is assumed to be UTF-8.

Convert the encoding of the output token to the

specified one. The encoding of the raw output

token is assumed to be the same as that of the

input token after conversion according

to :convert-import.

:sessionvars (":key") Specify the name of key to represent the session

state. Not recommended to set to values other than

":hub session vars".

logdir "directory" Specify the logging directory.

Initialization parameters

:domains "domain] domain2 ... " Initialize the grammar domains for parsing. All

grammar domains used explicitly in the DCTL script

need to be specified, including any from inserted

DCTL files. Grammar domains used implicitly, e.g.

through DSPEC, need not be specified.

189

:languages "lang] lang2 ... " Initialize the languages for language generation and

rewrite. All languages used explicitly in the DCTL

script need to be specified, including any from inserted

DCTL files. Languages used implicitly, e.g. through

DSPEC, need not be specified.

:dialogue-spec "DSPEC_filename" Initialize the dialogue manager using the specified

DSPEC file. Necessary if any operation related to

dialogue management is used.

:usersimspec "USIM_filename" Initialize the user simulator using the specified USIM

file. Necessary if any operation related to user

simulation is used.

:usersim binary Enable/disable user simulation initialization.

:fstfiles {c fstfiles Specify the FST directory and preload FST files.

:fstdir "directory"

:preload "fstfilel fstJlle2 ... " }

Rule lists

Rule lists are written using GalList (enclosed by parentheses), in which each element is a rule

frame. The name of the rule lists, i.e. the key of the list, can be arbitrary, except for the root list,

which should be named as ":rules".

Each rule is a frame with a required key :operation to specify the name of the operation. The

detailed syntax of the rule frame is as follows.

:operation "op" Required. Specify the name of the operation.

:conditions "logical-expr" Specify the conditions under which the operation is triggered

to execute. The testing is conducted against the dialogue

state, unless special syntax is used to indicate variables from

the session state. See below for more information on the

190

logical expressions.

:variables {c variables } Include parameters for the operation. The parameters are

usually operation-specific. Followings are two operation-

independent parameters.

:log ":key] :key2 ... " Log the values of the specified keys at the end of the

operation, if the operation is triggered.

:control ":return" End the execution of the current rule list after the operation,

if the operation is triggered. The value of the parameter is

fixed.

:retrievesessionvars Copy the variables from the session state into the dialogue

":key1 :key2 ... " state. The retrieval is performed before the testing of the

conditions, and thus is performed regardless of the testing

result of the conditions.

storesessionvars Copy the variables from the dialogue state into the session

":key] :key2 ... " state after the operation, if the operation is triggered.

Logical Expressions

The syntax for the logical expressions is described below. The basic expressions can be combined

using conjunctive operator "&" and disjunctive operator "I". Parentheses are allowed to group the

expressions for priority. If the keys have a prefix "hubsession", the value of the key is looked up

in the session state, rather than the dialogue state. For binary operations, the space on the right

hand side of the operator is optional.

:key Existence test of the key.

!:key Inexistence test of the key.

:key str Equality test of the value of the key. The result is TRUE if and only if the

:key =str value of the key is a string and strictly matches str, or the value of the key

191

is a frame and the name of the frame strictly matches str.

:key !str Inequality test of the value of the key. The result is FALSE if and only if

the value of the key is a string and strictly matches str, or the value of the

key is a frame and the name of the frame strictly matches str.

:key int Numerical comparison of the value of the key. The result is FALSE if the

:key =int value of the key is not an integer.

:key !int

:key >int

:key <int

:key %str Substring test of the value of the key. The result is TRUE if the value of

the key is a string and contains the substring str.

A.4 Common DCTL operations

This section lists some frequently used operations. The source code of all the operations included

here can be found at $GALAXYROOT/ncore/src/libturner.

The operations can be classified into three categories: control operations, utility operations, and

language processing operations. Although most parameters of the operations have default values,

it is good courtesy to specify them under :variables in order to make the DCTL script more

readable.

Control operations

Operation: subroutinecall

Variables:

:rules ":rulelist" Required. The rule list to call.

Description: call the rule list named :rule_list. The execution of :rulelist does not own its

private dialogue state, i.e., the same dialogue state used in the execution of the current

192

operation will be used. Self calling is possible so as to perform an iteration.

Operation: hubrule

Variables:

:rules ":rule-list" Required. The rule list to call.

:in "in keylist" Input keys. See description for details.

:out "outkeyjlist" Output keys. See description for details.

:param paramlist Input parameters. See description for details.

:log-in Input keys to log. The values are logged at the

":key] :key2 ... " beginning of the call. The keys refer to the keys in the

private dialogue state, rather than the caller's dialogue

state.

Description: call the rule list named :rulelist. A private dialogue state will be created for the

execution of :rulelist. The private dialogue state starts empty. The keys specified on the in_

key-list and param-list are set in the private dialogue state with specified values. At the end of

the execution of :rulelist, the keys specified on the output key list are transferred into the

original dialogue state, and the private dialogue state is destroyed. It is important to specify

appropriate input and output parameter lists in order to obtain the desired result.

The inkey-list is a string of tokens, separated by spaces. Each token is either a single key,

or a pair enclosed by parentheses. If it is a single key, and the key exists in the caller's dialogue

state, the key is copied into the private dialogue state. If it is a pair, the first element in the pair

specifies the name of the key to be set in the private dialogue state, and the second element

specifies the value. If the value starts with a colon, it refers to the value of the corresponding

key in the caller's dialogue state; otherwise, the value is treated as a string value. Following is

an example:

:in ":single_key (:valued_key abc) (:renamed_key :originalkey)"

:single-key is set in the private dialogue state with the value of :single-key from the caller's

dialogue state, if :singlekey exists in the current dialogue state. :valuedkey is set with a

string value "abc". :renamedkey is set with the value of :original-key from the caller's

193

dialogue state, if :original-key exists in the current dialogue state.

The out-keyjlist is similar to inkeylist, except that it sets the keys back from the private

dialogue state to the caller's dialogue state.

In both in-keyjlist and outkeyjlist, any key with a prefix "hub-session" refers to the keys

in the session state, instead of the dialogue state.

The paramlist has two alternative formats.

:param ":keyl strvaluel :key2 strvalue2 ... "

:param ((":keyl" objvaluel) (":key2" objvalue2) ...)
In the first format, the string format, an alternating string list of keys and values is specified.

All the values of the keys are treated as string values. No quotes are required for strvalue. In

the second format, the keys are able to take a GalObject of any type as values. If it is a string

object, double quotes are necessary.

The difference between :param and :in is that :param is designed for constant parameters

that can be specified in the DCTL rule, whereas :in is designed for variable parameters.

However, in real use, the constant string parameters are often set by :in.

As one of the hub operations, theoretically, the hub_rule operation also supports

variables :set and :del, similar to the operation nop. However, they are not useful in most

cases.

Operation: privatize-dialogue-state

Variables:

:private-dialogue-statename

":name"

:copy-public dialogue-state

binary

:inkeys ":key] :key2 ... "

Name of the private dialogue state. If the

key :name is found in the current dialogue state

and carry a frame value, the frame is used as the

private dialogue state.

If a nonzero value is set, the content of the

current dialogue state is copied into the private

dialogue state.

If :copy-publicjdialogue state is not set with a

nonzero value, the keys specified in :inkeys are

copied from the current dialogue state to the

private dialogue state.

194

Description: create a private dialogue state and use it for the following operations. If a private

dialogue state name is provided, and the name is an existing key with a frame value in the

current dialogue state, the frame is used as the private dialogue state; otherwise, an empty

private dialogue state is created.

Operation:

Variables:

restoredialogue-state

:saveprivate-dialoguestate

binary

:transferkeys

":key1 :key2 ... "

If a nonzero value is set, the private dialogue state

is saved as a subframe in the restored dialogue

state. The key of the subframe is the name of the

private dialogue state specified when the

operation privatize-dialogue-state was executed.

If no name was provided, an error message is

printed out. If this variable is not set, or set with a

zero value, the private dialogue state is discarded.

Copy the keys specified from the private dialogue

state to the restored dialogue state.

Description: finish using the private dialogue state and restore the original dialogue state. This

operation should be used in pair with privatize_dialogue_state; otherwise an error message is

printed out. If at the end of a turn, a private dialogue state is still in use, the restoration of the

original dialogue state is performed automatically.

Utility operations

Operation: nop

Variables:

:in "inkeylist" Input keys. See operation hubrule for syntax.

:out "outkeyjlist" Output keys. See operation hub-rule for syntax.

195

:set setlist Set keys in the dialogue state. The syntax of setlist is

the same as paramlist in operation hubnle.

:del ":key1 :key2 ... " Delete keys from the dialogue state.

Description: the operation literally means "no operation". This operation is mostly used for

setting, deleting and renaming keys in the dialogue state. Setting/deleting keys can be

performed by specifying variables :set and :del. Renaming can be performed by the

variables :in and :out. The following two examples have the same effect, which renames the

key :original-key into :renamedkey. (Strictly speaking, it is copying instead of renaming,

since both :original-key and :renamed key exist in the dialogue state after the operation.)

[c rule

:variables [c variables

:in ":originalkey"

:out "(:renamed key :original key)" }

:operation "fnop"]

{c rule

:variables [c variables

:in "(:renamed key :original key)"

:out ":renamedkey"]

:operation "nhop"]

Operation: incrementcounter

Variables:

:counterkey ":key" The key of the counter. Default to :counter.

Description: Increment the value of the counter key by 1.

Operation: selectnthitem

Variables:

:input-key ":key" The key of the input list. Default to :list.

:output-key ":key" The key of the output. Default to :nthitem.

:nth n The n-th item to be selected.

196

:zerostartindex binary Use zero-starting for n. Default to 0.

Description: select the n-th item of the list specified by :input-key, copy it and set it in the

dialogue state using the key specified by :outputjkey. The index n starts from 1 by default.

Language processing operations

Operation: createframe

Variables:

:input-key ":key" The key of the input. Default to :input-string.

:output-key ":key" The key of the output parse frame. Default

to :parsejrame.

:parse-score-key ":key" The key to output the parse scores.

.domain "domainname" The grammar name for parsing. If :tagdomain is

specified, :domain refers to the grammar name for

2 nd pass parsing.

:domainkey ":key" The key of which the value is the grammar name for

parsing. Default to ":domain"

:tagjdomain The grammar name for 1 4' pass parsing.

"tag_domainname"

:tagdomain-key ":key" The key of which the value is the tag grammar name.

Description: parse the given input. The input can be a single string, or a list of strings. If the

input is a single string, the output is a frame. If the input is a list of strings, the output is a list

of frames. If :tagdomain is specified, two-pass parsing is performed. The operation outputs

two hidden variables :parsestatus and :parsejframedomain. The value of :parsestatus can

be "FULLPARSE", "ROBUSTPARSE", or "NOPARSE". The value

197

of :parse_framejdomain is the value of :domain inside the parse frame. If the value

of :parse_framedomain is "local", it usually indicates no parse, or special inputs.

Operation: paraphraseframe

Variables:

:input-key ":key" The key of the input. Default to :parse_frame.

:output-key ":key" The key of the output. Default to :paraphrase-string,

if the :language-key is not ":synthjlang";

otherwise, :synth-string.

:domain The domain of the paraphrase. Note, this is not the

"domainname" grammar name.

:domainkey ":key" The key of which the value is the name of the

domain.

:language The name of the language to generate into.

"languagename"

:language-key ":key" The key of which the value is the name of the

language to generate into.

:postframe ":key" Keep the post-frame and output using the specified

key. The post-frame is a frame with ":silent" as

values for the elements that have been paraphrased to

indicate that they are "consumed". It is useful for

testing the coverage of the generation rules.

Description: Generate strings from the given frames. If the input is a single frame, the output is

a single string. If the input is a list of frames, the output is a list of strings. The domain in the

variables is not the grammar domain, but a domain defined in the GENESIS catalog. If the

input object is found and the generation fails, a string "NO PARAPHRASE" is produced.

Operation: generate-kvframe

198

Variables:

:inputkey ":key" The key of the input kv-strings. Default to :kvstring.

:output-key ":key" The key of the output ky-frames. Default to :kv-frame.

Description: transform the input kv-strings into ky-frames. If the input is a single ky-string, the

output is a single ky-frame. If the input is a list of kv-strings, the output is a list of ky-frames.

Operation: applyjrewriterules

Variables:

:input-key ":key" The key of the input.

:key ":key" Same as :input-key

:output-key ":key" The key of the output. If not specified, the rewrite is

performed in place.

:rewrite_catalog The rewrite catalog, which is the same as "domain of

"name" interest".

:domain The grammar name to look up the associated catalog

"domainname" file.

:language The language.

"languagename"

Description: rewrite the input using the given rewrite catalog.

A.5 Advanced techniques

Control flow

In the DCTL script, branching and iteration can be realized. Branching is straightforward with the

conditions as follows:

199

:rules (
{c rule

:conditions ":x"
:variables {c variables

:rules ":then" }

:operation "subroutine-call" }

{c rule

:conditions "!:x"

:variables {c variables

:rules ":else" I
:operation "subroutine-call" })

:then (

:else

Iteration is a bit more trickier. Following is an example.

:rules (

{c rule

:variables {c variables

:set ":counter 0" }
:operation "nop" I

{c rule

:variables {c variables

:rules ":loop" }
:operation "subroutine-call" })

:loop

{c rule

:variables {c variables

:counter-key ":counter" }
:operation "incrementcounter" }

{c rule

:conditions ":counter < 10"

:variables {c variables

:rules ":loop" }
:operation "subroutine-call" })

200

Using existing rule lists

Several rule lists have been written for common functionality. They can be called directly with

appropriate DCTL file inserted.

Rule list: :dialogueturn

DCTL file: $GALAXYROOT/galaxy/System/dctl/dialoguejturn.dctl.frame

Functionality: perform an entire dialogue process, including language understanding and

generation.

Parameters:

:enablebackdoor binary Enable/disable backdoor

:enablemetacommands Enable/disable meta commands such as "clear

binary history", and "scratch that".

:selectbest-hyp-by-parse If a nonzero value is set and the input is an N-

binary best list, the best input string is selected

according to the parsing result, i.e., the top

hypothesis with a full parse is selected.

:scoreplannerreplyjrules Specify the rule list to score the resulting

:rule_list dialogue replies of the N-best input. The

specified rule list should output a

key :plannerzreply-score of which the value is

a list of scores. If no rule list is

specified, :selectbesthyp-by-parse is forced

to be 1.

Input keys: depending on the dialogue specification, other inputs are possible. The following

two are most common.

:input-string A single input string.

:nbestlist A list of N-best input strings.

201

Output keys: depending on the dialogue specification, other outputs are possible. The

following two are most commonly available.

:reply-string The system reply.

selected-input-string The selected input string, if the input is an N-

best list.

Rule list: :gui-output

DCTL file: $GALAXYROOT/galaxy/System/dctl/gui-output.dctl.frame

Functionality: send GUI dispatches for HTML update and the conversation history box update.

Input keys:

:htmlstring The HTML update.

:input-string The value of this key will be displayed in the

conversation history box followed by "User:"

:reply-string The value of this key will be displayed in the

conversation history box followed by

"System:"

Rule list: :synthesis

DCTL file: $GALAXYROOT/galaxy/System/dctl/synthesizers.dctl.frame

Functionality: send a synthesis dispatch.

Parameters:

Input keys:

:synthesizer "name" The name of the synthesizer. Available

choices are: CAS (Chinese GB), Dectalk

(English), ITRI (Chinese BIG5)

:synth-string The string to synthesize.

Adding new DCTL operations

202

Adding new DCTL operations should follow the steps below:

1. Include "turnmanager.h" in the source file.

2. Define the operation translator.

struct DCOPERATION newtranslator[] ={

{"operationname", functionname},

{NULL, NULL}

};

3. Implement the function. The return value is DIALOGUECONTINUE for most cases. Please

be advised that although the dialogue state is fully accessible without specifying any variables in

the variables frame, it is good practice to not access/produce keys other than those specified in the

variables frame.

DCRESULT functionname(DIALOGUEMANAGER* dc, Gal_Frame variables) {
return DIALOGUECONTINUE;

}

4. In $GALAXYROOT/nlcore/include/tina/dialogue.h, add the new operation translator.

extern struct DCOPERATION newtranslator[];

struct DCOPERATION *AllExternalFunctionTranslators[I = {

newtranslator

5. In the makefile of the executable programs (tiny-brain and newturnmanager), add the library

with the new code.

6. Make the libraries and executables.

cd $GALAXYROOT/nicore

make install

cd $GALAXYROOT/tiny_n I/src/new-turnmanager

make install

cd $GALAXYROOT/tiny_nl/python tinybrain

make [debug]

203

Appendix B Dialogue Specification (DSPEC)

B.1 Overview

The dialogue specification (DSPEC) is the domain specification file for the dialogue manager

FAUNA. The specification includes the declaration of the knowledge sources, the nations, the

entity structures, etc.

To use FAUNA properly, a DSPEC is necessary, as well as an appropriate DCTL script.

Currently, FAUNA does not have a stand-alone executable program. It has to be run in the DCTL

framework. The DCTL rule list for a typical dialogue turn, including language understanding and

language generation is specified in file

$GALAXYROOT/galaxy/System/dctl/dialogueturn.dctl.frame

In the top DCTL script of a typical dialogue system, this file can be specified as an insertion file.

Please note that the DSPEC should be specified in the initial frame, also defined in the DCTL

script.

Running a DCTL script with FAUNA produces a separate log file for FAUNA. The directory

of the log file is specified according to the DSPEC. If statistical inferences are utilized in the

dialogue domain, a separate statistical inference specification is needed, as well as a specified

location for reading/writing data.

The entire DSPEC is written in one file, in the format of a Galaxy frame. The content of the

frame can be divided into five sections: the top-level options, knowledge source declarations,

nation declarations, entity declarations, and meta information specifications. Following is an

illustrative DSPEC.

{c DSPEC

:init domain "domain"

:goals {q goalentity

:domain "domain" }
:knowledgesources (

204

{q user

... }
{q database

... })
:nations (

{q english

:entities (
{q goalentity

... }
{q another-entity

... })

:metainformation {c meta

... } }

B.2 Top-level options

Following is a list of available top-level options.

:initdomain "domain" The initial domain to start with. Required even for

single domain dialogues.

:statinference-spec 'filename" The specification for the statistical classifiers.

statinference-data 'file-prefix" The file prefix (including path) for loading and

writing classification data. Each classifier would

create a separate file for data using the prefix.

:nolearning binary No new data points are written into the data file if this

option is set with a nonzero value.

:logwithdctl binary Create the log file in the same directory as the DCTL

logs, if this option is set with a nonzero value.

:bkdoorlog-dir "directory" Specify the directory for log files. A separate log file

is created for each session. This option should not

appear together with :log-withdctl with a nonzero

205

value.

:keep-communicationeforms binary

:knowledge-source_priority ("ks1"

"ks2" ...)

Save the input and output eforms in FAUNA's state,

if a nonzero value is set. Default to 0. Be advised that

these eforms can be huge and costly to transmit

between servers.

Specify the priority of the knowledge sources, in case

that two knowledge sources can provide the same type

of knowledge. Knowledge sources with higher

priority should be listed earlier. "User" should always

be the lowest knowledge source.

:goals {q goal-entity Required. Specify the goal entities for each domain.

:domain "domainname" } The value can be a single frame in a single domain

:goals ({q goal-entity1 dialogue, or a list of frames in a multi-domain

:domain "domain!" } dialogue (not implemented yet).

{ q goal-entity2

:domain "domain2" })

B.3 Knowledge sources

Knowledge sources are the places where knowledge can be obtained, for example databases, local

libraries, and the user. The declaration of the knowledge source includes its nation, which

indicates its input/output language processing, its source, and the set of knowledge it possesses.

Declaring knowledge sources

To declare the knowledge sources, use the key :knowledge-sources. Its value can be a single

frame, or a list of frames. Each frame has the name of the knowledge source as its name, shown

as follows.

:knowledgesources {q ks_name

... }
:knowledgesources

{q ks-namel

206

{q ks-name2

... })

The content of the frame includes the following keys.

:nation "nationname"

:source {q source I

:knowledge {q knowledge-name

... }

:knowledge (e

{q knowledge]

... }I

{ q knowledge2

... })

Specify the nation of the knowledge source.

Specify the source of the knowledge source. Three types

are available: local for local libraries for which the

handlers can be called directly; external for external

programs that need dispatches (not implemented); gui for

"user". The content of the frame can be used to specify

any necessary parameters.

Declare the pieces of knowledge the knowledge source

can provide with. The value can be one frame or a list of

frames depending on the number of types of knowledge.

The knowledge source "user" does not need to declare the

knowledge.

:request-prompt ("task]" Specify the list of tasks for which, when finished, a

"task2" ...) prompt would be sent to the knowledge source.

:max-optionjlength int Specify the maximum length of the pending list to

produce the continuant selectn with the reply message

needselect. If the pending list is longer than this number,

the continuant toomany-options is generated.

Declaring knowledge

Each piece of knowledge can correspond to an entity, which has the same name as one of the

entities declared in the specification, or to an attribute, which has the same name as one of the

207

knowledge domains of the attributes. The declarations of both types are similar, except for one

key.

The declaration of each piece of knowledge is one frame. A knowledge source might contain a

single knowledge frame, or a list of knowledge frames. The name of a knowledge frame is the

name of the piece of knowledge.

{q knowledgename

:prerequisite (...)

:initializer {c eform

:handler "..." }

Following is a list of possible keys in the knowledge frame.

:attributes ("attr1" "attr2" ...)

:prerequisite (("attr11" "attr12" ...

("attr2 1" "attr22" ...) ...)

:initializer "name"

:initializer {c eform

:function "name"

:arg {c param

If the piece of knowledge corresponds to an entity,

list the attributes of the entity that the knowledge

source can provide. Usually, if the knowledge

source is a database, the attributes correspond to the

fields of the table. If the piece of knowledge

correspond to an attribute, ignore this key.

) Same as the ":primarykeys" in older versions.

Specify the prerequisite to perform a handler call.

The value of the key is a list of lists. Each inner list

represents a conjunctive condition. The inner lists

are combined disjunctively. The equivalent logical

form of the value is "(attrn] & attr12 & ...) I

(attr2l & attr22 & ...)| ...

Specify the initializer of the piece of knowledge.

Specify the name of the initializer in a string format

if no parameter is necessary. Otherwise, use a frame

to specify both the name and the parameters.

Currently only applicable for local knowledge

sources.

208

:handler "name"

:handler {c eform

:function "name"

:arg {c param

.. . } I}

:comparator "name"

:comparator {c eform

:function "name"

:arg {c param

. .

:summarizer "name"

:summarizer { c eform

:function "name"

:arg {c param

Specify the handler for inquiring/resolving the piece

of knowledge. Specify the name of the handler in a

string format if no parameter is necessary.

Otherwise, use a frame to specify both the name and

the parameters.

Specify the handler for comparing two instance of

this piece of knowledge. Specify the name of the

comparator in a string format if no parameter is

necessary. Otherwise, use a frame to specify both

the name and the parameters. Currently only

applicable for local knowledge sources.

Specify the handler for summarizing a list of

instances of this piece of knowledge. Specify the

name of the summarizer in a string format if no

parameter is necessary. Otherwise, use a frame to

specify both the name and the parameters. Currently

only applicable for local knowledge sources.

Implementing knowledge source handlers

For the local knowledge sources, the function prototype of the handlers, including initializers,

comparators and summarizers is given below.

typedef GalFrame (ks_handlerfunc) (GalFrame queryframe, GalFrame

sessionjinfo);

The first argument query-frame contains the content for querying, resolving, comparing and

summarizing. Any parameters specified in the DSPEC are contained in query-frame as well.

Depending on the type of the handler, the content of query frame is different, which will be

explained below.

The second argument sessioninfo contains any session information that is stored for the entire

session. Each knowledge source owns a separate session-info frame. Information written into

209

session-info can be accessed in the next call of any type of handler declared for this knowledge

source.

The return value of the handler is a frame or NULL. In the case it is a frame, it should be a new

frame, rather than the queryframe. The detailed content of the query_frame and return frame is

explained below.

Initializer: query_frame only contains the parameters specified in the DSPEC. If the

initialization fails, a nonzero integer value should be set in the return frame using key

KSREPLYFAILKEY. Otherwise, the return frame can be NULL.

Handler: if the knowledge source belongs to a nation other than "eform", the handler receivers

information after language generation, and sends back information for language understanding. In

other words, the keys in query_frame correspond to the input perceptions of the nation, and the

contents in the return frame should be able to be passed to the specified language understanding

procedure.

If the knowledge source belongs to the nation "eform", the query-frame and return frame look

like the following:

Query-frame :

{q departuredate_query

:departure-date {... }

:parameters ... }

Return frame:

{q departuredate_reply

:departure-date {....}}

The return frame can optionally contain the following specially reserved keys:

KSREPLYTOUSERKEY { c ... } A reply message to the user.

KSREPLYWAIT_FORUSERKEY Break the task loop and wait for the user's

binary response if this key is set with a nonzero

integer. Usually appears together with

KSREPLYTOUSERKEY.

210

KSREPLYMISDIRECTEDKEY {c ... } A frame containing key-value pairs from the

queryframe which are possibly misdirected.

Comparator: query-frame contains two keys in addition to the parameters specified in the

DSPEC: :ref and :compare. The value of the key :ref is the reference object. The value of the

key :compare is the object to be compared with the reference. The return frame should contain

the key KSRESULTKEY with a positive integer value if the comparing object is greater than

the reference object, with a negative integer value if the comparing object is less than the

reference object, with a zero value if they are equal.

Summarizer: query-frame contains a key :summarize with a list of objects as values, as well

as a key :ref, of which the value can be used as a reference when doing summarization. The

return frame should contain the key KSRESULTKEY with a frame value. The frame is the

summarization result in whatever format the developer would like. (The summarization result

usually appears in the system reply, and thus should be consistent with the subsequent language

generation process.) The frame can also include the following optional keys.

:pending-update (...) Specify a new pending list to replace the current one in FAUNA.

This update is necessary when the summarization changes the

order of the pending objects, so that a mismatch might result

between what is replied to the user and what is stored in

FAUNA.

:nrecommended int The number of most recommended options.

:too-many int If this option is set with a nonzero integer, the continuant

toomany-options would replace the continuant select n.

B.4 Nations

Nations indicate the language processing parameters for the knowledge sources. The

nomenclature comes from the nations in the real world: people from different nations speak

different languages.

211

The key :nations is used to declare the nations, followed by a single frame or a list of frames.

For each frame, the name of the frame is the name of the nation. It includes two

keys, :inputperceptions and :outpuLperceptions to specify the input and output perceptions

(modalities). The rest of the keys in the frame should correspond to the perceptions. Following is

an example:

:nations {q human

:input_perceptions (":hears" ":reads"

:outputperceptions ":speaks"

:hears {q string :genesis-language "English" }
:reads {q string :genesis-language "html" }
:speaks {q string

:tinagrammar "English"

:kv-lang "kv" } }

The keys :input-perceptions and :outputperceptions can carry a single string value or a list of

strings. The words "input" and "output" are respective to the knowledge source, rather than

FAUNA. The keys corresponding to the perceptions carry frame values. In the situation of multi-

domain dialogues (not implemented), they can have a list of frames as values, with each frame

specifying different parameters for different domains.

The frame for each perception has the format of the perception as its frame name. The possible

choices are string and eform. A handler can be specified to handle the understanding/generation

of the perception. The handler function has the following prototype, which takes in a frame

containing raw input/output, and returns a frame containing the processed input/output.

typedef Gal_Frame (nationhandler fun) (Gal_Frame frame);

Alternatively, an input perception can use GENESIS as the language generation module, and

an output perception can use TINA as the language understanding module.

A perception can be declared as a parasite modality by using the key :parasitemodality.

Perceptions that are not parasite modalities are called main modalities. Outputs from the parasite

modalities alone do not trigger the dialogue management process; they have to rely on other

outputs from main modalities to trigger the dialogue management. Parasite modalities and the

main modalities can be asynchronous. Timeout parameters should be set for meaningful usage.

Below lists the possible keys for the perception frames.

212

:handler "handlername" The handler to call to process the input/output.

:domain "domainname" Specify the domain to apply the parameters in the

frame. The "domain" refers to application domains,

rather than grammar domains. Not necessary to

specify the domain if it is a single domain dialogue.

:genesisjlanguage "language" The language to use for generation using GENESIS.

The "domain" that GENESIS requires comes from the

current application domain of the dialogue.

:tinagrammar "grammarname" The grammar for parsing using TINA.

If :tina-grammartag is present, the grammar refers

to the 2nd-pass grammar.

:tina-grammarjtag "grammarname" The tag grammar for 14t-pass parsing using TINA.

:kvjlang "language" The GENESIS language to produce a key-value

representation from a parse frame.

:kv-in binary If set with a nonzero value, the input string is assumed

to be in a ky-string format. Parsing and kv

paraphrasing is skipped.

:parasite-modality binary Declare the perception to be a parasite modality.

:asynchronouslifetime int The maximum time in seconds to allow the output

from this modality to wait for an upcoming output

from the main modality.

:asynchronousjlatency int The maximum time in seconds to allow the output

from this modality to be behind the output from the

main modality.

B.5 Entities

213

The entity section declares the entity types and their relationships in the domain. The declaration

starts with the key :entities, followed by a single entity frame, or a list of entity frames.

:entities {q entityname

Or,

:entities

{q entityl

... }

{q entity2

...}I)

The name of the entity frame is the name of the entity type. The content of the entity frame

consists of several parts: definition, completion condition, governing relationship, modifiers,

customized actions, and commands. These. parts are explained in detail below.

Definition :definition

The definition of the entity type is declared using the key :definition with a frame as the value.

The name of the frame does not carry any meaning. Each key in the definition frame is a member

of the entity type. The string value of the key indicates the type of the member. The type can be

one of the simple types: "int", "float" and "string", another entity type, or a list of the above types

using the prefix "list-of-". Initial values can be specified for members with simple types using a

colon. An example is given below. The member :count is declared as an integer type with an

initial value 0. The type of the member :users is a list of another entity type "user".

:definition {c definition

:count "int:O"

:color "string"

:users "list-of-user"]}

A special type of members called attribute is declared using the predicates. They are members

that have complex information, but not complex enough to become an entity. Knowledge

domains can be assigned to the attributes to allow FAUNA to contact the knowledge sources for

extra processing.

:definition [c definition

:pred [p destination

:knowledge domain "airport"]]

214

Besides the :knowledge-domain, a number of other keys are available to declare an attribute.

:alias ("alias]" "alias2" ...) Specify other names representing this attribute in the

incoming eforms to FAUNA. If the name starts with a

colon, it is assumed to be a key; otherwise it is assumed to

be a predicate.

:adopts ("name]" "name2" ...) Specify the elements in the incoming eforms to FAUNA

which the attribute should adopt as its child. If the name

starts with a colon, it is assumed to be a key; otherwise it is

assumed to be a predicate.

:knowledge domain "domain" Specify the knowledge domain of the attribute. At least one

knowledge source should be able to provide the knowledge.

:format "logical-expr" Specify the expected format of the content of the attribute.

If the format is not satisfied, FAUNA contacts the

appropriate knowledge source for a resolution. The logical

expression uses the same syntax as the conditions in DCTL

scripts. See Appendix A.3 for details.

:primary binary Indicate whether the attribute is primary or not. A primary

attribute is one that will not be removed when the user

indicates "remove all constraints", or "any would be fine".

:user-ignorant binary Indicate whether the attribute can be provided by the user by

any chance. If this key is set with a nonzero integer value,

FAUNA will never ask the user for this attribute, but instead

reply with "no match".

:auto-update binary Indicate whether the attribute is automatically updated. If

this key is set with a nonzero integer value, the

corresponding updateattribute task should be

implemented.

215

Completion condition :goal

The completion condition specifies the conditions under which the entity is considered to be

complete. The condition is expressed as a logical expression using the key :goal. This condition

is important, as FAUNA issues tasks in order to fulfill the completion condition.

The syntax of the logical expression is similar to that used in :conditions for the DCTL rules,

with the following several extensions.

* The equality, inequality, and numerical comparison tests can be applied to values of

two keys. For example, the following expression tests the value of :keyl is not equal to

the value of :key2.

":keyl !:key2"

e Keys from subframes can be referred using square brackets. For example, the

following expression tests the value of :key] under :parent is "abc". The brackets can

be nested.

":keyl[:parent] abc"

e "#:key" evaluates to the length of the value of the key. If the value is not a list, it

always evaluates to 1. If the key does not exist, it evaluates to 0.

* "#keys" evaluates to the number of keys in the frame that is tested against. Keys

starting with ":*" are considered as temporary keys and are not counted.

Governing relationship :governinggrelationship, :inverse-governinggrelationship

The governing relationships describe the discourse relationship among the members of the entity.

Members in the entity are maintained across turns by default. However, if member A governs

member B, any modification to member A would result in a removal of member B; i.e., member

B is no longer valid after member A being modified. Member A is called the governor, and

member B is called the governee.

The governing relationships can be specified in two directions using the

keys :governingjrelationship and :inverse-governingjrelationship respectively, or a combination

of both. The usage of the two keys is given below.

216

:governingrelationship {c relationship

:governerl ("governeell" "governeel2"...)

:governer2 ("governee2l" "governee22"...)

... }

:inversegoverningrelationship {c relationship

:governeel ("governerl" "governer12"...)

:governee2 ("governer2l" "governer22"...)

... }

The governors and the governees can be both attributes and normal members. Attributes are

specified without a preceding colon (as they are predicates in the frames). Normal members are

specified using a preceding colon (double colon if they are in the position of the keys).

The governing relationships can be conditioned in a limited way. The governors and

governees can be conditioned by their values. The following example shows the syntax of

attribute A governs attribute B when A's value is a and B'value is not b.

:governingrelationship {c relationship

:A=a ("B!=b") }

The syntax only supports equality and inequality of string values. If the member has a frame

value (including attributes), the string test can be evaluated using the frame names. Multiple

values are allowed to appear on the right hand side of the operator, separated by commas. Note

that there should be no space in the whole expression. The expression

A=a,b,c

Is equivalent to

A=a I A=b I A=c

And the expression

A!=a,b,c

Is equivalent to

A!=a & A!=b & A!=c

Modifiers :modifiers

217

Modifiers are constraints on the attributes which have effect when there are a set of candidate

entities. The only implemented modifier at the time of this manual is the superlatives.

The superlatives are specified as a list of tuples. The first element is the superlative word used

to refer to the top object when a list of objects are sorted in an ascending order. The second

element is the superlative word used to refer to the top object when a list of objects are sorted in a

descending order. The third element is the name of the attribute that the sorting is performed on.

An example is given below.

:modifiers {c modifiers

:superlatives (("earliest" "latest" "departure time")
("cheapest" "most expensive" "price"))

Customized actions :customized-actions

To use customized actions for the reserved tasks, task-action association must be specified using

the key :customizedactions. For customized tasks, FAUNA looks for the action with the same

name as the task by default. If the action does not share the same name as the task, it should be

specified as well.

Following is a list of reserved tasks for which the actions are commonly customized.

Complete-entity, show entity,
Add entity, alter entity, removeentity,

Fillattribute, change attribute, dropattribute

The task names of these reserved tasks are comprised of a verb and an object. The two tasks in

the first row do not carry a parameter. To specify a customized action, any of the three ways in

the following example would work, where the italic "entityname" stands for the actual name of

this particular entity type.

:customizedactions {c actions

:oncomplete "actionname"

:on-complete entity "action name"

:oncomplete entityname "actionname"]

For the rest of the reserved tasks, since the tasks carry a parameter, i.e., the member

entity/attribute to be added, modified, or removed, the customization can be done in two levels:

218

specifying a customized action regardless of the parameter, or specifying a customized action for

the task when the parameter is a particular member. In the first case, the specification should use

the whole task name, as shown below.

:customizedactions {c actions

:onjill attribute "actionname"]

In the second case, the specification should use the combination of the verb part of the task name

and the name of the member. The example is given below.

:customizedactions {c actions

:onjill destination "actionname")

When implementing the customized actions, each action maps to an optional prepare function

and a required action function. If the prepare function does not need customization, map it to the

default prepare function "default-prepare". The prototypes and return values of the two functions

are given below.

typedef PrepareResult (taskprepare-func) (DIALOGUE_PLANNER* planner, GalFrame

task);

typedef ActionResult (taskactionfunc) (DIALOGUEPLANNER* planner, GalFrame

task);

PrepareResult NotReady Not ready to execute the task

ActionReady Ready to execute the task

TaskAbort The task will be removed

NoNeedToProceed The task will be removed

ActionResult NotCompleted The task has not been completed

AttributeAdd An attribute has been added into the entity

AttributeDel An attribute has been deleted from the entity

AttributeMod An attribute has been modified in the entity

EntityAdd A member which has an entity type has been

added into the entity

EntityDel A member which has an entity type has been

removed from the entity

EntityMod A member which has an entity type has been

modified in the entity

ModifierMod The entity's modifier has been changed

CompletedNoChange The task is completed and no change has

occurred to the entity

219

In the prepare function and the action function, the default prepare/action functions can be

called as follows.

PrepareResult Pr = defaultprepare(planner, task);

ActionResult ar = default action(planner, task);

Commands

The commands specify the mapping from command words to tasks. A command can be mapped

to a task using a frame or a sequence of tasks using a list of frames. In each task frame, the name

of the frame is the name of the task. The key :entity is required to specify the object entity of the

task. If the task also takes a parameter, the key :param is also necessary. Other keys may be

allowed if it is a customized task or has a customized action, as they will be accessible in the

action function of the task. A special value "*SELF*" can be used to refer to the entity itself on

which the command is issued. An example of a command "book" for the entity "flight" is given

below.

:commands {c commands

:book {q addentity

:entity "itinerary"

:param "*SELF*" } }

B.6 Meta information

The section of meta information is used to specify the functional keys and values appearing in the

incoming eforms to FAUNA, such as nth, truth values (yes and no), and quantifiers. Most of them

have default values, but can be modified to adapt to the specific dialogue domain.

The specification of meta information uses the key :metainformation with a frame value.

Following is a list of keys and the format of their values.

:nthkey ":keyl :key2 ... " Specify the key(s) for "nth" in the incoming eforms for

FAUNA.

:truthvalue { c eform Specify the key(s) for truth values in the incoming

:key ":keyl :key2 ... " eforms in FAUNA, as well as the values for positive

220

:yes "valuel value2 ..

:no "valuel value2 ... " }

"yes" and negative "no".

:quant { q quant Specify the key(s) for quantifiers in the incoming eforms

:key ":keyl :key2 ... " to FAUNA, as well as the values for definitive ("the"),

:def "valuel value2 ... " demonstrative ("this", "that", etc.), indefinite ("a"), all

:dem "value 1 value2 ... " ("all"), and other ("other", "else", etc.).

:indef "valuel value2 ..

:all "valuel value2 ... "

:other "valuel value2 ... " }

:modifier I q modifier Specify the key(s) for modifiers in the incoming eforms

:superlative ":keyl :key2 ... " } to FAUNA.

B.7 Specification for statistical inference

The features for the statistical classifiers are specified in a separate file for potential sharing

between different dialogue domains.

The specification is written using a frame. Except for two keys :manualweight and :alpha for

specifying general coefficients, each key in the frame specifies the parameters and features of a

classifier. Following is an example specification frame.

{c inference

:manual_weight 2

:alpha "0.9"

:taskneedsconfirm {c feature

:values (0 1)

:ninputframes 2

:features (":confirmed[0]" "$core[O]" ":entityshown[1]") } }

The key :manualweight specifies the weight for the data points which are obtained from a

manual correction. Usual data points have a weight of 1. The key :alpha specifies the fading

coefficient, which takes a value between 0 and 1. The smaller this coefficient is, the less weight

older data points have.

221

The specification for each classifier uses the name of the classifier as the key. Inside the

specification are three keys. The key :values specifies all the possible output labels of the

classifier. The key :ninputjframes specifies the number of input frames when calling the

classification function. The key :features specifies the features used in the classification. Each

feature consists of a name and a index which indicates from which input frame the feature value

is computed. The name of the feature can be any string (not restricted to keys), and functions for

computing the feature value can be defined. If no function is defined, and the name of the feature

is a key, the feature value is obtained by finding the value of that key in the input frame. A special

feature name "$core" is also defined, of which the value is the name of the input frame. The index

of the input frame is written in square brackets.

To define functions for computing the features, each feature name should map to two functions:

one for computing the feature value from an input frame, the other for computing the similarity

between two feature values. The two function prototypes are given below. Featurefunc returns

the feature value as a GalObject. Featuresimfunc returns a real number between 0 and 1, in

which 1 stands for identical values.

typedef GalObject (feature_func) (DIALOGUEPLANNER* planner, GalFrame

inputframe);

typedef double (feature sim func) (GalObject f1, Gal_Object f2);

To use the classifiers in the code, call the following function with the corresponding classifier

name and input frames.

GalObject statinference(DIALOGUEPLANNER* planner, const char*

inferencename, ...);

An example is given below.

GalObject result = statinference(planner, ":taskneedsconfirm", inputframel,
input frame2);

B.8 Adding a domain-dependent dialogue library

A domain-dependent dialogue library includes the implementation of customized task actions,

knowledge source handlers, nation handlers, and feature functions. To make the library linked

with the entire environment smoothly, creating a .c file and a .h file is recommended.

222

The following steps describe one way to build the domain-dependent dialogue library. In this

example, the directory should be put under $GALAXY_ROOT/tiny-nl/src. A more concrete

example can be found at $GALAXYROOT/tiny-nl/sre/libnewmercury.

1. Create a header file yourdomain.h in $GALAXYROOT/tiny-nl/include/tina. Include

"tina/dialogue-planner.h".

2. Create a c file yourdomain.c under $GALAXYROOT/tinynl/src/yourdomain. Include

"tina/yourdomain.h"

3. Define the task action mapping, knowledge source handler mapping, nation handler mapping,

and feature function mapping.

static task preparefunc t_prepare;

static taskactionfunc taction;

static ks handler func ks func;

static nationhandlerfunc nation_func,

static featurefunc f_func,
static featuresimfunc fsimfunc;

TASKOPERATION YourDomainOperationl] = {

("yourtask", tprepare, taction},
(NULL, NULL, NULL}

};
KSHANDLER YourDomainKSHandler[] = {

("yourkshandler", ks_func},
{NULL, NULL}

};
NATIONHANDLER YourDomainNationHandler[] = {

{"your_nationhandler", nation_func},
(NULL, NULL}

};
FEATUREFUNCTION YourDomain FeatureFunction[] = {

("yourfeature", ffunc, fsimfunc},

(NULL, NULL, NULL)

};

4. Create arrays for the above mappings. Mappings can be defined in different files. These arrays

should contain all the mappings it is necessary to include in this domain.

const TASKOPERATION* YourDomainOperationAll[] = {YourDomainOperation, NULL};

const KSHANDLER* YourDomainKSHandlerAll[] = {YourDomainKSHandler, NULL);

223

const NATIONHANDLER* YourDomainNationHandlerAll[] = {YourDomainNationHandler,
NULL};

const FEATURE_FUNCTION* YourDomainFeatureFunctionAll[] =

{YourDomainFeatureFunction, NULL};

5. Create the domain recipe.

DIALOGUE_DOMAIN_RECIPE YourDomainRecipe = {
You rDomainOperationAll,

You rDomainKSHandlerAll,

YourDomainNation H andlerAll,
You rDomainFeatureFunctionAll

6. In the header file, add the domain recipe.

extern DIALOGUEDOMAINRECIPE YourDomain Recipe;

7. Implement all the functions.

8. In $GALAXYROOT/tiny-nl/include/tina/dialoguejrecipe.h, add the domain recipe. Note that

the domain name in quotes should be the same as the domain specified in the DSPEC

(:init domain), so that the correct recipe will be chosen to load during FAUNA's initialization.

#include <tina/yourdomain.h>

Extern DIALOGUE_DOMAIN_RECIPE YourDomainRecipe;

DIALOGUERECIPEMAP DialogueRecipeMaps[] = {

{"YourDomain", &YourDomainDialogueRecipe},

{NULL, NULL}

};

9. In the Makefile.am, make sure the dialogue library Idialogue is linked. It should also contain

the following lines:

tinaincludedir = $(includedie)/tina

tinainclude_H EADERS = \

$(topsrcdir)/include/tina/yourdomain.h \

$(topsrcdir)/include/tina/dialoguerecipe.h

10. In $GALAXYROOT/tiny-nl/configure.ac, add your directory to generate the Makefile.

ACCONFIG_FILES([...

224

Src/you rdomain/Makefile

...])

11. In $GALAXYROOT/tinynl, do

autoreconf -fvi

make

make install

12. Now your library should be made. In the makefiles of the executable programs (tinybrain

and newturnmanager), add your library, and make them.

225

Appendix C User simulation specification

C.1 Overview

The user simulation specification is used for instructing the user simulator to generate the user

intention and the user response/suggestions. The simulator is designed to cooperate with the

dialogue manager FAUNA. The input to the simulator is usually the reply eform from FAUNA,

and the output of the simulator is another eform, which can then be paraphrased into a natural

sentence using GENESIS, or sent back to FAUNA directly.

The simulator should be used under the DCTL framework, either via the operation

"usersimulation", or via other operations which call the simulation/suggestion functions in the

code. To enable simulation, in the DCTL script, the user simulation specification should be

specified in the initial frame using the key :usersimspec, and the key :usersim should be set

with a nonzero integer value.

The specification is written in a GALAXY frame format, and is divided into two parts:

specifying the scenario (user intention), and specifying the response strategies. Both are written

using the notion of "templates", i.e., all the possible values are specified in a compact form, and

at runtime, a specific scenario or response is instantiated randomly or according to some

probability distribution.

The user simulator creates a separate log file for every session. The log directory can be

specified using the key :logdir at the top level of the specification frame. An alternative way is

to log in the same directory as the DCTL logs by using the key :logwith_dctl with a nonzero

integer value.

C.2 Scenario

The scenario represents the user's intention. The instantiated scenario is a frame with key-value

pairs representing the user's knowledge and preferences, which provide the information for

instantiating user responses. Since the user simulator is usually used in conjunction with FAUNA,

226

the keys in the scenario should be consistent with the declarations in the dialogue specification

(DSPEC).

If newturnmanager is used as the executable program, the scenario is instantiated

automatically before receiving the first input. However, if tiny-brain is the executable program,

the scenario should be instantiated by calling the following function in the appropriate (domain-

dependent) operations. The function takes the filename of the DCTL log file for this session, and

returns the initial memory state containing the instantiated scenario.

GalFrame startusersimulator(const char*dctllogfile);

The description of the scenario involves the following five top-level keys in the

specification: :scenario, :scenarioconstraint, :scenario-phases, :scenario-post-processing,

and :registeredkshandler. The usages of the five keys are explained in detail below.

:scenario

The scenario templates are specified under the key :scenario. The key takes a single template

frame or a list of frames as its value. If a list of template frames is given, a random one is chosen

to instantiate at runtime.

Inside each template frame are the keys meaningful in the specific dialogue domain. If the

value of the key is a list, it indicates all the possible choices of the value. Otherwise, the key is

considered to have a fixed value. The list value can have one of the following two forms:

:key (valuel value2 ...)

:key ("param=x" (valuel value2 ...))

Both forms specify the possible values of the key. The second form provides additional

parameters for instantiation. When instantiating a key with a list value, the simulator assigns a

random probability to each of the possible values and produces a preference list for the key. The

additional parameters are used to adjust the smoothness of the probability distribution, and/or

retain only the top-N choices.

To adjust the smoothness of the probability distribution, use the parameter

smooth=x

227

where x is a positive real number. If x < 1, the effect is to smooth the probability distribution. The

smaller x is, the closer the distribution is to the uniform distribution. If x > 1, the effect would be

the opposite of smoothing, i.e., the probabilities of the values would be more extreme.

To only keep n values with highest probabilities, use the parameter

nselect=x

where x is an integer. If x equals to 1, the instantiation result of the key becomes a single value

instead of a preference list. Note that there is no space on either side of the equal sign.

If, in the final preference list, one value has a probability greater than the "single value

threshold" (0.8), all the other values are discarded, and the key would have a single value instead

of a preference list. Otherwise, a special value "*all*" is added into the preference list to indicate

that the user does not care about the value of this key.

Following is an example of the template frames. Note that the instantiation is recursive, i.e.,

elements in the subframes will also be instantiated. If the possible choices of the values of a key

are integers within a range, it is allowed to simply specify the starting and ending integers.

:scenario ({c scenario

:source ("nselect=1" ("Boston" "Chicago" "New York"))
:destination ("nselect=1" ("Boston" "Chicago" "New York"))
:departure-date {c eform

:ndays ("smooth=0.5" (3 30))

:units "days later" } })

:scenarioconstraint

This key specifies the constraints that the scenario should satisfy. It takes a string value, which is

a logical expression. The syntax of the logical expression is the same as that used for specifying

the completion conditions of the entities in the dialogue specification (see Appendix B.5). If the

instantiated scenario does not satisfy the constraints, the simulator instantiates another scenario

until the constraints are met. An example is given below which states that the value

of :destination and :source should not be the same.

:scenarioconstraint ":destination !:source"

228

:scenario-phase

This key specifies the phases of the scenario. Phases refer to the different stages of the dialogue

where a same key in the scenario carries different values. The initial phase is assumed to be *init*.

If phases are not specified, the scenario is considered to have only the initial phase.

Every key in the scenario template should specify the phase to associate the correct values with

the phases, unless it appears on the "out phase keys" list, in which case it has the same value

during all phases. To indicate the phase of the key in the scenario and other places, "%" is used as

follows. The initial phase "%*init*" can be omitted.

:departuredate%flight2 {c eform ... }

Each phase has an entering condition and a finishing condition. Both are logical expression

with the same syntax as that of the scenario constraints. The conditions are specified under the

key :scenario-phases, together with a list of out phase keys. Following is an example which

defines two phases. The conditions are tested against the memory state of the simulator.

:scenariophases {c phases

:out phasekeys ":itinerarytype"

:*init* {c phasecond

:enter ":flights_len[:itinerary] 0"

:finish ":flights len[:itinerary] > 0" }
:flight2 {c phasecond

:enter ":flights_len[:itinerary] 1"

:finish ":flights_len[:itinerary] !1" } }

:scenario-post-process and :registeredkshandlers

These two keys are used for specifying the post process of the instantiated scenario. The post

process calls function handlers that can be found in the KSHANDLER mappings included in the

dialogue domain recipe of this specific domain. All the handlers used in the post processing

should also be declared using the key :registeredks_handlers.

The key :scenario-post-process takes a list of strings indicating the steps of post process as its

value. The steps are carried out in sequence. Each step includes a handler and three parameters.

The first parameter specifies the input key. Use :scenario if the entire scenario frame is used as

the input. The second parameter specifies whether the "session info" frame obtained from

229

previous steps should be send to the handler. The third parameter specifies whether the resultant

"session info" frame after calling the handler should be saved for the subsequent steps. An

example is given below. In the example, the handler "resolve-date" produces a base date in the

"session info" frame. The "session info" frame with a base date is saved after the first step, and is

then used in the second step to resolve the departure date of the second flight.

:registeredkshandlers ("resolve-date" "unsolvedate")

:scenariopostprocess ("resolve_date(:departure_date, false, true)"
"resolvedate(:departuredate%flight2, true, false)")

C.3 Response Strategies

The response strategies include the declaration of personality dimensions, the memory state

operation, and the response rules. When the DCTL operation "usersimulation" is executed, or

the functions "usersimulation" or "usersuggestions" are called, the simulator generates one or

multiple user responses according to FAUNA's reply, the current memory state, and the response

strategies.

All of the specifications are written in the strategy frame using a top-level key :strategies.

Following is an illustrative strategy frame. The four main keys in the

frame, :memory, :personality, :condition-penalty and :responses are explained in detail in this

section. The specification includes all possible responses. The final responses are chosen by

sampling according to the likelihood of each response based on its condition penalty, personality

description and the simulated user's personality.

:strategies {c strategies

:memory

{c rule

... })

:personality {c personality

:cooperativeness {c param

... } }
:condition_penalty (0 0 11)

:responses

{c rule

230

:memory

The key :memory is used to specify the rules for memory state operation. The memory state is a

frame maintained for the entire dialogue session to store information received from the dialogue

manager. The instantiated scenario is also kept in the memory state under the key :*scenario*.

The memory state is passed in when the functions "usersimulation" or "user-suggestions" are

called. Thus, it is possible to include additional content in the memory state to achieve desired

simulated user responses.

Each memory rule can have an optional condition to trigger the execution of the rule. The

possible operations are: storing elements from FAUNA's reply eform into the memory state,

removing elements from the memory state, and incrementing/decrementing counters in the

memory state. Below is an example rule, followed by the detailed description of the usage of all

the keys.

{c rule

:conditions ":*reply* flight_added"

:save ":topic"

:into ":itinerary" }

:conditions "logical-expr"

:save ":savekey"

:into ":intojkey"

Specify the condition to trigger the rule. The syntax of the

logical expression is the same as that used in the scenario

constraints. The test is conducted against a combined

frame of FAUNA's reply message and the current

memory state. The combined frame also contains a special

key :*reply*, the value of which is the frame name of the

reply message. If multiple messages are presented in the

reply eform, the messages are combined with the current

memory state one by one, and the rule applies on each of

the combined frames.

Append the object specified by :save from FAUNA's

reply message to the list specified by :into in the memory

state. If :into key does not exist in the memory state, a

231

new list object will be created.

:save ":savejkey" Copy the object specified by :save from FAUNA's reply

:as ":askey" message into the memory state using the key specified

by :as. If :as is not presented, the object will be copied

using its original key.

:remove ":key" Remove the key specified by :remove from the memory

state.

:remove ":removekey" Look up the id of the object specified by :remove in

:from ":fromjkey" FAUNA's reply message. If the value of :from-key in the

memory state has the same id, remove from-key from the

memory state; or if the value of from-key in the memory

state is a list, and one of the elements in the list has the

same id, remove that element from the list.

:increment ":key" Increment the integer value of the counter key(s) by 1.

:increment (":keyl" ":key2" ...)

:decrement ":key" Decrement the integer value of the counter key(s) by 1.

:decrement (":keyl" ":key2"...)

:personality

This key is used to specify the personality dimensions of the simulated user. All the dimensions

are specified in a frame, in which every key is a personality dimension. In the simulation of a

dialogue, each personality dimension will be assigned a fixed or a random value between 0 and 1

according to the specification. Different values will lead to different probability distributions over

all the possible responses.

An example of the personality specification is given below, in which one personality

dimension "aggressiveness" is defined.

:personality [c personality

:aggressiveness [c param

232

:range (0 1)

:stepbase 10

:conditions+ ("#key > 3")

:conditions- (":command delete") }

The meaning of the keys in the example can be found in the following list.

:fixedvaluefloat Assign a fixed value for this dimension. The value should be between 0

and 1.

:range (floatfloat) Specify a range of a random value for this dimension. The range should

be within 0 and 1.

:step-base int Specify the step base of this dimension. This number reflects how easy

it is to observe this personality dimension from an observer's point of

view. A small step base means it is easy to be observed, i.e., in a few

responses it can be observed. A large step base means it is hard to be

observed, i.e. many responses which are not neutral in this dimension

are required before it can be observed.

:conditions+ Specify the global positive conditions for this dimension. If the user

("logical-expr " response satisfies one of the conditions, the response is considered to

"logical-expr2"...) show a positive sign in this dimension.

:conditions- Specify the global negative conditions for this dimension. If the user

("logical-exprl" response satisfies one of the conditions, the response is considered to

"logical-expr2" ...) show a negative sign in this dimension.

:condition-penalty

This key specifies the four condition penalty coefficients for the response rules. The key takes a

list of four real numbers between 0 and 1. The four coefficients correspond to the four test results:

not satisfied, no condition, weak condition, and satisfied. See the explanation for :responses for

detailed information.

:responses

233

This key is used to specify the response rules. The response rules state all the possible responses

under different conditions. The value of this key can be a single response rule frame or a list of

response rule frames.

Each rule frame contains a list of templates for the response content. It can optionally contain a

condition expression, a list of response commands, and a response action. The condition indicates

the most desired situation for these responses. The response commands are essentially the frame

name of the response eforms. Each command in the list can be associated with any response

content in the rule. Thus, a response rule with n response content templates and m response

commands can result in m*n possible responses. The response action specifies special actions to

perform to the memory state before instantiating the response content templates. Following is a

simple response rule.

{c rule

:conditions ":continuant need_{$attr}"

:responsecontent ({c eform :$attr ":$attr[:*scenario*]" })
:response-command ("show" "" "book") }

The condition of the rule is specified using the key :conditions. The condition logical

expression is tested against the combination of FAUNA's reply eform and the simulator's

memory state. The frame name of the reply eform can be accessed using the special key :*reply*.

The test result is one of the following four:

e Not satisfied: the condition is not satisfied.

* No condition: the rule does not have a condition.

* Weak condition: the condition is satisfied even when testing against the memory state

only, i.e., the condition has nothing to do with FAUNA's reply.

e Satisfied: the condition is not weak and is satisfied.

Based on the test result, a corresponding penalty coefficient is given to all the responses in this

rule. The penalty coefficients can be specified using :condition-penalty in the strategy frame.

The syntax of the logical expression is similar to that of the memory rule conditions and the

scenario constraints, with an extra "matching" syntax. The matching syntax is valid only in an

equality test of a string value. A matching variable is recognized by a leading "$" and a pair of

curly braces. If the string pattern is matched, the matching variable will be assigned the

corresponding value, and can then be used in the response content template. In the example above,

234

if the continuant in FAUNA's reply eform is "needsource", the matching variables $attr will be

assigned the value "source".

The templates of response contents, specified using the key :responsecontent, are frames with

keys that are supposed to appear in the user's response. If the value of a key is a string and starts

with a colon, it refers to the value of the corresponding key in the memory state. Brackets are

allowed to refer to keys in subframes of the memory state. Keys in the instantiated scenario can

be accessed by :key[: *scenario*], as shown in the example above. The values of the keys in the

response content templates can also be a special function, e.g., a random integer generation

function as follows.

{c eform

:nth "random(1, :npending)" }

A special key :*other* is also defined to add "other" keys into the response content. When

instantiating, the key :*other* is instantiated into one or more random keys, among which at least

one has never appeared in previous user's responses to FAUNA. An example usage is shown

below.

{c eform

:*other* ":*other*[:*scenario*]" }

The templates may also contain template-specific personality descriptions using the personality

dimension as keys, and "+" or "-" as values. The intuitive meaning of the syntax can be

interpreted as "this response is more likely to be given by users with/without this particular

personality characteristic." The following example response rule contains two response content

templates. The second one not only provides the information that FAUNA asks for, but also

includes some "other" keys, and is thus labeled as "plus" aggressiveness.

{c rule

:conditions ":continuant need_{$attr}"

:responsecontent ({c eform

:$attr ":$attr[:*scenario*]" }
{c eform

:$attr ":$attr[:*scenario*]"

:*other* ":*other*[:*scenario*]"

:aggressiveness "+" })

:responsecommand ("show" "" "book :aggressive+") }

235

The response commands are specified by the key :response-command, the value of which is a

list of strings. The commands are essentially the frame names of response eforms. If the

command is an empty string, the frame name remains unchanged, i.e., whatever frame name is

written in the response content template is used.

When specifying the commands, personality descriptions can be added using ":dimension+" or

":dimension-", as shown in the example above. The descriptions both in the content template and

in the commands, as well as the satisfaction of any global personality conditions contribute to the

likelihood of this response being chosen as the final response.

Some response might require an action before instantiating the content template. In this case, a

response action can be specified using the key :responseaction. Currently, the only implemented

action is "changescenario", which alters the value of one key in the instantiated scenario to

reflect a change in the user intention. The following example elucidates the usage of this feature.

Personality descriptions are allowed in the action frame as well. If the action fails for any reason,

this response would have 0 probability to be chosen as the final response.

{c rule

:responseaction {p changescenario

:change ":source"

:aggressiveness "-" }
:responsecontent ({c eform

:source ":source[:*scenario*]" }) }

C.4 Other resources

Two example specifications can be found at:

$GALAXYROOT/galaxy/System/mercury/usersim.frame

$GALAXYROOT/galaxy/System/LanguageLearning/mercury/user-si mgame.frame

The second one includes contents specific to the Mercurial dialogue game as well, but can serve

as an example of a flexible usage of the user simulator.

The source code of the user simulator can be found at

$GALAXYROOT/nicore/src/libdialogue/user sim.c
$GALAXYROOT/ncore/src/libdialogue/user-sim-int.h

236

References

[1] (2007, Dec.) Xinhuanet.

12/06/content 7212089.htm

[Online]. http://news.xinhuanet.com/english/2007-

[2] (2011, July) CNTV. [Online]. http://news.cntv.cn/20110721/117162.shtml

[3] (1999) Rosetta Stone. [Online]. http://www.rosettastone.com

[4] (1996) English Town. [Online]. http://www.englishtown.com

[5] (2007) Fluenz. [Online]. http://www.fluenz.com

[6] (2004) Chengo Chinese. [Online]. http://www.elanguage.cn

[7] S. M. Witt and S. Young, "Phone-level Pronunciation Scoring and Assessment for

Interactive Language Learning," Speech Communication, vol. 30, pp. 95-108, 2000.

[8] W. K. Lo, A. M. Harrison, H. Meng, and L. Wang, "Decision Fusion for Improving

Mispronunciation Detection Using Language Transfer Knowledge and Phoneme-Dependent

Pronunciation Scoring," in Proc. ISCSLP, Kunming, China, 2008.

[9] A. M. Harrison, W.-k. Lo, X.-j. Qian, and H. Meng, "Implementation of an Extended

Recognition Network for Mispronunciation Detection and Diagnosis in Computer-Assisted

Pronunciation Training," in Proc. SIGSLaTE, Warwickshire, UK, 2009.

[10] M. Suzuki, D. Luo, N. Minematsu, and K. Hirose, "Improved Structure-based Automatic

Estimation of Pronunciation Proficiency," in Proc. SIGSLaTE 2009, Warwickshire, UK,

2009.

[11] S. Bhat, M. Hasegawa-Johnson, and R. Sproat, "Automatic Fluence Assessment by Signal-

Level Measurement of Spontaneous Speech," in Proc. L2WS, Tokyo, Japan, 2010.

237

[12] T. Visceglia, C.-y. Tseng, Z.-y. Su, and C.-F. Huang, "Interaction of Lexical and Sentence

Prosody in Taiwan L2 English," in Proc. L2WS, Tokyo, Japan, 2010.

[13] Y.-B. Wang, H.-M. Wang, and L.-S. Lee, "Virutal Chinese Tutor (VCT) - A Chinese

Language Pronunciation Learning Software," in Proc. SIGSLaTE, Demo Session,

Warwickshire, UK, 2009.

[14] H. Kunichika, A. Takeuchi, and S. Otsuki, "A Multimedia Language Learning Environment

with Intelligent Tutor," in Proc. International Conference on Computers in Education,

Taiwan, 1993.

[15] H. Kunichika, T. Katayama, T. Hirashima, and A. Takeuchi, "Automated Question

Generation Methods for Intelligent English Learning Systems and its Evaluation," in Proc.

ICCE2004, 2003.

[16] T. Kawahara, H. Wang, Y. Tsubota, and M. Dantsuji, "Japanese CALL System Based on

Dynamic Question Generation and Error Prediction in ASR," in Proc. SIGSLaTE, Demo

Session, Warwickshire, UK, 2009.

[17] E. Levin, R. Pieraccini, and W. Eckert, "Learning Dialogue Strategies within the Markov

Decision Process Framework," in Proc. ASRU 1997, Santa Barbara, USA, 1997.

[18] K. Scheffler and S. Young, "Corpus-based dialogue simulation for automatic strategy

learning and evaluation.," in Proc. NAACL Workshop on Adaptation in Dialogue, Pittsburgh,

USA, 2001.

[19] M. Frampton and 0. Lemon, "Learning more effective dialogue strategies using limited

dialogue move features," in Proc. ACL, Sidney, Australia, 2006, pp. 185 - 192.

[20] J. D. Williams and S. Young, "Partially observable Markov decision processes for spoken

dialog systems," Computer Speech & Language, vol. 21, no. 2, pp. 393-422, 2007.

[21] 0. Lemon and 0. Pietquin, "Machine learning for spoken dialog systems," in Proc.

INTERSPEECH 2007, Antwerp, Belgium, 2007, pp. 2685-2688.

[22] A. W. Black, S. Burger, B. Langner, G. Parent, and M. Eskenasi, "Spoken Dialogue

238

Challenge 2010," in Proc. SLT, Berkeley, CA, USA, 2010.

[23] B. Thomson et al., "Bayesian Dialogue System for the LET'S GO Spoken Dialogue

Challenge," in Proc. SLT, Berkeley, CA, USA, 2010.

[24] J. D. Williams, I. Arizmendi, and A. Conkie, "Demonstration of AT&T "LET'S GO": A

Production-Grade Statistical Spoken Dialogue System," in Proc. SLT, Berkeley, CA, USA,

2010.

[25] T. Paek and R. Pieraccini, "Automating spoken dialogue management design using machine

learning: An industry perspective," Speech Communication, vol. 80, no. 8-9, pp. 716-729,

2008.

[26] F. Ehsani and E. Knodt, "Speech Technology in Computer-Aided Language Learning:

Strengths and Limitations of a New CALL Paradigm," Language Learning & Technology,

vol. 2, no. 1, pp. 54-73, 1998.

[27] F. Ehsani, J. Bernstein, and A. Najmi, "An interactive dialog system for learning Japanese,"

Speech Communication, vol. 30, no. 2-3, pp. 167-177, 2000.

[28] A. Raux, B. Langner, A. W. Black, and M. Eskenazi, "LET'S GO: Improving Spoken Dialog

Systems for the Elderly and Non-natives," in Proc. Eurospeech 2003, Genewa, Switzerland,

2003, pp. 753-756.

[29] A. Raux and M. Eskenazi, "Using Task-Oriented Spoken Dialogue Systems for Language

Learning: Potential, Practical Applications and Challenges," in Proc. ISCA ITRW INSTiL04,

Venice, Italy, 2004, pp. 147-150.

[30] D. Bohus and A. I. Rudnicky, "RavenClaw: Dialog Management Using Hierarchical Task

Decomposition and an Expectation Agenda," in Proc. Eurospeech, Geneva, Switzerland,

2003.

[31] S. Seneff, C. Wang, and C.-y. Chao, "Spoken dialogue systems for language learning," in

Proc. HLT-NAA CL, Rochester, NY, USA, 2007.

[32] S. Seneff, R. Lau, and J. Polifroni, "Organization, Communication, and Control in the

239

GALAXY-I Conversational System," in Proc. Eurospeech, Budapest, Hungary, 1999.

[33] S. Seneff, "Response Planning and Generation in the Mercury Flight Reservation System,"

Computer Speech and Language, vol. 16, pp. 283-312, 2002.

[34] V. Zue et al., "JUPITER: a telephone-based conversational interface for weather

information," IEEE Transactions on Speech and Audio Processing, vol. 8, no. 1, pp. 85-96,

2000.

[35] P. Wik, "Designing a Virtual Language Tutor," in Proc. The XVIIth Swedish Phonetics

Conference, Fonetik 2004, Stockholm University, 2004, pp. 136-139.

[36] P. Wik, A. Hjalmarson, and J. Brusk, "DEAL, A Serious Game for CALL, Practicing

Conversational Skills in the Trade Domain," in Proc. SIGSLaTE, Pennsylvania, USA, 2007.

[37] G. Skantze, "Galatea: a discourse modeller supporting concept-level error handling in

spoken dialogue systems," in Proc. SigDIAL 2005, Lisbon, Portugal, 2005, pp. 178-189.

[38] M. Eskenazi, "An overview of spoken language technology for education," Speech

Communcation, vol. 51, pp. 832-844, 2009.

[39] Y. Han (W A), "On the Teacher (YTilA)," 768-824, Tang Dynasty.

[40] A. Gruenstein, I. McGraw, and I. Badr, "The WAMI Toolkit for Developing, Deploying, and

Evaluating Web-Accessible Multimodal Interfaces," in Proc. ICMI, Crete, Greece, 2008.

[41] A. Gruenstein, "Toward Widely-Available and Usable Multimodal Conversational

Interfaces," Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, Cambridge, MA, USA, PhD Thesis 2009.

[42] I. McGraw and S. Seneff, "Speech-enabled Card Games for Language Learners," in Proc.

AAAI, Chicago, USA, 2008.

[43] B. Yoshimoto, I. McGraw, and S. Seneff, "Rainbow Rummy: A Web-based Game for

Vocabulary Acquisition using Computer-directed Speech," in Submitted to SIGSLaTE 2009,

2009.

240

[44] I. McGraw, A. Gruenstein, and A. Sutherland, "A Self-Labeling Speech Corpus: Collecting

Spoken Words with an Online Educational Game," in Proc. Interspeech, Brighton, UK,

2009.

[45] A. Gruenstein, I. McGraw, and A. Sutherland, "A Self-Transcribing Speech Corpus:

Collecting Continuous Speech with an Online Educational Game," in Proc. SLaTE,

Warwickshire, UK, 2009.

[46] (2011) Quizlet. [Online]. http://quizlet.com

[47] S. Seneff et al., "GALAXY-II: A Reference Architecture for Conversational System

Development," in Proc. ICSLP, Sydney, Australia, 1998.

[48] C. Wang and S. Seneff, "A Spoken Translation Game for Second Language Learning," in

AIED, Marina del Rey, California, 2007.

[49] C.-y. Chao, S. Seneff, and C. Wang, "An Interactive Interpretation Game for Learning

Chinese," in the SLaTE Workshop, Farmington, Pennsylvania, 2007.

[50] J. P. Gee, "What video games have to teach us about learning and literacy," Computers in

Entertainment (CIE) - Theoretical and Practical, vol. 1, no. 1, p. 20, October 2003.

[51] Y. Xu and S. Seneff, "Mandarin Learning Using Speech and Language Technologies: A

Translation Game in the Travel Domain," in Proc. ISCSLP, Kunming, China, 2008, pp. 29-

32.

[52] K. Yamada and K. Knight, "A syntax based statistical translation model," in Proc. ACL,

Toulouse, France, 2001.

[53] P. Koehn et al., "Moses: open source toolkit for statistical machine translation," in Proc.

ACL, Interactive Poster and Demo Session, Stroudsburg, PA, USA, 2007.

[54] S. Seneff, "TINA: A Natural Language System for Spoken Language Applications,"

Computational Linguistics, vol. 18, no. 1, pp. 61 - 86, March 1992.

[55] L. Baptist and S. Seneff, "Genesis-II: A Versatile System for Language Generation in

241

Conversational System Applications," in ICSLP, Beijing, China, 2000, pp. 271-274.

[56] Y. Xu, J. Liu, and S. Seneff, "Mandarin Language Understanding in Dialogue Context," in

Proc. ISCSLP, Kunming, China, 2008, pp. 113-116.

[57] L. Hetherington, "The MIT Finite-State Transducer Toolkit for Speech and Language

Processing," in Proc. ICSLP, Jeju, South Korea, 2004.

[58] Y. Xu, A. Goldie, and S. Seneff, "Automatic Question Generation and Answer Judging: A

Q&A Game for Language Learning," in Proc. SIGSLaTE, Warwickshire, United Kingdom,

2009.

[59] Y. Xu, "Combining Linguistics and Statistics for High-Quality Limited Domain English-

Chinese Machine Translation," MIT, Cambridge, Massachusetts, Master Thesis 2008.

[60] J. Glass, "A probabilistic framework for segment-based speech recognition," Computer

Speech and Language, vol. 17, no. 2-3, pp. 137-152, April/July 2003.

[61] W. I. Hallahan, "DECtalk software: Text-to-speech technology and implementation," Digital

Technical Journal, vol. 7, no. 4, pp. 5-19, 1995.

[62] J. Hochberg, N. Kambhatla, and S. Roukos, "A flexible framework for developing mixed-

initiative dialog systems," in Proc. the 3rd SIGdial workshop on Discourse and dialogue

Philadelphia, Pennsylvania, 2002, pp. 60-63.

[63] J. Liu and S. Seneff, "Automatic Drug Side Effect Discovery from Online Patient-Submitted

Reviews: Focus on Statin Drugs," in Proc. IMM, Barcelona, Spain, 2011.

[64] J. Liu and S. Seneff, "A Dialogue System for Accessing Drug Reviews," in Proc. ASRU,

Hawaii, USA, 2011.

[65] W. Eckert, E. Levin, and R. Pieraccini, "User Modeling For Spoken Dialogue System

Evaluation," in Proc. ASRU, Santa Barbara, USA, 1997, pp. 80-87.

[66] L. Esther, P. Roberto, and W. Eckert, "A stochastic model of human-machine interaction for

learning," IEEE Trans. on Speech and Audio Processing, vol. 8, no. 1, pp. 11-23, 2000.

242

[67] K. Scheffler and S. Young, "Probabilistic simulation of human-machine dialogues," in Proc.

ICASSP, Istanbul, Turkey, 2000, pp. 1217-1220.

[68] K. Scheffler, "Automatic design of spoken dialogue systems," Cambridge University, PhD

Thesis 2002.

[69] 0. Pietquin and T. Dutoit, "A probabilistic framework for dialog simulation and optimal

strategy learning," IEEE Transactions on Audio, Speech, and Language Processing, vol. 14,

no.2,pp.589-599,2006.

[70] H. Cuayahuitl, S. Renals, 0. Lemon, and H. Shimodaira, "Human-computer dialogue

simulation using hidden Markov models," in Proc. ASRU 2005, San Juan, Puerto Rico

2005, pp. 290-295.

[71] Y. Xu and S. Seneff, "A Generic Framework for Building Dialogue Games for Language

Learning: Application in the Flight Domain," in Proc. SLaTE, Venice, Italy, 2011.

[72] M. Gabsdil and 0. Lemon, "Combining Acoustic and Pragmatic Features to Predict

Recognition Performance in Spoken Dialogue Systems," in Proc. ACL, 2004.

[73] 0. Lemon and I. Konstas, "User Simulations for context-sensitive speech recognition in

Spoken Dialogue Systems," in Proc. European Chapter of ACL, Athens, Greece, 2009.

[74] A. Gruenstein, "Response-Based Confidence Annotation for Spoken Dialogue Systems," in

Proc. SIGDial, Columbus, Ohio, USA, 2008.

[75] T. Joachims, "Making large-Scale SVM Learning Practical.," in Advances in Kernel

Methods - Support Vector Learning, Alexander J. Smola, Ed.: MIT-Press, 1999.

[76] M. Rayner, N. Tsourakis, P. Bouillon, and M. Fuchs, "CALL-SLT/Web, A Speech-Enabled

Translation Game on the Internet," in Proc. SLaTE, Demo Session, Tokyo, Japan, 2010.

[77] M. Rayner et al., "CALL-SLT: An Automatic Speech-Enabled Conversation Partner on the

Web," in Proc. SLaTE, Demo Session, Venice, Italy, 2011.

[78] A. Goldie, "CHATTER: A Spoken Language Dialogue System for Language Learning

Applications," Department of Electrical Engineering and Computer Science, MIT,

243

Cambridge, MA, USA, M. Eng Thesis 2011.

[79] W. Ling, I. Trancoso, and R. Prada, "An Agent Based Competitive Translation Game for

Second Language Learning," in Proc. SLaTE, Venice, Italy, 2011.

[80] I. McGraw, B. Yoshimoto, and S. Seneff, "Speech-enabled Card Games for Incidental

Vocabulary Acquisition in a Foreign Language," Speech Communication, 2008.

[81] Z. Yang et al., "Collection of User Judgments on Spoken Dialogue System with

Crowdsourcing," in Proc. SLT, Berkeley, CA, USA, 2010.

[82] M. Rayner, I. Frank, C. Chua, N. Tsourakis, and P. Bouillon, "For a Fistful of Dollars: Using

Crowd-Sourcing to Evaluate a Spoken Language CALL Application," in Proc. SLaTE,

Venice, Italy, 2011.

244

