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Abstract

Programmable matter systems are composed of small, intelligent modules able to form a vari-
ety of macroscale objects with specific material properties in response to external commands or
stimuli. While many programmable matter systems have been proposed in fiction, (Barbapapa,
Changelings from Star Trek, the Terminator, and Transformers), and academia, a lack of suitable
hardware and accompanying algorithms prevents their full realization. With this thesis research,
we aim to create a system of miniature modules that can form arbitrary structures on demand.

We develop autonomous 12mm cubic modules capable of bonding to, and communicating
with, four of their immediate neighbors. These modules are among the smallest autonomous mod-
ular robots capable of sensing, communication, computation, and actuation. The modules employ
unique electropermanent magnet connectors. The four connectors in each module enable the mod-
ules to communicate and share power with their nearest neighbors. These solid-state connectors
are strong enough for a single inter-module connection to support the weight of 80 other mod-
ules. The connectors only consume power when switching on or off; they have no static power
consumption.

We implement a number of low-level communication and control algorithms which manage
information transfer between neighboring modules. These algorithms ensure that messages are
delivered reliably despite challenging conditions. They monitor the state of all communication
links and are able to reroute messages around broken communication links to ensure that they
reach their intended destinations.

In order to accomplish our long-standing goal of programmatic shape formation, we also de-
velop a suite of provably-correct distributed algorithms that allow complex shape formation. The

distributed duplication algorithm that we present allows the system to duplicate any passive object
that is submerged in a collection of programmable matter modules. The algorithm runs on the
processors inside the modules and requires no external intervention. It requires 0(1) storage and

O(n) inter-module messages per module, where n is the number of modules in the system. The
algorithm can both magnify and produce multiple copies of the submerged object.

A programmable matter system is a large network of autonomous processors, so these algo-
rithms have applicability in a variety of routing, sensor network, and distributed computing appli-
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cations. While our hardware system provides a 50-module test-bed for the algorithms, we show, by
using a unique simulator, that the algorithms are capable of operating in much larger environments.
Finally, we perform hundreds of experiments using both the simulator and hardware to show how
the algorithms and hardware operate in practice.

Thesis Supervisor: Daniela Rus
Title: Professor
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Chapter 1

Introduction

In the sixty-five plus years since the advent of the first computer program, the concept of pro-

gramming software has been refined, popularized, and become ubiquitous. We propose moving

beyond programming software to programming the properties, such as shape, stiffness, texture,

and conductivity of physical matter. Since their advent, computers have changed from room-filling

mainframes, to bulky desktops, to portable laptops, to lightweight tablets, to smart phones. We

see programmable matter as the next step in this progression. Our long-term goal is to create a

programmable matter system that is able to programmatically modify its physical properties. The

ability to form objects with specific form and material properties would be the ultimate universal

toolkit. Such a system would be immensely useful for an astronaut on an inter-planetary mission

or a scientist at an isolated research station. For mechanics and surgeons, the ability to form highly

customized, task-specific tools would be immensely valuable.

Our particular approach relies on modular programmable matter. Modular programmable mat-

ter systems modify their bulk material properties by changing the characteristics of, or relationships

between, the small unit modules that, as a group, compose the larger programmable matter system.

We envision a bag containing millions of these tiny, intelligent particles that the user shakes in

order to form some goal object. As they are agitated, the modules contained within the bag selec-

tively bond with their neighbors in order to form the user's goal shape. After the bonding process

is complete, the user can retrieve the object from the bag and dust off the extra modules. When
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the user is done using the object, he or she returns it to the bag where it disintegrates back to its

component modules for reuse.

The goal shape may be a robot built for a specific task, (a snake to pass through a tunnel or a

wheeled rover to quickly cover open ground), or an object designed for a particular job, (such as

a wrench or surgical instrument). In all cases, the resulting structure, due to the intelligent nature

of its component parts, is imbued with unique properties. An object formed from programmable

matter could provide real-time, in-situ feedback on internal stresses; disintegrate at a controlled

rate; or dynamically change its rigidity to correspond with the task at hand.

The Smart Pebbles (shown in Figure 1-1) and associated algorithms that we propose in this

thesis are a first step towards what we believe will be the long legacy of programmable matter.

Figure 1-1: The Smart Pebbles form a modular programmable matter system that is capable of
creating 2D objects by selectively forming and severing bonds between the constituent modules.
Each module can communicate and bond with its nearest neighbors and has a small processor
inside.
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1.1 Challenges

In the quest to create a universal modular programmable matter system, there are challenges which

must be overcome. Each unit module must contain computation, sensing, connectors, and a power

source in as small of package as possible. The fabrication of these modules should be streamlined

so that it becomes practical to create systems with millions of modules. The algorithms control-

ling the modules must be highly efficient and distributed so that they can run on the modules

themselves. In the design process, there is inherent competition between hardware complexity,

computational demands, and system capabilities. Sophisticated hardware may ease computational

demands and enable additional system functionality, but it comes at the price of additional man-

ufacturing complexity and cost. There are many competing requirements that must be taken into

account during the design process.

With regard to hardware, the modules must be electrically and mechanically active in order

to be called programmable matter, and not just a large distributed computer. The modules should

not rely on a complicated external apparatus to function. The system should not be constrained

to a lab environment in which the modules' computation and actuation capabilities are offloaded

to auxiliary machinery. Randomly shaking a bag of modules is as much outside intervention as is

reasonable while maintaining the system's autonomy.

Fabricating millimeter-scale three dimensional structures that are electrically and mechanically

active is difficult. While micro- and nano-fabrication processes exist to fabricate 2D and 2.5D

electromechanical structures, there are currently few ways to fabricate 3D structures at the same

scale. What options do exist are difficult to employ in mass production. While 2D systems will be

part of the natural progression to 3D structures, practical programmable matter systems must be

capable of creating 3D objects. Algorithms developed for 2D hardware must be extensible to three

dimensions.

Each module in a programmable matter system must be capable of programmatically bonding

with its neighbors. Small, easily switchable, high-strength connectors do not exist. For a pro-

grammable matter system to form objects that are more than purely decorative, the inter-module

bonds must be strong. Additionally, the connection mechanisms must have quick response times,
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consume minimal power, and be reversible. The connectors, processor, and communication sys-

tem of each module must also be powered. Finding a way to supply power to millions of tightly

packed, millimeter-scale modules is not trivial. With current technology, it is infeasible to embed a

battery in each module. Even with batteries, recharging such a large collection of modules would

be problematic. Any practical system must find some other approach to supplying the modules

with power.

There are also algorithmic challenges. The programmable matter modules must be able to self-

assemble. As individual modules continue to shrink, and the number of modules in a system grows

into the millions, the modules must be capable of self organizing so that they can autonomously

bond and communicate with their neighbors. Once assembled, the modules must have a reliable

communication scheme that can quickly recover from any errors. Any system with millions of

modules is certain to contain many defective units that will threaten the system's high-level func-

tionality. A practical system must be designed with inherent robustness in every component.

Conveying the user's desired object to the programmable matter system is challenging. The

user interface must be sophisticated enough to provide an abstraction barrier between the high-

level object description and the behavior of each individual module in the system. Furthermore,

due to power, storage, and processing constraints, a programmable matter system must have an

efficient way of distributing information about the object that the user wishes to form. Individually

informing each module in a million module system of its role is impractical. The system must

employ a better approach whose worst case space and time requirements scale favorably.

Finally, the development of vast modular programmable matter systems requires advanced

debugging tools. Current tools struggle to support massively parallel systems. The challenges

stem from several factors. The chief difficulty is that the system's functionality is governed by the

interactions of many individual modules, not by each module in isolation. Debugging one module

may not be difficult, but debugging its interactions with the other thousand or million modules is

a formidable challenge. Aggregating just a portion of the system's state so that it is displayed in a

useful manner is a significant undertaking. Even addressing a particular module in order to query

its particular state is challenging in a system with millions of modules.
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1.2 Current State of the Art

Modular programmable matter systems are an outgrowth of the modular robotics field [133, 36].

Much effort has been devoted to designing novel hardware, but comparatively little effort has been

made to develop advanced algorithms for million-module programmable matter systems. Existing

programmable matter hardware spans many scales ranging from micrometers [85, 111, 24] to

many centimeters and everywhere in between. Existing hardware platforms use modules that are

of many different shapes including triangles [8], squares [121, 38], cubes [34, 113], circles [93],

and cylinders [37, 47]. The majority of systems operate in two dimensions, but there are also many

three dimensional systems. Typically, the modules used in three dimensional systems are larger

due to their additional mechanical complexity.

Modular systems with smaller unit modules typically transfer computation or actuation abilities

away from the modules. Many of the smallest modules are completely passive and rely on external

fixtures that manipulate the modules with electromagnetic [3, 78] or fluidic forces [122, 112], for

example. Some even employ micro-robots to aid the assembly process [84]. It will be difficult to

move these types system out of the lab and into the everyday environments unless their support

equipment follows. Even larger systems that have on-board computation and actuation abilities

often rely on external controllers to instruct the modules. With the easy availability of lithium-

ion batteries, newer systems tend to be battery powered, but many systems are often tethered to

external voltage supplies.

Inter-module connection mechanisms are an active area of research. Traditionally, modular

robotic systems have relied on active mechanical latching for its rigidity and strength [19, 63]. As

modules sizes have continued to shrink, designers have looked to alternative connection mecha-

nisms including both permanent magnets [134] and electromagnets [37, 50]. The crucial drawback

to electromagnets is that they consume a large amount of power making it difficult to untether the

modules from an external power source. One alternative to electromagnets is to use mechanically

switchable permanent magnets [35]. Some modules also use semi-permanent passive mechanical

bonding mechanisms [123], but this requires external actuation to control which connectors are

latched. Other researchers have attempted to use electrostatic forces [47], but electrostatic connec-
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tors are not practical at large scales where they exert negligible forces. As modules continue to

shrink, electrostatic connectors will become more attractive both for their potential holding forces

and easy of fabrication. Researchers are also developing promising connectors based on van der

Waals forces [79, 57].

The algorithms for controlling modular robots and programmable matter systems are more

difficult to characterize although there are some common themes. Most research assumes that the

modules in a system are arranged in regular lattices or chains. A few algorithms exist that assume

the modules may be arranged randomly [95, 29], but few hardware examples of such systems

exist [102]. As modules continue to shrink and precise inter-module alignment becomes more

difficult, such free form system will become the norm.

There are many algorithms devoted to locomotion or reconfiguration in modular systems [27,

118, 115]. These algorithms can only be executed on systems whose modules support relative

locomotion. Some algorithms have focused on self-repair [134, 94]. Self-assembly is another

common goal, and there have been many theoretical proposals [1, 2, 92, 48] and hardware imple-

mentations [78, 73]. Often, the goal shape is encoded with a set of generic rules shared by all

modules in the system. Other approaches to programming shape attempt to convey the desired

shape's description to those modules on the exterior of the ensemble [37] or only those modules

that are part of the desired shape [34]. Finally, duplication is another approach to shape forma-

tion [38, 64]. One particular proposal uses a centralized algorithm running as part of a modular

programmable matter system to duplicate arbitrary three dimensional objects [88].

1.3 Our Approach

Our approach improves on existing hardware and algorithms in several ways. It is best understood

in the context of traditional fabrication methods, which rely sequential processes performed on

heterogeneous materials. For example, to fabricate a digital torque wrench with traditional meth-

ods, one machines the head of the wrench, casts the body, molds the rubber handle, fabricates

the electronics, and finally assembles all of the components. Once built, the wrench is difficult

to repurpose for other tasks. In contrast, our approach to fabrication with modular programmable
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matter is a cyclic process that utilizes homogeneous material. Each tiny cubic module has on-board

computation, nearest-neighbor communication, and latching capabilities. Using their on-board in-

telligence, in collaboration with their neighbors, the modules can selectively bond together to form

specific shapes.

To fabricate the same torque wrench with our modular programmable matter system, one begins

with a model of the wrench. This model could be miniaturized, and it only needs be a rough

approximation of a wrench made out of plastic, Styrofoam, clay, or even paper. The user surrounds

the model wrench with programmable matter modules by burying the model in a bag containing

thousands or even millions of individual modules. Working in collaboration, the modules sense

the shape of the model and set about making a duplicate. The duplicate is formed when the extra

modules in the bag, those in the vicinity of, but not in direct contact with, the original model

selectively bond with their neighbors. If the original model is a miniature, the duplicate can be

magnified. The number of copies is only limited by the amount of programmable matter material

in the bag. Once the modules that form the duplicate wrench have finished mechanically bonding

with their neighbors, the user can remove both the original and duplicate wrenches from the bag.

The new torque wrench is imbued with, not only the desired form, but the desired sensing and

computation capabilities. The modules retain their sensing, computation, and bonding abilities

once removed from the bag. If the user needs to refine the wrench's shape, he can selectively

remove additional modules. Taken to the extreme, when the user is done with the wrench, he drops

it back into the bag where it disintegrates, and the particles can be reused.

Our approach to realizing programmable matter is unique in several specific ways. First, we

have developed a novel modular programmable matter hardware platform, the Smart Pebbles. Each

Smart Pebble is a 12mm cube, (see Figure 1-1), capable of mechanically bonding to and commu-

nicating with four planar neighbors. The modules employ unique electropermanent magnets that

serve as mechanical bonding, communication, and power transfer interfaces. Each module contains

an 8-bit microprocessor that controls its four electropermanent magnets. Using a set of external

connections, we can provide power to a single module from which power is distributed to all other

modules in the system using the electropermanent magnet connectors. When activated, each con-
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nector is strong enough to support the combined weight of eighty other modules. When placed on

an inclined vibration table, (the two-dimensional equivalent of a shaking bag), the Smart Pebbles

self-assemble. We have also developed and deployed algorithms that allow the modules to self-

disassemble in an organized fashion. As a result of these abilities, the Smart Pebbles serve as an

excellent platform on which to implement the shape formation algorithms that we have developed.

The two unique aspects our of approach to high-level, arbitrary shape-formation functionality

are captured by Figure 1-2. First, we propose a two-step shape formation process in which the

modules in the system first coalesce and self-assemble into a completely uniform solid block of

material that encases the original object that is being duplicated. Once this initial block of material

is complete, then the system utilizes self-disassembly to remove modules that are not a part of the

manufactured duplicate.

Figure 1-2: To form shapes using the Smart Pebbles system, a passive object to be duplicated
(shown in black) is submerged in a large collection or programmable matter particles. The particles
solidify in a regular lattice to encase the passive shape. Once solidified, modules bordering on the
passive shape sense its topology and inform other modules in the vicinity that they will become part
of the duplicate shape. Once these duplicate modules (shown in grey) have been notified, all other
modules break their mechanical bonds leaving just the original and duplicate shapes behind. When
the user is done with the duplicate, he may drop it back into the bag where it will disintegrate, and
the modules can be reused.

Second, we introduce new user interface for programmable matter systems in which a scaled-

down physical replica of the desired object is all that is needed to describe the goal shape. The user

does not need a complicated CAD model or any other technical description. Given a bag of smart

particles, we envision dipping a replica of the object we wish to create into the bag. The modules

surrounding the object sense and learn its shape. Then, using programmed communication and

connections, they replicate the object at the desired scale using the spare modules in the bag. Once
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the solid replica is created, all other inter-module connections are broken, and the user can retrieve

the duplicate object from the bag. This approach eliminates the need for external computation

and actuation along with the associated external communication links. It also reduces the internal

neighbor-to-neighbor communication burden on the modules themselves.

1.3.1 Self-Assembly and Disassembly

Traditional self-assembling systems aim to form complex shapes in a direct manner. As these

structures grow from a single module, new modules are only allowed to attach to the structure

in specific locations. By carefully controlling these locations and waiting for a sufficiently long

period of time, the desired structure grows in an organic manner. In contrast, our system greatly

simplifies the assembly process by initially aiming to form a regular crystalline block of fully

connected modules. We only limited attempts to restrict which modules or faces are allowed to

bond with the growing structure. After we form this initial block of material, we complete the

shape formation process through self-disassembly and subtraction of the unwanted modules.

Our approach has a distinct advantage over techniques based solely on self-assembly. Self-

disassembly does not rely on complicated attachment mechanisms that require precise alignment

or careful planning. Self-disassembly excels at shape formation because it is relatively easy, quick

and robust. Our system does not need to carefully select exactly where new modules are allowed

to bond to the growing structure. In the process, it also avoids the need to consider the structural

integrity of the growing ensemble. By first forming a regular lattice, the system serves as its own

support scaffolding. As an example of why our two-step process is advantageous, consider how

much easier it is to carve an arch out of solid marble than it is to construct an arch from loose

stones.

As the individual modules in self-reconfiguring and programmable matter systems continue to

shrink, it will become increasingly difficult to actuate and precisely control the assembly process.

In particular, designing modules capable of exerting the forces necessary to attract their neighbors

from significant distances will be challenging. Instead, these systems may find assembly and

disassembly much simpler when driven by stochastic environmental forces. The Smart Pebble

25



modules, which are able to latch together from distances approximately 20-35% of the module

dimensions, could easily take advantage of these stochastic assembly mechanisms to form an initial

structure. Our particular system also relies on external forces to carry the unused modules away

from the final shape. (The connectors that we employ cannot both attract and repel.) In our system,

this force is often gravity, but it could also be vibration, fluid flow, or the user reaching into the bag

of particles to extract the finished object.

1.3.2 Distributed Duplication

A big challenge associated with fabricating composite objects from a large collection of intelligent

particles is conveying the desired shape of the object to be produced to the ensemble of modules.

One approach is to manually inform each module whether or not it should bond with its neighbors

to become part of the goal shape. Alternatively, we can use a graphical interface to define the

shape and automatically generate a list of messages to inform each module whether it is part of

the structure. Both of these strategies require a reliable communication link with the modules and

a large volume of information to be exchanged. Using the naive approach, one message must be

sent for each module included in the final shape. Assuming that each module is roughly one cubic

millimeter, it would require over 200,000 modules, and hence 200,000 messages, to form an object

the size of a baseball. More advanced approaches reduce the communication burden by relying on

shape abstraction to convey the desired form to the initial collection of modules. Even so, the

user must know how to best fit the desired shape into the collection of modules. That requires

the user know detailed information about the initial arrangement, information that takes time and

energy to collect and transmit to the user. Furthermore, even if the user can blindly guess how to

orient the desired shape in the initial block of material, the system must still have a robust external

communication interface in order receive the shape description from the user.

As an alternative, we propose shape formation through duplication. In our system, the user

surrounds a passive original object with programmable matter modules. Without anything more

than a single start command, the system employs a set of robust, distributed algorithms to sense

the shape of the passive object and inform the appropriate modules within the collection that they
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are to become part of a duplicate object. This approach eliminates the communication link from

the user to the system and all of the communication overhead associated with it. It also removes

the need for the graphical interface to the system. Because the algorithm is distributed and does

not rely on a centralized, external controller, the distributed algorithm provides a scalable solution.

No module ever stores the complete goal shape nor the global state of the system; the memory

required by each module is 0(1). Furthermore, the number of inter-module messages exchanged

is O(n) per module, where n is the number of modules in the system.

1.4 Thesis Contributions

In this document, we aim to examine the following thesis:

Digital fabrication can be accomplished with smart particles capable of

self-disassembly.

To do so, we focus on programmable matter systems consisting of collections of physically

connected robotic modules that have the ability to communicate with and bond to their imme-

diate neighbors. Using this functionality, we show that a system of these modules is capable of

autonomously creating user-specified goal shapes through a process of self-assembly followed

by self-disassembly. This thesis makes a number of contributions to the programmable matter

and modular robotics communities. First, it presents novel hardware that is among the smallest

of autonomous modular robot systems. Second, it develops new distributed algorithms that are

applicable to both programmable matter systems and broader networking challenges. Finally, it

illustrates the use of a unique simulator that allows for the same code to be used in hardware and

simulation. These main contributions can be divided into a number of tasks that are illustrated in

Figure 1-3.

The majority of the tasks illustrated in Figure 1-3 are centered around algorithms that allow

several different approaches to shape formation in modular robotic systems:

* the user can virtually sculpt the goal shape using a simple GUI that transmits a description
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Figure 1-3: This thesis can be divided into three major components: hardware, simulator, and
shape formation algorithms, each of which is explained in the remainder of this document.
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of the goal shape back to the initial block of material using a minimal number of inclusion

messages;

" a miniature description of an object can be expanded into a much larger object through

magnification;

" an original description of an object can be replicated to form an arbitrary number of copies;

" sensing allows the replication of a passive object engulfed by a collection of modules;

" any number of the above approaches can be combined to form arbitrarily complex shapes

from an initial block of material.

To complement the algorithms and demonstrate that they operate correctly in practice, we

have developed the Smart Pebbles. The Pebbles are one cubic centimeter autonomous modules

capable of shape formation through self-assembly and self-disassembly. They have a number of

key features:

" The 12mm cubes are formed by wrapping a flexible circuit around a brass frame;

* Four genderless connectors enable the formation of 2D structures;

* The connectors are based on solid-state electropermanent magnets which are strong enough

to support the weight of 80 modules yet consume no power except when changing state;

" The connectors are used for latching, communication, and power transfer (the modules do

not contain batteries).

In presenting the hardware, simulator, and algorithms covered by this thesis we have explored

theory, implementation, and experiments. Where possible, the experiments have been performed

using physical hardware and supplemented with the results of realistic simulations. In summary,

this thesis makes the following contributions:

* the concept of, and the algorithms to implement, shape formation through the process of

self-assembly followed by organized self-disassembly;
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" a shape formation algorithm that is capable of duplicating, magnifying, and creating multiple

copies of an original shape submerged into a collection of smart particles;

" a system employing unique electropermanent magnets and related hardware to achieve me-

chanical bonding, communication, and power transfer from a single component;

" an easily reconfigurable high-level computing platform composed of 50 12mm-cubic nodes

capable of communicating with their nearest neighbors to develop, debug, and deploy dis-

tributed algorithms;

* a unique simulator that allows a single code base to be used in software-only simulation,

hardware in the loop simulation, and hardware-only experiments.

1.5 Thesis Outline

The remainder of this document is organized as follows. In Chapter 2, we present existing research

related to this thesis. Specifically, we address how programmable matter evolved from the larger

modular robotics field. In doing so, we highlight key hardware and software systems and present

more details on the current state of the art. In Chapter 3 we present the Smart Pebbles hardware

platform. We detail both the construction of the Pebbles as well as their physical and electrical

attributes. In particular, we present our miniaturized electropermanent magnet connectors which

allow the Pebbles to mechanically bond, communicate, and share power. Chapter 4 introduces the

distributed simulator, called Sandbox, which we created in order to test the application-level algo-

rithms that drive the Smart Pebbles to form specific shapes. The benefit of the Sandbox simulator

is that it emulates both the low-level hardware and communication software so that the exact same

high-level source code can be easily re-targeted for either the hardware Pebbles or the simulator.

Chapter 5 extends the discussion of inter-module communication started in Chapters 3 and 4. It

explains the low-level algorithms used to exchange messages between neighboring modules. The

chapter also presents results that characterize the performance of the communication infrastructure.

Having described both the hardware and software platforms, Chapter 6 presents the basic shape
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formation algorithm; it demonstrates that the Smart Pebbles are capable of self-assembling. Once

the modules have formed an initial block of material, the chapter also shows how the user can

virtually sculpt multiple shapes out of the initial block of material using self-disassembly. Results

of both the self-assembly and sculpting processes are included in dedicated sections of the chapter.

Chapter 7 presents our distributed shape duplication algorithm. The algorithm is capable of

duplicating a passive shape that is engulfed by a collection of modules. We present the algorithm,

analyze its running time, and verify that it operates correctly with experiments in both simulation

and hardware. Chapter 8 shows how we have extended the duplication algorithm to three dimen-

sions. The chapter includes simulated experiments with over 1000 modules. Finally, Chapter 9

discusses what we have learned while developing our system, and it also presents suggestions for

how to proceed in making programmable matter as ubiquitous as personal computers.

31



32



Chapter 2

Related Work

Programmable matter defines any system which is able to modify its physical properties in a pro-

grammatic way. Such systems can modify their elasticity, coefficient of friction, conductivity, or

geometry. To date, most programmable matter systems have been designed as collections of par-

ticles, or modules, whose local inter-module interactions govern the macro-scale behavior of the

system. While these modular programmable matter systems are popular, they do not fully define

the field.

The term programmable matter rose to popularity around 2002 within the robotics community.

MacLennan [69] described, in high-level terms, using algorithms to dictate the behavior of a ma-

terial at a molecular level. He proposed "universally programmable intelligent matter" that could

be programmed to fill any number of material needs. Nagpal captured the vision of programmable

matter when she wrote, "imagine a flexible substrate, consisting of millions of tiny interwoven

programmable fibers, that can be programmed to assume different global shapes" [77]. The dis-

tinction between programmable matter and other robotic systems can be arbitrary. Many robotic

systems developed before "programmable matter" was popularized still meet all requirements to

be called programmable matter.

Due to programmable matter's origins within the robotics community, there are two themes

which permeate most programmable matter systems: 1) they are based on modular robotic sys-

tems; and 2) the systems are primarily concerned with programming shape. In particular, most
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programmable matter systems are composed of robotic modules that can communicate with, and

selectively bond to, their neighbors. These system change their shape by either rearranging, adding,

or subtracting constituent modules.

Our research builds on previous work in self-reconfiguring robotics and robotic self-assembly,

both of which grew out of the modular robotics field which began with a paper presented at Interna-

tional Conference on Robotics and Automation in the Spring of 1988 by Toshio Fukuda et al. [28]

titled "Dynamically Reconfigurable Robotic System." In their paper, Fukuda et al. describe the

abstract concept of a reconfigurable robotic system that can assume different shapes. In that paper,

Fukuda and Nakagawa envisioned a robot system composed of different types of modules that can

combine to accomplish a variety of tasks. Over the past twenty years, modular robotics research

developed many facets: hardware design; planning and control algorithms; the trade-off between

hardware and algorithmic complexity; efficient simulation; and system integration.

2.1 Modular Robotics

Modular robots are collections of physically connected, electromechanically active modules that,

as a whole, form robotic systems that exhibit capabilities greater than those of the individual mod-

ules. Typically modular robots can change their shape or configuration in order to adapt to a variety

of different tasks. For example, a collection of modules could reconfigure from a closed chain that

rolls quickly over open ground to a legged robot that more easily traverses rough terrain. Modular

robots are typically touted for their adaptability, their fault-tolerance, and the relative simplicity of

the unit modules. Modular robotic systems can be described and classified on several axes using

a variety of properties. In what follows, we choose the traditional route of classifying modular

robotic systems by the geometry of the system: chain, lattice, truss, or free form. For a more

detailed history of the modular robotics field, consult [133, 36].
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2.1.1 Chain Systems

The defining characteristic of chain-type modular robot systems is the fact that the modules, when

connected to their neighbors, are arranged in a chain. These chains may be one-dimensional, or

two-dimensional, but three-dimensional chains are not as common. The fact that a chain-type

modular robot is two-dimensional, or even one-dimensional, does not mean that it cannot operate

in three dimensions. In fact, snake-like modular robots composed of segments with orthogonal

joints are quite common.

One of the first chain-type modular robotic systems was the Polypod system developed by

Yim [129, 130]. The Polypod system was composed of two types of modules: segments and

nodes. It could form a variety of shapes including rolling loops and hexapods, and it went on to

inspire many other chain-based systems. One was the CONRO system [11, 100, 12] in which each

module was composed of two orthogonal servo motors controlling each module's pitch and yaw.

Murata et al. developed the M-TRAN modular robotic system [76, 46, 61, 74] which has

undergone multiple revisions and improvements. In [46], Kamimura et al. employ a set of in-

terconnected, out of phase oscillators to achieve walking gaits in the M-TRAN system. Marbach

and Ijspeert improved upon the ability of systems like M-TRAN to generate gaits in real-time by

applying function optimization to their modular system, YaMoR [70]. Murata et al. added cameras

to the M-TRAN system so that a set of M-TRAN modules could separate, perform independent

tasks, and then rejoin into a larger structure [74].

The ATRON system [81, 45] was developed to improve upon the M-TRAN. Lund et al. wanted

to keep M-TRAN's ability to form dense lattices while taking advantage of the two orthogonal

degrees of freedom, (pitch and yaw), found in the CONRO system. The Superbot system [98] also

builds upon on the mechanical design of M-TRAN by adding an additional degree of rotational

freedom between the two existing rotation axes.

The PolyBot is chain-type modular robot [131, 135] with a single rotational degree of freedom.

PolyBot evolved into CKBot which has demonstrated the ability to reassemble itself after being

accidentally or intentionally destroyed [134]. The Molecube system [139], developed by Lipson et

al., is another example of a chain-type modular system with only one degree of freedom but still
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able to achieve interesting 3D configurations. Lipson et al. showed that a short chain of Molecube

modules, along with some free modules, can self-replicate.

Yim et al. designed another unique chain-type system named RATChET [123] which uses a

connected chain of inter-latching right angle tetrahedrons to form structures. Neighboring RATChET

modules latch together when the angle between them passes some critical value, and they unlatch

through the use of shape memory alloy (SMA) springs when heated beyond 70 degrees Celsius.

Interestingly, the RATChET modules possess no intelligence. Instead, they rely on an intelligent

external actuator which rotates to control one end of the dangling chain. One unique property of

the RATChET system is its relatively strength.

2.1.2 Lattice Systems

Lattice-type modular robot systems are collections of interconnected robotic modules in which

the units are situated at the intersection points of a two or three dimensional grid. (A ID lattice

system is simply a chain-type robot.) The main characteristic separating a lattice system from a

densely configured chain-type robot is the density of the interconnections between the modules.

In a lattice-type system, each module is typically connected to all of its neighbors. In a dense

chain-type system, two modules may be neighbors, but they will not be physically connected.

Additionally, lattice-type systems tend to be built with modules that contain no rotational de-

grees of freedom. While the modules in a lattice system typically have mechanisms which enable

the modules to move relative to, and bond with, their neighbors, they generally cannot bend them-

selves. In comparison, chain-type systems are often built from modules that contain one or more

rotational degrees of free so that the modules can flex like links in a chain. There is some overlap

between between the two types of system.

Chirikjian et al. developed one of the first lattice-based modular robotic systems [17, 16, 83]

in which the modules are deformable hexagons capable of bonding with their neighbors. Others,

such as Walter, Tsai, and Amato [118] further analyzed these hexagonal type systems to create

distributed motion planners capable of reconfiguring the system from one state to another.

Murata et al. were also early contributors to the development of lattice-based modular robotic
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systems with their development of a roughly hexagonal module capable of rolling around its neigh-

bors in two dimensions [75, 137]. Kurokawa et al. presented a three dimensional adaptation [60]

composed of cubes with six protruding arms capable of rotation. Yoshida et al. improved on

this system with a new design that used shape-memory alloy actuators to rotate one robot module

around the perimeter of a neighbor [136].

One of the simplest lattice systems is the the Digital Clay project [132] project. The system

was a set of completely passive modules that relied on the user to make changes to it topology. The

2.5cm rhombic dodecahedrons were able to sense and communicate with their neighbors in order

to create a virtual model of the physical arrangement of modules.

Rus et al. also explored the idea of 3D modules capable reconfiguration through a series of

latchings, rotations, and unlatchings with the Molecule system [54, 55, 56]. In [96, 97], Vona

and Rus describe a different type of deformable lattice system. The Crystal system is composed of

square modules able to expand and contract by a factor of two in the x-y plane. Suh et al. expanded

on the Crystal concept with the Telecubes [105] that could move in three dimensions by expanding

all six faces.

Chiang and Chirikjian analyzed how to perform motion planning in a lattice of rigid cubic

modules able to slide past each other [15]. The CHOBIE robot developed by Koseki [53] is able

to actually perform the sliding motion assumed by Chiang and Chirikjian in [15]. More recently,

An developed the EM-Cube system [3] which is also capable of sliding motion.

Another unique lattice is the I-Cube developed by Khosla et al. [114, 90]. The 3D I-Cube

system consists of passive cubes which are connected by active links with three rotational degrees

of freedom that are able to grab, reposition, and release the cubes. The 3D I-Cube system was an

improvement of the 2D system [42] developed by Hosokawa et al. for rearranging cubic modules

in a vertical plane.

Goldstein, Campbell, and Mowry initiated the Claytronics project by publishing several pa-

pers [37, 22] proposing lattice-based "claytronic atoms" or catoms. These vertically-oriented cylin-

drical robots, which were incapable of independent motion, used 24 electromagnets around their

perimeters to achieve rolling locomotion about their neighbors. Goldstein et al. envisioned a sys-
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tem in which millions of smaller catoms could form arbitrary shapes using a randomized algorithm

that avoided conveying a complete description of the shape to each module in the system.

The catoms continue to evolve. One of the newest instantiations [47] employs hollow cylinders

rolled from SiO2 rectangles patterned with aluminum electrodes. The authors hope that two of

these cylinders, when placed in close proximity with their axes aligned, will be able to rotate with

respect to one another using electrostatic forces. Specifically, the electrodes, (which reside on the

inside of each cylinder and are electrically isolated by the SiO2), will be charged so that they attract

and repel mirror charges on the neighboring cylinder in a way that causes rotation. Currently, the

system appears to be constrained to form 2D structures. The authors claim the completed system

will have a yield strength similar to that of plastic and that the modules will be able to transfer

power and communication signals capacitively from neighbor to neighbor.

The Claytronics project has proposed, but not yet demonstrated with hardware, the use of sub-

millimeter intelligent particles as sensing and replication devices [88]. In particular, Pillai et al.

present a theoretical 3D fax machine in which the object to be "faxed" is immersed in a container

of intelligent particles that sense and encode the object's dimensions. At the receiving end, these

same Claytronic particles decode the shape description sent by the transmitter and bond together

to replicate the original object. Unlike our approach, Pillai's approach is completely centralized

and relies on an external computer for computation.

White, Kopanski, and Lipson developed hardware and algorithms for several 2D stochastically-

driven self-assembling systems [121]. To form specific shapes, each module is provided with a rep-

resentation of the desired shape and decides, based on its location in the structure, whether to allow

other modules to bond to its faces. Lipson et al. extended their 2D system to 3D [122, 108, 109]

by using cubic modules suspended in turbulent fluid to achieve self-assembly and reconfiguration.

As the free modules circulate in the fluid, they pass by a growing structure of assembled modules.

When they come close enough, they are accreted onto the structure. The modules attract or re-

pel each other with fluid suction or positive pressure. Early versions of the system used modules

with interval values that could redirect these suction forces. More recently, Lipson's group has

worked to move the intelligence and actuation capabilities from the modules to the tank in which
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the modules circulate [113].

We developed the Miche system [34] consisting of 45mm cubic modules capable of mating

with their neighbors using mechanically switchable permanent magnets. Each module contains

three switchable magnets, each of which mated with a steel face on a neighboring module. Because

the connectors were gendered, any collection of modules had to be assembled by hand so that the

connectors were always oriented correctly, but the system was capable of self-disassembling to

form 3D structures. The Robot Pebbles are based, at least in principle, on the Miche modules.

One of the newest lattice-type modular robotics is an aerial system composed of identical,

hexagonal, single-rotor modules [82]. A group of modules may connect to form a flying platform

with an arbitrary arrangement of multiple rotors. In addition to the ability to fly, each module

contains wheels so that the system may self-reconfigure on the ground for the specific task at hand.

2.1.3 Truss Systems

Truss systems, as their name implies, are modular robotic systems in which the modules are nodes

and edges in a truss structure. Both the trusses and connectors may be active in such systems.

Unlike the lattice-based systems, truss-based systems do not need to operate on any regular lat-

tice. Most truss-based systems under development employ struts that expand or contract to achieve

structural deformation. One of the first such system to do so was Tetrobot [39]. The Odin system,

conceived by Lyder, Garcia, and Stoy [67, 68] consists of three physically different types of mod-

ules: active strut modules capable of changing their length; passive strut modules of fixed length;

and joint modules. The biologically inspired Morpho system [138] developed by Nagpal et al. is

similar to Odin. It also uses active links, passive links, and connector cubes.

2.1.4 Free-Form Systems

Free-form systems are able to aggregate modules in at least semi-arbitrary positions. One such

system is the Slimebot [101, 102]. The system consists of identical vertical cylindrical modules

that move on a horizontal plane. The perimeter of each module is covered by six gender-less hook

and loop patches used to bond with neighboring modules. These patches oscillate radially in and
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out from the center of the body. By controlling the frequency and phase of the oscillations between

neighbors, the system can achieve aggregate motion in a given direction.

Researchers are also developing algorithms for free-form systems. Funiak et al. developed

a localization algorithm [29] that is capable of localizing tens-of-thousands of irregularly packed

modules in 3D. Rubenstein, Shen, et al. developed a number of shape formation algorithms for

collections of two-dimensional modules. These algorithms allow an arbitrary-sized collection of

modules to form arbitrary scale-independent shapes [94, 95]. Once the shape is formed, modules

can be added to or removed from the system, and the system will reconfigure itself to incorpo-

rate the new modules. The resulting shape will grow or shrink, but its basic form will remain

unchanged. Recently, Rubenstein et al. developed a 1000-modules hardware platform on which to

deploy these algorithms [93].

2.2 Other Programmable Matter Systems

So far we have focused on the most common programmable matter systems: those composed

of robotics modules that rearrange themselves to form a variety of different shapes. Despite the

popularity of these modular systems, there are many other creative approaches. One interesting ap-

proach to programmable matter uses the concept of jamming to create trusses with programmable

stiffness [43]. By combining multiple trusses into a structure, the authors are able to change the

structure's shape and material properties. At a larger scale, the authors propose creating larger

"bags" of jammable material that can be formed into a specific shape and then made rigid.

Another alternative take on programmable matter is the paintable display [10]. The system

demonstrates a type of virtual programmable matter by using hundreds of arbitrarily placed pix-

els to form text and images in a distributed manner. The system lacks actuation ability, but it

demonstrates the realization of macro-scale "physical" properties from simple modules using local

communication and limited computation power.

Whitesides et al. also developed a system with programmable optical properties [107]. In

particular, the system employs a magnetic field to self-assemble a set of tiles whose surfaces are

diffraction gratings. By applying different magnetic fields, the authors can create different config-
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urations of the tiles and thus different optical patterns.

Researchers have also explored the use of folding to create a programmable matter systems [40,

4]. These systems use flexible wiring and shape memory alloy actuators embedded in composite

sheets to programmatically create origami-inspired shapes. By controlling which actuators are

energized, the system can form multiple different shapes.

2.3 Self-Assembling Systems

Self-assembling modular robotic systems are collection of modules that are capable of autonomously

coalescing and bonding with their neighbors to form a greater structure. The result is often robotic,

but it need not be. Whether a system is capable of self-assembling is independent of whether it

is free-form, a chain, a lattice, or a truss-based system. Almost all of aforementioned modular

robot systems rely on human intervention to assemble. In an attempt to automate the process

of creating intricate modular robotic systems, researchers have attempted to mimic and improve

upon natural self-assembling systems. Whitesides et al. investigated a wide variety of engineered

self-assembling systems [124, 125, 30].

Miyashita et al. performed a more theoretical analysis of self-assembly using pie-shaped pieces

to form complete circles [73] from pie-shaped pieces. In the process, they followed Hosokawa et

al.'s lead [41] and modeled the system as a chemical reaction. Shimizu and Suzuki developed a

system of passive modules capable of self-repair when placed on a vibrating table [103].

Computer scientists have also investigated theoretical aspects of self-assembly in the context

of 2D tiles which selectively bond with their neighbors to form simple well-defined shapes like

squares [92, 1, 2]. Each side of every tile in the system has an associated bonding strength. When

two tiles collide, they remain attached only if their cumulative bond strength exceeds a globally

defined system entropy. To form a specific shape, one must design a set of tiles with the appropriate

bonding strengths.

Klavins et al. worked to develop intelligent self-assembling systems that employ triangular

modules driven by oscillating fans on an air table to self-assemble different shapes [8]. The au-

thors employ knowledge of the module's local topology and internal module state so that each
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module decides, in a distributed fashion, when to maintain or break a connection with its immedi-

ate neighbors. Griffith et al., also worked with intelligent modules capable of selective bonding to

show that self-assembling systems may self-replicate [38].

Matarid et al. [44] presented rule-based approach to self-assembly termed transition rule sets.

In particular, they present a method that, given a goal structure, produces a set of rules shared

among all modules that govern when and where new modules are allowed to attach to the growing

structure. Zhang et al. [48] expanded on this work by optimizing the size of the rule sets used to

form a specific shape. Werfel [120] also applied the idea of a transition rule set when studying the

use of swarms to assemble complex structures from passive materials.

Other groups have attempted to make self-assembly more deterministic. The MEMS robots de-

veloped by Donald et al. [23, 24] consists of thin, (7-20pm), rectangular, (approximately 260pm x

60pm), scratch-drive devices capable of moving on an insulating substrate embedded with elec-

trodes. The authors used four of these robots to build larger composite structures. The Sitti group

has developed a similar system of micro-meter sized robots [85]. Instead of using a scratch drive

for locomotion, the robots are manipulated by external magnetic fields. The authors can electro-

statically clamp any number of robots to the stage on which they move. With all but one robot im-

mobilized, the remaining robot may be moved independently. The system naturally self-assembles

because the robots contain permanent magnets that attract their neighbors.

2.4 Simplifying Shape Formation by Self-Disassembly

The majority of existing self-assembly systems aim to form structures in one of two ways. Some

systems such as [73, 103, 92, 1, 2] use a collection of application specific differentiated modules,

that are only capable of assembling in a particular fashion to form a specific shape. In contrast,

other systems such as [8, 78, 121, 122, 108, 44, 48, 120] use completely generic modules with

more computation and communication ability embedded in each module. Both types of systems

aim to form complex shapes in a direct manner: as these structures grow from a single module,

new modules are only allowed to attach to the structure in specific locations.

We propose a new approach that eliminates many of the complexities of shape formation by
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active assembly. Our Smart Pebble system employs a set of distributed algorithms to perform two

discrete steps: 1) rely on stochastic forces to self-assemble a close-packed crystalline lattice of

modules and 2) use the process of self-disassembly to remove the extra material from this block

leaving behind the goal structure. By approaching shape formation in this manner, we hope to

speed up the entire process, eliminate any global information that must be distributed throughout

the system, and simplify the computing requirements of each module.

2.5 Simulators

In the process of developing our Smart Pebble system, we realized that we needed a way to test and

debug the high-level algorithms which controlled the shape formation process. Using the hardware

for development was too time consuming and difficult, so we created a simulator, named Sandbox,

that is discussed in Chapter 4. Before deciding to create our own simulator, we explored existing

alternatives. To better understand our reasons for creating Sandbox, we present details of many

existing simulators here.

There a number of off the self robotic simulators designed for multi-robot system. Microsoft

Robotics Developer Studio [72] and Webots [119] are two such systems that allow for high-level

simulation of traditional mobile robot platforms. The Player Project [31, 89] is another popular

system for high-level robotics simulations. The Player Project provides the Player network inter-

face that allows the simulated robots to execute on any networked machine. The Stage and Gazebo

components integrate with Player to simulate the world in which the robots exist, sense, and move.

Chen et al. have extended Gazebo to simulate the OpenRTM-aist software framework [14]. While

these systems are great for rapid simulation of traditional multi-robot systems, they lack the low-

level configurability necessary to accurately simulate many modular robotic systems.

Many research groups have created their own mobile robot simulators. One of the first graph-

ical simulators was the system created by Kurokawa et al. for the M-TRAN modular robot [62].

More recent simulators use a physics engine such as Open Dynamics Engine (ODE) [80] or

PhysX [87] to simulate the interaction of the simulated modules with their surrounding environ-

ment. Tolley et al. have developed one of the newest physics based simulators to model the

43



stochastic self-assembly of their fluidic cubes [110].

Christensen et al. have developed the Simulator for Self-Reconfigurable Robots (USSR) [18]

which they have used to simulate a number of common modular robotic systems. The USSR

system is a physics-based simulator that aims to be easily extensible to any modular robotic sys-

tem through the instantiation of a number of reusable components such as sensors and actuators.

USSR is written in Java, but the interfaces with low level control code written in C. Fitch and

Butler have also attempted to simulate a distributed robotic system containing millions of identical

modules [27].

Carnegie Mellon and Intel Research have jointly developed the Dynamic Physical Rendering

Simulator (DPRSim) [91, 25] to assist in simulating the Catom [88] modules. DPRSim simulates

the physics of the Catoms, but it appears to largely ignore the challenges and unpredictability of

low-level communication between neighboring modules. DPRSim, like the simulator we present

in this paper, devotes a separate thread to each simulated Catom. It appears that the CMU/Intel

team has improved the system so that it can be distributed across multiple host machines to allow

the simulation of systems with millions of modules [5].

Our Sandbox simulator builds on the best developments of all these pre-existing systems. Sand-

box is a low-overhead, easily reconfigurable, scalable simulator that allocates an independent pro-

cess for each module allowing the simulated nodes to be executed on many separate workstations.

Most important, the program used to simulate each module is compiled from the same source code

that runs on the hardware. The only discrepancies exist to allow for differences in the low level

hardware. A full discussion of the Sandbox simulator is contained in Chapter 4.

44



Chapter 3

Hardware

The unit modules developed in this thesis are 1cm 3 cubes called the Smart Pebbles. The Smart

Pebble was inspired by our previous work in self-disassembly demonstrated with the Miche hard-

ware [34]. The Miche modules packaged power, communication, computation, and programmable

connectors in an 85cm3 cube. The significant size reduction as we moved from the Miche to

Pebble modules required hardware innovations that provide solutions to inter-module power, com-

munication, and bonding challenges. Compared to the Miche modules, the Pebbles are 50 times

smaller by volume, (as shown in Figure 3-1), about 5 times stronger when normalized by module

weight, use gender-less connectors, and do not require recharging. Each module in the Pebble

system is a 12mm cube capable of autonomously communicating with and latching to four neigh-

boring modules in the same plane to form 2D structures. Each completed module weighs 4.Og

and may be rotated any one of four ways on the assembly plane and still mate with its neighbors.

The major functional components of each module are power regulation circuitry, a microprocessor,

and four electropermanent (EP) magnets, which are responsible for latching, power transfer, and

communication. We estimate that in quantity 50, each module costs $365.

Each Pebble module is formed by wrapping the flexible circuit labeled (a) in Figure 3-2 around

the brass frame labeled (b) that is investment casted around a 3D-printed positive model. The flex

circuit is a two layer design, and the entire stack-up including solder masks is 0.127mm (5mils)

thick. The recommended minimum bend radius of the flex circuit is 10 times the material thickness,
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Figure 3-1: The Pebble modules are 50 times smaller by volume, (12mm vs. 45mm per side), and
5 times stronger by weight.
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or 1.27mm. Therefore, we rounded the edges of the brass frame with 1.5mm radius fillets.

(e)

(d)
A(C)

(c)
I )-n

(a)

0.5 MM

10
mm

Ill ll i HH

F30
(e)

T l I I

40

il lii 1 III

50

II II ii 

Figure 3-2: Each module is composed of a flex circuit (a), a brass frame (b), four electropermanent
(EP) magnets (c), and an energy storage capacitor (d), which mounts to the bottom of tabs labeled
(e).

Figure 3-4 shows how the flexible circuit is stiffened with 0.254mm (10mils) of Kapton in

the six square areas corresponding to the six faces of the cube. In addition to helping flatten the

faces of the cube, these stiffeners provide a rigid surface which prevents the solder bonding the

components to their pads from breaking under stress.

The flex circuit is secured to the brass frame using a set of holes in the unstiffened portions

of the flex circuit that mate with nubs on the frame. These holes and nubs align the flex circuit

to the frame, and by soldering the flex circuit to the frame at these points, we form a secure bond

between the circuit and the frame. This scheme allows for quick and easy disassembly of a module

for service or debugging. Note, while a 3D system is theoretically possible, it would leave little

room for electronics inside each module. Additionally, the pole arrangement of the EP magnets
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would need to be made 8-way or axially symmetric.

3.1 Connection Mechanism

Figure 3-2 also shows two of the four custom designed EP magnets used in each module. At large

scale, electropermanent magnets have been used for decades. Knaian miniaturized the technology

to operate at millimeter-scales [51]. We have improved on the technology so that the EP magnets

can deliver power and provide communication in addition programmed connections. The EP mag-

nets are able to draw in other modules from a distance, mechanically hold modules together against

outside forces (with zero power dissipation), communicate data between modules, and transport

power from module to module. We used the jig shown in Figure 3-3 to align the EP magnets with

the flex circuit before soldering the EP magnets directly to pads on the flex circuit. When assem-

bled, the pole pieces of the EP magnets protrude slightly from the through the four sets of holes in

the module faces.

Figure 3-3: We used the jig shown here to align the EP magnets with flex circuit before they are
soldered together. The jig attempts to ensure that the poles of the EP magnets are centered with
the cutouts of each face and that the EP magnet pole pieces protrude slightly through the faces.
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3.1.1 Electropermanent Magnet Theory

Figure 3-4 shows a partially assembled EP magnet. Each EP magnet consists of rods of two

different types of permanent magnet materials, capped with soft-iron poles, and wrapped with a

copper coil. One of the permanent magnets is Neodymium-Iron-Boron (NdFeB), and the other is

Alnico V. Both of these materials have approximately the same remnant magnetization, about 1.2

Tesla, but very different coercivity; it takes about 100 times less applied magnetic field to switch

the Alnico magnet than the neodymium magnet.

((d)

(e) (k (h)

Figure 3-4: Each electropermanent (EP) magnet assembly is composed of two pole pieces (a,b)
which sandwich cylindrical Alnico (c) and NdFeB (d) magnets. The entire assembly is wrapped
with 80 turns of #40 AWG wire (e) and held together using epoxy (f) (which makes the Alnico
magnet appear larger than its NdFeB counterpart). The reservoir capacitor (g) used to energize the
EP magnet coils is soldered to the flex circuit (h) which wraps around and attaches to the brass
frame (i) with a set of nubs (j). Once mounted, the EP magnets protrude 0.25mm through the
stiffener (k).

The EP magnets are actuated as shown in Figure 3-5. A current pulse through the coil in the

positive direction (Figure 3-5(b)) switches the polarization of the Alnico magnet so it is aligned

with the polarization of the neodymium magnet. In this case, magnetic flux from both flows

through the soft iron poles and to the other ferromagnetic object, attracting it. The attraction

continues after the current in the coil is returned to zero (Figure 3-5(c)). We call this the "on"

state of the connector. A current pulse through the coil in the negative direction (Figure 3-5(d))
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switches the polarization of the Alnico magnet so it is opposite the polarization of the neodymium

magnet. The polarization of the neodymium magnet is unchanged because it has a much larger

coercivity. With the two magnets having opposite polarization, magnetic flux circulates inside the

device but does not leave the poles, and thus does not exert force on the other connector or external

ferromagnetic objects. Once again, this flux pattern continues after the current is returned to zero

(Figure 3-5(e)). We call this the "off" state of the connector.

To understand the origin of bi-stability in an EP magnet, it is helpful to examine the B/H

(magnetic flux density vs. magnetic field intensity) plot shown in Figure 3-6. This is derived by

adding the B/H plots for Alnico V and NdFeB, since the two magnets have the same area and

same length, and appear in parallel in the magnetic circuit. Passing a current through the coil

imposes a magnetic field, H, across the materials. The resulting magnetic flux density, B, passes

through the air gap between the modules giving rise to an attractive force. While a positive current

is flowing through the coil, it induces a positive magnetic field, H, saturating the Alnico magnet

and driving the system to the point marked (a) in Figure 3-6. When that current is removed, the

system relaxes back to a new equilibrium, labeled (b), with positive flux but no field. This is the

"on" state. Momentarily passing a negative current through the coil saturates the Alnico magnet to

the negative field side driving the system out to point (c) in Figure 3-6. Once the negative current

is removed, the system relaxes to the zero field, zero flux "off" state marked by point (d). If the

magnets are pulled apart while on, a demagnetizing field appears, reducing the flux and resultant

force.

The EP magnets used here are low average power but high peak power devices. Our system uses

a 20V, 5A, 300ps pulse provided by a 150pF capacitor in each module to switch their state. The

time-averaged power devoted to magnetic attraction is many orders of magnitude lower than would

be required using equivalent electromagnets. We calculate that an equivalent electromagnet would

consume 1OW continuously. The EP magnet consumes 100W over 300ps when switching (on or

off). Therefore, so long as the EP magnet is switched less than once every 3ms, the EP magnet will

use lower time-averaged power. For more information about the EP magnets, including detailed

design guidelines and a quantitative model, see [51].
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Figure 3-5: Here we show a series of snapshots that capture the process of activating and then
deactivating an EP magnet. Each snapshot, labeled (a) through (e), captures the applied current,
operating point on the magnetic flux-field curve, and flux flow path.
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Figure 3-6: The hysteresis curve for the EP magnet assembly shows the origin of the magnetic
bi-stability in the device. The current pulse which turns the EP magnet on drives the system to
the point labeled (a). Once the current pulse is removed, the system settles to point (b) where the
net remnant flux results in the assembly attracting nearby ferromagnetic materials. To turn the EP
magnet off, a current pulse of opposite polarity drives the system to point (c). Once that current
pulse is removed, the system settles to point (d) where there is no net remnant flux. As a result, the
EP magnet does not attract nearby ferromagnetic materials and is off.

3.1.2 Electropermanent Magnet Construction

The magnetic rods and pole pieces were custom fabricated by BJA Magnetics Inc. The magnetic

rods are grade N40SH NdFeB, and cast Alnico 5, both 1.587mm diameter and 3.175mm long,

magnetized axially. The magnetic rods were fabricated by cylindrical grinding. The magnetic

rods were coated with 5pm of Parylene by the Vitek Research Corporation. The pole pieces are

3.175mm by 2.54mm by 1.27mm blocks of grade ASTM-A848 soft magnetic iron, with a diagonal

notch cut off to allow clearance when four are placed inside each module. The pole pieces were

fabricated by wire EDM, and chromate coated to slow corrosion and facilitate solderability. We

assembled the rods and pole pieces with tweezers under magnification, using the mounting plate

shown in Figure 3-7 to hold the pole pieces and magnetic rods in position while we glued them

together. The rods are glued to the pole pieces using Loctite Hysol E-60HP 60-minute work time

epoxy (Henkel Corporation). After assembly, we ensured that the two pole faces were co-planar by

rubbing the assembly against a 320 grit aluminum-oxide oil-filled abrasive file (McMaster-Carr).

Then, we wound an 80-turn coil around the magnetic rods using #40 AWG magnet wire (MWS

Wire Industries). For more details about the fabrication process, see Knaian's thesis [51].
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Figure 3-7: We used this jig to hold the magnetic rods in alignment with the pole pieces while
applying epoxy to form the basic structure of the EP magnets.

3.2 Power Electronics

The four EP magnets in each module are driven by a set of 2mm square MOSFETs which are capa-

ble of handling the 5A required to switch the EP magnets (Fairchild Semiconductor FDMA2002NZ

and FDMA1027P). In order to reduce the component count, we did not dedicate a full H-bridge

to each EP magnet coil. There was just not enough space available inside each module to do so.

Instead, each EP magnet has one dedicated half-bridge connected to one side of its coil. We call

these the "face-specific" drivers. The other sides of the four coils are tied together and serviced by

a single "common" half-bridge as shown in Figure 3-8. Using this configuration, we are able to

pass current in both directions through each of the EP magnet coils, one coil at a time.

The two control lines for the common half-bridge are driven by the microcontroller's timer

output compare pins. Using the output compare pins we can precisely control the duration and

spacing of the current pulses flowing through the EP magnet coils.
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PWM Signal
(driven by timer oulput

cornPre channel)

Figure 3-8: The four EP magnets are driven by a set of four face-specific half-bridges and one
common half-bridge in order to reduce the modules' component count and circuit area. Ccoup
allows the processor to detect communication pulses from neighboring modules. Except for four
level shifters used to drive the PMOS devices, a voltage regulator, LED, and the processor, this is
essentially the entirety of the electronics in each module.
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3.3 Processors

Each module is controlled by an Atmel ATmega328 processor which offers 32KB of program

memory and 2KB of RAM in a 5mm square lead-less package. To minimize the external com-

ponent count, we employ the processor's internal 8MHz RC oscillator to clock the processor. We

routed the processor's SPI and debugWire pins to pads on the outside of each module. We con-

structed a test fixture (see Figure 3-14) to contact these pads with spring-loaded pogo-pins allowing

us to communicate with, reprogram, and debug the modules. When loaded with the shape dupli-

cation algorithm discussed in Section 7, we come close to completely filling both the processor's

flash and RAM.

3.4 Bonding

In each module, the microprocessor sends control signals to the power electronics which allow the

modules to mechanically bond with their neighbors. To characterize the strength of these bonds,

we performed a number of pull-test experiments with two neighboring modules [33]. One module

was mounted on a linear motion stage, and the other on an air bearing, with a load cell measuring

the force along the air bearing's direction of motion. The experimental setup is shown in Figure 3-

9. For each pull test trial, the module attached to the motion stage is connected to an external power

source through an attached magnetic connector. The linear stage drives the modules together, and

when they come into contact, the second module powers up. Once both modules have power, they

exchange messages and energize their EP magnets. The duration and timing of these energizing

pulses controls the strength of the resulting connection. Once the modules are bonded, we measure

the strength of their connection by driving the motion stage so that it pulls the modules apart while

recording the force exerted on the load cell. The force on the load cell grows until it reaches the

connector's bonding strength at which point the two module snap apart.

The normal bonding force resulting from three different latching waveforms is shown in Fig-

ure 3-10. The average holding force, (over nine tests), for two asynchronous pulses, (one from

each magnet), was 2.16N. When both magnets were pulsed synchronously, the resulting force was
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Figure 3-9: To characterize the bond strength between neighboring modules, we fixed one Pebble
module to a linear motion stage (a) and another to a linear air bearing (b). The opposite side of
the air bearing was attached to a load cell (c) which measured the force between the two modules.
Once the two modules were bonded, the motion stage pulled its module away from the other while
we recorded the force exerted on the load cell.

2.06N (averaged over 15 tests). When both magnets were pulsed synchronously twice, the average

peak force was 3.18N (averaged over 4 tests). These results make physical sense. Synchronous

pulses produce a stronger magnetic field, and repeated application of this field drives the EP magnet

farther into the first quadrant along its B-H curve resulting in a larger remnant flux.

In addition to the normal force required to separate two modules, we measured the shear force

between two modules using the same fixture. It was difficult to separate the effects of friction

from the shear magnetic force. Five shear tests yielded forces of 0.22-0.83N with an average of

0.69N. Finally, we measured the remnant normal force after the magnets had been switched off to

determine whether unused modules in an ensemble would easily separate from the goal shape. In

ten trials, we were unable to measure any remnant force holding the modules together after their

EP magnets had been deactivated. (The measurement noise of the force sensor is zero-mean with

a standard deviation of 0.0068N.) We can use the fact that a magnetically suspended EP magnet

naturally falls off of its mating surface when deactivated to upper-bound the remnant force by

0.002N (the force due to gravity on a single EP magnet).

Returning to the normal force pull test results in Figure 3-10, all three traces show an initial
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Figure 3-10: The latching force between modules is strongest when each module energizes its
magnet assembly with two synchronized latching pulses spaced far enough apart that the 150pF
reservoir capacitors have time to recharge [33].

linear rise in force with displacement, corresponding to the elastic deformation of the modules,

(and the load cell spring), as they are pulled apart before the magnetic connectors separate. A

peak is reached, and then the LED in the load-cell-side module extinguishes, corresponding to

separation of at least one pole of the connectors, and the force decreases as the air gap distance

between the magnets increases.

The distance over which the connectors remain in contact as the stage displacement increases,

(the distance from 0 displacement until the peak force), provides a way to measure the tolerance to

non-uniformity and misalignment in a large collection of modules. A large network of modules is

mechanically over-constrained, so one might be concerned about the ability to get reliable power

transmission between modules, which requires continuous contact. From the pull tests, one can

see that a displacement between 0.25-0.35mm (2-3% of the total module size) is possible before

separation, allowing a large network of modules to achieve precision connector alignment through

elastic averaging.

In the single synchronized pulse experiments, (red dash-dot line in Figure 3-10), we observed
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a plateau in force following the peak, before the rapid decrease. Observation was difficult, but it

appeared that the plateau corresponds to a case where one pole of the connectors is still in contact

while the other is separated. After separation, there is a non-continuous jump in the data down to a

lower force. We suspect this is because, after the connectors are pulled apart, and the contact force

has been removed from the system, the magnet pulls away and a new static equilibrium between

the magnetic force and load cell stiffness is reached.

Figure 3-11 illustrates the coil current and voltage during a single synchronized pulse. Looking

at the voltage and current data, we can see that the current reaches a momentary peak and then

decreases during the pulse, indicating that the magnetic material is not saturating during the pulse,

but that the peak current is instead limited by the discharge of the capacitor. This was the inspiration

for the double synchronous pulse, (which energizes the coils a second time after waiting for the

capacitor to recharge), and as Figure 3-10 shows, it does reach a higher force level. The force

measured for the double synchronous pulse is 72% of the 4.4N figure measured in [51] for a single

magnet being pulled away from an iron plate, in which a stiff power supply was used and full

saturation of the magnetic material achieved.

In addition to testing the modules' ability to remain connected, we wanted to verify their ability

to draw in and latch with other modules in close proximity. We performed two different experi-

ments. In the first, one module had its magnets off while the other module had its magnets on.

One module was fixed while the other was free to move on the non-sticky side of cellophane tape.

The modules were aligned and their faces parallel. In 30 trials, the modules always successfully at-

tracted and latched when their initial separation was 2.48mm. The second experiment was identical

except that the magnets in both modules were energized. In 28 of 30 trials, the two modules latched

from an initial separation of 4.31mm. These experiments encourage the idea that a collection of

modules will be able to successfully self-assemble in the presence of stochastic environmental

forces.
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Figure 3-11: The EP magnet coil current peaks and then falls during a 300ps latching pulse indi-
cating that the magnets are not fully saturated. The current does not reach a plateau because the
capacitor discharges too quickly [33]. (Ignore the short switching transients in the current data.)

3.5 Communication

The EP magnets form an inductive communication channel between neighboring modules. In

short, when two EP magnets are in contact, they behave just like a 1:1 isolation transformer. We

utilize this fact to transfer data between modules without affecting their ability to latch together.

All inter-module communication occurs at 9600bps using a series of lYs magnetic pulses induced

by the coil of one EP magnet and sensed by the coil of the neighboring EP magnet assembly. The

presence of a single lys pulse during a bit period signifies a logical '1' while the lack of any pulse

signals a '0'. Neighboring modules transfer data using pulses of the same polarity as the pulses

used to latch the EP magnets. As a result, there is no risk of the latching strength decreasing over

time during intensive communication.

Because the four EP magnets share a common half-bridge (see Figure 3-8), a module is unable

to discriminate between incoming messages if it is listening for messages on multiple faces. To

select the face on which the module is listening, the face-specific high-side MOSFET of one face

is turned on while the three others coils are left floating. Additionally, the common side of all four
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EP magnet coils is left floating, but it is capacitively coupled by Ccoup to the processor's analog

input. The internal pull-resistor (Rpu) on this analog input is enabled. Internally, the processor

routes this signal to the inverting input of its internal analog comparator. Figure 3-8 shows the

components used when receiving a message.

The non-inverting input of the processor's comparator is driven by a DC voltage that we gen-

erate by low-pass filtering the output of another of the processor's timer channels. Specifically, we

employ one of the processor's output compare channels to generate a variable duty cycle square

wave. Figure 3-8 shows hows this square wave is filtered by a passive first-order RC filter (RFilter

and CFilter) to produce DC level which varies with duty cycle.

The module sending data to a neighbor does so by applying a +20V pulse between the face-

specific side and the common side of one of its EP magnet coils. This pulse will induce a current

flow from the face-specific side to the common side. Because the EP magnets in the neighboring

modules are oriented north-to-south, their coils are effectively wrapped in the opposite directions.

Therefore, the current induced in the receiving module's coil will flow from the common side

to face-specific side. The current drawn from the common side will be be sourced by the AC

coupling capacitor. Figure 3-12 illustrates the negative-going voltage spike that is induced across

the capacitor. Because the pull-up is enabled on analog input connected to this capacitor, the

inverting input of the analog comparator will see a nominal voltage of VCC with short negative

excursions corresponding to the magnetizing pulses sent by the neighboring module. When these

pulses drop below the threshold voltage driving the non-inverting input, the comparator's output

will transition from low to high. These edges drive a timer input capture channel so that they may

be carefully measured and interpreted as inter-module messages.

The threshold voltage applied to the non-inverting must be selected carefully. Figure 3-12 illus-

trates that there is a significant amount of cross-talk between EP magnets on different faces. Even

if a module is not explicitly listening for transmissions from a given neighbor, if that neighbor is

transmitting, it will still induce negative-going pulses at the inverting input to the listening mod-

ule's internal comparator. While these pulses are smaller in magnitude that the pulses that result

from a neighbor attached to the face on which the receiving module is actively listening, they are
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Figure 3-12: The receiving EP magnet in a pair of Pebble modules sees negative-going pulses at

the input to its internal comparator. The threshold voltage against which these pulses are compared
is critical because there is significant cross-talk between all faces. In particular, (a) shows that a
pulse resulting from a face to which the module is not currently listening barely remains above
the threshold. In comparison, (b) shows a pulses from the face on which the module is actively
listening. It does cross the threshold, but only by 100mV.

not trivial. We have found that a threshold voltage of 4.05V works well in practice to differentiate

the two pulse magnitudes.

3.6 Power

The Pebble modules do not contain their own power sources. Instead, electrical power is dis-

tributed from one or more centralized sources and then transferred from one module to the next.

In practice, we use the spring-loaded pogo pins of the test fixture shown in Figure 3-14 to sup-

ply 20V to what we term the root module. From the root, power is transferred between units via

Ohmic conduction of DC power through the soft magnetic poles of the connectors. Each module

contributes a resistance of 0.3Q. Given that the quiescent current of each module is 15mA, each

module in a chain results in a voltage drop of 4.5mV. In theory, a 20V source could power a chain

of 3266 modules before the voltage supplied to the trailing module falls below the dropout voltage

of the regulator used to power the microprocessor. In practice, the ability of the EP magnets to

change state would be compromised after several hundred modules. Typical configurations will

consist of more than a single chain of modules thereby providing many parallel electrical paths

that would noticeably reduce the electrical resistance between any two points.
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Within each module, the EP magnets are mounted to the flex circuit, which serves as an elastic

mount, allowing slight bending as needed for the two magnetic connectors to achieve intimate

contact. When one magnet is turned on, it attracts any nearby neighbor; contact is achieved; the

adjacent module receives power, starts its program; and the two modules communicate to drive a

series of synchronized pulses through their magnets to bond more strongly. All of the magnetic

materials used in the connector are good conductors of electricity, so it was necessary to coat the

rods of Alnico and NdFeB separating the two poles with Parylene to electrically isolate the two

poles.

Each module contains a 150pF tantalum low equivalent series resistance, (low ESR), reservoir

capacitor. These capacitors, one of which is labeled (d) in Figure 3-2, are responsible for sourcing

the high-current demands of the EP magnets when they are switching on and off. These capacitors

fill the interior of each module and can only be installed once the flex circuit is partially folded

around the brass frame. In particular, the capacitor is soldered by its ends to the bottoms of two

tabs labeled (e) in Figure 3-2 so that it floats, suspended, in the interior of the module.

The connectors on the four mating sides of the module are identical, and placed so that the

magnetic north is always on the right (when viewing the face head-on), and the magnetic south is

always on the left. Regardless of their rotations about a vector orthogonal to the assembly plane,

when two modules are placed together, the magnets will align north-to-south. Internal to each

module, all of the north poles of the EP magnets are tied together in one electrical net, and all

of the south poles are connected to another. Therefore, in a chain of modules, the north pole net

will alternate between serving as the electrical ground and the 20V rail. This is illustrated by

Figure 3-13.

In a large network of modules, every circular path back to the same module passes through

an even number of connector pairs, so there is no arrangement than can result in a short circuit.

Internally, a bridge rectifier is used to produce a voltage with known polarity from the unknown

polarity present on the north and south pole nets. As a result, the modules are four-way rotation

symmetric.

Additionally, a bridge rectifier inside each module allows for a module to be flipped upside
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Figure 3-13: In a lattice of Pebble modules, neighboring modules alternate which of their magnetic
poles (labeled N/S) serve as the 20V rail (red) or electrical ground (blue). The unknown polarity is
converted to a known polarity using a bridge rectifier, and then a linear regulator is used to produce
5V to drive the module's processor.

down without affecting either the underlying electrical grid that it forms with its neighbors The

main problem associated with inverting a module is that its EP magnets will begin to repel the

neighboring modules instead of attract them. This is because the magnets' poles will align north-

to-north and south-to-south instead of north-to-south.

There are many advantages to replacing the batteries typically found in robotic systems with

capacitors. Primarily, we are able to decrease both the size and complexity of the modules. Not

only are batteries significantly larger than capacitors, they require additional protection and charg-

ing circuitry in addition to a step-up converter to produce 20V for the EP magnets. Second, by

eliminated batteries, which are short-lived with respect to other electronic components, we extend

the potential lifetime of the modules. Additionally, the lithium-polymer batteries typically used to

robotic systems are more toxic than other electronics, and can explode or catch fire if not handled

with care. Finally, we eliminate the need to recharge the modules which can become a significant

inconvenience as the number of modules grows into the millions.

One of the smallest lithium-polymer batteries available supplies 3.7V, has a capacity of 170mA,

but occupies 2500 cubic millimeters[6]. To fit such a battery into our modules, the modules could

be no smaller than 25mm per side. The 100yF capacitor in our modules is rated for 20V and only

consumes 130 cubic millimeters. As a result, our modules are only 12mm per side. By using a
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capacitor rated for 20V, the same voltage used to energize the EP magnets, we eliminate the need

for a step-up voltage converter. Such a converter would be necessary if we were using any less

than five lithium-polymer cells connected in series. By avoid lithium-polymer batteries, we also

eliminate the need for the charging and protection ICs that typically accompany them. The only

power conditioning IC present in the modules is a simple linear regulator that produces 5V to

supply the microprocessor.

If, during the course of additional development, we find that the system must be untethered

from all power sources, we could create passive battery modules that we mixed in with the active

modules described here. These battery modules would be larger than the active modules but could

be fabricated with the connector connector spacing.

3.7 Test Fixture

We have developed a test fixture which we use when running hardware experiments with the Peb-

bles system. It provides a method to supply what we term the root node with power, and it provides

a communication link between the root and the user's personal computer. The test fixture and the

mating pads on a Pebble module are shown in Figure 3-14. To communicate with and power the

root, the test fixture employs seven spring-loaded pogo pins that protrude through an assembly

platform constructed from laser-cut acrylic. Two of the seven connections provide 20V to the root

module. Three provide standard the standard SPI bus signals (MOSI, MISO, and SCLK). One is

connected to the processor's reset pin, which also serves as the debugWIRE interface, and the final

connection is the signal ground for the two communication interfaces.

The test fixture itself contains a second Atmel processor that serves as a communication gate-

way. It communicates with the attached module using its SPI interface. The test fixture is the slave,

and the Pebble is the master in this pairing. The test fixture takes whatever data it receives from the

Pebble and translates it to a low voltage RS-232 serial data stream that it sends to an FTDI serial

to USB converter. When attached to the user's PC, the USB interface appears as a serial port. The

user can send data back to the root module through the same chain of interfaces.
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Figure 3-14: Each Pebble module has a set of seven electrical pads (a) on the outside of its bottom
face. These pads mate with the spring-loaded pogo pins in a test fixture (b) which provides power
and a communication link to the user's PC. The plunger (c) is used to hold the module in contact
with the pogo pins.
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3.8 3D Modules

The current generation of Smart Pebbles is only able to operate in the plane. Furthermore, the

Pebbles cannot be flipped upside down. If they are, the EP magnets, when activated, change from

attracting to repelling. To expand the number of practical applications of the system, it needs

to be able to operate in three dimensions. We see three different approaches to achieving a 3D

programmable matter systems.

The first option is the obvious solution: place EP magnets on all six faces of the Pebbles making

them invariant to any 90 degree rotation. This solution provides the greatest flexibility and highest

degree of redundancy when assembling the modules into a 3D structure.

The six-connector solution is not without drawbacks. The flex circuits in the current version

of the Pebbles are already severely space limited. By adding two additional EP magnets, we

would eliminate the area currently dedicated to the processor and power conditioning circuitry.

(The additional EP magnet would also require additional drivers further increasing the component

density.) The EP magnets are large components with respect to the size of the flex circuit and must

be placed in the center of each face. As a result, they subdivide the remaining flex circuit area into

many small parcels that are difficult to utilize for components other than surface mount resistors

and capacitors. This awkward division of flex circuit area would make it difficult to utilize an ASIC

that combined all of the circuitry into one IC. One way to avoid this problem may be to modify

the design of the flex circuit to create an additional "floating tab" that occupies the middle of the

module and is large enough to contain the ASIC.

The second problem with placing EP magnet connectors on all six faces is that the connectors

would need to be redesigned. Currently, the connectors are only 2-way symmetric, but they would

need to be 8-way or axially symmetric in the 3D system. Figure 3-15 shows a cross-section of one

possible design of an axially symmetric EP magnet.

An alternative to employing six active faces in each Pebble is to create two or three distinct

types of Pebbles, each capable of bonding with neighbors in separate planes as shown in Figure 3-

16 One can think of this strategy as forming a structure as a stack of unbonded layers and then

bonding the neighboring layers together with special "out of plane" Pebbles. We could continue
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Figure 3-15: An axially symmetric EP magnet could be created by placing two half round magnets
(a,b) next to each other to form a core than is then wound with a coil (c) and placed inside of
a ferromagnetic cup (d). A small cap (e) is attached to the exposed end of the magnetic core to
prevent fringing fields from giving rise to attractive forces when the EP magnet is deactivated.
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using our current set of Pebbles for bonding in the X-Y plane, but we would then design two new

types of Pebbles (still with just four connectors) capable of bonding in the X-Z and Y-Z planes.

Starting with a sheet of X-Y type Pebbles, we could replace some of the modules with X-Z and

Y-Z modules. On top of each of these new Pebbles we would place another X-Z or Y-Z module,

respectively. Then, the remainder of the second layer could be filled with the standard X-Y Pebbles.

0 0

Figure 3-16: By using distinct types of Pebbles capable of bonding in either the X-Y, X-Z, or Y-Z
planes, we can create 3D structures using only four connectors per module.

For a large structure containing an equal proportion of all three types of modules, there will,

on average, be one third of neighboring faces which are not connected. In comparison to a system

in which there are EP magnets on all six faces, this will weaken the structure and limit the com-

munication pathways through it. As with the rotation invariant system, the connectors will need

to include additional degrees of symmetry because stochastic forces will ensure that the modules

touch in every possible orientation.

3.9 Miniaturization

If we want to continue to shrink the Smart Pebble modules so that they truly become Smart Sand,

we face many engineering challenges. We must miniaturize both the inter-module connectors and

68



the modules themselves. We want our miniaturized modules to be three-dimensional particles

that are able to form three-dimensional macro-scale objects. There are many microfabrication

technologies under development with potential to help miniaturize the Smart Pebbles. Despite

the variety of options, there are few, if any, automated processes that could fabricate Smart Sand

without a large design effort. Many cutting edge microfabrication technologies are are focused

on just a single aspect of what will need to be a larger multi-step integrated fabrication process.

Integrating these individual technologies into a procedure that is able produce a million grains of

Smart Sand will require significant effort.

3.9.1 Connector Technologies

In miniaturizing the connectors, there are good reasons for continuing to use EP magnets instead

of competing options. Primarily, EP magnets consume minimal power, are simple to control, and

exert forces that scales with their footprint area [51]. Wire-wound 0402 inductors are already

fabricated in huge quantities. These surface mount devices are roughly Imm long, 0.6mm wide,

and 0.6mm tall. Smaller coils (0.5mm long and 0.2mm in diameter) are also possible [7].

In what follows, we compare EP magnets with several alternatives. Mechanical connectors are

still the most popular bonding mechanism for modular robots, and they are one potential alternative

to EP magnets. At scales larger than the Smart Pebbles, mechanical connectors provide favorable

properties such as large bonding forces, fully constrained mates, and favorable strength to weight

ratios. If we attempt to scale traditional mechanical latches down to the millimeter-scale, they will

become increasingly difficult to fabricate and relatively fragile. Additionally, mechanical latches

require precise alignment that is difficult to achieve at any scale.

Traditional electromagnets are another connector option. Compared to EP magnets, electo-

magnets are simpler to construct and control. Instead of several types of magnetic material, elec-

tromagnets can be built from a coil wrapped around a single piece of iron or magnetic steel. Such

a device is on and attractive when the coil is energized and off otherwise. The most compelling

reason to avoid electromagnets is their large power consumption. Consider an electromagnet with

dimensions and holding force equivalent to EP magnets used in the Smart Pebbles. It is only a
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matter of milliseconds before it is more efficient to use an EP magnet than to keep an electromag-

net energized [51]. As we continue to shrink the Smart Pebbles, power dissipation will become

increasingly important. In densely packed 3D structures in particular, the modules must dissipate

a minimal amount of energy so that resultant heat does not destroy or incapacitate the system.

As a compromise between electromagnets and the EP magnet design that we present above, it

is possible to completely remove the high coercivity NdFeB magnetic rod from our design. The

remaining Alnico rod can be enlarged to fill the resulting void, or the whole structure could be

miniaturized. The resulting device would still be an electropermanent magnet because once the

Alnico is magnetized, no additional energy is needed to maintain the system's state. The main

advantage to this approach is that it can be utilized to achieve a continuum of bonding forces [71].

This approach could also potentially simplify the EP magnet assembly process because in practice

it may be easier to wrap the energizing coil around a single component than the two different

materials that we currently use.

The disadvantage to the Alnico-only EP magnet is the control mechanism. Instead of driving

the Alnico magnet to the two extremes of its B-H hysteresis curve, the controller would need to be

capable of driving the magnet to its origin where the remnant magnetic flux is zero. Typically, this

requires multiple pulses of alternating polarity that slowly step the magnet's flux closer to zero. Not

only will this approach require more precise control over the amount of energy delivered with each

pulse, it may require a feedback mechanism as well. Finally, it is worth noting that this process

of driving the Alnico's flux to zero will likely require more energy than the current approach of

simply reversing its polarity.

Electrostatic connectors also pose an alternative to EP magnets. Electrostatic connectors func-

tion by applying a voltage between two insulated conducting plates. The opposite polarities attract

and draw the plates together closing the air gap in between. The advantage of electrostatic connec-

tors is that they are simple to fabricate and, like EP magnets, dissipate no static power (except what

is need to compensate for any leakage current). Karagozler et al. have developed a millimeter-scale

modular robotic system that attempts to use electrostatics for locomotion by plating aluminum

electrodes onto a SiO 2 cylinder [47]. Despite their potential, electrostatic connectors have one
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important drawback: they require high potential voltages and small air gaps to exert forces compa-

rable to EP magnets of the same size. The voltages required can often be several hundred volts [47].

Knaian performed an analysis comparing electrostatic and EP magnet connectors assuming that the

footprint and air gap of the two connection mechanisms was the same [51]. He determined that,

for connectors ranging in size from hundreds of micrometers to many centimeters, the voltage re-

quired for the electrostatic connector to rival the holding force of the equivalent EP magnet would

always exceed the breakdown voltage of the air gap. Consequently, for a given footprint area and

air gap, the EP magnet connector will always be stronger than a electrostatic connector. This result

does not mean that electrostatic connectors should be abandoned. They are mechanically robust,

easy to fabricate, weight less than their EP magnet counterparts, and, ignoring the high voltages

required, are easy to control.

There are also other, often biologically inspired, connection mechanisms that may be viable

replacements for EP magnets as well. Most of these dry adhesive approaches take their inspiration

from geckos that that climb on vertical and inverted surfaces. The connectors operate using van

der Waals forces and generally aim to create patches of high surface area, fiber-like structures with

a large degree of nano-scale compliance. This compliance results in a maximal amount of contact

between the connector and an opposing surface thereby maximizing the number of inter-molecular

interactions and the resulting bonding force.

Before we can employ these dry adhesives as inter-module connectors, we need to ensure that

they can be switched on and off. In one approach, researchers fabricated nickel paddles whose

faces were coated with polymer nanorods and whose movements were controlled using a magnetic

field [79]. By default, the connector was active and the faces of the paddles were oriented parallel

to some opposing bonding surface. Because the nanorods were sandwiched between the paddles

and the bonding surface, the van der Waals forces were strong. The resulting pressure was 14Pa.

When a magnetic field was applied, the paddles twisted about their long axes, turning their nanorod

coated faces away from the bonding surface. In this configuration, the bonding pressure exerted

was only 0.37Pa.

In another approach, researchers molded flexible sheet of microfibers and attached them to
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a backing plate with variable stiffness [57]. To control the bonding force of their material, the

researchers formed a bond between the fibers and the rounded tip of a glass rod while the backing

plate was soft. Then they stiffened the backing plate. This resulted in a pull pressure that was

much greater than what resulted when the backing was left in its flexible state.

3.9.2 Unit Module Fabrication

The current approach to modular fabrication involves wrapping a flexible printed circuit board

around an investment casted brass frame. The flexible PCB is then manually held in place while

solder connections are formed to hold the flex circuit to the frame. This approach is cumbersome,

time consuming, and unlikely to scale well to smaller dimensions for many reasons.

We are currently pushing the resolution limits of investment casting. Other technologies for

fabricating metal frames do exist. Whitesides et al. have demonstrated the assembly of 3D

millimeter-scale metal trusses produced by folding 2D electroplated nickel forms [9]. Two-photon

photopolymerization is way to make even smaller 3D structures that have nano-scale resolution.

The process uses a precisely focused laser to polymerize, and thereby solidify, liquid monomer.

The polymerization only occurs in a small volume where the laser intensity surpasses a non-linear

threshold. The newest implementations can create incredibly intricate 3D structures [20]. Struc-

tures created using 2-photon photopolymerization can also be used as scaffolding and coated with

substances like Parylene [59].

Neither the metallic or polymer-based frames are electrically active. We will need to attach

connectors, communication, and processing components. One possibility is to continue wrapping

an active, intelligent skin around the frames. Instead of being an polyamide-based flexible printed

circuit, the skin could be formed from SiO2 [47], SU-8 [99], or SiN [117], for example. The

flexures between the faces could be fabricated from gold [99] or SiN [117].

Once the frame and skin have been fabricated, they must be assembled. Automated pick and

place machines already handle 01005 surface mount components which are only 0.4mm by 0.2mm.

The same automation technology could be applied to align the frames onto a panel of unfolded

skins. Many options exist to automate the folding of the skins around the frames. Researchers
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have used internal stresses [47], electron beams [128], surface tension [127], capillary forces [117],

Lorentz forces [99], and even biological cells [58] to fold flat sheets into three-dimensional struc-

tures. Simple mechanical latches, electroplating, or laser welding could be used to permanently

anchor the skin to each frame.

There are other alternatives to folding active skins around passive frames. Wood et al. have

developed a "pop-up book" technology that enables the fabrication of complex three-dimensional

objects from two-dimensional sheets [126]. The process relies on the precise alignment and bond-

ing of many intricately cut layers of carbon fiber, adhesive, and polyamide. After bonding, the part

is then singulated from the larger composite sheet and unfolded. The resulting three-dimensional

structures can display exceptionally high aspect ratios, and they may integrate active electronic

components [104].

Future Smart Sand modules may also be construct in three dimensions using layered processes.

EFAB (electrochemcial fabrication) is a commercialized process developed over ten years ago that

prints complex three-dimensional structures [21]. The basic process deposits thin (several pm)

layers composed of metal surrounded by support material. Once the layers are complete, the

support material is removed leaving just the bonded metal layers behind.

Other researchers have formed micro-scale structures by stacking thin silicon components us-

ing a compliant probe fabricated from PDMS [49]. As an example of their technology, the re-

searchers were able to create an object resembling a hemisphere, 200pm in diameter, by stacking

seven silicon rings with different diameters, each 10-50 pm thick. Once stacked, the pieces can be

bonded with a high temperature annealing process.

With respect to future Smart Sand modules, the advantage of using silicon to fabricate the

structure of each module is that the required circuitry and intelligence could be built directly into

the structure using traditional IC fabrication processes. To enable the distribution of the circuitry

over several silicon layers, and to route control signals to the actuators, we will need to utilize

through silicon vias (TSVs)-metal connections that add electrical connections to the backside of

a silicon die [106, 26].

Finally, there are new approaches to microfabrication that attempt to create monolithic 3D
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spheres directly [116, 13]. Because these approaches do not build the spheres from layers, they

may be quicker and and more precise from those that do. We also believe that spheres, because of

their uniformity and lack of sharp edges, may replace cubes as the basic shape of the Smart Sand

modules. The disadvantage to spheres is that they share minimal surface area with their neighbors,

so the associated connection mechanism must have a high strength to area ratio.

While this section has not addressed all of the potential challenges associated with miniaturiz-

ing programmable matter modules, it has attempt to address the major components and processes

that will be necessary to further shrink the Pebble modules. Careful analysis and many trade-offs

will need to be made in order to select the best approach to future miniaturization. Along the

way, unforeseen challenges are certain to arise. Ultimately, the most difficult challenge will be

integrating all of the fabrication steps into a single, streamlined batch process.
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Chapter 4

The Sandbox Simulator

We have developed the Sandbox simulator to test our high-level shape formation algorithms on

scales larger than those afforded by our hardware platform. While we produced fifty Smart Peb-

bles, we want to ensure that the algorithms we developed run on much larger two- and three-

dimensional systems. Before we begin explaining these algorithms, it is best to understand the

Sandbox simulator because it was used extensively while developing, testing, and debugging the

algorithms. Sandbox allows engineers and scientists to simulate distributed robotic systems more

accurately and quickly than existing alternatives. It uses a realistic communication model grounded

in hardware experiments. Using a network of 8 workstations, we are able to simulate a collection

of more than 2,000 Smart Pebbles communicating and executing a variety of algorithms.

Sandbox is focused on simulating algorithms and communication in distributed robotic sys-

tems, and a block diagram of the system is shown in Figure 4-1. The simulator has a number of

advantages over existing turn-key systems. First, it is scalable while maintaining its compelling

performance. Each module runs as an independent process and communicates with other mod-

ules and the simulator framework using UDP and TCP packets. Second, the simulator is built

with a modular architecture that supports distributed execution. The virtual modules in the system

can be executed on any number of networked computing nodes, and the simulator visualization

environment can be executed on yet another.

Third, Sandbox is generic and can be used with any modular robot system. It enables the user
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Figure 4-1: The Sandbox simulator system simulates each robotic module as a separate process.
Instead of their native communication interfaces like IR LEDs/photodiodes, the modules commu-
nicate with their neighbors using UDP packets. As a result, the modules can be executed across
multiple networked hosts allowing the simulation of huge ensembles of robots. There is a simple
command line interface with which the user controls the system. A 3D GUI allows the user to view
the topology of the robots in the system as well as observe the robot's internal state in real-time.

to reuse the vast majority of the code that comprises a robot's control software in both simulation

and hardware. As shown in Figure 4-2, the process of adapting an existing modular robotic system

to our simulator involves replacing the only the lowest-level physical communication layer with

calls to Sandbox-specific functions that send UDP packets to a module's neighbors. In particular,

Sandbox provides two basic communication functions: send a message to a neighbor and attempt

to receive a message from a neighbor. All higher-level communication and application code can be

reused regardless of language or complexity. This higher-level code is system-specific and includes

the algorithms that give the modular robot system its unique abilities.

This light-weight approach of only replacing the physical hardware layer with simulator code

guards against bugs that result in the normal porting process from simulation code to hardware

code. This approach also ensures that it is easy to use Sandbox with almost any modular system.

In addition to replacing the physical layer code with Sandbox-specific code, the user is free to

instrument his higher-level code in order to convey internal state information from the robot to

the simulator GUI. This instrumentation process is as simple as providing a list of variables to be

monitored to an instrumentation thread that sends a TCP packet to the GUI whenever one of the

variables changes state.
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Figure 4-2: To use Sandbox with an arbitrary modular robot system, the user must replace the
physical layer code with Sandbox-specific communication functions that allow a simulated module
to communicate with its simulated neighbors. The user may also choose to instrument higher-level
control code so that the module's internal state can be displayed in the simulator's GUI.

Sandbox excels over more established simulation systems such as Player/Stage/Gazebo or We-

bots when it comes to accurately simulating large collections of computationally impoverished

modules with imperfect communication channels. These other systems are focused on simulating

more traditional mobile robots in human environments. In comparison, Sandbox was designed

for million-module ensembles of small robots that interact with the world in a radically different

way than does a mobile robot. Sandbox models the unreliable nature of real-world communication

links between neighboring robots. This allows Sandbox to better verify that theoretical algorithms

will operate as expected in the presence of communication failures when implemented on tangible

hardware that suffers from less than ideal neighbor-to-neighbor communication links.

Unlike many existing simulation systems, Sandbox system is not focused on simulating robot

dynamics or the physics of the world in which the robot resides. We chose not to integrate this

functionality into Sandbox for two reasons. Sandbox is primarily focused on simulating com-

munication algorithms. Attempting to do more makes the simulator more complicated and raises

the barrier to adoption. Additionally, many other simulators already do simulate module physics.

These existing physics simulators could be layered on top of Sandbox to form a hybrid simulator.

At the most basic level, the physics simulator would determine which modules are neighbors and
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hence, which modules can communicate with each other. Sandbox could take this information

and actually enable the low-level communication between the modules. Because the Sandbox sys-

tem is more concerned with algorithms and communication, it can also be used to simulate sensor

networks and other non-robotic distributed systems.

Modular and distributed robotic systems continue to grow in number and size. Advances in

computation, fabrication, mass production technology accompanied by ever decreasing prices have

enabled scientists and engineers to create distributed intelligent systems with ever growing num-

ber of nodes. In the Robot Pebbles system, in particular, we are interested in using hundreds of

thousands or millions of modules to form objects through a process of self-disassembly. Before

researchers commit to building larger and larger robotic systems, it is valuable to employ tools

that allow for these systems to be thoroughly tested and debugged. Additionally, after deploying

a large distributed system with anywhere from ten to millions of modules, researchers will benefit

from tools that enable the evaluation of algorithmic changes while avoiding the need to modify the

entire ensemble of robots to test each change. While the hardware is the ultimate testbed for our

shape formation algorithms, we developed the simulator to make algorithm developing and testing

faster, easier, and more reliable.

4.1 Simulator Design

The Pebbles have several unique features that we wish to capture in the simulator. First, the

communication between Pebbles is probabilistic. Due to size constraints within the 12mm Pebbles,

the circuitry controlling the EP magnets was designed such that only a single EP magnet can be

active at a given time. While this does not impose noteworthy restrictions on a Pebble's ability to

bond with its neighbors, it does affect how a Pebble communicates with its neighbors. A Pebble

must divide its time between listening and transmitting messages on each of its faces. If a Pebble's

neighbor is not listening at the same time that the Pebble is attempting to transmit, the message

will not be received. Each Pebble executes a simple loop:

1. Listen on each face in random order for a fixed amount of time
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2. Update state and queue messages for transmission

3. Attempt to transmit any pending messages

4. Repeat

The consequence of this loop is that a given Pebble is only listening for incoming messages

on a given face less than a quarter of the time. In practice, this results in a message transmission

success rate of approximately 25%. This mirrors the hardware behavior as illustrated by Table 5.3.

Second, the alignment between neighboring Pebbles is not perfect. The Pebbles are assembled

manually by wrapping a flexible printed circuit around a brass frame. This results in slight non-

uniformity between any two Pebbles. As a result, in a large ensemble, there are inevitably some

neighboring Pebbles that cannot communicate. Additionally, it is possible for the EP magnets to

break which also results in a Pebble that is unable to communicate with one of its neighbors. While

the total percentage of broken links in a structure is small, it still important to simulate if we want

to ensure the robustness of our algorithms.

Our goal in designing the Sandbox simulator is to capture these unique features of the Robot

Pebbles system while ensuring that the simulator is extensible and easily adaptable to other dis-

tributed robotic systems. The simulator is controlled through an interactive command line interface

with a basic set of commands:

" ins x y [z] rotation [host]

" ins xmin : xmax Ymin : Ymax [Zmin : Zmax] rotation [host]

* rem x y [z] rotation [host]

" rem xmin : xmax Ymin : Ymax [Zmin : Zmax]

" rem all

* restart xmin : xmax Ymin : Ymax [Zmin : Zma]

" restart all
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* quit

The ins commands insert new modules into the simulator, rem commands remove modules

from the simulator, and restart commands restart a simulated module without changing its po-

sition, rotation or UID. The coordinates passed to the commands may specify a single point or a

contiguous set of points. If the z-coordinates are omitted, the simulator assumes z-coordinate is 0.

The host parameter may be omitted from the ins commands if the user wants the host on which

the module is run to be assigned automatically.

The simulator's output is a topologically accurate, interactive visual representation of all mod-

ules created using OpenGL. The user can rotate, pan, and zoom his view of the system to get the

necessary perspective. By hold the mouse cursor over any particular module, the user can see the

module's internal state. More generally, the resulting simulator has a number important features:

each robot runs as an independent process; the simulator front-end is separated from the robots

being simulated; a single code-base can be used for both the hardware and simulated robots; and

communication between robots is not idealized.

4.2 Process Distribution and Code Reuse

The simulator is designed to run the exact same robot control code as runs on the physical hard-

ware. Unlike many other simulators, our approach does not depend on the user to maintain two

distinct code bases: one for simulations (in Matlab for example) and another for the hardware (in

C/C++ for example). Instead, we reuse the hardware code-base in the simulator by replacing the

hardware abstraction layer with simulation-appropriate functions that replicate the hardware func-

tionality in a realistic manner. The user switches between the simulation and hardware code by

defining a single macro at compile time. We leave all of the high-level functionality untouched.

With this virtual hardware abstraction layer in place, we recompile the code for the workstations

used to perform the simulation. Then, to run the simulation, we use the workstation's underlying

operating system to start a separate process for each module in the simulated system. Because

each module runs as its own process, the simulator is a high-fidelity analogue for the hardware.
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The operating system automatically manages task switching. Furthermore, in multi-core systems,

modules can truly run in parallel with no additional effort from the designer.

In the Smart Pebbles system, the simulator-specific code used in place of the hardware ab-

straction layer handles three tasks: communication between modules, communication between a

module and the user's PC, and flashing a LED. The inter-module communication scheme is ex-

plained in the next section. In short, it uses UDP packets to send messages between modules.

Simulating the communication between a module and the user's PC is accomplished with Linux

pseudo-terminals. In the hardware system, each Pebble has a three-wire serial communication

interface that it can uses to receive commands from the user or return state information. With

the aid of a external microcontroller-based protocol converter, this interface appears as a serial

port on the user's PC. Typically, the root module is the only module in an ensemble utilizing this

interface. If the system is being used to form shapes through self-disassembly, the user sends an

encoded description of the shape to be formed over a serial port, through the protocol converter, to

the root module, where it is distributed to the remainder of the modules in the system. As already

mentioned, to simulate this interface, the simulator employs a pseudo-terminal. In particular, the

root module creates a new pseudo-terminal (e.g. /dev/pts/0) that can be opened for reading and

writing just like a serial port (e.g. /dev/ttySO).

Finally, the simulator code emulates the LED in each Pebble by replacing the LED with a

binary state variable. Turning the LED on sets this variable, and turning it off resets it. The state of

the LED, along with many other internal state variables, is transmitted to the simulator GUI over a

TCP/IP connection whenever the state changes.

4.3 Communication

To accurately simulate communication between modules in a tangible system, the simulator uses

UDP (user datagram protocol) packets sent over an IP connection. Both the source and destination

of a UDP packet are specified by a address/port pair. An address is a typical IPv4 address such

as 18.70.0.160 while a port is a 16-bit unsigned integer ranging from 0 to 65535. UDP, unlike

TCP, is a connection-less protocol that does not involve handshaking or error correction. There is
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no guarantee that a given UDP packet will be delivered to its destination, nor is there an automated

method to determine if it has been. The sender must implement some higher level protocol to

determine whether a UDP exchange is successful. Fortunately, this is a perfect model for many

robot applications that use low-level communication devices like IR LED/photodiode pairs, simple

radios, or in our particular case, electropermanent magnets. In such systems, the communication

handshaking protocols are customized and built into the robot's application code. For example, the

application code must modulate an IR LED and then wait for a specific response from its neighbor

detected by photodiode to know that the message has been successfully received. UDP messages

take the place of the LED and photodiode in the simulator.

In the Sandbox, each inter-module communication interface of each module is assigned a

unique UDP port number. Through the use of command-line parameters and a online control

port, each module knows the IP address and port number of the neighboring faces with which it is

in contact. To successfully send a message to a neighbor, the transmitter must send a message and

wait for a confirmation that it has been received. The receiver will only respond if it is actually

listening to the port where the transmitter sent the message. If the receiver is not listening, the

transmitted message will be lost.

The transmission algorithm in shown as Algorithm 1. First, and not shown in the listing,

some higher-level function loads the message to be sent into a face-specific transmit buffer. Then,

the transmitter performs a non-blocking write to its neighbor's address/port combination. The data

written is a message sequence number prepended to the actual message in the transmit buffer. After

the non-blocking write, the transmitter performs a number of non-blocking reads until all data has

been flushed from the port's receive buffer. If any one of these reads contains an acknowledgment

(ACK) message with a sequence number matching that of the original message, the message has

been successfully received by the module's neighbor. The next time a message is transmitted, the

sequence number will be incremented to differentiate the two messages if their contents happen

to be identical. If a matching ACK message has not been received by the time the port's receive

buffer has been emptied, it indicates that the neighboring module is not listening at the current

time; the message to be sent will be left in the transmit buffer; and the sequence number will not
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be incremented.

Algorithm 1 Inter-module Message Transmission
1: txDatagram.sequenceNum = txSequenceNum
2: txDatagram.payload = txBuffer
3: setBlocking(socket, false)
4: write(socket, txDatagram)
5: repeat
6: rxDatagram = read(socket)
7: if rxDatagram.sequenceNum = txSequenceNum then
8: txSequenceNum++
9: txBuffer = 0

10: return true
11: endif
12: until rxDatagram = 0
13: return false

To receive a message from a neighbor, a module uses the approach shown in in Algorithm 2

which complements the transmit algorithm. To initiate the receive process, the module starts a

timer and then performs a blocking read of the UDP port associated with a particular communi-

cation interface. If the timer expires before the read returns with a message, the read call will be

interrupted and return without data. This indicates that the module's neighbor was not transmitting

anything, and the read call is aborted. On the other hand, if the read returns data and the interface's

receive buffer is empty, the received payload is moved into the receive buffer and a ACK message

containing the sequence number of the received message is sent back to the transmitter. Realizing

that there is no guarantee that the ACK message will arrive successfully, each incoming message

with a sequence number that matches the sequence number of a message already in the receive

buffer generates an additional ACK message.

Algorithm 2 Intermodule Message Reception
1: success = false
2: setBlocking(socket, true)
3: startInterruptTimer()
4: while interruptTimerNotExpired() do
5: rxDatagram = read(socket)
6: if rxBuffer = 0 then
7: rxBuffer = rxDatagram.payload
8: rxBufSeqNum = rxDatagram.sequenceNum
9: success = true

10: end if
11: if rxDatagram.sequenceNum = rxBufSeqNum then
12: write(socket,ACK)
13: end if
14: end while
15: return success
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The simulator also supports the ability to induce a given failure rate in communication links

between neighboring modules in accordance with the communication reliability parameter. The

user specifies this number as a percentage between 0 and 1. As each communication link is formed

between a new process and its neighbors, the chance that is works is governed by the communica-

tion reliability. To disable a particular link, the simulator connects to the TCP/IP-based control port

of the module with the newly "broken" communication link and informs the module that it may not

communicate with a particular neighbor. This process is handled in the simulation-specific code

so that the application code can treat the link normally.

4.4 Extensibility

The simulator is designed to be easy to distribute across multiple machines. Because each module

is simulated as a stand-alone process that communicates with its neighbors over a standard IPv4

network, the simulated modules can be located on any machine that is connected to the network.

If the user wants to simulate a large system, it is easy to leverage additional workstations. Our

simulator has the additional advantage that it does not rely on any special libraries to function.

Any standard Linux- or UNIX-based OS should be capable of acting as a node in the simulator

network. This ensures that it is easy for non-privileged users to deploy our system.

The computation nodes used by the simulator to execute the module code are specified at run-

time using a flat text file. This host file contains lines that specify a hostname, maximum number

of simulated processes to be run on that host, and a nickname for the host. During initialization,

the simulator reads this file once and caches the information. The maximum number of processes

allowed to run on a given computation node is used when randomly assigning simulated modules

to nodes.

4.5 Front-end and Simulated Robot Separation

The Sandbox system uses a central GUI running on a single host machine to display the topology of

the devices being simulated, the internal state of each module, and the messages flowing between
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modules. This GUI is written using the Qt application framework, and it uses OpenGL to display

a 3D model of the topology. To receive internal state and message buffer information from each

simulated module, the GUI opens a TCP/IP port that all of the simulated modules can connect to

and communicate with. Each time the internal state of one of simulated modules changes, or each

time a module receives a message, the module sends a TCP packet to the GUI over the underlying

IP network. The GUI parses these messages and displays their contents in an informative manner

as shown in Figure 4-3.

Figure 4-3: The Sandbox GUI helps the user visualize the topology of the robot modules being
simulated, and it displays internal state information from each module as the mouse moves over it.

By separating the GUI from the actual modules being simulated, we achieve several benefits.

First, it allows the aforementioned extensibility. If the GUI and all modules were a simulated using

a single program, it would be nearly impossible to extend the simulator system across multiple
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machines. Second, we can restart the GUI and the simulated modules separately. This feature

is useful when one wants to modify the code running on the simulated modules without redoing

the set-up of a particular experiment. One simply recompiles the Pebble code and then, within the

simulator GUI, issues a restart all command. This restart commands kills all currently running

processes, but keeps track of each process's physical parameters: location, rotation, and UID, for

example. Using this information, Sandbox then reruns each process to recreate the same physical

arrangement of simulator modules.

4.6 Experiments

To test the performance of the Sandbox system, we have completed a number of experiments

on a set of six virtualized Linux machines spread across six distinct physical machines. Each

physical machine was hosting 7 other unrelated virtual machines. Each of the virtual machines

was given exclusive access to a single 64-bit processor running at 1.86GHz with 1MB of L2 cache.

Additionally, each virtual machine was assigned 2GB of dedicated RAM and shared access (along

with the 7 other virtual machines) to a 1Gb/sec Ethernet connection.

To test the speed of the Sandbox system, we performed experiments with the localization al-

gorithm that we use as part of the self-disassembly process in the Smart Pebbles system. The goal

of the algorithm is to inform every module in the ensemble of its location relative to a root module

whose position we assign arbitrarily to be (0,0). The simplicity of the algorithm combined with

the fact that it requires a small degree of local computation and a large amount of inter-module

communication make it a good candidate for characterizing the Sandbox system.

The algorithm itself is as follows: once a module knows its position, it sends a position message

on to its neighbors so that they can determine their positions. Each position message contains the

transmitter's location and rotation. The receiving module, knowing on what face the position

message was received, can determine its own position and orientation. Modules continue to send

and receive position messages until all modules in the structure know their position.

We characterized the running time of the localization algorithm in both chains of modules and

square blocks. Figure 4-4 shows the running time for the localization algorithm when the topology
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of the Smart Pebbles is a n-unit chain. As the figure shows, we characterized two different ways to

distributed the modules. The default was to run all modules on a single workstation. Alternatively,

we randomly assigned modules to one of the six workstations. Figure 4-4 shows that there was

a slight performance benefit when distributing modules across workstations. This makes sense

given that each computational node needs to do less work. If communication between nodes were

slower, this benefit might be lost.

Localization Running Time for Chains of Modules
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Figure 4-4: When executing the localization algorithm on chains of modules, the running time
scales linearly with the length of the chain. Additionally, we see a benefit in using multiple com-
putation nodes, instead of a single node, when running the simulator.

We also characterized the running time of the localization algorithm on square topologies. The

results of these experiments are shown in Figure 4-5. We found that a single computational node

became noticeably sluggish when attempting to run more than 400 modules. This is why we did

not simulate a square with side length greater than 20 using only a single computational node. We

observed this same latency when simulating squares with side length greater than 45 while using

all six computational nodes. Interestingly, when running the localization algorithm on small, (less

than 400 module), squares of simulated Smart Pebble modules, we see no difference in running

time as we switch from running all modules on a single node to randomly distributing the modules
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across six computational nodes.

Localization Running Time for Squares of Modules
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Figure 4-5: The time for the localization algorithm to complete on a square of modules scales

linearly with the side length of the square. Surprisingly, the running time does not appear to

depend on whether all modules are running on a single computational node or distributed across

six.

We have also repeatedly run the localization algorithm on the physical Smart Pebble and Miche

hardware. In hardware, we see a similar linear running times, so we conclude that the simulator is

operating correctly. Consult Chapter 6 for many additional plots which compare running times in

hardware and simulation.
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Chapter 5

Low Level Communication

Nearest-neighbor communication between Robot Pebble nodes forms the basis of all the higher-

level algorithms that drive the Robot Pebbles system. Using nearest-neighbor communication,

the nodes are capable of localizing, routing messages from one arbitrary point to another, and

duplicating passive objects that are surrounded by active modules. We have developed a robust

low-level communication system that ensures that messages are delivered reliably and correctly.

There are two major challenges associated with inter-module communication in the Pebbles

system. First, due to space constraints, we have a minimalist hardware approach. There is not

enough area available on the flexible PCBs that form the modules for more than a few communication-

specific electronic components. Second, the software resources available for communication are

severely limited. The processors run at 8MHz, have 32KB of program memory, and have 2KB of

RAM.

As explained in Section 3.5, each node is only capable of receiving or transmitting on a given

face at any time. As a result, the modules must divide their time between listening for incoming

messages and transmitting outgoing messages on all of their faces. If a module is attempting to

transmit a message to its neighbor, there is no guarantee that its neighbor will be listening for

an incoming message on the corresponding face. Furthermore, the receiving module may begin

listening for an incoming message on the given face part way through the transmitter's attempt.

Alternatively, a module actively transmitting a message may experience interference from its in-
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tended recipient if that recipient begins to transmit its own, unrelated message back to the original

module.

The communication channel is noisy. As seen in Figure 3-12, the noise margin between high

and low bits is roughly 800mV. If there is misalignment between neighboring modules, the noise

margin will decrease. In addition, there is significant cross talk between modules. Bits from a

neighboring module to which the receiving module is not listening come within 100mV of the bit

detection threshold.

To handle these challenges we have created a packet-based communication protocol that min-

imizes data corruption while ensuring acceptable communication through-put. Packets are pro-

tected with a sequence number, length field, and checksum. Each module randomly divides its

time between listening for incoming messages on all four faces. A module does not repeat lis-

tening on a given face until it has also listened for incoming messages on all other faces. The

modules are also capable of detecting severed communication channels and channels that have

been re-established. Finally, to manage the messages flowing between neighboring modules, we

have created a set of transmit and receive buffers. We have performed numerous experiments to

demonstrate the results of our approach.

5.1 Message Buffers

The high-level application code interfaces to the low-level EP magnet communication routines

with a set of transmit, receive, and payload buffers. There is one set of buffers for each face, an

additional set for each module's SPI-based interface to the external world, and a final set that is

used internally. These buffers are illustrated in Figure 5-1.

To send an application-level message to a neighbor, the module checks whether the transmit

buffer is currently empty, and if it is, loads the new message into the buffer using the f illTxBuf

function shown as Algorithm 7. Once the transmit buffers are loaded, the high-level application

code must call the transmitMessage function (Algorithm 6) to prompt the low-level communi-

cation interface to attempt to send the queued messages.

Whenever the low-level communication interface is not sending messages, it is listening for
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Figure 5-1: The Robot Pebbles use transmit and receive
level application code and the low-level communication
tion in which data flows.

buffers as an interface between the high-
interface. The arrows indicate the direc-
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incoming messages. When the module successfully receives a new message, (which it is only

allowed to do if the face-specific receive buffer is empty), it places the new message into the

receive buffer. From there, the high-level application code can access and parse the message.

In Section 5.4 we explain how the system employs routing messages as an abstraction layer

that facilitates the delivery of messages to nodes at arbitrary coordinates, not just a node's nearest

neighbors. Routing messages carry a payload message that the receiving module needs to parse

after determining that it is the intended recipient of the routing message. To facilitate this process,

each face also has a payload message buffer. The payload of a routing message is transferred to

this buffer when the routing message reaches its destination.

The reason the payload of a routing message is copied to the payload buffer for parsing is that

some routing messages are marked public. This means that as they propagate to their destination,

every module through which they pass parses the routing message's payload. The payload buffer

provides a location from which to parse a public payload without overwriting the message in the

receive buffer. If instead we wrote a routing message's payload back to the receive buffer, over

the routing message itself, we would effectively halt the routing message's journey to its specified

destination. Algorithm 3 demonstrates this process.

Algorithm 3 routeParse(rxFace, msg)-high-level parsing function for received routing (ROT)
messages showing when a ROT message's payload is moved to the receiving face's payload buffer
Require: 1 < rxFace < 4
Require: msg: message in receive buffer being parsed

1: if msg.destination = getThisLocationo then
2: if isPayloadBufEmpty(rxFace) then
3: moveToPayloadBuf(rxFace, msg.payload)
4: emptyRxBuf(rxFace);
5: end if
6: return
7: else if msg.public = true then
8: if isPayloadBufEmpty(rxFace) then
9: moveToPayloadBuf(rxFace, msg.payload)

10: else
11: return
12: end if
13: end if
14: forwardROT(msg)
15: return

In addition to the buffers associated with each face of a module, there is an internal set of

buffers. The internal buffers are used when a module wishes to initiate a routing message. So that
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the high-level application does not need to decide on which face to start propagating the routing

message, it can write the routing message to the module's internal transmit/receive buffer. The

first time the message is parsed, the routing message handler will move the routing message to the

correct transmit buffer so that it departs the module in the correct direction.

Finally, there is a set of buffers dedicated to communication with the external world using the

module's serial peripheral interface (SPI). This interface is connected to a set of contacts on the

bottom face of each module. (See Section 3.7.) These contacts interface with a set of pogo pins in

a test fixture. In most usage scenarios, only a single module in an ensemble is connected to the test

fixture, so the SPI transmit and receive buffers are typically unused.

5.2 Packet Format

Inter-node communication is governed by the simple two-way protocol based on lys pulses in-

ductively coupled between the EP magnet coils of neighboring modules. (See Figure 3-12 for the

waveforms.) To send a space (low-level), nothing is sent during the bit period. As a result, the

output of the processor's internal analog comparator (see Figure 3-8) remains low. To send a mark

(high-level) bit, a lys pulse is sent during the bit period which pulls the inverting input of the

comparator low for a short period. As a result, the comparator's output goes high momentarily.

Bits are sent using on-off keying at 9600bps. We chose 9600bps because it is a standard baud

rate, and it allows the 8MHz processor enough time between bits to perform other tasks. While

the ATMega328 inside of each module does have a hardware UART, the fact that the mark pulses

only occupy lys of the entire 104ps bit period, prevents us from using it. Instead, all UART

functionality is implemented in software using interrupts.

Figure 5-2 illustrates the structure of each byte. In particular, each 8-bit data byte is preceded

by a start bit (always a mark) and followed by a parity bit (mark or space) and two stop bits (always

space bits). Each byte is sent least significant bit (LSB) first. All inter-node data is constrained to be

ASCII strings with character values ranging from 0-127. This leaves one bit of each byte unused

for data. The unused bit, when a mark, signifies that the byte is a synchronization byte. For all

other bytes, the bit is a space. Because we want the receiver to be able to identify a synchronization
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104.2us lus

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 bit 8 bit 9 bit 10 bit 11
start data[O] data[1] data[2] data[3] data[4] data[5] data[6] data[7] parity stop stop

Figure 5-2: Each byte exchanged by neighboring Pebbles begins with a start bit that is a "1" thereby
driving current through EP magnet coils. The start bit is followed by eight data bits, a parity bit,
and two stop bits.

byte as early in its reception as possible, we left-shift the seven ASCII character data bits and use

the LSB as the synchronization identifier.

The exchange process is a bidirectional protocol. We term the module sending the application-

level message to its neighbor the master and the module receiving the application-level message the

slave. The slave still transmits some bytes back to the master to confirm that it is listening and that

it has received the message successfully. This exchange is illustrated in Figure 5-3. Algorithm 4

illustrates the transmitter's algorithm and Algorithm 5 the receiver's.

Master Slave
~S nc:

Sync Echo:
11111111

or

Buffer Full:
Seq. Number: 01010101
XXXX0 - )---
Packet Length:
XXXXXXX0 -

Application Msg:
XXXXXXX0 -- )

XXXXXXX0 I--
XXXXXXXO F
XXXXXXXO F
XXXXXXX0

CRC Checksum:
XXXXXXX0 )

CRC ACK:
11111110

or
| CRC NCK:
| 00000000

Figure 5-3: The master module transmits an application-level message to its neighbor using a
bidirectional exchange that attempts to ensure robust communication in spite of a noisy, unreliable
communication channel.

The master initiates the data exchange process in Line 6 of Algorithm 4 by sending a synchro-
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Algorithm 4 epMagTransmit(txFace, msg)-called to transmit an inter-module message to a par-
ticular neighbor
Require: 1 < txFace < 4
Require: msg: message to be sent

1: if txBuf [txFace].full = false then
2: return NULL-STRING
3: end if
4: txPacketLength - stringLength(txBuf [txFace].msg)+ 3
5: txChecksum +- computeCRC(txSeqNum, txPacketLength, txBuf [txFace].msg)

{Send the synchronization byte and wait for the slave to echo it}
6: transmitByte(OxFF)
7: byteCnt +- 1
8: startNextByteTimer()
9: while isNextByteTimerExpiredo= false do

10: rxByte +- receiveByteo
11: if rxByte = 0 then
12: continue
13: else if rxByte = OxFF then
14: transmitByte(txBuf[txFace].seqNum)
15: byteCnt +- byteCnt + 1
16: break
17: else if rxByte = 0x55 then
18: return RECEIVER-FULL
19: else
20: return INCORRECT-RESPONSE
21: end if
22: end while
23: if isNexByteTimerExpiredo = true then
24: return NO-RESPONSE
25: end if

{Send the body of the packet}
26: while byteCnt < txPacketLength do
27: if byteCnt = 2 then
28: transmitByte(txPacketLength)
29: else if 3 < byteCnt < txPacketLength then
30: transmitByte(txBuf[txFace].msg[byteCnt])
31: else if byteCnt = txPacketLength then
32: transmitByte(txChecksum)
33: end if
34: byteCnt +- byteCnt + 1
35: end while

{Wait for the slave to acknowledge that the checksum matches }
36: startNextByteTimer()
37: while isNextByteTimerExpiredo= false do
38: rxByte +- receiveByteo
39: if rxByte = 0 then
40: continue
41: else if rxByte = OxF7 then
42: txBuf [txFace ].full <- false
43: return SUCCESS
44: else
45: return CHECKSUM-MISMATCH
46: end if
47: end while
48: return CHECKSUM-TIMEOUT
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Algorithm 5 epMagReceive(rxFace)-called to receive an inter-module message from a particular
neighbor
Require: 1 < rxFace < 4

1: startListenTimer()
2: while isListenTimerExpiredo = false do
3: rxByte +- receiveByteo
4: if rxByte = 0 then
5: continue
6: else if rxByte =OxFF then
7: if rxBuf [rxFace].full = false then
8: transmitByte(OxFF)
9: break

10: else
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

transmitByte(0x55)
return

end if
end if

end while
byteCnt +- 0
startNextByteTimer()
while isNextByteTimerExpiredo false do

rxByte +- receiveByteo
if rxByte = 0 then

continue
end if
byteCnt <- byteCnt + 1
if byteCnt = 1 then

rxSeqNum +- rxByte
else if byteCnt = 2 then

rxPacketLength +- rxByte
else if 3 < byteCnt < rxPacketLength then

rxBuf [rxFace].msg[byteCnt] <- rxByte
else if byteCnt = rxPacketLength then

rxChecksum +- rxByte
if computeCRC(rxSeqNum, rxPacketLength, rxBuf [rxFace].msg) = rxChecksum then

transmitByte(Ox7F)
if rxSeqNum 4 rxBuf [rxFace].seqNum then

rxBuf [rxFace].full <- true
rxBuf [rxFace .seqNum <- rxSeqNum

end if
return

39: else
40: transmitByte(OxOO)
41: return
42: end if
43: end if
44: restartNextByteTimer()
45: end while
46: return
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nization byte of all ones (marks). When the slave senses that the LSB is a 1, it starts a timer that

counts the bit period of each of the 7 remaining bits. It then averages the seven bit periods to

determine the rate at which the transmitter is operating. It adjusts its receiving and transmitting

frequencies accordingly. This synchronization is necessary because each node is clocked by an RC

oscillator whose frequency differs slightly from node to node. The slave node will continue to use

the sensed frequency until it begins to listen for incoming data on a different face.

After sending the synchronization byte, the master switches to listening for a confirmation from

the slave in Lines 8-25 of Algorithm 4. Assuming that the slave's receive buffer is empty, it echos

the synchronization byte back to the master in Line 8 of Algorithm 5. If instead, the slave's buffer

is full, it echos 0x55 back to the master so that the master knows that the slave is alive, but unable

to accept packets (Line 11 of Algorithm 5). Alternatively, the slave may not be listening for the

master's transmission. In this case, the master receives nothing from the slave. After a timeout

period, the master decides that the slave is not listening, declares its transmission attempt a failure,

and returns to an idle state (Lines 23-25 of Algorithm 4).

Having received the echoed synchronization byte, the master begins to send data to the slave.

The first byte sent is a sequence number (Line 14 of Algorithm 4). The sequence number ensures

that the slave does not receive duplicate copies of a single message. In particular, it guards against

the case in which the master thinks that a transmission has failed when, in fact, the slave thinks

that it was successful. This scenario arises when the slave verifies the message's checksum, but

the CRC acknowledgment byte does not reach the master. If the master does not see the CRC

acknowledgment from the slave, it will attempt to re-transmit the message. Without the sequence

number, the master would think that the message had only been sent once, while the slave would

think that the master had intentionally sent two copies of the same message.

There is a unique sequence number associated with both the transmit and receive buffers of

every face. It is used as shown in Table 5.1. Each time the master wishes to send a new message

on a specific face, it increments the sequence number associated with that face (Events 2 and 10 in

the table). When the slave processes an incoming message, it compares that message's sequence

number with the sequence number of the last received message. If the sequence number of the
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incoming message matches the sequence number of the last received message (Events 6 and 8),

the slave sends a confirmation back to the transmitter, but internally, it treats the message as a

duplicate and does not move it to its receive buffer. In contrast, if the incoming sequence number

is different from the sequence number of the last received message (Events 3 and 11), the slave

still sends a confirmation, but it also treats the message as a new, unique message. This approach

ensures that the slave only processes a single instance of a message with a given sequence number.

Following the sequence number, the master sends a byte containing the length of the packet

(Lines 27-28 of Algorithm 4), including the sequence number, length byte itself, application-level

payload message, and CRC checksum byte. The length byte allows the slave to determine whether

the correct number of bytes was received. It also allows the slave to set a time-out so that if the

correct number of bytes is not received within a fixed time period, the slave can assume that there

was an error in the communication process. In the event of a timeout, the slave returns to the idle

state.

Following the length byte, the master sends the application-level message payload (Lines 29-

30 of Algorithm 4). The payload is a null-terminated ASCII string, but the null terminator is not

sent nor included in the previous length calculation. This message payload is what is seen by the

higher-level algorithms that control the system's shape formation properties. The format of these

payload messages is described in Section 5.4.

After the master has sent the entirety of the application-level message payload, it sends a CRC

checksum [52] (Lines 31-32 of Algorithm 4). Because the system reserves the LSB of every byte

as the synchronization identifier, the checksum is only seven bits long. The CRC polynomial used

to compute the checksum is Ox5B. The CRC is computed over all bytes, including the sequence

number and length byte, sent, not just the ASCII message.

Upon receiving the CRC byte, (which it recognizes based on the already transmitted message

length), the slave compares the received byte with its own computation of the CRC based on

previous bytes in the packet. If the received CRC matches the slave's locally computed CRC, the

slave decides that the message is valid (Lines 32-38 of Algorithm 5). In response, the slave sends

a CRC acknowledgment (OxF7) to the master. It also stores the received sequence number for
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Table 5.1: Every time the master loads a new packet into its transmit buffer, it increments the
associated sequence number. The slave sends a checksum acknowledgment back to the master each
time the slave receives a packet, but the slave only moves the received packet into its receive buffer
for high-level parsing when the incoming sequence number differs from the sequence number
already attached to its receive buffer.

Event Master Master Slave Slave
Description Tx. Buf Seq. Num. Rx. Buf Seq. Num.

1 Master and slave idle Empty 17 Empty 17

2 Master loads new packet into Full 18 Empty 17
transmit buffer

Master transmits, and slave Full 18 Full 18
receives, packet Ful_18Ful_1

Slave transmits, but master
4 does not receive, checksum Full 18 Full 18

acknowledgment

5 Slave parses message in its Full 18 Empty 18
receive buffer

6 Master re-transmits, and Full 18 Empty 18
slave receives, packet Ful1_Epy 1

Slave transmits, but master
7 does not receive, checksum Full 18 Empty 18

acknowledgment

8 Master re-transmits, and Full 18 Empty 18
slave receives, packet

Slave transmits, and master
9 receives, checksum Empty 18 Empty 18

acknowledgment

10 Master loads new packet into Full 19 Empty 18
transmit buffer

Master transmits, and slave Full 19 Full 19
1 I receives, packet

Slave transmits, and master
12 receives, checksum Empty 19 Full 19

acknowledgment

13 Slave parses message in its Empty 19 Empty 19
receive buffer
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comparison to future messages. If the received sequence number was different than the previously

stored number, it moves the received message to a face-specific receive buffer and sets the buffer

full flag. At this point, the module's application-level algorithms may parse the message.

If the received and computed CRC bytes do not match, the slave sends a not acknowledgment

(OxOO) to the master instead (Line 40 of Algorithm 5). The slave does not update its sequence

number or move the message to the face-specific receive buffer. The application-level algorithms

never know about the failure.

Meanwhile, when the master receives a CRC acknowledgment from the slave, it knows that the

message has been successfully transmitted (Lines 41-43 of Algorithm 4). As a result, it marks the

face-specific buffer from which the message was transmitted as empty so that another message can

be loaded by the application code for transmission. If the master receives a CRC not acknowledge

byte, or nothing at all after transmitting its CRC checksum, it assumes the transmission has failed

and leaves the transmit buffer unmodified (Lines 45 and 48 of Algorithm 4).

5.3 Packet-Level Experiments

To ensure that packet-level communication algorithms work correctly, we logged the exchange of

over 30,000 inter-module messages. We aimed to determine how quickly and reliably a group of

modules is able to communicate. In each case, we ran a series of four related experiments. In

each experiment, one, two, three, or four transmitting modules were mated to a central receiving

module. Each transmitting module attempted to send a string of messages consisting of increasing

numbers: "1", "2", "3", etc. The transmitting modules were attempting send these messages on

all of their faces (i.e. "3" was transmitted from all faces before transmitting "4"). If the receiving

module did not respond to a transmitting module's attempt to transmit, the transmitting module

progressed to the next number. The receiving module was connected to a power source and also

shared a serial communication link with a desktop PC running a terminal program. The receiving

module's only task was to listen for incoming messages on each of its four faces and relay these

messages to the desktop computer. Table 5.2 summarizes the results of our communication speed

test. In each case, we measured how many messages were received in the first 60 seconds after all

100



modules were energized.

Table 5.2: The inter-module message exchange rate is roughly linearly related to the number of
neighboring modules transmitting messages.

# Transmitters Rate [msg/sec] Rate per Face [msg/sec]

1 10.4 10.4
2 20.5 10.3
3 39.3 13.1
4 50.9 12.7

The communication speed test shows that the message reception rate is, in the worst case, 10

messages per second, but grows in proportion to the number of transmitters. This is not surprising

given that the receiver listens for incoming messages on each face for a set amount of time before

proceeding to listen on the next face. In the event that the receiver does receive a message while

listening to a specific face, it immediately advances to listening on the next face. In the experiments

summarized in Table 5.2, the receiver was programmed to linger and listen on each face for 25ms,

but the messages being transmitted were roughly half this length. (Given our experience with the

Miche system [34], we expect the average message employed the the disassembly algorithms to be

15 characters in length and therefore require 12.5ms to transmit.) If the receiver receives a message

each time it listens to each face, it will be able to progress through its tour of all four faces more

quickly. This explains why the per-face message reception rate was greatest when the receiver had

three of four neighbors.

To test how reliably neighboring modules were able to communicate, we performed two ex-

periments. The first was designed to test the reliability of the communication channel; the receiver

listened for incoming messages on only one face. We allowed the single transmitter to send over

10,000 messages. Not a single message was lost or received incorrectly. We conclude that the

inter-module communication channel is quite robust when a module is only communicating with

a single neighbor. In the second experiment, the receiver divided its time by listening for incom-

ing messages on all four faces. We measured both the fraction of messages received as well as the

number of attempts each transmitting module made before it was successful. Table 5.3 shows what

percentage of transmitted messages were received and passed to the PC.

101



Table 5.3: The percentage of messages received by a module with multiple transmitting neighbors
increases with the number of neighbors.

# Transmitters % Messages Received

1 25.0
2 25.0
3 26.4
4 30.2

The results for the second experiment show that percentage of messages received never exceeds

30%. This is due to the fact that the receiving module is only listening for incoming messages on

any given face 25% of the time. For every time slot during which the transmitter and receiver syn-

chronize and exchange a message, there are three other periods when the transmitter fails to send

its message because the receiver is not listening. The transmitter records each of these failures and

does not attempt to re-transmit any message. (This approach is only used when characterizing the

communication algorithms.) When running application code, the transmitter will make multiple

attempt to re-transmit any message that is not sent successfully on the first attempt. This is detailed

below.

Also note that as the number transmitters is increased, the percentage of messages that are

received increases. This trend is due to the fact that the receiver is able to cycle through listening

for incoming messages on all faces more quickly when it is actually receiving messages. Once it

receives a message on a given face, the receiver immediately moves to listening for an incoming

message on the next face. If the time to exchange a message is shorter than the duration the receiver

normally lingers listening on each face, the receiver will be able to cycle through its faces more

quickly when it receives a message on each face.

Finally, we tabulated the number of unsuccessful transmission attempt made by each of the

transmitting modules before a successful transmission. We allow each transmitter to send mes-

sages for 60 seconds. During this 60 seconds, each transmitter attempted to send between 8,000

and 12,000 messages. The results are displayed in Figure 5-4 which shows, once again, that four

neighboring transmitting modules leads to fewer dropped messages than just one or two transmit-

ting modules. Regardless of the number of transmitting neighbors, the percentage of the time a
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transmitter unsuccessfully attempted to communicate with the receiver before success was rarely

more than three attempts. If the transmitters were programmed to retry sending each message

until successful, a transmitter would, on average, succeed within 4 attempts 98.5% of the time.

By the time a transmitter has made 7 attempts, it is virtually guaranteed to have sent its message

successfully.

0.9- NOne Neighbor
0Two Neighbors

0.8- EThree Neighbors

0.7 - Four Neighbors

& 0.6 -

(DS0.5-

0 0.4-

0.3-

0.2-

0.1-

0 0 1 2 3 4 56 7
Number of Dropped Messages Per Successful Message

Figure 5-4: This plot shows the number of unsuccessful attempts a transmitter typically makes
before it successfully sends a message. Regardless of the number of transmitting neighbors a
receiver is communicating with, 98.5% of messages are send successfully within four attempts.

5.4 Application Message Format

The application-level message payload contained in each packet follows a simple format. In par-

ticular, messages are composed of printable ASCII characters from 0-127. By choosing to use

text-based messages, we greatly simplify the debugging process. It is easy to quickly interpret a

list of messages exchanged between modules, and it is possible to construct messages that the user

wants to inject into the system through a particular module. The downside to ASCII messages is

that they consume unnecessary space. An integer that would only require one byte to represent in

binary, may require up to three ASCII bytes. The other disadvantage to ASCII messages is their

103



variable length. That same one-byte integer may only need a single ASCII byte to represent it.

We cannot simply assume that a given byte position within an ASCII message always holds the

same field. As a result, using ASCII messages dictates that we have some method to differentiate

between neighboring data fields within a message.

Each message begins with a type field. The type field can be any length and contain almost

any printable character. In our code, most messages used three or four character type fields. We

chose the character combinations to reflect the purpose of the message. For example, we picked

"LOC" for a localization message and "DIS" for a disassembly message. When a module receives

a messages from its neighbor, the first thing it does it compare the message's type field against a

list of known message types. When it finds a match, it sends the message to the parsing function

that is specific to that particular type of message.

To signify the end of the type field, we use a field separator. We have chosen a comma as

the universal field separator. After this first comma, is the first data field. Messages can have an

arbitrary number of data fields, or none at all. All data fields are also separated by commas. The

number and contents of the data fields are message specific. For example, a localization (LOC)

message has no data fields. It is sent by a module wishing to localize itself. The receiver, if it

can help the sender localize, responds with a position (POS) message that contains its coordinates,

rotation, and transmitting face. A sample position message:

POS,1,0,0,3

The one exception to using the comma as a field separator arises with routing messages to arbi-

trary destinations. Routing messages transport another message to a given destination coordinate

that is not necessarily the sender's immediate neighbor. For example, a routing message could be

used to send a disassembly (DIS) message from coordinate (2, 1) to (4,4). The message embedded

in and being transported by a routing message comprises the last field of the routing message. That

is, it is appended to the end of the routing message. To differentiate the embedded message being

routed from the routing message itself, we use a semicolon. This is the only instance where semi-

colons appear with messages, so it easy to separate a routing message's payload from the routing

104



information that the message carries instructing it how to reach the destination. A sample routing

message:

ROT,2,1,4,4,0,-1,0,0,0,-1 ,- 1 ;INC,0,0, 1,1

As a convenience, we terminate all messages with a new line character, (ASCII code 10). The

Pebble modules ignore the new line character, but the new line characters ensure that each message

appears on its own line when viewing a list of messages in a standard text editor.

There are many different types of messages used by the Robot Pebbles system. We list them

here alphabetically with short explanations. Table 5.4 illustrates the format of each message type

in more detail.

Bounding Box (BBOX) describes a rectangular bounding box by its minimum and maximum

coordinates. Used to describe the approximate shape of the initial configuration of modules

or the obstacle being duplicated.

Border (BOR) used to notify modules on the border of the duplicate shape of their special status.

Child (CLD) defines a parent/child relationship between neighbor modules so that each under-

stands which is dependent on the other for power.

Disassemble (DIS) instructs the module to start the self-disassembly process.

Duplication (DUP) instructs modules on the border of the original passive shape being duplicated

to send border (BOR) messages to their conjugate border modules that will form the border

of the duplicate shape.

Fill (FIL) notifies all modules inside the duplicate border that they are part of the duplicate object

and should not self-disassemble along with all other modules.

Group (GRP) used by neighboring modules to determine whether they are part of the same shape

being formed or different shapes. If part of the same shape, the modules maintain their

mechanical bond during disassembly. Otherwise, they break it.
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Inclusion (INC) notifies a module that it is included in the structure being formed and that it

should not self-disassemble. Not used during the duplication process.

Localization (LOC) request that a neighboring module send it position information to the local-

ization message's sender because the module needs to localize itself.

Position (POS) specifies the position and rotation of the sender. Sent in response to a localization

message.

Ready (RDY) indicates that a module is ready to process incoming routing messages. Until a

module has received a ready message from a neighbor, it will not forward routing messages

to that neighbor.

Reflection (REF) sent by modules to inform an external graphical user interface of their existence.

Helpful to the user when debugging the system.

Routing (ROT) routes an embedded payload message to a specific destination in a given plane.

ROT messages only support two-dimensional routing.

Sense (SEN) used to sense the shape of the obstacle that will be duplicated. Is always sent as the

payload of a routing message.

Undeliverable (UND) sent back to the sender of the routing message when routing message can-

not reach its specified destination. Sent as the payload of a routing message.

There are two additional messages types that are used for synchronous latching and unlatch-

ing of neighboring modules. To request that its neighbor synchronously latch with it, a module

sends an ASCII ACK character (code 6) to its neighbor. Similarly, a module sends a ASCII NAK

character (code 21) if it wishes to synchronously unbond from its neighbor. Once the two mod-

ules successfully exchange the message, they simultaneously energize the their electropermanent

magnets to either latch or unlatch. Synchronously latching produces stronger bonds than if each

module independently activated its EP magnet (see Section 3.4). Likewise, synchronously unlatch-

ing produces bonds with undetectable remnant force.

106



Table 5.4: Each inter-module message follows a predefined format that begins with a message type
identifier and is followed by some number of data fields separated by commas.

Message Type [ormat
Bounding Box BBOX,<min x>,<min y>,<max x>,<max y>

Border BOR,<leader x>,<leader y>;<border dir 1>, ...,<border dir n>

Child CLD,<sibling/child/parent>
Disassemble DIS,<all/structure>
Duplication DUP,<leader x>,<leader y>,<offset x>,<offset y>

FIL,<tangible src x>,<tangible src y>,<virtual src x>,<vitual src y>,
Fill <dest x>,<dest y>,<src UID>,<inside>,<leader x>,<leader y>,

<offset dist x>,<offset dist y>
Group GRP,<group number>

Inclusion INC,<hop count>,<branch dir.>,<ignore>,<group number>

Localization LOC

Position POS,<tx face>,<position x>,<position y>,<rotation>,
<min duplication area>

Ready RDY,<notify/query>

Reflection REF,<position x>,<position y>,<rotation>,<parent>,<neighbor 1 present>,
...,<neighbor 4 present>
ROT,<src x>,<src y>,<dest x>,<dest y>,<public>,<ideal dir>,

Routing <closest approach>,<departure x>,<departure y>,
<departure dir>,<departure dir old>;<payload>

SEN,<src x>,<src y>,<dest x>,<dest y>,<src UID>,<perimeter>,<area>,
Sense <min x>,<max x>,<min y>,<max x>

Undeliverable UND,<original dest x>,<original dest y>

5.5 Monitoring Link State

A module is only physically capable of transmitting or receiving messages on a single face at any

give time. As a result, when module attempts to transmit a message to its neighbor, there is no

guarantee that it will be successful on its first attempt. More likely, it will require several attempts

before the transmission is successful. When a module fails to send a message to its neighbor, the

module should not necessarily assume that the communication link is broken or that the neighbor

is absent.

Still, for several reasons, a module does need a way to determine when a neighbor is unreach-

able. First, many high-level algorithms contain loops and if statements that depend on a message

being sent to the module's neighbor. If the module never abandons its attempt to send a message

to an unreachable neighbor, the algorithm will be stuck in an infinite loop. Second, if a module is

parsing a routing message, we want it to find an alternate route to the message's destination instead

of continuing its futile dedication to the forwarding the message along a static path. For both these
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reasons, it is important that a module eventually identify broken communication links.

There are several reasons why communication links break. First, a module may be removed

from the system, either by the the user, or by the execution of a shape formation control sequence.

Second, a module may shift in the block so that it is no longer in contact with one or more of

its neighbors. Because all of the modules are slightly different sizes, they do not pack perfectly

into a grid. It is not completely uncommon for a module to have four neighbors, but only be able

to communicate with three of them. Exactly which of its neighbors a module can communicate

with can change as the topology of the system evolves. As some modules detach from the system,

they relieve internal stresses resulting in slight mechanical realignments and consequently other

communication links being formed or broken. Finally, a communication link can break if a module

enters a fault state. The modules can experience both hardware and software faults that result in

them entering a non-responsive state until power is removed. Between these three causes, it is not

uncommon for several communication links between neighboring modules to change while the

system is running.

Algorithm 6 shows how the link state monitoring process operates. To identify broken com-

munication links, each module tracks how many unsuccessful attempts it has made to transmit a

message to each neighboring module. Once the module successfully sends a message to one of its

neighbors, (or the neighbor at least indicates that its receive buffer is full), the transmitting module

resets its failed transmissions count (Lines 8-12 of Algorithm 6). If the count is not reset and passes

a hard coded threshold, (Lines 19-21 of Algorithm 6), the module marks the given face/neighbor

as non-responsive. Once a face is marked non-responsive, the low-level communication routines

report failure after a single attempt when asked by the application code to transmit a message. As

a result, the application code can follow a contingency plan instead of waiting indefinitely.

Once a face is marked non-responsive, the module attempts to re-establish the link to its neigh-

bor. Whenever the low-level communication code is not attempting to send an application-level

message to a neighbor, it attempts to send a ping (PNG) message to the neighbor (Line 4 of Algo-

rithm 6). As soon as the module successfully sends a ping message to its neighbor, it marks the

communication link active. When the neighbor receives a ping message, it simply discards it after
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Algorithm 6 transmitMessage(txFace)-manages message re-transmission and link state moni-
toring
Require: 1 < txFace < 4

1: if txBuf [txFace].full = true then
2: txStatus <- epMagTransmit(txFace, txBuf [txFace])
3: else if txFace $ unbondedNeighbors then
4: txStatus +- epMagTransmit(txFace, "PNG")
5: else
6: txStatus +- epMagTransmit(txFace, UNLATCH)
7: end if
8: if txStatus = SENT then
9: unsuccessfulTransmissions[txFace] +- 0

10: communicatingNeighbors +- communicatingNeighbors U {txFace}
11: txBuf [txFace].full <- false
12: value(txBuf[txFace].statusPtr) <- SUCCESS
13: else if (txStatus= CHECKSUM-MISMATCH) or

txStatus = CHECKSUM-TIMEOUT) or
(txStatus = RECEIVER-FULL) then

14: unsuccessful Transmissions [txFace] +- 0
15: value(txBuf [txFace].statusPtr) +- AGAIN
16: else
17: txBuf [txFace].remainingAttempts <- txBuf [txFace ].remainingAttempts - 1
18: unsuccessful Transmissions [txFace] +- unsuccessfulTransmission [txFace] + 1
19: if unsuccessfulTransmissions [txFace] > THRESHOLD then
20: txBuf[txFace].remainingAttempts +- 0
21: communicatingNeighbors +- communicatingNeighbors \ {txFace}
22: end if
23: if txBuf [txFace].remainingAttempts = 0 then
24: txBuf [txFace].full +- false
25: value(txBuf [txFace].statusPtr)+- FAILURE
26: else
27: value(txBuf [txFace].statusPtr)<- AGAIN
28: end if
29: end if
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sending the CRC acknowledgment byte. The ping messages only serve to test whether the link is

active; they carry no information.

There is one exception to when ping messages are sent. Each module keeps a list of neighbors

from which it has explicitly unbonded. Typically, this list is populated during the self-disassembly

phase of shape formation. Once a neighbor has been added to this list, the module sends syn-

chronous unlatch messages instead of ping messages (Line 6 of Algorithm 6). This serves as

insurance that helps guarantee that the magnetic bond between the modules is actually broken.

5.6 Robustness: Responding to Broken Links

By detecting and attempting to gracefully handle broken communication links, we complicate the

parsing of many messages. Often a message received from a neighbor prompts a module to transmit

one or more more messages in response. For example, when a module receives a routing message,

(unless it is the message's specified destination), the module needs to forward the message to

one of its neighbors. More generally, once a module parses an incoming message from one of

its receive buffers and determines what outgoing messages it needs to transmit in response, the

module proceeds to load the outgoing messages into the appropriate transmit buffers. If we could

guarantee that these outgoing messages would be successfully transmitted, the module could then

purge the incoming message that it just finished parsing thereby freeing the receive buffer.

Because we cannot guarantee that an outgoing message loaded into a transmit buffer will ac-

tually be delivered, we must wait to purge the incoming message from the receive buffer. If we

purge the incoming message too soon, the module may lose information crucial to reprocessing the

incoming message when the module fails to transmit the outgoing message on first attempted face.

For example, as routing messages are forwarded through the network of modules, the data fields

in each message are constantly updated. If a module fails to forward a routing message along the

ideal path as the result of a communication failure, but has already purged the incoming routing

message, it will be impossible for the module to recover all the information necessary to reroute

the message. Therefore, we must not purge incoming messages from their receive buffers until

we have verified that any messages generated in response to the incoming message have been sent
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successfully.

To explain the details of this verification process, we next describe the high-level loop driving

each module. Each module does the following:

1. Attempt to receive messages from neighbors and update the face receive buffers (i.e. call

epMagReceive once for each face).

2. Parse the messages in face receive buffers. This typically results in the f illTxBuf function

(explained below) to be called.

3. Update internal state variables. This step, along with how the parsing function operates,

determines the high-level behavior of each module.

4. Attempt to the send messages in the face transmit buffers to our neighbors (i.e. call transmitMessage

once for each face).

5. Repeat

The framework that we use to monitor whether a message has been successfully sent is il-

lustrated by Algorithm 7. In particular, the f illTxBuf function expects the caller, (typically the

parsing function from step 2 above), to provide a pointer to a status field that may take on one

of three values: SUCCESS, AGAIN, or FAILURE. To move a message into one of the transmit

buffers, the caller must set the value of the status pointer to AGAIN when calling the f illTxBuf

function. Then, assuming that the transmit buffer is empty, the else clause will be exercised, and

the f illTxBuf function will move the message into the buffer. Note that the function call does not

change the value of the status pointer, but it does copy the pointer itself to a field of the same name

associated with the transmit buffer.

After the call, the parsing function knows that the message has not yet been transmitted, only

loaded into the transmit buffer. Also note that if the transmit buffer were already full, the caller

would never know the difference. The value of the status pointer would still be AGAIN, so the

caller would know to call the f illTxBuf function again with the same parameters.
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A simplified parsing function is shown by Algorithm 8. This parsing function simply attempts

to transmit any incoming message back to its source, but it demonstrates how the f illTxBuf

function is called and how its results are checked. In particular, note that the function expects to

be told when the message that it is parsing is new in the sense that it is the first attempt made to

parse it. When a message is new, the function sets the persistent status variable to AGAIN so that

the call to f illTxBuf will copy the message to the buffer (assuming that it is empty).

Algorithm 7 fillTxBuf(txFace, overwrite, msg, repeat, statusPtr)-moves a message into a partic-
ular face's transmit buffer
Require: msg: message that the caller wishes to transmit
Require: overwrite E {true, false}: whether to overwrite the contents of the buffer
Require: repeat > 0: number of times to attempt to send the message
Require: value(statusPtr) E {SUCCESS, AGAIN, FAILURE}: pointer to transmission status variable
Require: 1 < txFace < 4

1: if msg = txBuf [txFace].msg and value(statusPtr) E {SUCCESS, FAILURE} then
2: return
3: else if txbuf [txFace].full = true and overwrite = false then
4: return
5: else
6: txBuf txFace .seqNum <- txBuf [txFace].seqNum + 1
7: txBuf txFace .msg +- msg
8: txBuf txFace .full +- true
9: txBuf txFace .remainingAttempts <- repeat

10: txBuf txFace .statusPtr +- statusPtr
11: value(statusPtr) <- AGAIN
12: end if

Algorithm 8 parseMsg(rxFace, msg, new)-example message parsing function that demonstrates
the proper use of the f illTxBuf function by echoing a received message back to the neighbor that
sent it
Require: 1 < rxFace < 4
Require: msg: message to be parsed
Require: new E {true, false}: whether this is the first attempt at parsing this particular message
Require: status E {SUCCESS, AGAIN, FAILURE}: local, persistent status variable

1: if new = true then
2: status <- AGAIN
3: end if
4: fillTxBuf(rxFace, false, msg, o, address(status))
5: if status = SUCCESS then
6: purgeRxBuf(rxFace)
7: else if status = FAILURE then
8: purgeRxBuf(rxFace)
9: end if

Because the f illTxBuf function does not update the value of the status pointer, some other

function must so that the parsing function eventually learns whether the transmission was success-

ful. It is the transmitMessage function shown in Algorithm 6 called during step 4 of the high-
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level loop that performs this update. When the transmitMessage function successfully sends the

message, it updates the value of the buffer's status pointer which, (due to line 10 of Algorithm 7),

points to the same status field that the parsing function provided as an argument to the f illTxBuf

function.

To illustrate how this approach works, consider this scenario of iterations through the 5-step

high-level control loop. Assume that the first call to transmitMessage after the initial call to

fillTxBuf is unsuccessful. Consequently, the value of the status pointer will still be AGAIN

(Line 27 of Algorithm 6). The second time the parsing function calls f illTxBuf, the elseif

clause on Line 3 will be exercised because the transmit buffer already contains the message that the

calling parsing function wishes to transmit. Now, after the second call to f illTxBuf, assume that

the second call to transmitMessage is successful. As a result, the transmitMessage function

will update the value of the status pointer to SUCCESS (Line 12 of Algorithm 6).

At this point, the parsing function will be called a third time, but because the new parameter

is now false, it will not modify the value of the status pointer (Line 2 of Algorithm 8). Even

though the value of the status pointer is already SUCCESS when the parsing function is called,

the function does not check for this condition until after it has again called f illTxBuf (Lines 4-5

of Algorithm 8). This is acceptable because the third time the parsing function calls f illTxBuf,

the f illTxBuf function will exercise the if clause on Line 1 of Algorithm 7 because the passed

message will match the message already in the face transmit buffer, and the value of the status

pointer will be SUCCESS. The f illTxBuf function will not take any action, but when it returns,

the parsing function will proceed to check the status pointer's value. In doing so, it will learn that

the message has been sent successfully. As a result, the parsing function purges the message it had

been processing from the receive buffer (Lines 5-6 of Algorithm 8). In this example, the parsing

function also purges the message from the receive buffer if it cannot be transmitted back to the

neighbor from which it was received, but the parsing function could do something else instead.

The important fact to note is that even though the message had already been transmitted before

the third call to f illTxBuf, that call did not reset the transmit buffer's full flag to true. If it had,

the module would have attempted to send the same message twice. If the parsing function really
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does want to send the same message twice, it must first wait until the value of the status pointer is

SUCCESS. Then it must set the value back to AGAIN and call the f illTxBuf function a second

time.

5.7 Link State Experiments

To verify that the modules correctly identify and respond to broken communication links, we

performed 102 experiments in which we modified the topology of a network consisting of 16

modules. In all trials, we used the system to route a message between points A to B in the loop of

modules shown in Figure 5-5. While the routing algorithm will be explained later, it suffices to say

that by default, the messages always follow the shorter of the two paths taking four hops to reach

their destination.

Figure 5-5: We routed messages from module A to B with and without module C present. The
arrows show the two possible paths taken by the messages.

In 25 trials, the average time for a message to traverse from A to B was 5.13s with a standard

deviation of 2.33s. To test the system's ability to reroute around a broken communication link

we removed the module labeled C from the network in order to force the message to traverse

the longer, 14-hop route to its destination. In 25 trials during which module C is removed just

before the message departs from module A, the average delivery time is 22.06s with a standard

deviation of 2.13s. In all 25 of these trials, the message reached its destination by taking the only
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available, longer route. After each of these 25 trials, we also allowed the system to stabilize so

that it knew, before a second routing message was ever sent, that module C was missing. In these

trials, the average delivery time was 11.66s in 25 trials, and the standard deviation was 2.19s. So,

by subtracting the average delivery time when the system did not know that module C is missing

from the average delivery time when the system did know that module C was missing, we find that

the system requires, on average, 10.40s to detect the broken communication link.

Finally, we re-inserted module C, and after it was localized and ready to process routing mes-

sage, measured the time for a message to travel from point A to B. If module C's neighbors were

slow to detect that it had been reintroduced, we would expect that the messages would take the

longer route. This was not the case. In 25 trials, the average routing time was 4.60s and the stan-

dard deviation was 2.07s. From this, it is apparent that the system realizes that the shorter path is

again available and begins using it with minimal delay. The results of all trials are summarized in

Table 5.5.

Table 5.5: The low-level communication algorithms are capable of detecting and routing messages
around dynamically broken links. Additionally, when those links are restored, the system again
uses them to deliver messages along the shortest path.

Experimental Setup # Trials # Successes Avg. Time [s] Std. Dev. [s]

A - B, C Present 26 25 5.13 2.33
A -+ B, C Recently Removed 26 25 22.06 2.13

A - B, C Removed, System Stabilized 26 25 11.66 2.19

A -+ B, C Re-inserted 26 25 4.60 2.07

In the 102 experiments summarized in Table 5.5, we saw 2 cases where a routing message was

not delivered. Any single module-to-module message exchange error would have been enough to

cause either of these failures. Given that the 102 experiments corresponded to 918 message hops,

the single hop failure rate is less than 0.22%. We would like to see a 0.0% failure rate, but the

routing algorithms will require additional refinements to achieve this.
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5.8 Two-Dimensional Routing

This section explores how we can transfer messages between modules that are not immediate

neighbors. We have developed a routing algorithm that allows a module to specify an arbitrary

destination for any message. The modules in the system then ensure that this message is delivered

or automatically determine that the destination is unreachable. The ability to route message to any

module in an ensemble is essential to the shape duplication algorithms presented in later chapters.

There are many possible strategies that we could employ in our routing algorithm. We need

to ensure that whatever algorithm we choose is capable of handling non-convex topologies and

missing communication links. Consequently, a simple gradient descent routing algorithm is not

sufficient. The limited processing power and storage available to each module further constrain

our choice of routing algorithms, For instance, it is not possible, especially as the number of

modules in the system grows, to maintain routing tables. Instead, we choose to use the traditional

bug algorithm [66] to route messages through the system. Instead of the bug being a robot, the

message is the bug, and the modules are the environment through which the message must navigate

from its source to destination.

5.8.1 Routing Algorithm

In particular, we use the Bug2 algorithm. This algorithm is provably correct [66] and ensures that,

if it is possible for a message to reach its destination, it eventually will; and if it is not, the sys-

tem will eventually be notified. The Bug2 algorithm is a natural choice for our system because

it assumes that the bug has no access to global information. The bug only needs to determine

its position and whether it is in contact with an obstacle, (in our case a void not occupied by a

module), facts readily available from the modules themselves. The Bug2 algorithm is also advan-

tageous because the bug only needs to maintain a constant amount of state information, and all this

information can easily be stored in the message.

The messages moves from its source to destination by following a direct path vector from its

source directly to its destination until it hits an obstacle. It then follows the obstacle until it re-

encounters the direct path at which point it leaves the obstacle and continues along the vector to
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the destination. This repeats until the message reaches its destination, or in the process of following

an obstacle, re-encounters the position where it left the direct path vector to follow the obstacle.

Should the message loop back on itself like this, it then knows that it cannot reach its destination.

5.8.2 Experimental Results

We have characterized the routing algorithm's speed in over 900 trials. First, we measured how

quickly the system could deliver routing messages. We assembled a 5-by-5 grid of Pebble modules

and then started the localization process. Once the modules were localized, we proceeded to

measure the time required to route a message from the root module at (0,0) to every other module

in the system. Specifically, we routed at least 25 inclusion (INC) messages to each of the 24

destinations (we did not route messages to the root module). The inclusion messages that we sent

alternated between informing their recipients that they were included or not included in the final

structure. When a module received an inclusion message indicating that it was included, it turned

its internal LED on. When it received a message indicating that it was not included, it turned it LED

off. We used a stopwatch to measure the time between when we pressed the enter key on our PC's

keyboard, thereby sending the inclusion message, and the moment when the LED toggled. After

sending 25 including messages to one Pebble, we sent 25 to the next module without restarting or

relocalizating the modules. Figure 5-6 illustrates the average time required to route messages from

the root to any other module in the 5-by-5 grid. Figure 5-7 presents the same data but aggregated

to show the message delivery time as a function of Manhattan distance between the source and

destination. Both plots show that the delivery times increase as the message's destination moves

farther from the source. Figure 5-7, in particular, illustrates the linear relationship between the

delivery time and the Manhattan distance separating the source and destination.

We performed a total of 622 trials routing inclusion messages to the modules in the 5-by-5

grid. In the course of those trials, there were only three instances where an inclusion message was

not successfully routed to its destination. This a 0.48% routing failure rate. If we are interested

in the single hopfailure rate, that is, how often low-level communication between modules failed,

we need to know the total number of inter-module hops taken by all messages in the experiment.
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Figure 5-6: The time required for the system to route an inclusion message from the root module
at (0,0) to any other module is a linear function of the Manhattan distance that the message must
travel.
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Figure 5-7: The time required by the system to route a message is a linear function of the Manhattan
distance between the source and destination. This data was collected from over 600 trials.
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Summing the number of hops required to reach each of the 24 destinations, we determine that the

total number of hops across all trials was 2600. Given that there were still just 3 errors, the single

hop failure rate is 0.12%.

We also characterized the time required for the system to determine that a routing message

was undeliverable. To do so, we assembled and localized another five-by-five grid of modules.

As before, we sent routing messages from the root module at (0,0). Now, instead of sending the

messages to modules that were in the system, we attempted to send them to non-existent modules

just past the perimeter of the block. In particular, we attempted to route messages to the 13 modules

below and to the right of this block (the row of modules (-1, -1) to (5, -1) and the column (5,5)

to (5, -1)). We attempted to send 10 messages to each of the 13 destinations. When the system

discovered that the destinations did not exist, it routed an undeliverable (UND) message back to

the root. We used a stopwatch to measure the time between when we pressed the enter key on

our PC's keyboard, thereby sending the routing message, and the moment when the undeliverable

(UND) message returned to the PC (via the root module).

Figure 5-8 shows the time required for the system to determine that a message's destination is

unreachable, and Table 5.6 summarizes the results. In general, the system requires more time to

determine that a message's destination is unreachable when the destination is further away from

the source. The reason for this is illustrated by Figure 5-9. In its attempt to reach its nonexistent

destination, each routing message first traverses the interior of the 5-by-5 array before colliding

with, and then following the array's perimeter. In contract, for destinations that are nearby, the

routing message starts to follow the perimeter almost immediately. Both messages completely

circumnavigate the perimeter before returning to their initial collision points. Then each propagates

back to the root module. Once again, the message originally destined for a distant module must

take a longer path to reach the root.

In total, we performed 138 experiments to characterize the time it took the system to inform

the sender of a routing message that the message was undeliverable. In these 138 experiments,

we only saw 1 trial in which the root module was not informed that the routing message was

undeliverable-a 0.72% failure rate. If one considers that each trial required that a message travel
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Figure 5-8: Using a 5-by-5 block of Pebbles, we measured the time it took for the module at (0,0)
to be informed that a routing message it had sent was undeliverable. The routing messages were
intentionally sent to the 13 non-existent modules below and to the right of the of the 5-by-5 block.

Table 5.6: The system requires additional time to discover that routing message bound for destina-
tions far from their source are undeliverable.

Destination [ # Trials # Successes Mean Time [s] JStd. Dev. [s]
(-1, -1) 10 10 14.9 3.2
(0,-1) 10 10 13.5 2.1
(1,-i) 10 10 14.5 2.6
(2, -1) 12 12 16.2 2.7
(3,-1) 11 10 17.9 3.4
(4,-1) 10 10 16.6 1.6
(5, -1) 10 10 18.9 4.0
(5,0) 15 15 21.4 4.1
(5,1) 10 10 23.8 3.5
(5,2) 10 10 24.9 2.6
(5,3) 10 10 26.5 2.7
(5,4) 10 10 28.9 3.4
(5,5) 10 10 27.9 4.6

120



Figure 5-9: The solid blue trace is a routing message destined for the non-existent (grey) module at
(5,4). Once the message diverts from the direct path between its source and destination it becomes
a dotted line and circumnavigates the perimeter of the 5-by-5 block looking for an alternative path
to (5,4). When the routing message returns to (4,4) it realizes its destination is unreachable, and
it send an undeliverable (UND) message, represented by the blue dashed trace, back to the root.
The red trace represents the path that routing message destined for (0, -1) follows. Immediately,
the trace is dotted as the routing message searches for a alternative path to (0, --1). Additionally,
red the undeliverable (UND) message that results need not travel anywhere because it is sent by
the modules at (0,0) to itself. As a result, it takes much less time for the system to determine that
there is no path to (0, -1) than it takes to determine that there is no path to (5,4).
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at least 16 inter-module hops, the single hop failure rate is less than 0.045%.
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Chapter 6

Shape Formation Basics

Chapters 3-5 presented the hardware and communication substrate on which the Smart Pebbles

are built. In this chapter, we introduce the self-assembly and self-disassembly algorithms that we

have developed for the Smart Pebbles, and we evaluate them on a 50-module hardware platform.

Self-disassembling systems require two high-level capabilities: (1) the ability to aggregate the ini-

tial block autonomously and (2) the ability to remove modules from this block to form a particular

shape by subtraction. In this chapter, we present solutions for both of these challenges. The two

capabilities are inter-related. When the utility of an object built from Smart Pebbles is exhausted,

the component modules are returned to the collective system. The self-assembly operation will

create a new block, which, in turn, will be transformed into the next object by self-disassembly. To

enable the creation of the widest range of objects, it is important that the result of self-assembly

process be a solid block.

By aiming to form a close-packed lattice during the self-assembly phase, we eliminate the

need to transmit a description of the goal shape to every module in the structure. Our approach

avoids transmitting the complete shape description to all of the modules by notifying, with a single

bit carried in an inclusion message, only those modules that are part of the goal shape. Any

module that does not receive an inclusion message assumes, by default, that it is not part of the

goal structure. When the self-disassembly process begins, these unincluded modules break their

mechanical bonds with their neighbors while the modules that did receive inclusion messages
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remain bonded.

Our two-step approach to shape formation attempts to minimize the amount of information

transmitted to modules in the system because it does not transmit a complete blueprint of the

structure to all modules. The alternative, in systems that perform self-assembly in a one-step

process, is to transmit information to every single module indicating on which faces that module

should allow neighbors to bond. This blueprint for the goal object has unacceptable communication

and storage costs.

If the system distributes the complete blueprint to all modules, the communication cost scales

as 0(n 2 ): the blueprint is size n, and one copy must be sent for each of the n modules. Additionally,

because each module would need to hold, at least temporarily, a complete copy of the blueprint,

the storage requirements for each module would scale as 0(n).

Alternatively, an external controller could send a local section of the blueprint to each module

as the module joins the system. With this approach, the message size and memory requirements

could be reduced to 0(1), but the overall communication cost still scales as 0(n 2). To understand

why, consider a single chain of n modules. The local piece of the blueprint sent to the last module

in the chain would take n hops to arrive. Likewise, the blueprint message sent to the second to last

module would take n - 1 hops, etc. Summing all of hops taken by the individual messages (1, 2, 3,

... . n - 2, n - 1, n), the total is still 0(n 2). This approach also necessitates that the newly attached

modules send messages back to the controller requesting the relevant sections of the blueprint.

Distributing the unique local sections of the blueprint to each module also requires that the sys-

tem efficiently route these local blueprint messages to their destinations. If the routing information

is contained in the message, it adds another factor of n to the communication cost, making it 0(n 3).

This is due to the fact that it could require 0(n) information to describe the route to a module that

is n hops distant from the message's source. More sophisticated routing algorithms, like the bug

algorithms presented in Chapter 5 may reduce the cost, but routing is never free. One can always

construct test cases that elicit the worst case performance from any routing algorithm.

In addition to simplifying communication, the other major advantage of self-assembling a

close-packed lattice before self-disassembling into the desired shape is that the modules in the
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lattice form a supportive scaffolding. The scaffolding adds mechanical rigidity while the goal

shape is being formed, and it also helps to better constrain and align modules as they attach to the

system. The scaffolding provides more potential routing paths for messages in the system. Like-

wise, the scaffolding provides more current paths and thereby reduces the electrical impedance

between any two modules in the system.

Once the system has formed a solid, close-packed block of material, we have two ways to con-

vey the desired shape to the system: sculpting and distributed duplication. In this chapter, we focus

on the sculpting process. It uses inclusion messages to inform individual modules that they are part

of the goal shape and should maintain their mechanical bonds with other included neighbors when

all other modules in the system self-disassemble. Consequently, it avoids transmitting the entire

shape description to the structure as a whole.

The sculpting process minimizes the cost of routing by constructing the routes for the inclusion

messages using an external controller. When distributing the inclusion messages, the system reuses

most routing information from the previous message when delivering the next message. As a result,

each message carries only 0(1) routing information and the total communication cost is 0(n2 ). For

more information, about the route construction process, consult our MEng thesis [32].

The distributed duplication approach is covered by Chapters 7 and 8. It enables a computer-

free user interface for shape specification by providing algorithms for autonomous shape sensing

and duplication using a miniature physical model of the desired shape. Using the duplication al-

gorithms, the system is able to autonomously sense the shape of, and duplicate, a passive object

surrounded by Smart Pebble modules. The advantage of duplication is that we completely elim-

inate the need for an external controller. This makes the system more practical, and it eliminates

the extraordinary communication burden from whatever module had been serving as the commu-

nication link between the system and the external controller.

6.1 Sculpting

Shape formation by sculpting is a six-step process:
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1) Self-assembly/Neighbor Discovery The self-assembly process attempts to construct an initial

block of programmable matter modules that are aligned in a close-packed lattice. Alterna-

tively, if the user wishes to skip the self-assembly process, he can manually assemble the

modules into an initial block. During both processes, the modules discover and begin to

communicate with their neighbors. The self-assembly processes is discussed in Section 6.2.

2) Localization During localization, each module learns its relative position within the initial

block of material. If the system is self-assembling, localization is integrated into the self-

assembly phase. If, instead, the user is manually assembling the initial block of material,

the user initiates the localization process by transmitting a position (POS) message to the

root module. Position messages then propagate throughout the entire structure so that each

module learns its position.

3) Reflection After each module has learned its position, it sends a reflection (REF) message to

the root module. The root modules passes these REF message to a GUI running on the user's

computer. Each REF message contains the position and orientation of the module that sent

it. Both localization and reflection are described in more detail in Section 6.3.

4) Virtual Sculpting The GUI constructs a virtual model of the physical system using the incom-

ing REF messages. The user then employs the GUI to select which modules should remain

bonded with their neighbors to become the goal shape and which should self-disassemble.

This result of this virtual sculpting process is a series of inclusion (INC) messages that will

convey the desired shape to the structure during the shape distribution phase. For details on

how this series of inclusion messages is generated, consult [34].

5) Shape Distribution After this sculpting process is complete, the program generates a sequence

of inclusion messages. During the shape distribution stage, the GUI transmits these inclusion

messages to a the root module. The structure then propagates these inclusion messages to

their proper destinations. As with the localization process, the messages only contain local

information. Shape distribution is described in Section 6.4.
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6) Self-Disassembly During the disassembly phase, the modules not designated to be in the final

structure disconnect from their neighbors to reveal the shape the user previously virtually

sculpted. Self-Disassembly is described in Section 6.5.

6.2 Self-Assembly

The goal of self-assembly is to aggregate a solid block from all of the free modules available in

the system. During the self-assembly process, we want to ensure that no voids are formed in

the growing structure. Voids restrict the set of shapes that can be sculpted from the initial block;

weaken the structure; and reduce the available communication and current flow paths. If we allow

new modules to be accreted at any location on the growing structure, it is easy to create gaps in

the structure that are theoretically difficult and practically impossible to fill; a loose module will

never fill a lattice position that is already surrounded on three sides. Therefore, our goal is prevent

the creation gaps surrounded by neighboring modules on more than two sides. Doing this also

guarantees that we do not create voids in the structure.

6.2.1 Self-Assembly Algorithm

To avoid holes in the self-assembled structure, we propose a simple distributed algorithm that

only requires local information. Based on this information, each free module coming into contact

with a potential bonding site on the solidified structure must decide whether to permanently bond

with the structure or move on and look for another bonding site. The algorithm we describe is

similar to the self-assembly rule set generated by Matarid et al. in [44] for forming a rectangular

structure. Matarid et al.'s work focuses on the broader question of how to generate a set of rules

to assemble arbitrary structures, and as a result, generates a larger, more complex set of rules that

depends on each module knowing in which of eight potential sectors it resides. In contrast, our

work focuses on developing a minimal complexity, easy to implement algorithm that guarantees the

assembly of a close-packed lattice. By following the self-assembly process with self-disassembly,

we eliminate the need for complex sets of rules which govern when and where modules may attach
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to the growing structure.

Our self-assembly algorithm makes two assumptions. First, all modules correctly assume the

location of the root module. This is easy to hard-code into each module's processor as location

(0,0). Second, once each module is added to the structure, it can determine it's (x,y) position.

This requirement is also easy to meet. The user informs the one module anchored to the assembly

platform that it is the root and therefore at location (0,0) and un-rotated. Using this information,

the root can inform the module added to its right that the new module's location is (1,0). Likewise,

the module added below the root is at location (0,-i), etc. Based on which of its faces the new

module receives this message, it can determine its orientation. Now that the root's neighbors know

their locations and orientations, they, in turn, inform their newest neighbors of their locations.

More details, and a proof that this algorithm is correct are proved in [34]. Note that the algorithm

only requires neighbor-to-neighbor communication, and it does not rely on any global information

being communicated within the structure. All modules in the structure are able to to determine

their coordinates without any concept of the structure as a whole.

The entire self-assembly algorithm, shown as pseudocode in Algorithm 9 begins as the free

module receives power when it comes into contact with a module already a part of the crystallized

structure. Immediately, the module queries its neighbor to determine its location. Based on this

location, the module then constructs a root vector pointing back to the root module. The vec-

tor may have x- and y-components. The new module permanently bonds with the structure-by

calling the latchAllFaces 0 function-if it detects that it has neighbors in both the x- and y-

directions of the root vector, (if they exist). For example, consider a new module that determines

its location is (10,2). As shown in Figure 6-1, the root vector is then (-10,-2) which has both x- and

y-components. As a result, the module only bonds with the structure if it has neighbors at (9,2) and

(10,1). Instead, if the new module were located at (0,-5) and the root vector was (0,5), the module

in question would only bond if it detected a neighbor at (0,4).

If the new module does not detect neighbors along both components of its root vector, it informs

whatever neighbors it is contacting, and they deactivate their connectors releasing the module. The

module will lose power, so when it next contacts the structure, its self-assembly algorithm will
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restart.

Once a module decides that it should permanently bond to the growing structure, it enters a

loop in which it simply listens for disconnect request messages on its faces. When a new module

decides that it cannot connect to the structure, it sends one of these disconnect request messages-

using the unlatchAllFaces 0 function-to all of its neighbors. When the previously a solidified

module receives one of these messages on a particular face, the previously solidified module keeps

the connector on that face deactivated for a fixed period of time to allow the rejected module to

move out of range of its attractive force. This is the purpose of the disableFace 0 function in the

pseudocode (line 20). Eventually, the connector is reactivated in hopes that the bonding site will

have become valid.

Algorithm 9 selfAssembleO-algorithm uses the existence or absence of two of a module's neigh-
bors to determine whether it is allowed to bond with its neighbors and become a part of the growing
structure.
Require: myPos: module's location as determined by localization process

1: r i<- (0,0) - myPos
2: if rioo.x # 0 then
3: neighborPos <- (myPos.x + sign(rooi.x), myPos.y)
4: if neighborExists(neighborPos)= false then
5: unlatchAllFaceso
6: return
7: end if
8: end if
9: if r oo.y # 0 then

10: neighborPos +- (myPos.x,myPos.y + sign(rooo.y))
11: if neighborExists(neighborPos) = false then
12: unlatchAllFaceso
13: return
14: end if
15: end if
16: latchAllFaceso
17: loop
18: for face <- 1 to 4 do
19: if disconnectRequested(face) = true then
20: disableFace(face, LOCKOUT-TIME)
21: end if
22: end for
23: end loop

Theorem 1. The self-assembly algorithm (Algorithm 9) prevents the formation of gaps in the

lattice structure which are surrounded by more than two neighbors.

Proof Guaranteeing that the algorithm never creates a gap that is surrounded on more than two
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sides is equivalent to ensuring that, on any vertical or horizontal line of the lattice, an unpopu-

lated gap between two distant modules is not formed. Consider, for illustrative purposes, an any

unoccupied position on the lattice and the horizontal, (or vertical), line extending to positive and

negative infinity from this point. If this line intersects solidified modules, (arbitrarily far away), in

both the positive and negative directions, one could imagine working from the solidified modules

inward to fill this gap. Eventually, enough modules will be attached so that the initial unoccupied

position has immediate neighbors to its left and right. Once this occurs, the empty position, will

be impossible to fill. As a result, if the algorithm avoids creating a gap, no matter how wide, along

any horizontal or vertical transect of the lattice, it will avoid creating gaps in the lattice which are

surrounded by more than two immediate neighbors.

The self-assembly algorithm, if it does not detect immediate neighbors along both the x- and

y-components of a vector pointing from the potential bonding site to the root module, assumes that

other, more distance modules may exist along those transects. As a result, by not connecting a

module to the structure, the algorithm does not risk creating gaps along these transects.

Finally, the algorithm is guaranteed not to create gaps along the x- and y-vectors originating

at the potential bonding site but pointing away from the root module. For this type of gap to be

created, a solidified module would have exist farther away from the root in either than x- or y-

direction than the bonding site in question. Conveniently, this is impossible. As explained in the

preceding paragraph, a module will never bond if there is any potential for an empty position in

the lattice along either component of the module's root vector, which, in this scenario, there would

have been.

Theorem 2. The self-assembly algorithm prevents the formation of holes in the lattice.

Proof By Theorem 1, the self-assembly algorithm never creates gaps with more than two neigh-

bors, so the algorithm can never create a gap with four neighbors-the definition of a hole. El

While the algorithm presented here has pertained to a two dimensional system, the extension to

3D is straightforward. Instead of a 2D vector pointing back to the root module, each module will

have a 3D vector and may need to check for neighbors along the three potential components of the
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bond formed ( -1 [0,0) bond not formed

(0, L2)

Figure 6-1: During self-assembly, modules only permanently attach to the already assembled struc-
ture if they detect immediate neighbors along a vector that points back to the root module. The
module at (2,1) does not attach because, while it has a neighbor along the y-component of its root
vector at (2,0), it does not detect a neighbor at (1,1) along the x-component of the vector. The
module at (0,-2) does attach to the crystallized structure because it detects a neighbor at (0,-1),
along the y-component of its root vector. The root vector does not have an x-component, so the
module does not attempt to detect neighbors at (-1,-2) or (1,-2).

root vector. Likewise, the 3D algorithm guarantees that a gap with more than three neighbors will

never be created which implies than holes will never be created.

6.2.2 Self-Assembly Experiments

We experimentally tested the self-assembly algorithm using a collection of 17 Smart Pebble mod-

ules. In three dimensions, we imagine shaking a bag full of modules to drive the self-assembly

process. The 2D analog is an inclined vibration table. We built a custom vibration table that

provides the stochastic forces necessary to move and align the modules (see Figure 6-2). The am-

plitude of the vibration can be controlled with a variac and we can also change the tilt of the table.

The perimeter of the table is surrounded by a low barrier that prevents modules from falling off.

In our experiments, we anchored one module, the root, in a corner of the vibration table at

coordinates (0,0). The root module provides the power and communication link between the

system and the user. Then we tilted the table 4 degrees in both the x- and y-directions to bias the

movement of all free modules toward the root module located at (0,0).
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Figure 6-2: A vibration table is used to drive the self-assembly process. It consists of a vibrating
base (a), a universal joint to control tilt (b), the assembly surface (c), and a variac (d) to control the
vibration frequency.

Using 16 randomly arranged modules, (in addition to the fixed root module), we first tested

the self-assembly algorithms. A progression of still images from one of these trials is shown in

Figure 6-3. As shown in the last frame of the figure, after the modules have coalesced and have

been given sufficient time to latch with their neighbors, the solidified structure can be removed

from the test fixture without falling apart.

Figure 6-4 shows how the 17 modules tended to be distributed after all modules had settled

into discrete grid positions. The data was collected from a set of 13 trials. Not surprisingly, the

experiments show that the modules tend to form an isosceles right-triangular configuration. In

addition to determining the most likely distribution of initial modules, we wanted to ensure that all

modules were able to bond with their neighbors and communicate with the system's PC-based user

interface. In a series of 15 trials, each using 17 modules, we observed a total of only 22 instances

in which a module failed to localize and send a message back to the user interface through the

root module-a failure rate of 8.2%. In most of these cases, one or more modules was clearly
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Figure 6-3: A collection of 16 randomly distributed Smart Pebble modules, (each a 12mm cube),
and one fixed root module, (back right of each video frame), self-assemble when placed on an
inclined vibration table. Initially, the connectors on each module are deactivated, and they are
only turned on when a module successfully communicates with the growing structure. The last
frame shows that all modules bond together to form a solid shape that can then be used for self-
disassembly.
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not in contact with one more of its neighbors. In one particularly bad trial, one of the modules

adjacent to the root was about 45 degrees out of alignment resulting in 13 of the 17 modules not

localizing. This was the only trial of the 15 in which the vibration table was unable to align all

of the modules. The average time taken to self-assemble the 17 modules was 1min, 47sec. The

self-assembly process worked most efficiently when the table vibration was swept up and down

several times through varying amplitudes.

Self-Assembly Module Distribution (17 Modules, 13 Trials)
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Figure 6-4: When 17 modules are placed on a vibration table included so that the (0,0) location is
the table's low point, the modules self-assembly into a close-packed lattice. The likelihood that a
particular position in the lattice is filled is shown in this plot.

6.3 Localization and Reflection Algorithms

Before the Smart Pebbles system can be used to form shapes, either by sculpting or duplication,

each of the modules must learn its location within the initial block of modules. Additionally, if the

system is self-assembling, each module must learn its location and orientation so that it can deter-

mine whether it is bonding to the growing structure in a valid location. When the user is forming

shapes by sculpting, he needs to know which modules exist so that he can determine how to place
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and orient his goal shape within the initial block of material from which the shape will be sculpted.

While the user could approximate the placement by eye in smaller two-dimensional structures, it

will become increasingly difficult to do in 3D configurations with more than a hundred modules.

To inform the user how the initial block of material is configured, each module sends a reflection

(REF) message to a GUI running on the user's computer. Using a virtual model constructed from

these reflection messages, the user can easily determine where within the initial block of material

to place the goal shape.

6.3.1 Localization Algorithm

When a module first receives power from one of its neighbors, it immediately begins sending lo-

calization (LOC) messages to its neighbors. Each localization message is a request for the receiver

to reply with its position, if it knows it. The localization begins when the user sends one module,

the root, a position (POS) message assigning that module an arbitrary set of coordinates and rota-

tion. In practice, we always tell the root that it is located at the origin, (0,0,0), with a rotation of

0 degrees. With its position known, the root module can begin responding to the incoming LOC

messages. The root's neighbor's will learn their positions and then begin sending POS messages to

their unlocalized neighbors. Eventually, all modules in the system will learn their location relative

to the root.

Each module must receive a single POS message in order to localize, so the number of mes-

sages that need to be exchanged is O(n), where n is the number of modules in the system. The

worst case running of the localization process occurs when n modules are arranged in a line. Each

module in the line cannot localize until the previous module knows its own position. Each module

requires a constant amount to time to process an incoming POS message from its newly local-

ized neighbor, so the total running time is O(n). In other structures, the average running time is

O(m) where m is the longest dimension of the structure. In particular, the average running time is

proportional to the Manhattan distance between the root and the most distant module.

Each POS message contains the transmitter's rotation and transmitting face number in addition

to the transmitter's coordinates. By combining the transmitter's rotation and transmitting face
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number with its receiving face number, the receiver can determine its own rotation using a look-up

table. Combining this with the transmitter's coordinates, the receiver can compute its own location.

Figure 6-5 illustrates how a module's face numbers are assigned. Note that we do not specify a

module's rotation as a number of degrees because in three dimensions we would need to specify

a rotation axis. Instead, we specify rotations by the module's face numbers than align with the

principal axes.

1 " 5 5
2 12

4 o- x 3 y 4 1 x
5 2 3

3 6 6

Figure 6-5: The six faces of each Pebble are numbered 1-6. Faces 1-4 correspond to the four
faces containing EP magnets. Face 5 is the top face, and 6 is the bottom. Rotations are specified
by which faces align with the principle axes. The figure shows three different views of a Pebble
whose orientation is X2Y1Z5. That is, face 2 aligns with the positive x-axis, face 1 aligns with the
positive y-axis, and face 5 aligns with the positive z-axis.

6.3.2 Three-Dimensional Localization

Localization in three dimensions is more complex than localization in two dimensions. The reason

for this is that receiving a POS message from a neighbor only partially constrains the rotation of

the receiver. This is because two neighboring modules cannot sense their relative orientation about

an axis that passes through the center of the two modules. To fully localize in three dimensions,

a module must receive two POS messages from two orthogonal directions. One consequence of

this constraint is that a module with neighbors along only one axis will never localize in 3D. For

example, a single chain of modules will never localize in 3D. In three dimensions, each modules

must receive two POS messages, so localization still requires 0(n) time.
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6.3.3 Localization Experiments

To verify that the localization algorithms operate correctly, and to measure their running times, we

performed experiments in hardware and simulation. In hardware, we performed a total of 256 trails.

In all trials, we arranged the modules on the test fixture shown in Figure 3-14 that provides power

to the root module, (the module clamped to the fixture), and a communication link between it and

an external computer. The root module was always situated at the lower-left of the arrangement

of modules. We started the localization process by sending a position (POS) message to the root

module. As the position messages propagated, the other modules learned their positions. When

they did, their internal LEDs stopped flashing and stayed solid for several seconds. We measured

the localization time with a stopwatch that we started as soon as we sent the first POS message and

stopped when all LEDs were illuminated solid.

Of the 256 hardware trials, 155 characterized the localization time in m-by-I lines of modules,

where m varied from 3 to 12. We performed at least 15 trials for each value of m. The other 101

trials characterized the running time of the localization algorithm in m-by-m squares of modules

ranging in size from m = 2 to 5. We performed at least 25 trials for each square. All trials were

successful and resulted in all modules learning their positions. Figure 6-6 shows the average time

required for all modules in a line to localize. Figure 6-7 show the average localization time for

squares. The plots show that the localization algorithm's communication cost obeys the expected

0(n) limit though it is only tight for lines of modules.

To show that the localization algorithm's 0(n) time scaling continues for larger groups of

modules, we used the simulator presented in Chapter 4. The simulated localization times for lines

and squares are shown in Figures 6-6 and 6-7 alongside the hardware results. We performed 192

trials with m-by-i lines of modules in which m varied over 15 different values between 2 and 50.

The minimum number of trials for a given value of m was 10. We performed 240 trials with m-

by-m squares of modules in which m varied from from 2 to 10. The minimum number of trials for

a given value of m was 15. Using the simulator, we also simulated localization in m-by-m-by-m

cubes of modules. In our simulations, m varied from 1 to 7. When simulating cubes, we performed

151 trials, and the minimum number of trials for any given value of m was 16. The results of these
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Figure 6-6: As the localization algorithm indicates should be the case, the time required for a line
of modules to localize is O(n), where n is the length of the line. The bars on each data point
indicate one standard deviation.
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Figure 6-7: The average time required for a square sheet of modules to localize scales as the
Manhattan distance between the root and the most distant module. For squares of modules with
the root in a corner, the Manhattan distance is proportional to the square root of the number of the
total number of modules. The bars on each data point indicate one standard deviation.
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trials are shown in Figure 6-8.

Localization Running Time for m-by-m-by-m Cubes
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Figure 6-8: The average time required for a cubic block of modules to localize scales as the Man-
hattan distance between the root and the most distant module. For cubes of modules with the
root in a corner, the Manhattan distance is proportional to the cube root of the number of the total
number of modules. The bars on each data point indicate one standard deviation.

As Figures 6-6, 6-7, and 6-8 illustrate, the O(n) running time bound, (where n is the total

number of modules), is not tight for all shapes. As discussed above, the localization time is actually

linearly proportional to the Manhattan distance between the root and the most distant module. That

is, the running time scales as 0(m) where m is the largest dimension of the collection of modules.

Figure 6-9 shows the running time of the simulated localization algorithm as a function of m, which

we label the object's diameter. It confirms our assertion that the localization time obeys an 0(m)

limit.

Figure 6-10 show the running time of the localization process in hardware as we vary the

aspect ratio of a rectangle composed of twelve Smart Pebble modules. The left-most data point is

the localization time of a 4-by-3 module rectangle. The middle data point corresponds to a 6-by-2

module rectangle, and the right-most data point corresponds to a 12-by-1 module rectangle. The

plot demonstrates that even though the number of modules remains fixed, their arrangement plays

a large role in the localization time.
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Localization Running Time vs. Object Diameter
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Figure 6-9: The average time required for any arrangement of modules to localize scales as the
Manhattan distance between the root and the most distant module. When the root is in a corner
of the arrangement, (as it is in all of our experiments), this Manhattan distance is the object's
diameter. The bars on each data point indicate one standard deviation.
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Figure 6-10: As a rectangular arrangement of modules approaches a square, the localization run-
ning time is minimized. This is due to the fact that a square minimize the Manhattan distance
between the root and the most distant module. The bars on each data point indicate one standard
deviation. Each data point is averaged from 15 trials.
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The simulator allows us to record the number of messages exchanged during the localization

process. Figures 6-11, 6-12, and 6-13 illustrate how the number of messages exchanged during

localization scales with object size of lines, squares, and cubes, respectively. Note that the scaling

is not linear as predicted above. The observed quadratic behavior is due to the fact the simulator

counts all message types, not just POS messages, exchanged during the localization process. Each

module, until it is localized, continuously broadcasts localization (LOC) messages to all of its

neighbors. These LOC messages are included in the message counts shown in Figures 6-11, 6-12,

and 6-13. Each of the n modules sends LOC messages at a fixed rate until it is localized. Because

the localization process runs in O(n) time, the number of LOC messages sent will therefore scale

as O(n2).

C--,
0

N 7000

0
06000

5000

(D4000
C
(U

o3000
x

(0)(D 2000
0)

')1000

Localization Communication Cost for n-by-1 Lines

20 30 40
n - Number of Modules in Line

60

Figure 6-11: Despite the fact that only O(n) POS messages are needed to localize n modules
(regardless of configuration), the total number of inter-module messages exchanged during local-
ization of a line scales as 0(n2) because we also count the LOC messages that each module sends
continuously until it is localized. The bars on each data point indicate one standard deviation.
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Localization Communication Cost for m-by-m Squares
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Figure 6-12: Despite the fact that only O(n) POS messages are needed to localize n modules
(regardless of configuration), the total number of inter-module messages exchanged during lo-
calization of a square sheet scales as 0(n 2) because we also count the LOC messages that each
module sends continuously until it is localized. The bars on each data point indicate one standard
deviation.
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Localization Communication Cost for m-by-m-by-m Cubes
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Figure 6-13: Despite the fact that only O(n) POS messages are needed to localize n modules

(regardless of configuration), the total number of inter-module messages exchanged during local-
ization of a cubic block scales as O(n2) because we also count the LOC messages that each module
sends continuously until it is localized. The bars on each data point indicate one standard deviation.

6.3.4 Reflection Algorithm

During the reflection step, modules transmit their location and orientation to the GUI running

on the user's external computer. Reflection is only necessary when virtually sculpting the initial

block of material. (In fact, the significantly slow down the duplication process.) It allows the

GUI running on the user's PC to visualize the physical configuration of the hardware modules. By

pointing and clicking on the modules in the GUI, the user can select which modules should become

part of the goal structure and which should self-disassemble.

Each module sends a reflection (REF) message immediately after it is localized. The REF

messages propagate back to the root module by following a set of parent pointers. A module's

parent pointer is assigned during the localization process. In particular, a module's parent pointer

indicates the face on which the module first received a position (POS) message from a neighbor.

Because modules only reply to incoming LOC messages with POS messages after they are local-

ized, any module sending a POS message to its neighbor is guaranteed to have its own valid parent
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pointer. By following this chain of parent pointers, all REF messages eventually propagate back to

the root module. For more details about parent pointers, consult [34].

In a collection of n modules, there are n unique REF messages that must propagate back to the

root module. The total communication cost of the reflection process scales as O(n 2). The worst

case scenario arises in a line of modules. The REF message sent by the m-th modules must traverse

through m - 1 other modules to reach the root. Summing the number of hops traversed by all REF

messages, the total communication cost is 0(n 2).

The time required for all REF messages to reach the root is dependent on several variables.

Given a line of modules, the REF messages can move in lock-step. As a module transmits its mes-

sage to its neighbor closer to the root, it can immediately accept the next incoming REF message

from its opposite neighbor. This implies a linear relationship between between the reflection time

and the distance between the root and the most distant module. In squares and cubes of modules,

this relationship is not so exact.

The root module, and other modules in its proximity, become choke points through which all

REF messages must pass. With these modules near the root receiving REF messages from all di-

rections simultaneously, they cannot forward the messages to their parent modules as quickly as

they arrive. A traffic jam is created, and the running time degrades from the ideal linear relation-

ship. The other factor affecting the running time of the reflection process is the fact that not all

modules send REF messages simultaneously. Each module sends a REF message as soon as it is

localized, but modules nearer the root localize before those that are far away. In total, these factors

lead us to expect a running that that is roughly linear, but may be worse.

6.3.5 Reflection Experiments

As part of the localization experiments in Section 6.3.3, we allowed each trial to continue to run

after the modules had been localized. Each module, after localizing, sent a REF message that

propagated back to the root module and from there to a terminal emulator running on our desktop

computer. In software, all 583 trials were successful. In hardware, we saw 21 failures in the 256

trials. A failure is defined by a single REF message that does not arrive at the root. In total there
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should have been 2533 REF messages transmitted back to the root. The 21 lost messages represent

a 0.83% loss rate.

Figures 6-14, 6-15, and 6-16, characterize the number of individual inter-module messages

exchanged in the simulated system as the REF messages propagate back to the root module. All

plots show the expected O(n2) dependency on the total number of modules in the system. Note that

quadratic nature of the three plots decreases from the line (Figure 6-14) to the square (Figure 6-15)

to the cube (Figure 6-16). This behavior is explained by the fact that modules arranged as a cube

are, on average, closer to the root than are modules arranged as a line. Consequently, the average

distance traveled by each REF message is less.
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Figure 6-14: In a line of n modules, there are n unique REF messages that must propagate back
to the root. The path they must take is O(n) modules long, so the total communication cost, that
is the number of individual inter-module messages, scales as O(n2 ). The bars on each data point
indicate one standard deviation.

Figures 6-17, 6-18, and 6-19 show the time required for the root module to receive all REF

messages in lines, squares, and cubes, respectively. The correlation between the hardware and

simulator is particularly high. As expected, the running time is roughly linear. There is some

degradation from this ideal relationship that is especially noticeable in the case of cubes (Figure 6-

19).
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Reflection Communication Cost for m-by-m Squares
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Figure 6-15: In a square sheet of n modules, there are n unique REF messages that must propagate
back to the root. The path they must take is, on average, 0(n1/ 2 ) modules long, so the total
communication cost, that is the number of individual inter-module messages, scales as O(n3/2
The bars on each data point indicate one standard deviation.

Figjqection Communication Cost for m-by-m-by-m Cubes
2.5

0

cD 2-

CD

Ct% 1.5-

-+-Simulation

~0

00 50 100 150 200 250 300 350

n - Number of Modules in Cube (m 3

Figure 6-16: In a cubic block of n modules, there are n unique REF messages that must propagate
back to the root. The path they must take is, on average, O(ni/3) modules long, so the total
communication cost, that is the number of individual inter-module messages, scales as O(n4/3.
The bars on each data point indicate one standard deviation.
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Reflection Running Time for n-by-1 Lines
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Figure 6-17: In a line of modules, there are O(n) reflection (REF) messages that must propagate
back to the root module. These messages can move in lock-step so that the total time for all to
reach the root depends only the distance between the distance between the most distant module
and the root. The bars on each data point indicate one standard deviation.
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Figure 6-18: The average reflection time in square sheets scales roughly as O(n), but as explained
in Section 6.3.4, this relationship is not guaranteed. The bars on each data point indicate one
standard deviation.
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Reflection Running Time for m-by-m-by-m Cubes
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Figure 6-19: The average time required for all reflection (REF) messages from a cubic block of
n modules to reach the root scales as nk where k > 1. The root module becomes a choke point
which cannot transmit messages to the external PC as quickly as it can receive messages from its
neighbors. As a result, the time required to transmit all REF messages degrades from its ideal O(n)
bound. The bars on each data point indicate one standard deviation.
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Figure 6-20 illustrates the reflection time for 12-module rectangles with different aspect ratios.

The left-most data point corresponds to a 4-by-3 module rectangle, the middle point to a 6-by-2

rectangle, and the right most a 12-by-1 rectangle. The plot demonstrates that even though the

number of modules remains fixed, their arrangement plays a large role in the reflection time.
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Figure 6-20: As a rectangular arrangement of modules approaches a square (left-most data point),
the time required for all REF messages to reach the root is minimized. The bars on each data point
indicate one standard deviation. Each data point is averaged from 15 trials.

6.4 Shape Distribution Algorithm

In this section we present an algorithm that controls and optimizes the formation of multiple shapes

by sculpting an initial block of connected material. While prior work [34] has shown that self-

disassembly can form a particular shape from an initial block of material, the previous algorithm

was only able to form a single shape during each iteration of the self-disassembly process, and

the resulting shape had to include a unique root module. The algorithm developed in this thesis

removes these restrictions. Multiple shapes that are contiguous or separated by any number of un-

used modules can now be formed. This flexibility allows the sculpting of objects with interlocking
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sub-parts and internal degrees of freedom.

The shape distribution algorithm operates by transmitting a single inclusion (INC) message

to each module in the initial structure that is destined to be a part of a goal shape. Modules not

included in any goal shape do not receive an INC message. Modules assume, by default, that

they are not included in the final structure. They will wait forever to receive an INC message.

Consequently, once the user knows that all INC messages have been delivered to the modules in

the goal shapes, he must explicitly start the self-disassembly process. INC messages originate from

the sculptor's desktop computer, pass through the test fixture, and, once in the structure, create and

follow a dynamic inclusion chain. This inclusion chain is constructed from a constant amount of

information per message, and it grows in length with each additional INC message. The algorithm

avoids encoding the detailed path that each inclusion message must follow, and it avoids flooding

the system with messages.

The total communication cost of the inclusion chain algorithm is 0(n 2 ) where n is the number

of modules included in the final structure. This bound arises because for each of the n modules,

the INC message that informs each module of its status may have to travel from the root module

through 0(n) other modules. In contrast, using a shortest-path algorithm to route a message from

the root to each included module also has a theoretical communication cost of 0(n 2 ) but only if a

gradient descent approach is employed and there are no obstacles in the structure that could form

local minima. Once one considers broken inter-module communication links and voids within the

initial structure, the communication cost of the routing algorithm increases as each message must

contain more specific routing instructions. Given the uncertainty over which approach will perform

better on average, we choose the inclusion chain approach for its simplicity given the hardware's

limited processing capabilities.

INC messages are generated by the system's user, often with the help of a GUI. All INC mes-

sages, like all other messages, enter the initial block of modules through the root module's serial

connection to the user's desktop computer. As an inclusion message moves from a module to its

neighbor, it extends the tail of an inclusion pointer chain. Figure 6-21 shows how inclusion mes-

sages follow this chain for a specified distance termed the hop count. Once a message has traveled
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the specified number of hops, it branches off of the chain in the specified branch direction. The

hop count and branch direction are pieces of information carried by the message itself-they do

not come from the modules in the structure. However, the modules in the structure do store the

inclusion pointer chain. Each module only needs to remember where to redirect an incoming INC

message with a hop count greater than one.

After branching, the old inclusion pointer chain may be lengthened, or it may be truncated and

redirected. The module that the message reaches after branching off of the inclusion pointer chain

is included in the structure. If the old chain is truncated, the modules in the discarded portion of

the chain maintain their pointers, but do not affect the shape formation process.

INC messages carry additional information. First, each message contains an ignore field which

may be used to counteract the message's typical effect at its destination module. This module,

instead of assuming to be included in the final structure, effectively ignores the INC message. The

advantage is that a module may be part of the inclusion pointer chain without being a part of the

final shape. This allows the formation of an unlimited number of disjoint shapes from one initial

block of material during a single self-disassembly process.

The second auxiliary piece of information carried by an inclusion message is the group number.

When an INC message reaches its destination, the group number is assigned to the module. During

the disassembly phase, if two included modules have different group numbers, they disconnect

from each other. Likewise, if their group numbers are identical, they remain bonded. Group

numbers will allow the formation of contiguous interlocking shapes.

In practice, INC messages are ASCII strings:

INC, <hop count>,<branch dir.> ,<ignore> , <group>.

Each module employs Algorithm 10 when processing an incoming INC message. When a

module receives an INC message, it first checks the hop count (line 6). If that value is 0, the

receiving cube is the intended destination. In addition, if the ignore flag is not set, the module

records the fact that it should be a part of the final structure and saves the group number included in

the message (lines 7-8). A hop count of 1 indicates that one of the receiver's immediate neighbors

is the message's intended destination. The receiving module uses its own known rotation and the
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message's branch direction to determine the face that should retransmit the message after the hop

count is set to 0 (line 10-11). This inclusion pointer direction is stored as part of the module's

state (line 12). Finally, if a module receives an INC message with a hop count greater than 1, it

decrements the hop count and then retransmits the message on the face indicated by the previously

stored inclusion pointer direction (line 14). The algorithm terminates when the module receives a

disassemble (DIS) message.

Algorithm 10 parseIncMsg-Inclusion Message Processing Algorithm
1: included = false
2: incChainPtr = NULL
3:
4: repeat
5: wait for INC msg. w/ hop count HC, branch dir. BD, ignore flag IGN, and group number GRP
6: if HC = 0 and IGN = 0 then
7: included = TRUE
8: myGroup =GRP
9: else if HC = 1 then

10: txFace = branchDirToFace(BD)
11: queuelNC(txFace, o, 0, BD, IGN, GRP)
12: incChainPtr = BD
13: else
14: queuelNC(incChainPtr, o, HC - 1, BD, IGN, GRP)
15: end if
16: txQueuedMsgso
17: until DIS message received

The queueINC function on line 11 builds an inclusion message and places it in the transmit

queue of the specified face using the f illTxBuf function from Chapter 5. The second argument to

the function specifies the number of attempts that the system should make to transmit the message

before giving up.

Proving the correctness of the shape distribution algorithm requires a description of the shape

one wishes to form. In our system, generating a description of the goal shape is facilitated by a

GUI that allows the user to virtually sculpt the desired shape and then generates a list of inclusion

messages that are transmitted to the root and distributed. In [34] we show that this approach is

efficient and correct. While the prior proof did not incorporate the concept of ignored modules,

their effect is negligible, and we will not repeat the proof here. Additionally, the group code carried

in each inclusion message has no effect on the algorithm.

Figure 6-21 illustrates the propagation of eight inclusion messages as they form a simple

wrench from a 3-by-4 block of material. As indicated by the text above the modules in Figure 6-
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21(a), the first inclusion message is INC,0,n/a, true,0. The second inclusion message reaches

module A with a hop count of 1, indicating that one of A's neighbors is to be included. The branch

direction of this message is "up," so the hop count is decremented to 0 and the message is sent to

module E. Module A sets its inclusion chain pointer to E. The third message reaches A with a hop

count of two, follows A's inclusion chain pointer to E, and obeys the message's branch direction

by moving to the right and including module F. Jumping ahead, after Module L is included as

shown in (f), the next inclusion message modifies module G's inclusion chain pointer from "up" to

"down" to include C. Module K's inclusion chain pointer still points to module L, but the inclusion

of modules C and D is unaffected.

HC=O BD=n/al1GN=true HC=1 BD=u IGN=false

(a) (b)

HC=2f =false H BDrightGNfalse
Fk IE HFGH

J4WW
(c) (d)

HC=4 BD=uo. IGN=false HC=5 BD=ri ht IGN=false

(e) (f)

HC4 BD=down IGN=false HC=5 BD-r ht IGN=false

(g) (h)

Figure 6-21: Eight inclusion messages are used to create a simple wrench from a 3-by-4 block
of programmable matter. The root module is labeled A. As modules are included in the final
structure, they change from transparent to shaded. The arrows in the figure represent the inclusion
chain pointers stored in the modules.

153



6.5 Self-Disassembly Algorithm

The key step for shape formation with the Smart Pebbles is the inter-module disconnection process

that must occur after all modules know whether to remain as part of a finished object or to dis-

connect completely. The challenge of this disconnection process is that a module loses its ability

to function once it breaks its mechanical connection with the neighbor supplying it with power.

Furthermore, all modules that are dependent on that module for power will also lose power and

will not be able to break additional magnetic bonds.

6.5.1 Parents, Children, and Neighbors

A tree can be used to represent how power is transmitted through an initial block of modules.

Because it is connected to an external power supply, the module connected to the user's PC, is the

root of this power transfer tree. Every other module in the tree has one parent, P. This parent is

the neighbor that supplies the module with power. Conversely, every module to which a module

supplies power is a child. Children of a module are denoted by the set C. Parents and children are

both subsets of a module's magnetically bonded neighbors, N. In practice, current often follows

many different paths from the root to any other implying that a module should have multiple

parents. We disallow multiple parents by definition because they only serve to complicate the

disassembly process. The key concept is that although different neighbors could also supply it

with power, a module will never lose power so long as it is connected to its parent. These child and

parent relationships are defined during the assembly process. A module is not allowed to become

the parent of another until it has a parent of its own.

6.5.2 Child-to-Parent Disconnection

We have designed and implemented Algorithm 11 which ensures that an initial block of material

can disassemble correctly; that is, disconnecting bonds that should be broken and keeping those

that should be preserved. In general, the disconnection algorithm operates by ensuring that a

module has no children before disconnecting from its parent. If a module is a part of the same
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finished shape as its parent, the child uses a child removal message to inform its parent that it no

longer needs to be considered a child. The algorithm uses sets N, P, and C to keep track of a

module's bonded neighbors, parent, and children, respectively. We use two additional sets, G and

K, that are initially empty. All neighbors from which a module has received group (GRP) messages

are added to G. If a neighbor's group matches the receiver's, the neighbor is added to the keep list,

K.

Algorithm 11 selfDisassemble-Ensure that the self-disassembly process is organized so that
modules do not lose power before they have broken all mechanical bonds with their neighbors.
Require: N: set of neighbors
Require: C: set of children, C C N
Require: P: single-element set containing parent, P C N
Require: G: set of neighbor from which module has received GRP msgs.
Require: K: set of neighbors with which to retain module's bonds

1: G=K=0
2: wait for DIS msg. to be rcvd. on face rxFace
3: queueDIS(C\ rxFace, -)
4: queueDIS(N \ (rxFace U C), DIS-RETRIES)
5: repeat
6: txQueuedMsgsO
7: until txQueuelsEmpty(N\ rxFace)
8:
9: if included then

10: queueGRP(N, -, myGroup)
11: repeat
12: if GRP msg. rcvd. (on face rxFace specifying a neighbor in group neighborGroup) then
13: G = G U rxFace
14: if neighborGroup = myGroup then
15: K = KU rxFace
16: else if rxFace # P then
17: queueUnlatch(rxFace, c)

18: end if
19: end if
20: txQueuedMsgsO
21: until txQueuelsEmpty(N) and N = G and N = (P U K)
22: if myGroup # parentGroup or parentGroup = 0 then
23: queueUnlatch(P, c);

24: else
25: queueCLD(P, c);
26: end if
27: else
28: queueUnlatch(N \ (C UP)), c)

29: queueGRP(C, -, myGroup)
30: repeat
31: txQueuedMsgso
32: until N = P
33: queueUnlatch(P, oc)
34: end if
35: repeat
36: txQueuedMsgsO
37: until N = 0

The algorithm begins by waiting for a disassemble (DIS) message from some neighbor. The
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face on which the message arrives is represented by the single-element set rxFace. When the mod-

ule receives a DIS message, it forwards the message to its children (line 3). If the children do not

receive this message, there is no guarantee that they will receive a DIS from any other source. In

line 4, the DIS message is also sent to the module's neighbors that are not children to speed its

propagation throughout the structure. To prevent two modules from repeatedly sending DIS mes-

sages to each other, a DIS message cannot be sent back to the module from which it was received.

After the DIS messages that are to be transmitted have been queued, we continue attempting to

retransmit them until the transmit queues for all neighbors are empty (line 7). By passing infinity

to queueDIS in line 3 when the algorithm queues the DIS messages for the module's children, the

algorithm ensures that the txQueuedMsgs function will never stop attempting to deliver the mes-

sage until it is successful. This guarantees that module's children receive the DIS message before

the algorithm moves past line 7. In contrast, the DIS-RETRIES parameter in line 4 indicates that

the txQueuedMsgs function only makes a finite number of attempts to send the DIS message to the

module's non-child neighbors before the txQueueIsEmpty returns true. Once the children have

received the DIS message, the algorithm branches (line 9) depending on whether the module is

included in any of the final structures being formed.

If the module is not included in the final structure, the relevant pseudo-code begins on line 27.

The algorithm begins with the module queuing an unlatch message for all of the module's neigh-

bors except the module's children and parent. Then, in line 29, the module queues group (GRP)

messages for its children. Group messages simply inform their recipients of the transmitter's group.

The infinity parameters passed to the queueUnlatch and queueGRP functions in lines 28 and 29,

would normally indicate that all of the unlatch and GRP messages will be repeatedly transmitted

until successfully received, but the receipt of an unlatch message purges the corresponding transmit

queue; there is no point in continuing to transmit a message to a neighbor that is no longer present.

(This behavior is not shown in the pseudo-code.) Now that the unlatch and GRP messages are

queued, the algorithm continually transmits them (line 30-32) until the module's only remaining

neighbor is the module's parent. This elimination of neighbors results from the pseudo-code on

line 33. Once a module's only neighbor is its parent, the module queues an unlatch message for the
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parent and waits (lines 35-37) until the message is successfully transmitted. When it is, the par-

ent is removed from the module's list of neighbors, indicating that the module is now completely

disconnected.

Alternatively, if the module is included in the final structure, it behaves differently. Lines 11-

21 of Algorithm 11 form a repeat-until loop that eliminates all of a module's neighbors (except

its parent) with group numbers that do not match its own. Before the loop begins in line 10, the

algorithm queues GRP messages for all neighbors, including the module's parent and children.

The infinity parameter in line 10 ensures that these GRP messages are sent repeatedly by the

txQueuedMsgs() function until they are received. Once the loop beings, the algorithm checks for

any incoming GRP messages from its neighbors (line 12). If one is received, the transmitting

neighbor, rxFace, is added to G, the list of neighbors from which the module has received GRP

messages. If the GRP message indicates that the neighbor's group is the same as the module's

(line 14), then that neighbor is added to the module's keep list, K (line 15). If the neighbor's group

number differs from the module's, and if the neighbor is not the module's parent, the module

queues an unlatch message for the neighbor in line 17. This unlatch message overwrites any

pending GRP message destined for that neighbor.

This process of transmitting and receiving GRP messages will eliminate all of a module's

neighbors other than its parent and the neighbors in K. The loop ends in line 21, when the transmit

queues of all neighbors have been emptied, the module has received a GRP message from each of

its remaining neighbors, and its only remaining neighbors are P U K.

The module's children are eliminated over the course of the repeat-until loop in lines 22-26.

To consider the disconnection process complete, the module only needs to inform its parent that

it is no longer the parent's child. Exactly how the module informs its parent is determined by

line 22. If the module's group is different than its parent's, (or if its parent does not belong to a

group because it is not included in the final structure), the module queues an unlatch message for

its parent. When this message is received, the two modules disconnect and the parent no longer

considers the module its child. Alternatively, if the module and parent share the same group, the

module sends a child removal (CLD) message to its parent. This message informs the parent that
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the module has performed all necessary tasks and no longer requires a power source. As a result,

the parent removes the module from its list of children, C. In this manner, the parent will eventually

be left with no children so that it can sever the bond with its own parent.

6.5.3 Disconnection in Action

Figure 6-22 shows Algorithm 11 in action. In the figure, (a) represents the state of the modules

after the DIS message has been distributed and the modules have exchanged GRP messages, but

before any have begun to disconnect from their neighbors. The color of each module indicates the

group to which it belongs. Module C is not included in any of the final structures. As shown by

the transition from Figure 6-22(a) to (b), disconnection begins when the modules without children

(E, F, and H) sever the relationships with their parents. In the case of E, its parent belongs to the

same group, so it sends a CLD message that breaks the parent relationship while maintaining the

physical bond. Module F belongs to the same group as its neighbor, G, so G is in F's keep list.

Given that all modules have already exchanged GRP messages, F's state satisfies the conditional

in line 21 of Algorithm 11. Consequently, F executes line 23 of the pseudo-code and transmits an

unlatch message to its parent. Module H disconnects from its only non-parental neighbor, module

D, because they are in different groups.

In subfigure (b), module D has no remaining neighbors except its parent, module C, which is

not included in the structure, and therefore lacks a group code. Module D therefore satisfies the

condition on line 22 of Algorithm 11, and it sends an unlatch message to C to disconnect from its

parent. Without any remaining connection to the structure, the shape formed by modules D and

E loses power in subfigure (c). Also shown in the transition from (b) to (c), module H sends its

parent, G, a CLD message leaving G without children.

As soon as G has no children, it disconnects from its parent because it is not included in

the structure. After disconnecting, the shape formed by modules F, G, and H loses power. This

disconnection is the only change as the system transitions from Figure 6-22(c) to (d). Once in

the state shown by (d), module C realizes that it now has no children and no neighbors except its

parent. Because it is not included, C can disconnect from its parent.
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In Figure 6-22(e), module B has no children and no neighbors other than its parent, allowing

B to send a CLD message to its parent, A. Module B sends a CLD message instead of an unlatch

message because it knows that A is a part of the same group. When A receives this message,

the parent-child bond between A and B is broken, transitioning the system to the state shown in

subfigure (f). Finally, module A is left with only its parent, so A symbolically disconnects from

the user's desktop computer. At this point, all modules have lost power, but all of the necessary

bonds have been maintained, and the desired shapes have been formed.

(a)
A B D E

(b)

(c)

(b) A B. r D E

(A B D E

13E1
()I H~

A ,, B DO.. E
TA B F]D E

parent-+child U powered
e-obonded 0 unpowered

Figure 6-22: Disconnection occurs in an orderly fashion. Each color of module in the figure
represents an object that is to be formed from the initial block of material. As modules disconnect
from the structure and lose power, they change from filled to empty. Before disconnecting, a
module must ensure that all of its neighbors that depend on it for power have completed their
disconnection process. Module A is the root.
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6.5.4 Correctness

The correctness of Algorithm 11 can be proven using induction on the height of the power transfer

tree.

Theorem 3. Algorithm I1 results in a neighbor disconnection order that maintains power in each

module until it has finished disconnecting from all unincluded neighbors and neighbors with group

numbers different from its own.

Proof Base case: Tree height 1. A tree of height one has a single parent and multiple children that

are the leaves of the tree. These children may or may not be magnetically connected neighbors.

If a child has magnetically connected neighbors, it exchanges GRP messages with them. If the

groups of two neighbors are different, or if either neighbor is not included in any of the final

structures, the neighbors unlatch (line 17). If they are in the same group, they do nothing. Once a

leaf module handles its neighbors appropriately, the leaf severs its parent-child bond with the root.

If the root and leaf are in different groups, the leaf sends the root an unlatch message (lines 22-23).

Otherwise, the leaf sends the root a CLD message that breaks the parent-child connection while

maintaining the magnetic bond.

As we set out to prove in the theorem, the following occurs for each module before it potentially

loses power by disconnecting from its parent: an unincluded module completely disconnects from

all neighbors and then its parent; an included module with magnetically connected neighbors in

groups other than its own detaches from these neighbors; and simultaneous with power loss, a

module disconnects from its parent if their groups differ.

Induction: Assume the disconnection process operates correctly for trees of height n. To com-

plete the proof, we need to show that the disconnection process works correctly for trees of height

n + 1. Following this approach, a tree of height n + I can be viewed as a tree of height n with one

additional set of leaves. These leaves may or may not be magnetically bonded with any other mod-

ule in the entire tree. Whether or not they are bonded does not change how they act. Just as in the

height- 1 base case, the leaves exchange GRP messages with their magnetically bonded neighbors

and break their magnetic connection if they are in different groups or if either is not included in the
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final structure. Once the leaves have broken all bonds except those they share with their parents,

the leaves break their parent-child bonds (by unlatching or sending a CLD message).

As in the base case, all leaves, before losing power, have disconnected from their neighbors

as needed. Unincluded leaf modules have broken all of their magnetic connections. Included

leaf modules have broken their magnetic connections with neighbors belonging to groups different

than their own and maintained their connections with neighbors of the same group. With the leaves

removed, the n + 1 height tree is now an n height tree. E

6.5.5 Self-Disassembly Running Time Experiments

We characterized the running time and communication cost of self-disassembly following the same

procedure as in Sections 6.3.3 and 6.3.5, which we used to characterize the localization and re-

flection algorithms. After receiving all REF messages, we issued a disassembly (DIS) message

instructing the system to break all inter-module bonds. Starting as we issued the DIS command,

we measured the time required for the system to break all bonds.

We performed 154 hardware trials on 3- to 12-module lines and 63 trials on 2-by-2- to 5-by-5-

module square sheets of modules. In hardware, the self-disassembly algorithm operated correctly

in 202 trials, or 93.1% of the time. If a single pair of modules failed to break their shared bond, we

marked the trial a failure, so the percentage of all bonds that were correctly broken was actually

much higher. In simulation, we performed 583 trials with lines, square sheets, and cubic blocks.

All of these trials worked correctly. This leads us to believe that the algorithm is working correctly,

but its robustness could be improved. One particular problem is that, due to variations in the size

of the Smart Pebbles, the modules realign as mechanical bonds are broken. The result is that

some communication links fail during the self-disassembly process. This can make it impossible

to correctly complete the self-disassembly process.

Figures 6-23, 6-24, and 6-25 illustrate that the running time of the self-disassembly algorithm

is 0(n). This bound is only tight in the case of lines of modules. In lines, a module must wait for all

modules farther away from the root to disconnect before it can disconnect from its neighbor closer

to the root. The root module must wait for n - 1 other modules to disassembly before it can do
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so. Because each module requires 0(1) time to disassembly once its parent is its only remaining

neighbor, the overall running time of the self-disassembly process is O(n). Figure 6-26 illustrates

that, for a fixed number of modules, arrangements that more closely approximate a cube will self-

disassembly more quickly than arrangements with large aspect ratios. In arrangements other than

a line, the many modules can self-disassembly in parallel thereby reducing the running time of the

algorithm. In particular, the self-disassembly time is linearly proportional to the distance between

the root and the most distant module (see Figure 6-27).

Disassembly Running Time for n-by-1 Lines
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Figure 6-23: The time required for all modules in a line to self-disassemble scales linearly with the
length of the line. The bars on each data point indicate one standard deviation.

We recorded the number of messages exchanged during the self-disassembly process using the

Sandbox simulator presented in Chapter 4. The self-disassembly process is initialized by broad-

casting a single DIS message to all modules in the structure, a task that requires O(n) messages.

Then, each of the n modules must exchange 0(1) group (GRP) and child (CLD) messages with its

neighbors. Therefore, the total number of messages exchanged during the self-disassembly process

is O(n). This theoretical bound is confirmed by Figures 6-28, 6-29, and 6-30 which all illustrate a

linear relationship between the number of modules and the number of messages exchanged during

self-disassembly.

162



35

>' 30

E
25

CTS

0
1 20

15

E
o 10
4-

E

Disassembly Running Time for m-by-m Squares

0 20 40 60 80 100

n - Number of Modules in Square (m2)

120

Figure 6-24: The time required for all modules in square sheet to self-disassembly obeys an O(n)
bound, where n is the number of modules in the square. The bars on each data point indicate one
standard deviation.
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Figure 6-25: The time required for all modules in a cubic block to self-disassembly is less than the
theoretical O(n) bound because many bonds can be broken simultaneously. The bars on each data
point indicate one standard deviation.
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Figure 6-26: As a rectangular arrangement of modules approaches a square sheet, the self-
disassembly process runs more quickly because many bonds can be broken in parallel. The bars
on each data point indicate one standard deviation. Each data point is averaged from 15 trials.
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Figure 6-27: The self-disassembly time of a group of modules varies linearly with the distance
between the root and the most distant module. When the root is on the perimeter of the collection
of modules, (as it is in all of our experiments), this distance is the diameter of the object. The bars
on each data point indicate one standard deviation.
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Figure 6-28: In a line
process. The bars on

of n modules, O(n) messages must be exchanged during the self-disassembly
each data point indicate one standard deviation.

E
CD
(O
(O
(U

U.1

Co)
C

W0

Self-Disassembly Communication Cost for m-by-m Squares
700

300-

700-

500-

500-

400-

300-

200 -
Simulation

100-

0 20 40 60 80 100 120

n - Number of Modules in Square (m 2)

Figure 6-29: In a square sheet of n modules, O(n) messages must be exchanged during the self-
disassembly process. The bars on each data point indicate one standard deviation.
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Figure 6-30: In a cubic block of n modules, O(n) messages must be exchanged during the self-
disassembly process. The bars on each data point indicate one standard deviation.

6.6 Shape Distribution and Disassembly Experiments

We have performed several end-to-end self-disassembly experiments in both simulation and hard-

ware. In these experiments, we used the sculpting process presented in this chapter to convey the

desired shape to the initial block of modules that we assembled by hand. Because the shape dis-

tribution and self-disassembly phases are distinct, we are concerned with the success of each. The

first experiment we performed consisted of fully disassembling a 3-by-3 block of modules that did

not contain any goal shapes. This is shown pictorially in Figure 6-31(a). In 12 of 15 hardware ex-

periments, all bonds were broken as expected. In the other 3 three, there were 2, 3, and 4 unbroken

bonds. In all three cases, the initial shape was poorly constructed and the modules far from the

root did not align well with their neighbors. As a result, we believe communication failures, not

the algorithm, led to the unbroken connections.

We performed 67 additional experiments with other goal shapes to test the system's ability to

use the ignore and group fields of an inclusion message. The most complex experiment formed 6

different Tetris pieces from a 4-by-7 block of modules. Twenty-four of the 28 modules were in-
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Figure 6-31: We have used the Smart Pebbles to form a number of different shapes that test the
ability of the hardware and algorithms to form multiple contiguous and discontiguous shapes.

cluded one of the goal shapes. The results for both the simulations (55 experiments) and hardware

(12 experiments) appear in Table 6.1. In the table, the shape distribution success rate is measured

by observing which Pebbles know that they should be a part of goal structure. The disconnection

success rate is the number of bonds that behaved as expected divided by the total number of bonds

in the initial structure

Table 6.1: Experiments show the algorithms working correctly.
Sim / Number Success Rate [%]

Goal Shape(s)
HW Trials Distribution Disconnection

Sim 15 N/A 100.0
Figure 6-31(a) HW 15 N/A 95.0

Sim 15 100.0 100.0
Figure 6-31(b) 1W1009.HW 5 100.0 98.3

Sim 15 100.0 100.0
Figure 6-31(c) HW 5 100.0 96.7
Figure 6-31(d) Sim 15 100.0 100.0

Figure 6-21(h) Sim 10 100.0 100.0
HW 2 100.0 97.1

The results in Table 6.1 show that the shape distribution algorithm works flawlessly in both

simulation and hardware. We only see errors when performing disconnection experiments in hard-

ware. Even so, the overall disconnection success rates are still good. This leads us to believe that

the disconnection algorithm functions correctly, but that peculiarities of the hardware are interfer-

ing with its operation.

We have observed four particular hardware issues that affect the disconnection process. First,

all modules are not exactly the same size. As a result, alignment errors can accumulate, result-
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ing in marginal or no communication between neighbors. Second, during the assembly process,

previously bonded modules are sometimes pulled out of position as new modules are added to

the structure. This results in the connected modules losing power, resetting their states, and intro-

ducing inconsistencies in the system. Third, the disconnection process releases internal stresses

as some of the magnets turn off. Given that we see the modules moving as they disconnect, we

suspect that this may also result in modules temporarily losing power. Finally, the power supply

sourcing power to the root module is current limited. When a module deactivates an EP magnet,

it momentarily draws 4A. The simultaneous deactivation of many EP magnets during disconnec-

tion often pegs the power supply at its current limit, potentially preventing some modules from

unlatching.
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Chapter 7

Duplication

This chapter explores an alternative to virtual sculpting that we call distributed duplication. Dis-

tributed duplication operates as follows. A passive object is buried under, or submerged into, a

collection of programmable matter modules. Upon receiving a start signal, the all modules me-

chanically bond with their neighbors to encase the original object in a solid block of material. Once

solidified, the modules execute a distributed algorithm that senses the shape of the original object.

After the system has captured the shape of the original, it creates one or more, potentially mag-

nified, replicas of the object using the rest of the programmable matter through self-disassembly

by selectively unlatching the unnecessary modules from the initial block of material. When this

self-disassembly is complete, the user can brush away the newly disconnected modules to reveal

a replica of the original object. The algorithm requires 0(1) space and exchanges 0(n) messages

per module in a system with n modules.

7.1 Duplication Algorithms

The distributed duplication algorithm is a multi-step process that is able to sense the shape of a

passive object that is surrounded by programmable matter modules and then form a duplicate of

that object using additional modules within the same initial block of material. The algorithm is

completely distributed, all modules execute the same code, and all computation occurs on-board.
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The algorithm, illustrated in Figure 7-1, is composed of five major phases:

1. Encapsulation and Localization

2. Shape Sensing / Leader Election

3. Border Notification

4. Shape Fill

5. Self-Disassembly

In short, after all modules are localized and bond together to encase the object being duplicated,

the algorithm senses the border of the original object, creates a duplicate border beside the original,

informs all modules inside of this border that they form the duplicate shape, and then prompts all

modules except those that form the duplicate shape to self-disassemble. The user can they brush

aside the extra modules much like a sculptor would remove extra stone from a block of marble to

reveal the newly created duplicate object.

7.1.1 Encapsulation and Localization Algorithm

The shape duplication process begins when the user surrounds the passive object to be duplicated

with a collection of programmable matter modules. In a 3D system with sand-sized particles,

we envision literally burying the object to the duplicated. Using the 2D, centimeter-scale Smart

Pebbles, we can use an inclined vibration table, the 2D analog of a bag of sand, to surround

the passive object with active modules. Once the object is surrounded, the user sends a start

command to one module to initiate the encapsulation and localization process. The recipient of this

message arbitrarily assumes that its coordinates are (0,0), and then it informs all of its neighbors of

their coordinates. As each module learns its coordinates within the system, it mechanically bonds

with its neighbors to rigidly encapsulate the passive object being duplicated. Once bound to its

neighbors, each module enters the shape sensing and leader election phase.
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Figure 7-1: After localization, the distributed duplication algorithm begins in (a) by routing a sense
(SEN) message around the border of the obstacle. As shown in (b), the message sent by the module
with the highest unique ID will eventually return to its sender, prompting that module to route a
duplication (DUP) message around the border of the obstacle (c). Upon receiving a duplication
(DUP) message, a module sends a border (BOR) message to its conjugate that will become the
border of the duplicate object. After all duplicate border modules have sent confirmation (CON)
messages back to the leader (d), the leader broadcasts a fill (FIL) message (e) informing modules
contained by the new border that they are part of the duplicate shape and causing them to send
confirmation (CON) messages back to the leader, (f). Upon receiving all confirmation messages,
the leader broadcasts a disassemble (DIS) message (g) causing all modules except those in the
duplicate shape to self-disassemble (h). Note: the key for this figure holds for all others in this
chapter as well.
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7.1.2 Shape Sensing / Leader Election Algorithm

The goal of the sensing phase is to two-fold: determine the perimeter, area, and dimension of the

original obstacle's bounding box; and elect a leader module on the perimeter of the object being

duplicated. After a module is localized by an incoming position (POS) message, it detects which of

its neighbors are present by assuming that unresponsive neighbors are absent. The module assumes

that these missing neighbors correspond to the obstacle presented by the original object to be

duplicated. Then, a module attempts to route, (using the bug algorithm as explained in Chapter 5),

a sense (SEN) message to each of its missing neighbors. Because the destination coordinates

are occupied by the obstacle being duplicated, the SEN message will never be delivered to its

destination, but this is the intent. Instead, the SEN messages will traverse the entire perimeter of

the obstacle being sensed. Eventually, it will return to its sender, who will then know that the

message cannot be delivered.

3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6
4 4 4 D 4 4 4 4

perimeter: 0 + 1 - 1 perimeter: 1 + 1 -4 2 perimeter: 2 + 2 -* 4 perimeter: 4 + 1 -+ 5 perimeter: 5 + 1 - 7 perimeter: 6 + 1 -7 perimeter: 7 + 1 -4 8area =0 area =0+ 6 -46 area= 6+ 5 -411 area = 11 area= 11 - (3+1)--* 7 area =7 - (3+1) -+3 area =3
x-extents: [5,51 x-extents: [5,6] x-extents: [5,6] x-extents: [5,6] x-extents: [3,6] x-extents: [3,6] x-extents: [3,6]
y-extents:[ 1,1] y-extents: [1,2] y-extents: [1,3] y-extents: [1,4] y-extents: (1,4] y-extents:[ (1,4] y-extents: [1,4]

(a) (b) (c) (d) (e) (f) (g)

Figure 7-2: As the modules attempt to use the bug algorithm to route a sense (SEN) messages
from its source at (5,1) to its non-existent destination at (5,2), they update the perimeter, area, and
bounding box fields carried within the message. The perimeter is incremented as the result of every
"collision" with the obstacle, and area is accumulated row-by-row. When the message returns to
its sender, these parameters accurately describe the obstacle.

In the process of traversing the obstacle, the sense (SEN) message is modified by each module

through which it passes so that by the time the message returns to its sender, it holds obstacle's

area, perimeter, and the extents of the obstacle's bounding box. Figure 7-2 shows this process in

action. The perimeter computed by the SEN message is incremented whenever the bug algorithm

causes the message to virtually collide with the obstacle being duplicated. The area of the obstacle

is integrated by rows. For each row, the minimum x-coordinate plus one is subtracted from the

maximum x-coordinate, but these operations never occur simultaneously. Finally, the SEN mes-
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sage logs the minimum and maximum x- and y-coordinates through which it travels to determine

the original shape's bounding box.

While Figure 7-2 only shows a single module's SEN message, all modules on the border gener-

ate messages. To elect a leader module from those surrounding the obstacle, and to reduce the total

number of messages transferred, modules discard incoming SEN messages from modules with

lower unique IDs than their own. Because there is a single highest ID, all SEN messages except

one will be discarded before they return to their sender. The module whose SEN message returns is

the de facto leader. Figure 7-2 also omits the fact that all modules on the external perimeter of the

entire configuration of modules generate SEN messages. These messages are routed in an identical

manner around the exterior of the entire ensemble of modules, but when the message generated by

the module with the highest ID returns to its sender, the sensed area will be negative, so the module

will know that it did not detect an obstacle.

7.1.3 Border Notification Algorithm

The border notification phase duplicates the border of the original shape in the nearby modules and

involves three types of messages. Duplication (DUP) messages inform each module on the border

of the original shape of their special status. Border (BOR) messages are sent by modules on the

perimeter of the original shape and inform each module that is on the border of what will become

the duplicate shape of their status. Confirmation (CON) messages, in turn, are sent by recipients

of border (BOR) messages and allow the leader to determine when the border of the duplicate is

complete.

The border notification phase begins with the leader selected by the shape sensing phase at-

tempting to use the bug algorithm to route a duplication (DUP) message to its missing neighbor

whose position is instead occupied by the obstacle to be duplicated. Like the sense (SEN) message

that is already sent, the duplication (DUP) message traces the perimeter of the obstacle convey-

ing two critical pieces of information to each module on this border: the leader's coordinates and

a duplication direction vector, (whose length is determined by the bounding box of the original

shape).
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As the DUP message passes through the modules on the perimeter of the original shape, each

module attempts to route a border (BOR) message to the module identified by the direction vector

added to the sender's coordinates. After stimulating each module on the perimeter of the original

shape to send a border (BOR) message, the DUP message eventually returns to the leader where it

is discarded.

When the BOR messages reach their destinations, these modules become the border of the

duplicate shape. Because the BOR messages also carry the coordinates of the leader module, each

BOR recipient sends a border confirmation (CON) message back to the leader carrying the length

of perimeter of the duplicate shape on which the module borders. By comparing the cumulative

length of all received confirmation (CON) messages to the known perimeter of the original shape,

the leader determines when all modules on the border of the duplicate have been notified of their

role.

7.1.4 Shape Fill Algorithm

The shape fill phase notifies all modules inside the border of the duplicate shape that they form the

duplicate object and should remaining solidified when all other modules disassemble. The phase

begins when the leader has received confirmation messages from every module on the border of the

duplicate shape. With the border of the duplicate complete, the leader sends a fill (FIL) message

that floods the entire network of modules. Each instance of the message contains an "included" bit,

(initially cleared), that is toggled every time the message passes through a module on the border of

duplicate shape. As a result, only modules surrounded by the duplicate border receive a fill (FIL)

message with the included bit set. These modules know that they are included in the final structure

and do not break their shared bonds during the disassembly phase. Each module inside the border

of the duplicate shape sends another (area) CON message to the leader. By comparing the number

of received area CON messages to the known area of the duplicate object, the leader can determine

when all modules that compose the duplicate object have received a fill (FIL) message.
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7.1.5 Self-Disassembly Algorithm

After the leader can verify that each module in the duplicate shape knows that it should not disas-

semble, the leader broadcasts a disassembly (DIS) message to the entire structure. This message

floods the network and the unincluded modules begin disassembling from their neighbors in an

orderly fashion (see Chapter 6), until only the duplicate object remains.

7.2 Storage and Communication

The distributed shape duplication algorithm requires only a constant amount of storage per module

which is independent of the number of obstacles in the system or size of the object being duplicated.

During localization, a module only stores its position. In the sensing phase, a module updates sense

(SEN) messages as they pass through the module, but no information is stored. During border

notification, the new border modules that surround what will become the duplicate shape must store

a list of their faces that border on the duplicate obstacle, but this is constant in size and can never

exceed the dimensionality of the system. During the fill process, a module only needs to record a

constant amount of information: whether it is in the structure and whether it has already sent a fill

(FIL) message to each neighbor (to minimize the number of FIL messages transmitted). Finally,

during disassembly, modules do not need to store any information. Throughout the entire process,

the leader module only stores a constant amount of information: the perimeter and area of the shape

being duplicated. It never holds a complete description of the shape being duplicated. Additionally,

it only tracks the cumulative confirmed perimeter and area conveyed by the confirmation (CON)

messages instead of keeping a list of exactly which modules have transmitted CON messages. The

total storage per module is therefore 0(1).

The number of messages exchanged also scales favorably. The worst case scenario occurs

when the area of the original object approaches the area of the initial block of material and when

the shape of that object approaches a 1-by-n rectangle. During localization, each module may

exchange a constant number of messages with each of its neighbors resulting in 0(n) messages

exchanged. In the sensing phase, there are at most 0(n) modules that each transmit sense (SEN)
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messages. Each SEN message may travel O(n) hops before being discarded by a module with a

larger ID. Therefore, the total number of messages is O(n2 ). During duplication, the total number

of messages exchanged is also 0(n2) as the number of modules in the perimeter of the duplicate

may approach n, and each border (BOR) message may have have to travel a distance of O(n) to

arrive at its destination. Normally, the fill process requires O(n) messages, as each module just

forwards fill (FIL) messages to its immediate neighbors. If there are many missing modules, the

number of messages may approach O(n2 ). Finally, disassembly, because it is a flood fill process

like localization, only requires O(n) messages. So, the total number of messages scales as 0(n 2)
implying that the per module number of messages exchanged scales as O(n). While a constant

scaling would be preferable, it is unrealistic to expect to duplicate an arbitrarily large shape in a

distributed manner using only a fixed number of messages per module.

7.3 Robustness

The system is robust to both missing communication links and missing modules. In what follows,

we assume that the physical state of the system is static: once the duplication process has begun,

neither communication links nor modules are removed from or added to the system.

0 1 2 3 4
._, functional

2 Tcomm. link

O missing
1 lcomm. link

Figure 7-3: The missing link between modules (3,0), and (3,1) will cause the module located at
(3,0) to send a sense (SEN) message to (3,1). Instead of discarding this message, and aborting the
entire border sensing process, the module at (3,1), (even though it is the intended recipient), must
continue routing the message around the perimeter of the obstacle so that it eventually returns to
the leader.

First, consider the case of missing communication links. In general, missing links are not

an issue so long as each module can communicate with at least one neighbor. When routing

messages, the bug algorithm will treat missing links just like obstacles that must be avoided. The
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one scenario in which a missing communication link can affect the system is shown in Figure 7-

3. In general, missing communication links are problematic when they border on the object to

be duplicated because the sense (SEN) messages sent by the two modules that share the missing

link will actually reach their destinations, (unlike most SEN messages which are destined for a

location occupied by the obstacle being duplicated). Referring to Figure 7-3, the SEN message

transmitted by the module at (3,0), that also happens to have the highest ID, would be discarded by

the module at (3,1) instead of circumnavigating the obstacle. Furthermore, the module at (3,0) will

discard all other SEN message because they come from modules with lower IDs. To alleviate this

problem, and make the system robust to missing communication links anywhere, we have modified

the routing algorithm so that it never acknowledges when a SEN or duplication (DUP) message

reaches its destination. Instead, it will allow the message to keep traveling.

The duplication algorithm can also robustly handle missing modules. There are exactly four

distinct locations from which a module can be missing, and each is shown in Figure 7-4. First,

when a module is missing from a location adjacent to the original object being duplicated, (such

as at location (5,4) in Figure 7-4), missing module appears to be a part of the original object, and

the duplicate will reflect this, as shown by the module at (12,4) being included in the duplicate.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

~L1(a)M

Figure 7-4: The duplication algorithm is robust enough to handle modules missing from any poten-
tial location: (a) adjacent to the object being duplicated; (b) in the interior of the duplicate shape;
(c) on the border of the duplicate shape; or (d) in any other position.

Second, when a module is missing from another location that is also not the border or interior

of the duplicate shape, such as (6,0) in Figure 7-4, we need to ensure that the algorithm does not

duplicate this apparent obstacle. We guarantee that the algorithm only duplicates the intended ob-

stacle by placing a threshold on the area of objects that will be duplicated. Sense (SEN) messages

that return to their sender specifying an obstacle with an area smaller than this threshold are simply
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discarded. This approach to ignoring small holes in the initial packing of modules is reasonable

given, that to achieve acceptable resolution, most objects will be orders of magnitude larger than

the modules themselves.

Third, the duplication algorithm can gracefully handle modules missing from the interior area

that will become the duplicate shape, such as the 9 modules centered at (9,2) in Figure 7-4. In

general, the algorithm will make its best effort to duplicate the original, but a large chunk of the

duplicate will be missing when the process completes. During the shape fill phase, the modules

surrounding this gap in the structure will attempt to route Fill (FIL) message to the 9 missing mod-

ules. As the system discovers that each of these message is undeliverable, it will attempt to route

disconfirm (DCON) messages to the missing modules' conjugate locations in the original obstacle.

For example, if the module at (7,2) in Figure 7-4 determines that a FIL message destined for (8,2)

is undeliverable, (7,2) will attempt to route a disconfirm (DCON) message to (1,2). Because lo-

cation (1,2) is occupied by the passive obstacle being duplicated, this DCON message will never

be delivered. As the system discovers that each of these DCON messages is undeliverable, it sends

an area confirmation (CON) message to the leader so that the leader can account for the entire area

of the duplicate in order to trigger the self-disassembly phase. Continuing our example, if module

at (5,2) determines that the DCON message destined for (1,2) cannot be delivered, the module

acts as a proxy for the module at (8,2) and sends an area CON message to the leader at (3,0). Ad-

ditionally, (5,2) sends FIL messages to each of (8,2)'s neighbor's, including in particular, (9,2).

This last step is critical because there are no modules adjacent to (9,2) that could otherwise gen-

erate the necessary (though undeliverable) FIL message. Without this last step, the leader would

never receive a CON message from a module proxying for the missing module at (9,2). We use a

combination of highest ID and distance to discard many FIL messages so that we do not generate

an excess of area CON messages that would confuse the leader. In this particular example, there

will be four undeliverable FIL messages sent by proxy modules to the module at (9,2). The system

will discard all except the one sent by the module with the highest UID to ensure that only one

additional proxy CON message is generated.

Fourth, and finally, it is easy to handle modules missing from the border of the duplicate shape
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such as the module missing from (12,2) in Figure 7-4. During the border notification phase, the

border (BOR) message sent from (5,2) to (9,2) will be determined to be undeliverable by some

module. This module will in turn act as a proxy for the missing module and send a border CON

message to the leader on behalf of the module at (12, 2). The leader can then account for all border

modules before initiating the shape fill phase.

During the shape fill phase, the algorithm handles missing border modules as it does missing

interior modules. An undeliverable FIL message destined for (12,2) generates a DCON message

that is sent to the missing module's conjugate at (5,2). In contrast to the interior case, this DCON

message is actually delivered because location (5,2) is on the border, not inside, of the original

shape. Because this message is delivered, we know that the module at (12,2) is itself a border

module. As a result, there is no need to send an area CON message to the sender.

7.4 Automated Duplication Placement

We created an algorithm which allows the system to automatically decide where within the initial

block of programmable matter to place the duplicate shape. In an automated duplication system

with millions of minuscule programmable matter modules, it would be difficult for the user to ex-

plicitly instruct the system where to place the duplicate. Our automated shape placement algorithm

eliminates the need for the user to specify where the duplicate should be placed. The automated

shape placement algorithm is executed by the obstacle leader between the sensing and border iden-

tification steps of the larger distributed duplication process. In short, the algorithm attempts to find

the optimal placement of the duplicate object's bounding box within the rectangular bounding box

surrounding all modules in the system.

The placement algorithm represents the duplicate object with a rectangular bounding box. As

explained above, the shape sensing algorithm learns the size and position of original shape's bound-

ing box by routing a sense (SEN) message around the perimeter of the shape being duplicated.

When this sense message returns to the obstacle leader, it contains the bounding box. Figure 7-5

shows the bounding box of the original shape being duplicated (labeled "0") as a dashed line.

A bounding box of the same dimensions will also enclose the duplicate shape that the system is
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attempting to form. The system must decide where to place the duplicate's bounding box. Fig-

ure 7-5 shows four potential positions for the duplicate (labeled "A" through "D"). The bounding

box associated with each potential position is drawn as a dotted line.

0 1 2 3 4 5 6 7 8 9 10

7

6

5

Figure 7-5: The automated duplicate placement algorithm attempts to place the duplicate shape as
far from the edges of the surrounding block of material as possible. To simplify the optimization,
the algorithm uses rectangular bounding boxes, (dashed and dotted lines), to represent both the
original shape and the collection of programmable matter modules surrounding it. In this example,
the algorithm determines that placement B is ideal.

Modules on the perimeter of the collection of programmable matter modules encasing the shape

being duplicated also route sense messages around the perimeter of the collection of modules. To

be consistent with terminology introduced in Chapter 8, we call this two-dimensional collection

of communicating modules a slice. One of the sense messages traversing the inside perimeter of

the slice will eventually return to the slice leader, which is the module on the perimeter of the

collection of modules with the highest UID. Because it circumnavigated the inside of the slice, (in

contrast to the outside of an obstacle), this sense will indicate that the sensed area is negative. The

slice leader uses this fact to determine that it is, in fact, the slice, not obstacle, leader. Despite

returning with a negative area, the sense message that returns to the slice leader holds the position

and size of rectangular bounding box surrounding all modules in the system. This bounding box is

also represented by a dashed rectangle surrounding all modules in Figure 7-5.
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With both the obstacle's and the slice's bounding boxes known, the automated shape placement

algorithm attempts to find the optimal placement of the obstacle's bounding box within the slice's

bounding box. To do so, the algorithm instructs the slice leader to broadcast the slice's bounding

box to all modules in the system. Because the slice leader does not know the coordinates of

the obstacle leader, this is the easiest way to guarantee that the obstacle leader learns the slice's

bounding box. Once the obstacle leader receives the message containing the slice's bounding

box, it considers four distinct placements of the duplicate shape. In particular, the obstacle leader

considers placing the duplicate shape in the four cardinal directions relative to the original shape's

location. Starting to the north, and moving clockwise, the obstacle leader considers placements A

through D in Figure 7-5.

Determining the optimal placement is a two step process. First, for each cardinal direction,

the algorithm determines if the duplicate has any chance of fitting between the original shape's

bounding box and the slice's bounding box. In the example of Figure 7-5, the algorithm determines

that placements A, B, and C are all potential candidates. It eliminates placement D because the

duplicate's bounding box is two modules wide, but the space between the left side of the original's

bounding box and the slice's bounding box is only one module wide.

Second, having eliminated cardinal directions that it knows will not fit the duplicate, the obsta-

cle leader attempts to find the optimal placement among the remaining directions. For each direc-

tion, the algorithm attempts to center the duplicate's bounding box in both the x- and y-directions.

For example, when attempting to place the duplicate north of the original, the algorithm attempts

to center the duplicate between the top edge of the original's bounding box and the top edge of the

slice's bounding box. Simultaneously, the algorithm attempts to center the duplicate between the

left and right edges of the slice's bounding box.

The algorithm scores each potential placement. The score is the sum of the extra space sur-

rounding the duplicate object. Returning to our example in Figure 7-5, the score associated with

placement A is 11. This score comes from the 1 module of space above, 4 modules to the right, 5

modules to the left, and 1 module below the duplicate. The reason placement A is only credited

with 1 module of space below is that the algorithm measures the between the bottom of the du-
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plicate and the top of the original shape. It assumes that the original shape may extend farther to

the right that it actually does. The scores for all placements are shown in Table 7.1. Ultimately,

placement B is declared optimal with a score of 12.

Table 7.1: The automated placement algorithm chooses the viable position with the highest score.
For reference, consult Figure 7-5.

Cardinal Dir. I Placement | Viable | Score7|
North A Yes 11
East B Yes 12
South C Yes 9
West D No n/a

While the automated shape placement algorithm we describe makes some attempt at optimality,

it is not ideal. While it just happens to be the case that placement B in Figure 7-5 results in

an accurate copy of the original being formed, all of the modules that will be used to build that

duplicate could be removed without affecting the algorithm's decision to place the duplicate at

position B. This shortcoming is due to the fact that the algorithm uses rectangular bounding boxes

to represent more complex shapes. A simple bounding box cannot capture the fact that there are

many modules missing from the upper right in Figure 7-5. Additionally, the algorithm fails to

account for any modules missing from the interior of the structure. These non-idealities are the

result of a calculated decision. If we used more complex data structures to describe the shape

of the obstacle and slice, the communication, storage, and computation costs would rise. For an

arbitrarily complex slice, containing an arbitrarily complex object to be duplicated, we would need

O(n) bits of storage to determine the optimal placement. We have chosen rectangular bounding

boxes because they only require 0(1) space, and they make the optimal placement calculations

easy and fast.

We have not extended the algorithm to scenarios in which we wish to magnify the original or

create multiple copies, but this task should not be difficult. For example, instead of using an exact

replica of the original's bounding box to place the duplicate, we could use a modified bounding box

to describe the duplicate object(s). The algorithm could simply magnify or replicate the original

shape's bounding box to create the duplicate's bounding box. It could then use this larger bounding

box during the optimization process.
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7.5 Multiple Duplicates and Magnification

We can extend the duplication algorithm to form multiple copies of the original shape or a magni-

fied duplicate that is an integer factor, M, larger than the original. The process of forming multiple

duplicates is accomplished by adding row and column count fields to each border (BOR) message

sent by the modules on the perimeter of the original shape. These row and column counts specify

the dimensions of the array of duplicates that will be formed next to the original object. When the

BOR messages reach their destinations, they both inform the destination modules of their status

as border modules and forward themselves along to notify the next set of border modules. So

long as the remaining column count of a BOR message is greater than one, the receiving module

decrements it and forwards the message in the x-direction. Likewise, if the remaining row count

is greater than one, the receiving module decrements it and forwards the BOR message in the

y-direction. For a concrete example, see Figure 7-6.

1 2 4 5 6 7 8 9 10 11 12 13 14 15

6WW W

6[-][ ]R M M

Figure 7-6: When creating multiple copies of an original shape, we arrange the copies in a array
whose dimensions (here 3-by-2) are appended to each original border (BOR) message. As the
BOR messages move through the structure, the remaining remaining row and column counts are
decremented as shown.

The process of magnifying the duplicate shape is likewise simple and is illustrated by Figure 7-

7. We append the magnification factor field, M, to each BOR message. In addition, the modules on

the perimeter of the original shape modify the destination of the BOR message they each send so

that the destination includes an additive factor that depends on the product of M with the module's

relative location within the bounding box of the original shape. Each module that receives one of
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these primary BOR messages become a local leader of an M-by-M group of modules. As shown

in Figure 7-7, each local leader, (in red), may or may not actually border on what will become the

duplicate shape. As a result, each local leader computes which of the modules within its M-by-M

domain, (outlined by a black border), should actually border on the delicate shape. The local leader

then sends each of these true border modules a secondary BOR message.
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Figure 7-7: When creating a magnified version of the original shape, a set of primary border (BOR)
messages are sent by the modules on the perimeter of the original shape to local leaders (in red)
which may not lie on the border of the duplicate. These local leaders then send secondary BOR
messages to the modules within their domain (outlined in black) that do form the border of the
duplicate shape. Note: for clarity, not all messages are shown.

When forming multiple duplicates or a magnified duplicate, missing modules are dealt with

as they are in the 1-to-1 duplication case. Also, the leader now waits for a number of border and

area confirmation (CON) messages that is multiplied by either the number of duplicates or the

magnification factor before beginning the shape fill and self-disassembly phases, respectively.

7.6 Experimental Results

We performed simulated and hardware-based experiments, the results of which are shown in Ta-

ble 7.2. We had 20 Smart Pebble modules available to use in when duplicating small shapes. We
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used the Sandbox simulator to perform large experiments that would otherwise require more hard-

ware modules than we currently have available. The simulator can be told to randomly break a set

percentage of inter-module communication links or randomly remove a set percentage of modules,

as indicated by the Broken Links and Missing Modules columns in Table 7.2. Exactly which links

and modules are removed changes with each trial. The Disassembly Begun column in Table 7.2

indicates in what percentage of trials the self-disassembly phase was started by the leader module,

indicating that the leader module at least received all border and area CON messages. In cases

where self-disassembly did start, the Correct Bonds column indicates what percentage of all inter-

module bonds were in the correct state after the self-disassembly finished. It excludes trials in

which the leader failed to initiate the self-disassembly.

Table 7.2: Experiments show the duplication algorithms working correctly in both simulation and
hardware.

Shape Sim Broken Missing Mag. Array No. Avg. Disassembly Correct
HW Links [%] Modules [%| Factor Size Trals ITime [s] Begun [% Bonds[%

Fig. 7-8(a) 1 29380.0 89.8
Fig. 7-8(b) HW Unknown 0.0 Ix 1xi 16 38.0 100.0 94.0
Fig. 7-8(c) 15 47.1 100.0 87.5
Fig. 7-8(d) 15 50.6 93.3 90.7

Fig. 7-4 Sim 5.0 0.0 1x 1x1 25 Unknown- 100.0 100.0
Fig. 7-6 Sim 10.0 5.0 1x 3x2 25 Unknown 100.0 100.0
Fig. 7-7 Sim 10.0 5.0 3 1 x 25 Unknown- 100.0 100.0

10.0 5.0 1x 1Tx 25 Unknown 100.0 100.0
Fig. 7-8(e) Sim 5.0 2.5 1x 2x2 25 Unknown 100.0 100.0

1_ 5.0 2.5 2x lxi 25 Unknown 100.0 100.0

WW00 W000000 00W000W
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D00DD 000 0WD R U DDZ
(a) (b) FIR DZP

00 00 0 2
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(C) (d) (e)

Figure 7-8: We verified the duplication algorithm using a variety of shapes in both hardware,
subfigures (a-d), and simulation, subfigure (e).
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In general, the distributed algorithm performed well. In hardware trails, there were four in-

stances where the leader module did not initiate the self-disassembly phase. It is difficult to isolate

the cause of these failures, but we suspect that some communication links may have lost connec-

tivity after the duplication process began. Additionally, in hardware, the self-disassembly phase

only resulted in 90.0% of bonds being successfully broken. While this is a problem that deserves

further investigation, it is does not reflect on the core of the duplication algorithm's reliability.

In simulation, despite challenging environments with 10% of communication links removed and

5.0% of modules removed, the algorithm performed flawlessly when creating a 1-to-I duplicates,

magnified duplicates, or multiple duplicates.

While the algorithm must handle a small number of broken links when using the Smart Pebble

hardware, we wanted to ensure that the algorithm could handle an even higher percentage of broken

links and missing modules. We used the simulator to replicate the humanoid shown in Figure 7-

8(e). Table 7.2 shows that the algorithm performed flawlessly for missing link rates as high as

20%. Higher broken link rates typically result in a configuration that does not include a closed

communication path around the original shape.

We also used the simulator to measure the running time and communication cost of the dupli-

cation process. Our experiments were focused on duplicating the simple 7-module wrench shown

in Figure 7-9. We configured the simulator to count the number of messages exchanged by each

module during each phase of the duplication process. We also used the simulator to record the time

required to complete each phase. To measure how the number of messages scaled with the size

of the wrench, we ran 8 different experiments as we scaled the size of the wrench by all integer

factors between 1 and 8, inclusive. In each experiment, we kept a 2-module border between the

original wrench and the duplicate and between the exterior border and the two wrenches. As an

example, Figure 7-10 illustrates the 5x-scaled original and its successfully created duplicate.

We ran a total of 117 trials, and at least 9 trials for each of the 8 magnification factors. The

running times of the duplication process, as well as those of each major sub-algorithm, are shown

in Figure 7-11. The figure plots the running time against the number of active modules in the initial

block of material surrounding the wrench. The eight tick marks along the x-axis correspond to the

186



Figure 7-9: To characterize how the duplication algorithm scales, we duplicated scaled versions of
the wrench on the left using the Sandbox simulator. The completed duplicate is shown in the right.

Figure 7-10: We duplicated up to 8x-scaled versions of the basic 7-module wrench. Here we
illustrate a 5x-scaled original and its duplicate. In all cases, we left a 2-module border between the
wrenches and the external perimeter of the initial block of Smart Pebbles.
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eight different magnification factors. The running time is weakly quadratic in the number of active

modules. This makes sense given that the total number of messages exchanged is 0(n 2 ) and each

message will require 0(1) time to exchange. While many messages are exchanged in parallel, it is

not enough to produce an overall linear running time.

Time to Duplicate 1-8x Scaled Wrenches
600

-O- Localization

500 - a-- Sensing

o-*- Border Notification

-e- Shape Fill
400- Disassembly

-+-Total0
(D

300-

E
0
o) 200-
0

0
- 100-

89 188 321 488 689 924 1193 1496
Active Modules in System

Figure 7-11: The time to complete the duplication process scales in a roughly quadratic fashion.
This makes intuitive sense given that the total number of messages exchanged scales as 0(n 2).
While some messages can be exchanged in parallel, others must be exchanged sequentially giving
rise to the quadratic scaling of time. Each of the eight tick marks on the x-axis corresponds to one
of the eight scaling factors.

We also logged the number of messages exchanged during these 117 trials. The results, plotted

in Figure 7-12, show that the number of messages exchanged in a practical example scales better

than the expected 0(n 2) result. When duplicating the 8x-scaled wrench, the 1496 active modules

exchanged a total of 90,000 messages. On average, that is only 60 messages per module. Figure 7-

13 plots the imperfect, but roughly linear relationship between the average number of messages

per module and the total number of active modules in the system. The same figure also illustrates

that the maximum number of messages exchanged by any module in the system scales in a linear

fashion. It is worth noting that the average number of messages exchange by any given module

is roughly an order of magnitude lower than the maximum number of messages exchanged by a

module. Figure 7-14 better illustrates the distribution of the number of messages exchanged by
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each module in the system. In particular, the figure shows that the vast majority of modules in a

system exchange a number of messages quite close to the average number of messages exchanged,

i.e. there is little variation in the number of messages exchanged. In summary, these results

confirm the duplication algorithm's theoretical communication cost of O(n) messages exchanged

per module and the worst case O(n2) total messages exchanged.
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x10Total # Msgs. to Duplicate 1-8x Scaled Wrenches

89 188 321 488 689 924 1193 1496
Active Modules in System

Figure 7-12: The number of inter-module messages exchanged (i.e. communication cost) scales as
O(n 2) in the worst case. Here we attempt to illustrate the relationship by plotting the total number
of inter-module messages against the number of active modules required to duplicate scaled version
of the wrench shown in Figure 7-9. In practice, the relationship appears more linear than quadratic.
Each of the eight tick marks on the x-axis corresponding to one of the eight magnification factors.
Note, we do not include the localization (LOC) messages repeatedly sent by each module while
waiting for a position (POS) from its neighbor.

189



# Msgs. Exchanged per Module to Duplicate 1-8x Scaled Wrenches
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Figure 7-13: The average number of messages exchanged per module scales roughly linearly with
the number of active modules in the system. The maximum number of messages exchanged by
any module in the system scales in a highly linear fashion. Note the different scales used for the
average and maximum number of messages. The average is almost an order of magnitude lower
than the maximum. Each of the eight tick marks on the x-axis corresponding to one of the eight
magnification factors.
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Figure 7-14: This plot illustrates the distribution of the number of messages exchanged by all
modules in the systems duplicating the 8 scaled versions of the basic 7-module wrench. It shows
that the variance from module to module is low. Most modules exchange a number of messages
close to the average number. There are only a few modules that exchange a significantly higher
number of messages.
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Chapter 8

Three-Dimensional Duplication

In this chapter, we extend the two-dimensional duplication algorithm to duplication of three-

dimensional objects that may be convex or concave (e.g. the cup in Figure 8-1). Much like the

2D duplication algorithm, the solution relies on local sensing of the boundary of the desired object

and coordinated inference and planning to create a solid replica. The major addition to the 2D al-

gorithm is the slicing of the 3D collection of modules into planes that operate semi-independently.

As before, no module ever stores the complete goal shape nor the global state of the system; the

memory required by each module is 0(1). Furthermore, the number of inter-module messages

exchanged is O(n) per module, where n is the number of modules in the system. We have im-

plemented and evaluated this algorithm in simulation for environments containing thousands of

modules.

The two-dimensional duplication process functions as follows (see Chapter 7 for details). For

each location occupied by the obstacle, the algorithm identifies a conjugate module some dis-

tance away in a specified offset direction that will remain solidified when all other modules self-

disassemble. Because the object being duplicated is inert and not composed of active modules,

sensing and modeling its geometric shape is challenging. Figure 8-2 outlines our solution, which

senses and identifies the border of the void in the module lattice that is occupied by the object. The

algorithm identifies the surface of the object by message passing and marks all the lattice modules

on the object's perimeter. A shifted replica of this perimeter is created at a different location in the
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Figure 8-1: The distributed duplication algorithm is capable of duplicating arbitrary 3D objects like
the coffee mug (left) using a collection of programmable matter modules. The modules envelop
and sense the shape of the original object before forming a duplicate (right) from spare modules.
Any extra modules (white) are then brushed aside to reveal the completed object.

lattice some automatically determined offset distance away from the original. Then, the algorithm

uses a flood fill process to notify all the modules within this surface that they are a part of the du-

plicate object. The result is the desired one-to-one correspondence between voids in the lattice and

conjugate duplicate modules. This approach works for arbitrarily complex surfaces, both convex

and concave.
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Figure 8-2: The distributed duplication algorithm works by sensing the border of the shape to be
duplicated. Once the border is identified, each module on the border notifies a conjugate duplicate
border module that is offset a fixed distance in a given direction. With all the modules on the
duplicate border aware of their status, the algorithm notifies all modules inside the duplicate border
that they are part of the duplicate shape.
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8.1 Challenges of Three-Dimensional Duplication

Despite its relatively simple high-level description, there are many challenges when implementing

the duplication algorithm in three dimensions. The modules must (1) all agree on the offset distance

between the original and the duplicate; (2) posses a way to differentiate between bordering on the

obstacle to be duplicated and the very exterior of the initial block of material; (3) synchronize when

each module's contribution to the duplicate border is complete so as to not start disassembling

prematurely; (4) be able to do all of the above while using a constant amount of memory and a

number of messages that scales favorably.

A naive solution that considers the border as a set of individual modules instead of a closed

surface will fail for a number of reasons when duplicating complex objects. First, if all border

modules do not agree on the offset distance by which to shift their conjugate, the duplicate object

may appear skewed, even worse, completely incoherent. Second, if the system does not duplicate

the correct set of border modules, concavities in the original will be filled in the duplicate. Third,

if some group of conjugate border modules decides to start filling their interior before the entire

surface of the duplicate has been constructed, the fill message may spill out of the duplicate. Every

module in the system may then decide that it is part of the duplicate. Finally, if some module

initiates the disassembly process before all modules in the duplicate have received a fill message,

some modules will disassemble instead of remaining part of the duplicate shape.

The first challenge that the algorithm must overcome is the fact that there is no efficient way to

sense and identify the border of the passive shape directly in three dimensions. In particular, we

need a message passing algorithm that can "wrap" around, and thereby sense, the entire 3D shape.

To accomplish this, we decompose the duplication process into 2D subproblems using a layer-by-

layer approach. The initial block of material is cut into individual planes, and duplication proceeds

semi-independently in each plane. In each plane, the border identification problem uses the bug

algorithm [66]. Any module on the border (as determined by a missing neighbor), attempts to

route a message to the unoccupied lattice location. The message acts as the bug, and the void as the

obstacle to be avoided. In its futile attempt to reach its destination, the message will circumnavigate

the entire obstacle before returning to its sender. In its circumnavigation, the message learns about
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the shape of the obstacle. The challenge for 3D duplication is to synchronize all these planar

processes. Concavities in the object to be duplicated need careful processing. Consider duplicating

a coffee mug. If the mug is sitting upright, and if the planarization is confined to horizontal plane,

some planes will contain two disjoint sets of lattice modules. There will be one group of modules

surrounding the outside of the mug and a second, isolated set inside the mug. We call each of these

groups a slice. Our algorithm can handle an arbitrary number of disjoint slices.

8.1.1 Three-Dimensional Routing Algorithm

The system also faces the problem of routing messages from modules on the inside surface of

the mug to modules outside the mug. These messages must travel in three dimensions, so the

bug algorithm that we use for intra-slice routing will not guarantee their delivery. Our approach

leverages developments [65] in geographic routing to enable 3D routing while keeping the amount

of routing information stored in the messages and nodes constant and quite small.

The three-dimensional routing algorithm developed in [65] operates on a tree composed of

convex hulls. Each Smart Pebble module stores its own convex hull which holds the coordinates

of other modules in the system that can be reached by descending the tree to one of the module's

children. When there is no direct path available between a three-dimensional routing message's

source and destination, the routing messages begins to traverse the tree of convex hulls. Because all

modules are included in the tree, the message will eventually reach its destination. The convex hull

information stored at each node helps to speed up the process by eliminating the need to traverse

branches of the tree which the system knows do not contain the message's destination.

To further simplify the algorithm, we use rectangular boxes instead of arbitrary convex hulls.

Each of our rectangular convex hulls can therefore be represented by a set of six points: the mini-

mum and maximum x-, y- and z-coordinates of the box. Our approach ensures that it is simple to

check whether a point lies inside of a convex hull, and it also ensures that it is simple to find the

union of two convex hulls. In simplifying the representation of the convex hull, we do not affect

the correctness of the routing algorithm. Compared to the optimal convex hulls that tightly bound

the set of points they contain, our rectangular hulls include some number of additional points. Con-
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sequently, a three-dimensional routing message may have to travel a longer path as it traverses the

rectangular convex hulls. The modules that the messages visits will be a superset of the modules

that it would have visited using the optimal convex hulls.

8.2 Three-Dimensional Duplication Algorithm

As illustrated in Figure 8-3, the key to the complete 3D duplication algorithm is to virtually

cut the initial block of programmable matter into individual planes and then coordinate the two-

dimensional duplication processes occurring in each plane. As shown in the z = 2 plane, a single

cut plane may contain multiple distinct groups of nodes. We call each of these groups a slice.

Figure 8-3: Here a 12x6x4 block of material encasing a shallow 4x4 bowl (transparent) is sliced
along the x-y plane. We reference all coordinates to the node in the lower-front-left corner which
we assume is located at position (0,0,0). Each distinct group of modules within a plane (there are
two in the z = 2 plane) is termed as slice and has a slice leader (blue) that is always on the slice's
exterior border. Additionally, each slice has an inter-slice parent link module (green) that can be
located arbitrarily. The arrows point from inter-slice parent link modules to their parent slices.
Finally, each obstacle has an associated obstacle leader (red).

At a high level, each slice executes the basic 2D duplication process semi-independently, but

the slices must synchronize and exchange information for the duplication to succeed. As a result,

there are unique steps in the 3D algorithm that have no counterpart in the 2D case. The duplication

process is initiated by sending one module on the exterior of the raw block of material a start
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message specifying (1) the slice plane; (2) the coordinate direction in which the duplicate should

be formed; and (3) which of the module's faces is an exterior face of the initial block. This module

then assumes its position is (0,0,0) and that it has a standard orientation. Once begun, the 3D

duplication algorithm has 10 steps:

1) Encapsulation and Localization-As in the 2D case, the modules in the system solidify

around the shape to be duplicated and exchange messages to learn their positions and orientations

relative to (0,0,0) within the lattice.

2) Hull Tree Construction-The three-dimensional routing algorithm uses a tree of convex

hulls to route messages when there is no direct path available between the message's source and

destination [65]. The tree is structured identically to the power supply dependency tree explained

in Chapter 6. The structure of the tree is formed during the localization process. The first neighbor-

ing module to send a position (POS) message to an unlocalized module becomes the unlocalized

module's parent in the tree. Hence, the structure of the tree is built from the root down to the leaves.

The rectangular convex hulls associated with each node are constructed in the opposite order: from

leaves up to root. When a module determines that it is a leaf of the tree (because it has no children),

it sends its coordinates, (in the form of a 1-by-1-by-I rectangular convex hull), to its parent. Each

parent waits for all of its children to send their convex hulls. Once the parent has received them,

it finds the union of its children's convex hulls and add its own coordinates. The parent module

then forwards this new convex hull, (which contains its coordinates and the coordinates of all of

its children), up the tree to its own parent module. Eventually, the convex hulls will propagate up

to the root of the tree so that the root module's convex hull contains the coordinates of all modules

in the system.

3) Shape Sensing-Within each slice, shape sensing operates nearly identically in three dimen-

sions as it does in two. The only difference is that, in addition to electing an obstacle leader, the

algorithm also elects a leader for the entire slice. This is illustrated in Figure 8-4. Just as each

obstacle leader is the module on the border of the obstacle with the largest UID, the slice leader is

the module on the border of the slice with the largest UID. Slice leader modules are differentiated

from obstacle leaders because the sense (SEN) message that circumnavigates the exterior border
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of the slice will return to the slice leader indicating a negative area. The magnitude of this number

is the actual area of the slice, including the space consumed by any obstacles.

y x-+0 1 2 3 4 5 6 7 8 9 10 11

4)X

sal ic Lar

e/>+slice leader i SENse message
*/>-+obstacle leader / SENse message

Figure 8-4: Examining the z = 2 plane from Figure 8-3, we see that each of the two slices detects
its exterior border by allowing a sense (SEN) message (in blue) from the border module with the
highest UID (the slice leader) to trace the slice's exterior by virtually colliding with all of the
missing modules. The larger outer slice contains an obstacle, so the obstacle leader also transmits
a SEN message (in red) that makes a complete circuit around the obstacle. For each -x (+x)
collision, the messages increment (decrement), their area count field by their current x-coordinate
(x-coordinate +1). The messages increment their perimeter field after any collision.

4) Roll Call-The new slice leader broadcasts its position to all modules in the slice. Each

module then replies with a roll call (RLC) message indicating whether it has zero, one, or two out-

of-slice-plane neighbors. Obstacle leaders supplement their returned roll call messages with the

size of the obstacle they represent. By counting the returning roll call messages, the slice leader

can positively account for the entire area of the slice. Additionally, the slice leader learns how

many out-of-slice-plane neighbors the slice has.

5) Slice Tree Construction-The algorithm constructs a tree in which each node is a slice.

Eventually, this tree will be used to synchronize all slices. Each slices knows that it has accounted

for all possible child slices when each of its out-of-slice-plane neighbors reports that it has a dedi-

cated parent. This is detailed below.

6) Offset Distance Consensus-The slices need to agree on where the duplicate shape should

be placed. To do so, each slice transmits the bounding box surrounding all obstacles in the slice to

its parent slice. Then union of all these bounding boxes propagates up the slice tree to the root slice.
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Figure 8-5: To aid inter-slice communication, the duplication algorithm forms a tree on the slices
in the initial structure. Here, we see the modules of Figure 8-3 projected onto the x-z plane and
each of the six slices outlined in a different color. The solid green modules are inter-slice parent
link modules, and they serve as connection points from a slice to its parent. Every module in a
slice learns the location of its inter-slice parent link module, so a message can be forwarded from
any location, (in this case from the slice leader of the small slice in the z = 2 plane), to the root
inter-slice parent link module.

The slice tree root module can then determine the global offset necessary to prevent a duplicate

object in which the slices are skewed relative to one another. The root slice broadcasts this offset so

that it can be incorporated into the border (BOR) messages sent to the conjugate border modules.

7) Exterior Face Determination-The 3D duplication algorithm must duplicate both the con-

vex and concave portion of the original shape. For example, in Figure 8-3, the interior border of the

cylinder must be duplicated along with the exterior border or else the duplicate object will become

a cube instead of another cylinder. This means that in addition to duplicating the border of any

obstacle contained within a slice, slices must also duplicate their exterior borders. The algorithm

makes one exception to this rule: it does not duplicate any slice's exterior border if that border

is also an exterior border of the entire block of material. We explain the differentiation process

below.

8) Border Notification-As in the 2D case, all border modules, (except modules on the exterior

of the entire block of material), send border (BOR) message to their conjugate modules that will

become the border of the duplicate shape. The conjugate border modules reply with confirmation

(CON) messages that are counted by the either the obstacle leader or slice leader (depending on

the type of border being duplicated-exterior or interior). When the obstacle and slice leaders have

received CON messages from each duplicate border module for which they are responsible, they
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send a secondary CON messages to their respective inter-slice parent link modules. Once the inter-

slice parent link module has received secondary CON messages for each obstacle, the slice as a

whole, and any child slices, it forwards the CON message to its parent slice. Eventually, secondary

CON messages will propagate to the root of the slice tree, and the root module will know that the

border notification process is complete.

9) Shape Fill-The shape fill procedure in 3D is similar to the process in 2D. The fill (FIL)

messages still carry the inside bit that is toggled every time the message crosses the duplicate

border. The messages also need a live flag that is cleared when a message crosses a slice border.

Until the live flag is again set-when the message crosses a border module-the inside flag is ig-

nored. The reason for the live flag is that an included module in one slice has no way to determine

whether a module in neighboring slice is also included. Ignoring some caveats addressed below in

Section 8.6, the shape fill phase terminates just like the border notification phase. Each included

module sends a CON message to the appropriate obstacle leader. Then the obstacle leader sends a

secondary CON message to its inter-slice parent link module. The inter-slice parent link module

waits for this and secondary CON messages from all child slices before propagating the secondary

CON up the slice tree.

10) Self-Disassembly-Once the slice tree root receives CON messages from all child slices, it

floods the network with a disassembly (DIS) messages causing all module except those forming

the duplicate shape to disassemble.

8.3 Message Routing Algorithm

The algorithm uses a combination of 2D (bug) and 3D routing techniques. For the shape sensing

and exterior notification, the algorithm uses the bug routing algorithm which restricts messages to

a specified plane. This limitation is actually an advantage because the messages tightly contour

around all obstacles learning about their shape in the process. When sending border (BOR) and

confirmation (CON) messages, the system must use a 3D routing algorithm. To see why, consider

Figure 8-3: some of the CON messages returning to either of the leaders of the slice planes inside

the cylinder have no 2D route available. In particular, a message from (8,2,2) cannot use a 2D
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routing algorithm to reach (2, 3, 2).

We chose a 3D routing algorithm [65] based on convex hull trees because it was designed for 3D

environments, requires only a small amount of fixed storage in each node, and is easy to implement.

In short, messages act greedily and move in a direction toward their destination whenever possible.

When blocked, messages switch to traversing the convex hull tree, only descending into nodes

whose convex hulls contain the destination. We further simplify the algorithm described in [65]

by, among other things, distilling each convex hull into a simple rectangular bounding box. As a

result, each node only needs to store two coordinates per child (with a maximum of six children)

to maintain the hull tree. Despite this simplification the algorithm works well for our purposes.

8.4 Synchronization Algorithm

To enable synchronization before the border notification, shape fill, and disassembly steps, the 3D

duplication algorithm needs a way to ensure that all slices have completed the active step. To do

so, the system must determine the total number of slices, so it builds a tree of slices, as shown by

Figure 8-5. Note that this slice tree is separate from the convex hull tree used for 3D routing.

The slice tree is built from the root downward. The module originally given the start signal by

the user informs its slice's leader that the leader should also be the root of the slice tree. (This is

why, in Figure 8-3 the module at (5,5,0) is both blue and green.) Once the slice leader is told that

it is also the root of the slice tree, it broadcasts its location to all other modules in the slice. As

a result, all modules in the slice learn the location of, what we term, their inter-slice parent link.

Once a module knows the location of its inter-slice parent link, it is allowed to service incoming

requests from neighboring slices looking for a parent in the slice tree.

In the neighboring slices that are not yet incorporated in to the tree, all modules send parent re-

quest messages to their out-of-slice-plane neighbors. Eventually, some out-of-slice-plane module,

(which already knows the position of its inter-slice parent link module), will respond. The module

in the unincorporated slice to which it responds becomes that slice's inter-slice parent link. That is,

the module is the location of the link to the parent slice. This process repeats until all slices have

selected an inter-slice parent link module.
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When a slice is incorporated into the tree, the modules in the slice inform all of their out-of-

slice-plane neighbors that they are now a part of the tree. Because each slice knows, (thanks to the

roll call step), how many out-of-slice-plane neighbors it has, each slice can determine when all of

its out-of-slice-plane neighbors have been incorporated into the tree. Therefore, we can guarantee

that all slices are incorporated into the tree.

8.5 Exterior Face Identification Algorithm

When duplicating even a simple 3D shape like a coffee mug, the algorithm must account for both

the concave and convex parts of the object's border. In the case of hollow cylinder, the concave,

or interior part of the cylinder's face will correspond to the exterior border of multiple slices. The

algorithm must duplicate the exterior border of these slices but not duplicate the exterior borders of

slices that also serve as the exterior border of the entire block of material. Figure 8-4 provides an

example: the algorithm should duplicate the exterior border of the inner 2-by-2 slice, but it should

not duplicate the exterior border of the 12-by-6 slice that surrounds the smaller slice. We term the

larger slice an exterior slice.

Our approach to differentiating exterior borders relies on the bug routing algorithm. By default,

all exterior border modules assume that they should be duplicated. The module at (0,0,0) initiates

this process because it was told, (as part of the start command), which of its faces was an exterior

face of the entire structure. This module then uses the bug algorithm in an attempt to route two

exterior (EXT) messages in the direction of the specified exterior face. The first EXT message is

routed in the slice plane, and the second is routed orthogonal to it. Because the bug algorithm is

fundamentally a 2D algorithm, these messages will remain in their given planes. Like sense (SEN)

messages, these EXT messages will circumnavigate the exterior border. As they pass through the

modules on their routes, they notify those module that they too are on the exterior of the whole

block (and should not duplicate their border). Additionally, they prompt those modules to emit

their own EXT messages. Specifically, a message arriving in the slice plane will prompt an out-of-

slice-plane message, and vice versa.

When an in-slice-plane EXT message completes its circuit around an exterior slice, it sends
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a CON message to the root inter-slice parent module. This root can determine when the entire

process is complete because it knows, as a result of the slice tree construction step, how many

exterior slices comprise the entire structure.

8.6 Area Accounting During Shape Fill

One particular challenge of 3D duplication is that two slices occupying the same plane do not know

of each other's existence. Consider again Figure 8-4. During the shape fill step, the obstacle leader

in the outer slice, expects to receive sixteen CON messages. It does not know that the inner-most

four of those lattice positions are not part of the duplicate obstacle. Our solution, illustrated in

Figure 8-6, is to send a fake CON message from a conjugate border module corresponding to the

leader of the interior slice.

YX-*012 3 4 5 6 7 8 9 10 11

.-+ CON msg. U BOR msg. rcvd. +border pointer * obstacle leader
,>BOR msg. *FIL msg. rCVd. - -aCtual border * sliCe leader

Figure 8-6: The obstacle leader of the exterior slice, expects to receive sixteen confirmation (CON)
messages after the shape fill process beings. Although the obstacle leader does not know it, the
obstacle is hollow. To ensure that the obstacle leader still receives all CON messages, the slice
leader of the inner slice sends a special border (BOR) message to its conjugate instructing it to
confirm four additional units of area despite the fact that the conjugate module is not included in
the duplicate structure.

First, whenever an exterior border of a slice is duplicated, the slice leader, when sending a BOR

message to its conjugate, includes its slice's area. This is shown in Figure 8-6. Second, during the

shape fill process, the slice leader's conjugate border module sends a CON message to the outer

slice's obstacle leader even though it is not part of the duplicate shape. This CON message is

special because it accounts for four units of area, not just one like other messages. As a result of

this two-step process, the outer slice's obstacle leader accounts for all sixteen units of area.
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8.7 Storage and Message Scaling

The algorithm requires only a constant amount of storage per module. No part of the algorithm

requires a module to amass any data that correlates with the number of modules in the system.

The key to this attribute is the one-to-one correspondence between modules on the border of the

original shape and modules on the border of the duplicate. Furthermore, when collecting CON

messages, modules do not track the origins of the messages, only the total number received. The

convex hull tree and the slice tree also require a fixed amount of space. A module only needs

to store the rectangular hulls of at most six neighbors. While a slice in the slice tree may have

an unlimited number of children, it does not track them. Messages only flow up the tree, so a

slice only needs to know the location of its inter-slice parent. Finally, the routing algorithms forgo

routing tables and other storage intensive strategies in favor of storing a constant amount of routing

information in the messages themselves.

The total number of messages exchanged between modules in the system scales as 0(n2) and is

dominated by the exterior notification, shape sensing and border notification steps. The worst case

message scaling occurs when the initial block of material approaches a 1-by-n line of modules.

In this case, there will be 0(n) modules sending EXT messages and each message will have to

circumnavigate 0(n) other modules before returning to its sender. The same scaling applies to

the shape sensing phase if the object being duplicated also approaches a long rod: 0(n) modules

will each transmit a SEN message and each message may travel 0(n) hops before being discarded.

During border notification, there will again be 0(n) modules sending messages that each have to

travel 0(n) hops before reaching their conjugates.

8.8 Experimental Results

We performed 818 experiments duplicating rods, cubes, square tubes, and the mug shown in Fig-

ure 8-1. The results are listed in Table 8.1. The overall success rate was 98.5%. The twelve failures

were traced to routing deadlocks arising from congestion at choke points in the inter-module com-

munication network. These were not failures of the high-level duplication algorithm. Congestion
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arises because the modules have only a single transmit, receive, and payload buffer associated with

each face. Each of these buffers can only hold a single message. Furthermore, a single incom-

ing message can often prompt a module to send multiple outgoing messages. Two neighboring

modules can create deadlock when each is parsing a message from the other that would send a

message back to its neighbor. If each module's transmit buffer is already full, the parsing function

has nowhere to queue the outgoing message, so it cannot purge the incoming message, (that is

currently being parsed), from the receive buffer. With their receive buffers full, the modules cannot

transmit messages to each other, so the transmit buffers remain occupied. While this situation is

not common, the simulations show it is possible, and future work should aim find a solution.

Table 8.1: Experiments show the three-dimensional duplication algorithm working correctly in a
variety of test cases.

Original Encasing # # Avg. Msgs./
Shape Shape Trials Successes Trial

1xix1 Rod 5x3x3 Block 75 75 3586
2xlxl Rod 7x3x3 Block 60 60 5520
3xlxl Rod 9x3x3 Block 52 52 7573
4xlxl Rod 1 1x3x3 Block 54 54 9926
5xlxl Rod 13x3x3 Block 59 59 12203
6xlxl Rod 15x3x3 Block 57 57 15149
7xlxl Rod 17x3x3 Block 51 51 18079
2x2x2 Cube 7x4x4 Block 55 55 10321
3x3x3 Cube 9x5x5 Block 61 61 22034
4x4x4 Cube 11x6x6 Block 54 54 41155
5x5x5 Cube 13x7x7 Block 52 51 70521
6x6x6 Cube 15x8x8 Block 60 60 111850
7x7x7 Cube 17x9x9 Block 6 6 173060
4x4x4 Tube 1 1x6x6 Block 44 44 43157
5x5x5 Tube 13x7x7 Block 22 21 78583
6x6x6 Tube 15x8x8 Block 21 18 125980
7x7x7 Tube 17x9x9 Block 20 20 193950

Figure 8-1 Mug 17x7x7 Block 20 20 113690

Figure 8-7 shows a breakdown of the total number of inter-module messages passed as a func-

tion of the number of active modules in the system. The seven points along the x-axis correspond

to cubes with side lengths 1-7. We observed identical scaling behavior when duplicating rods and
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tubes. The quadratic that fits the total message count data is 0.058n2 + 108.6n. Even though the

n2 term will dominate past a few thousand modules, the average number of messages per module

still scales approximately as O(n).

Messages Exchanged to Duplicate an n-by-n-by-n

x 105
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Figure 8-7: When duplicating cubes with edges lengths from one to
messages exchanged by all modules scales quadratically.

seven, the total number of

To further reinforce that the algorithms scale favorably, Figure 8-8, shows a histogram of the

number of messages sent by each module when duplicating a 6x6x6 square tube with a wall thick-

ness of one module. The results show that the vast majority of modules send between 100-200

messages.
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Figure 8-8: When duplicating an object, the variance from modules to module in the number of
messages sent is small. Here, the average is number of messages per module when duplicating a
6x6x6 square tube is 150.1 and the standard deviation is 55.3.
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Chapter 9

Conclusion

Over fifty years ago, L. S. Penrose dreamt of the following:

Suppose we have a sack or some other container full of units jostling one another

as the sack is shaken and distorted in all manner of ways. In spite of this, the units

remain detached from one another. Then we put into the sack a prearranged connected

structure made from units exactly similar to those already within the sack.

Now we agitate the sack again in the same random and vigorous manner, with the

seed structure jostling about among the neutral units. This time we find that repli-

cas of the seed structure have been assembled from the formerly neutral or "lifeless"

material [86].

This thesis has made significant progress towards Penrose's dream of an artificial self-duplicating

system. There is still much work to be done, but we have created hardware and algorithms that en-

able duplication of 2D objects with our Smart Pebbles programmable matter system. Even more,

the objects being duplicated need not be composed of units identical to those used to produce

the duplicate. The resulting duplicates can be magnified copies of the original objects that are

inherently imbued with sensing, computation, and actuation abilities absent from the original.

The document was dedicated to exploring the thesis statement:
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Digital fabrication can be accomplished with smart particles capable of

self-disassembly.

Chapter 3 presented the Smart Pebble hardware: 12mm intelligent particles that are capable

of self-disassembly. Chapter 5 then demonstrated how we implemented reliable nearest neighbor

communication between neighboring modules. Low level communication forms the foundation of

the high level shape formation algorithms that we explored in Chapters 6-8. Specifically, Chapter 7

presents an algorithm for distributed shape duplication and hardware experiments demonstrating

the algorithm executing on the Smart Pebble modules. While there are always areas for improve-

ment, we must conclude that it is indeed possible to achieve digital fabrication using the Smart

Pebbles programmable matter system. The remainder of this chapter first summarizes our contri-

butions and then explores limitations of the system along with areas for future improvement.

9.1 Contributions

This thesis makes a number of hardware contributions to programmable matter and modular robotic

systems:

" Small electropermanent magnets that can be used for mechanical bonding, inter-module

communication, and module-to-module power transfer. Theses electropermanent magnets

are simply to control and have zero static power consumption. Mated pairs of magnets can

support over 3N.

" A set of 50 cubic modules, each 12mm per side, capable of bonding with their neighbors

to form arbitrary structures in 2D. The modules are among the smallest autonomous robots

capable of actuation, sensing, and computation.

" Several test fixtures, including an inclined vibration table, that allow the user to power and

communicate with Smart Pebbles system.

To support the Smart Pebble hardware, this thesis contributes several pieces of key software:
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" Low-level communication code which makes the inherently fragile inter-module communi-

cation process more robust. This code also monitors communication link status, and enables

the system to route messages around communication links that are dynamically broken.

* A simulator that allows us to develop and easily debug high-level shape formation algo-

rithms. The simulator executes the same code that runs the Smart Pebbles. Each Pebble runs

as an independent process, and because the processes communicate with UDP packets, they

can be distributed across multiple physical machines.

Finally, this thesis also makes a number of algorithmic contributions:

" A distributed duplication algorithm that allows the system to produce many, possibly mag-

nified, copies of an original passive object that is submerged in a collection of Smart Pebble

modules. The algorithm is robust to broken communication links and modules missing from

the square lattice.

* A 3D extension to the 2D shape duplication algorithm. The 3D algorithm enables the dupli-

cation of complex shapes by partitioning the initial configuration of modules in slices.

" Algorithms that enable the organized disassembly of a group of Smart Pebble modules. Be-

cause the modules rely on their neighbors for power, the disassembly process must carefully

determine the order in which mechanical bonds between neighboring modules are broken.

Our algorithm ensures that a module does not lose power before it has broken all necessary

bonds with its neighbors.

9.2 Limitations

There are obvious limitations to the current Smart Pebbles system. For example, the Smart Pebbles

are larger than desired; the modules are only capable of forming 2D structures; the inter-module

bonding strength is not yet sufficient to allow the structures to be used as tools. In addition to these

obvious areas for improvement, there are several more subtle limitations to the system that should

be addressed in future iterations.
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The hardware is still fragile. Despite having manufacturing fifty Smart Pebble modules, typi-

cally only half are functional at any given time. We made many trade-offs in the design process,

and to minimize the volume of the modules, we pushed the limits of the components and thereby

sacrificed robustness. For example, each module runs from a 20V supply, but we use a linear reg-

ulator rated for 20mA to supply 18mA at 5V to the processor. To dissipate the heat generated by

the regulator, we keep a fan pointed at the modules during all experiments. As another example of

a design trade-off, the PFETs which drive the EP magnets and the 150pF reservoir capacitors are

all operating at their rated voltages (20V) with no margin. When the PFETs fail, the 20V rail can

be shorted to ground. To prevent catastrophic damage, we have a 220hm series resistor that acts

like a fuse. It is the most common component that we replace.

Inter-module communication is not error free. Bit errors are acceptable so long as they are

corrected, or at least detected, but the system cannot always accomplish this. While not common,

bit errors in the messages do propagate to the high-level algorithms. The current 7-bit CRC check-

sum is not sufficient to protect messages that may be several hundred bits long. The decision to

use a simple 7-bit checksum was another design trade-off designed to save code space, (which is

completely occupied by the 2D duplication algorithm), and reduce the amount of processor time

devoted to transmitting and receiving messages.

The routing algorithms are subject to deadlock. With just two modules, it is easy to envision

a scenario where each module's receive and payload buffers are full. Suppose that the message in

each payload buffer instructs the module to send a routing message to its neighbor. Each modules

will attempt to send this routing message, but until it is successfully delivered, the payload buffer

will not be emptied. Of course, the message will not be delivered because the receive buffers

into which the messages should be transferred are already full. Furthermore, the receive buffers

cannot be emptied because each contains a routing message whose payload must be moved to the

payload buffers but, as already stated, those are occupied as well. As a result, the two modules

have entered a deadlock situation. In practice, we do not see deadlock often, but we have identified

it as the cause of failure in a small number of 3D duplication experiments.

The 3D shape duplication algorithm is not as robust to defects in the original block of material
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as the 2D algorithm. In particular, 3D duplication may fail if there are modules missing from the

lattice in the vicinity of the duplicate shape. In particular, if the missing modules should be part of

the duplicate or its border, some slice leader will never receive the correct number of confirmation

messages, so the duplication process will hang.

The 3D duplication process does not yet support magnification or the production of multiple

copies of the original shape. Magnification and multiple copies are difficult because they break

the isolation of each layer. A single original border module must sender border identification mes-

sages to several conjugate border modules in multiple slices. While this is theoretically possible,

it requires a great deal of bookkeeping to ensure that all necessary messages are received and

confirmed.

The Sandbox simulator is not as scalable as we had hoped. On a 2.4GHz quad-core Intel

Core2 processor with 4GB of RAM, the simulator begins to struggle as the number of modules

approaches 1000. We have run a few simulations with over 1000 modules, but they run too slowly

to be practical. The simulator is not scalable because each process wakes from sleep on a regular

basis to check for incoming messages, regardless of whether a message is actually available. A

better architecture would keep each module in its sleep state until a message arrives. The number

of IP port numbers also limits the simulator to several thousand modules. There are approximately

6,0000 ports available on most systems. If each simulated module uses 6 to communicate with

its neighbors and another to communicate with the GUI, we will be limited to simulating 8,000

modules.

9.3 Lessons Learned

We learned several important lessons while working to develop the Smart Pebbles system:

* With respect to hardware, we discovered that small manufacturing defects can have a notice-

able effect on the reliability on the self-assembly process. The mechanical variation from

module to module is not large, but it can be large enough to prevent an ensemble of modules

from self-assembling into a close-packed lattice. There are several mechanical aspects that
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were important. In addition to overall module dimensions, the orthogonality of neighbors

connectors was also important. While the brass frames around which the flexible circuit

boards were wrapped ensured that the module faces where nearly orthogonal, ensuring that

the EP magnets were mounted parallel to the faces in which they were embedded was more

difficult. As a result, one pole often protruded farther from the exterior of the module than

the other. This effect was exacerbated by mechanical variance in the EP magnets themselves.

Often, the two pole pieces were not perfectly co-planar or parallel.

* Completely autonomous systems are particularly prone to failure. When manually assem-

bling the Smart Pebbles modules into an initial block of material module-by-module, it is

easy to identify and replace a misshapen module with a more appropriate module. In com-

parison, when the system is self-assembling, this is impossible. Before starting the self-

assembly process, we had to ensure that the modules being used were as uniform as possible.

Except when using only a few modules, this was difficult. We learned that for a large system

to be robust, it must be able to tolerate significant variations in module size and shape.

* For a system to be as robust as possible to variations in module size, we now believe that

we must abandon the assumption that the modules are all a standard size and will pack into

a uniform lattice. Abandoning this assumption becomes all the more important when the

dimensions of the object around which the modules are packed are not integer multiples of

the basic module dimensions. When self-assembling the modules around a passive shape,

we had to ensure that the granularity of the passive shape matched the module size. If we did

not, we found that the modules would rather align with the boundary of the passive shape

than the grid positions that would allow them to bond with their neighbors. If we are to allow

the modules to form non-uniform 3D lattice, the modules will almost certainly need to be

spherical. No other shape will all the modules to pack as neatly around an arbitrarily shape

object.

* While developing the high-level algorithms, we learned how crucial it is to have access to

high-quality debugging tools. Typically, it is enough to debug an embedded system with
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a few LEDs, a serial connection, or at the most, a JTAG bus. While we were able to use

Atmel's proprietary debugWIRE interface to step, line-by-line, through the code running on

a single module, this proved insufficient when diagnosing problems related to the interaction

of multiple modules.

* While we were constrained to debugging only the root module, we came to realize that even

the ability to debug any arbitrary module would be ineffective. We learned that we needed

the ability to debug multiple modules simultaneously. The result of this realization was the

simulator that we developed. The simulator allows us to observe the internal state of multiple

modules virtually simultaneously. Additionally, we could stop and step through the code

of multiple modules. Finally, by recording all inter-modules messages exchanged during

an experiment, we were able to reconstruct the actions of the high-level shape formation

algorithms.

" In the process of performing large-scale experiments, we learned how important it is for a

distributed system to be robust to multiple points of failure. We were shocked how many dif-

ferent types of errors arose when performing hardware experiments. Despite the duplication

algorithms working predictably in simulation, the hardware was always problematic. We

saw modules behave in completely unexpected ways that, given the state of our debugging

tools, we could not always explain.

" Future iterations of the system should have more program storage available. The fact that

the modules experienced un-handled errors was not unexpected. In order to fit the core of

the duplication algorithm into the limited memory of the Smart Pebble hardware, we had to

eliminate a significant amount of error handling from the code. When a module encountered

an unknown error, it ideally entered a safe state in which the processor prevented harm to

the EP magnet drivers and used the LED to flash a rudimentary error code to the user. In

other cases, the modules processors reset themselves and began to behave as if they had

just joined the existing configuration of modules. Unfortunately, there was not enough code

space available to handle these conditions.
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* Mundane errors can lead to serious faults. While the duplication algorithm is capable of

handling broken communication links and missing modules, it struggles to handle commu-

nication links that break or form after the duplication process has begun. Even the basic bug

routing algorithm struggles to handle cases in which a module is added or removed from the

system. For example, if a routing message departs from its ideal path while avoiding an ob-

stacle but the module at which it deviated from the idea path is removed from the system, the

message may never realize that it cannot reach its destination. This is because the message

will never again pass through the departure point, so it cannot say with certainty that is has

completely circumnavigated the obstacle it was avoiding.

" Robust error handling is more difficult and time consuming to implement than the basic

application code. Communication links between neighboring modules that form after all the

modules have been localized can be problematic. For example, a broken communicate link

between neighboring modules on the perimeter of the shape being duplicated will cause the

duplication algorithm to believe that the shape's perimeter is two units larger than it actually

is. This becomes a problem when the broken communication link is healed before each of

the modules on the perimeter of the original sends a border message to its conjugate module.

In such a scenario, the leader module will wait indefinitely for two border confirmation

messages that never arrive. Consequently, the self-disassembly process will never complete.

Future improvements to the shape formation algorithms must be able to deal with these

relatively common dynamic changes to the configuration of the structure. In light of all

these challenges, development of any practical system will require just as much, if not more,

code devoted to error handling than code for the shape formation algorithm.

9.4 Near-Term Improvements

The most obvious area for future development is improved programmable matter hardware. Hard-

ware improvements can be divided into both short-term and long-term goals. In the immediate

future, we should develop a three-dimensional version of the Smart Pebbles. The first generation

216



of three-dimensional Pebbles may be slightly larger than the current two-dimensional Pebbles, but

the three-dimensional modules could serve as a testbed on which to experiment with new fabri-

cation techniques that could be miniaturized later. A new version of hardware would allow us to

improve the robustness of the modules using what we have learned from the current generation.

There are many extensions to the current shape duplication algorithms that should be imple-

mented. In particular, many of the features of the two-dimensional algorithm have not yet been

ported to three-dimensions. The three-dimensional algorithm is not yet capable of shape magni-

fication or creating multiple copies of a single original shape. The three-dimensional algorithm

is also not as robust as the two-dimensional algorithm. It is more sensitive to missing modules.

Finally, the three-dimensional algorithm does not support automated shape placement.

We should also aim to better automate the placement of the duplicate shape within the block of

host material. Currently the system makes a simplistic attempt to optimize the placement of a single

unmagnified instance of the duplicate. In the future, the system should attempt to both translate

and rotate multiple, magnified duplicates to achieve the most efficient packing of duplicate shapes.

Additionally, the three-dimensional system should attempt to optimize the plane used to slice the

initial block of material. Currently, it must be specified by the user.

We would also like to imbue the system with the ability to create more exotic shapes. Currently,

the system can sense and duplicate three-dimensional concavities accessed by through small open-

ings, but actually removing the unused modules from such cavities is difficult to impossible. The

module will get jammed as the try to pass through the cavity's exit. We would like an extension

to the duplication algorithm that allows us to form the duplicate in two or more pieces that are ini-

tially un-bonded with each another. Once the pieces, or sub-assemblies have been removed from

the larger collection of modules, we would like the user to be able to easily bond them together to

form the complete object. This approach would allow for the creation of cavities, and it would also

allow the user to partition a large object into pieces that are more easily fabricated.

We would like to improve the two-dimensional routing algorithm. When the duplication al-

gorithm is routing confirmation messages to the obstacle leader, many of the messages follow the

exact same path. This is especially true when the messages are contouring around some obstacle.
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Each message tightly hugs the perimeter of the obstacle. As a result, some modules experience a

much higher communication load than others. Future iterations of the system should use a more

intelligent approach. Messages should attempt to take alternate paths even if those paths are longer.

This will decrease congestion and improve the system's running time.

Finally, we would like to investigate ways to improve the simulator. As already mentioned, it is

useful for simulating collections of, at most, a few hundred modules. If we abandon the simulator's

ability to accurately mimic the low-level communication of the Smart Pebbles, we should be able

to construct a simulator that is capable of handling a few thousand modules. Past that, we will need

to explore alternatives to using UDP packets for inter-module communication.

9.5 Looking to the Future

There are several high-level areas for potential research that have been exposed by this thesis.

First, we need to look past systems that rely on the modules that pack into regular lattices. Per-

fectly regular packings are practically impossible to achieve unless the modules themselves are all

perfectly identical. Adding a passive object to the collection of modules only further complicates

the packing process and makes perfect packing more unlikely. While developing hardware that

support irregular packings will be challenging, the practicality and robustness that it ultimately

brings will be notable. In developing hardware modules that support irregular packing we may

need to move away from using discrete connectors. When packing randomly, a module a may

contact its neighbors almost anywhere over its surface. Wherever a module comes into contact

with its neighbors, it must be able to form mechanical, data, and power connections. As a result, a

few localized connectors per module may not be sufficient for a system to form a dense lattice of

inter-connected modules.

If we do achieve a hardware module that can effectively pack into irregular lattices while bond-

ing and communicating with its neighbors, there are a variety of algorithmic challenges that arise.

Without a global coordinate system, simply localizing all of the modules in the structure will be

challenging. Our current approach to shape duplication will also require refinement. In an irregular

packing, there will no longer be a exact one to one correspondence between modules on the border
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of the original and modules on the border of the duplicate. We will be forced to approximate the

shape of the original object being duplicated. How we would do this in an optimal manner is not

yet clear.

There are other potential areas for algorithmic improvement as well. This thesis has presented

algorithms that require 0(1) space and 0(n) messages per module, but we must do better. Practical

programmable matter systems will be composed of millions of modules. We cannot reasonably ex-

pect each module to exchange a million messages with its neighbors. We need to pursue algorithms

that exchange a number of messages per module that is sub-linear. While potentially impossible in

worst-case scenarios, much work remains to improve typical efficiency.

Perhaps the least explored area for additional research is how the functionality of programmable

materials can be specified in a structured and provably-correct fashion. Once we have created an

object from a collection of smart particles, we should explore how we can continue to leverage

the intelligence, communication, sensing, and actuation abilities that are already incorporated into

each module. If we treat programmable matter systems as static machines whose inherent abil-

ities are only used to from passive shapes, we are missing the true potential of programmable

matter systems. Programmable matter systems hold great potential because they can be dynamic,

changing both their software and hardware to adapt to the task at hand.

Personal computers are a ubiquitous example of universal computing machines. They are capa-

ble of running any number of different pieces of software, but they cannot change their basic phys-

ical form or interact with the tangible world in an unencumbered way. In contrast, programmable

matter systems approach universal machines in both an algorithmic and physical sense. They

can run arbitrary pieces of software, and they can assume nearly arbitrary shapes and physical

properties. While many software programming languages exist, there are no equivalents for pro-

grammable matter systems. As computer science enabled the systematic design and analysis of the

software systems that have revolutionized high technology in the last sixty years, we need a new

science, the science of programmable matter, that will revolutionize the next one-hundred.
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