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Abstract

This thesis provides a systematic framework for the development and analysis of

distributed optimization methods for multi-agent networks with time-varying con-

nectivity. The goal is to optimize a global objective function which is the sum of

local objective functions privately known to individual agents. In our methods, each

agent iteratively updates its estimate of the global optimum by optimizing its local

function and exchanging estimates with others in the network. We introduce dis-

tributed proximal-gradient methods that enable the use of a gradient-based scheme

for non-differentiable functions with a favorable structure. We present a convergence

rate analysis that highlights the dependence on the step size rule. We also propose

a novel fast distributed method that uses Nesterov-type acceleration techniques and

multiple communication steps per iteration. Our method achieves exact convergence

at the rate of O(1/t) (where t is the number of communication steps taken), which

is superior than the rates of existing gradient or subgradient algorithms, and is con-

firmed by simulation results.
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Title: Class of 1943 Associate Professor
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Chapter 1

Introduction

1.1 Motivation

We live in an age with an exploding amount of information. With advances in tech-

nology, we have been able to collect, store, and process data at an increasing rate

and a decreasing cost. When used effectively, comprehensive information gives us a

better understanding of the world and helps us improve the quality of life.

However, processing data with a single processor is often restrictive. For example,

if we rely on one sensor to make measurements, it may take a long time to gather

information about a vast terrain, because no matter how intricate the equipment is, it

is still only able to make one measurement at a time. In such cases where information

is distributed, it is much more effective to use multiple processing units, and then

aggregate the message they gather.

Another limitation is in computing power. As data grow in volume, they may

become computationally difficult or time-consuming to process, not to mention the

additional effort required for storage and retrieval. For instance, in machine learning,

a large number of training samples or features may prevent a problem from being

solved effectively on a single machine. Instead, it would be desirable to leverage the

power of multiple machines, each processing a portion of the data, and then combine

their results.

In view of these considerations, there has recently been a growing interest in

11



developing distributed methods for solving optimization problems where information

is decentralized among multiple agents. These methods usually involve a large number

of agents connected through a network. The agents cooperatively solving a global

(convex) optimization problem through local computations and information exchange

over the network. More specifically, distributed optimization methods seek to solve

min f(x) = fi(x)
XERd m i=1

where m is the number of agents in the network, and for each i = 1, ..., m, fi(x) is a

convex function determined by their private information. The agent i maintains xi,

an estimate of the global optimum x* that minimizes the overall objective f(x).

This general form has many applications. For instance, a team of m sensors

exploring an unknown environment are collaboratively solving for the parameter x,

which describes the environment, by optimizing

min f(x) = fi(x) = I Ax - b 2
XERd TrbM J~i bl

where bi is the measurement taken at agent i and Aix is the corresponding linear

transformation from the parameter space to the measurement space. Note that each

agent has access to only one of the terms in the above sum.

As another example, regularized logistic regression in machine learning looks for

the optimal parameter x in

min f(x) = E fi(x) = E- log(1 +exp(-by(agx)))+ 1
xERd Tr NM| I N

where Ni is the training dataset of agent i, corresponding to {aj I j E Ni}, the set of

feature vectors, and {bj I j E Ni}, the set of associated labels.

The objective in such problems is for each agent to obtain an estimate of the

global optimal solution. In reality, several constraints may prevent the agents from

sharing their local function fi(x), since it encodes private information at the agent,

12



and may take up additional resources to transmit, process, and store. Therefore, a

standard approach is to only allow agents to share their estimates xi of the optimal

solution without giving away private local information contained in fi(x).

This thesis provides a systematic framework for the development and performance

analysis of distributed algorithms for multi-agent optimization problems that can

operate on a network with time-varying connectivity. Our development will rely

on first-order methods (i.e., methods that use gradient or subgradient information),

which are low-complexity alternatives to second order methods.

1.2 Related Literature

In this section, we briefly review existing algorithms and convergence rate results

that are relevant to our work. Since the literature is broad, we organize our dis-

cussion into three sections: centralized methods, parallel and incremental methods,

and distributed methods. This is an active field with an extensive literature, and the

following is not a comprehensive list, but an overview of the most relevant works.

Centralized Methods. Centralized first-order optimization methods dates back

to Cauchy, who proposed the gradient method in 1847 [1]. Today, they are widely

used in practice, especially in large-scale problems where higher order methods (such

as Newton's method) are computationally expensive. For an objective function

F(x) : Rd -+ R that is convex and continuously differentiable, the basic gradient

method generates a sequence of iterates {x}, 1 that approach x*, the optimum of

F(x), by moving the most recent iterate along the direction of steepest descent in

function value, which is opposite to the direction of the gradient. With a constant

step size, it converges to the optimal solution with F(x") - F* = 0 (1/n) 1. [2].

Nesterov [3] proposed an acceleration technique that uses two previous estimates to

make a prediction before performing the next gradient step. This leads to an im-

'We write g(n) = O(h(n)) if and only if there exists a positive real number M and a real number
no such that |g(n)| <5 Mjh(n)| for all n > no. Convergence rate notion are discussed in more detail
in Section 2.5.

13



proved convergence rate of 0 (1/n 2 ), which was also shown to be the best achievable

convergence rate [4].

When the objective function is not differentiable, the iterates can be updated

using a subgradient direction instead of the gradient direction. This is called the

subgradient method. Unlike the gradient, the subgradient direction is not guaranteed

to be a direction of descent, due to the fact that for nondifferentiable functions,

the value of two iterates can be drastically different despite the iterates being very

close. As a result, its performance is worse than that of the gradient method: with a

constant step size, it converges at the best-achievable rate of 0 (1/vrn) [4].

For certain non-differentiable functions that have favorable structures allowing

simple computation of the proximal operator(for example, F(x) = I|x||1, a common

choice for regularization), the proximal-point method [51 can be applied. It utilizes

desirable properties of the non-differentiable objective function to solve a minimiza-

tion problem at each iteration. The convergence rate of the proximal-point method

is 0 (1/n 2 ), and it is not sensitive to step size choices. There is also the combination

of both the gradient and the proximal-point method, called the proximal-gradient

method, which is applicable to functions that have both a differentiable part and a

non-differentiable part that have a desirable structure. It has been shown to converge

at the optimal rate of 0 (1/n 2 ) [6] with a constant step size.

Recently, there has also been a growing interest in stochastic approximation [7] and

inexact methods [8,9]. These methods are applicable when there is error, introduced

by uncertainty or noise, in obtaining the gradient, subgradient, or in the proximal

operation. The performance of these methods can be characterized in terms of the

error, and techniques for such error analysis are often useful for methods that are not

centralized.

Parallel and Incremental Methods. There are several ways to divide the

computation load among multiple agents. [10,11] studied the case where every agent

had access to the same global objective function that is differentiable. They pro-

posed a generic network communication model, analyzed its consensus properties,

14



and showed that a gradient-type method converged to the global optimum under this

setting.

While we inherit the network communication model in [11], the parallel approach

is different from our distributed setting, where the agents have private objective

functions that are unknown to others.

Incremental methods, on the other hand, considers agents with private objectives

who are connected via a well-structured network, and updates the iterate by passing

it around the network and updating it according to each agent's private objective.

[12] surveys combinations of gradient, subgradient, and proximal methods. These

methods achieve exact convergence only with diminishing step sizes, and there are

currently no known techniques for acceleration in incremental gradient methods.

Although they also involve agents with private objectives, incremental methods

are different from distributed methods studied in this work. In incremental methods,

only one agent updates at a time, whereas in distributed methods, every agent op-

erates in every iteration and maintains an estimate of the global optimum, thereby

utilizing full distributed computation power. Moreover, incremental methods rely

on cyclic or uniformly random order of passing the iterate, while distributed meth-

ods consider more generic communication networks in which agents pass iterates to

multiple neighboring agents, and also combines the estimates received from different

agents.

Distributed Methods. Our work is closely related to [13], which studied the

distributed subgradient method with a constant step size, with convergence rate

o (1//i). Under a similar framework, [14,15] considered constrained consensus and

optimization, [16] incorporated communication link failures, [17] considered asyn-

chronous updates with stochastic errors, and [18] studied the effect of graph topology

on the convergence rate. Other extensions of gradient- or subgradient-based methods

include [19], which considers the case where the local functions are time varying but

related; and [20], which considers allows the agents to exchange gradient information

rather than just estimates.
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Our work extends the analysis of [13] in several ways. First, we characterize the

convergence results explicitly in terms of the step size choice, giving rates for exact

convergence when diminishing step sizes are used. Secondly, and more importantly,

we consider proximal gradient methods instead of the subgradient method. In their

centralized counterparts, as mentioned above, it has been shown that for the subgra-

dient method, the convergence rate of 0 (1//n) cannot be improved, while Nesterov's

techniques can applied to the proximal gradient method to accelerate the convergence

rate from 0 (1/n) to 0 (1/n 2). We were able to use this acceleration technique to

obtain an improvement from the subgradient method.

During the preparation of of this work, [21] independently gave a distributed

gradient method similar to our setting. Under a static communication network with

the same weight for each neighbor, they presented a method that uses diminishing

step sizes and converges exactly to the optimum at rate 0 (log n/n). In contrast, our

network communication model is time-varying, and we give a method with a constant

step size that converges exactly to the optimum at rate 0 (1/t) (where t is the number

of communication steps taken.)

There are various other distributed methods which are extensions of other central-

ized optimization methods that utilizes the dual in addition to the primal function.

For example, [22] presents the dual averaging subgradient method, which allows for

an explicit characterization of how the convergence rate depends on network topology.

Also, [23] considers the distributed augmented Lagrangian dual method, and [24] uses

an alternating direction method of multipliers (ADMM) for distributed linear regres-

sion. These dual methods often involve more complicated computation, but may be

more directly applicable in the context of specific problems.

1.3 Contributions

This thesis presents novel distributed methods for solving cooperative optimization

problems among multiple agents connected through a potentially time-varying net-

work. The goal is to optimize a global objective function which is the sum of local
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objective functions, and each local objective is known by an individual agent only.

We have two sets of contributions:

First, we introduce distributed proximal-gradient methods that offer flexibility

in exploiting the special structure of local objective functions, enabling the use of a

gradient-based scheme for non-differentiable functions with a favorable structure. We

present a convergence rate analysis for such methods that highlights the dependence

on the step size sequence.

We next propose a fast distributed gradient method that uses Nesterov-type ac-

celeration techniques and multiple communication steps per iteration. Our method

achieves exact convergence at the rate of 0(1/t) (where t is the computation time),

superior than the rate achieved by existing gradient or subgradient algorithms.

1.4 Outline

The class of methods considered is outlined in Chapter 2, along with preliminary

results that are important for our anaylsis.

In Chapter 3, we consider methods with a single communication step, and study

the convergence properties under both constant and diminishing step sizes. For a con-

stant step size rule, it extends current results for subgradient methods to proximal-

gradient methods, highlighting the effect of the distributed nature of the problem on

the rate of consensus. For diminishing step size rules, convergence results is charac-

terized for a class of diminishing step sizes, providing an optimal choice of diminishing

step sizes within this class.

Chapter 4 offers a novel distributed gradient method that uses a constant step

size, and converges with a rate of 0(1/t), where t is the number of communication

steps. We explain the Nesterov-type optimization acceleration technique, as well as

the effect of using multiple communication steps per iteration, both of which are

crucial to achieving this result.

In Chapter 5, we present results for numerical experiments on a machine learning

benchmark dataset, verifying our theoretical analysis. Chapter 6 closes with conclu-
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Chapter 2

Model

This chapter sets the stage for our distributed first-order methods. In Section 2.1, we

review some basics in convex analysis, including a discussion on the proximal operator.

Section 2.2 describes the class of distributed methods that is the subject of our studies,

followed by Sections 2.3 and 2.4 with details on its optimization and consensus aspects,

respectively. In Section 2.5, we explain the convergence rate notions that will be used

to characterize the performance of our methods.

2.1 Preliminaries

In this section, we gather some notations, definitions, properties and concepts that

are important to our work.

Vectors and Matrices

We begin by explaining our notations and recalling some basic definitions in linear

algebra.

Superscripts are used for the iteration number of vectors in our methods, for

example, yk, jk , ek. Subscripts are used for the iteration number of scalars, such as

'k, k, Ek-

The standard inner product of two vectors x, y E Rd is denoted (x, y) = x'y. For
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x E Rd, its Euclidean norm is |xi| = (x,x), and its 1-norm is 11x11 = ZE |x(l)|,

where x(l) is its l-th entry.

For a matrix A, we denote its entry at the i-th row and j-th column as [A]Ij. We

also write [aij] to represent a matrix with [A]ij = aig. A matrix is said to be stochastic

if the entries in each row sum up to 1, and it is doubly stochastic if A and A' are both

stochastic.

Properties of Functions

We now list some standard definitions and properties pertaining to the class of func-

tions of our interest. Details and proofs can be found in [2, Appendices A-B].

" A function f : Rd _ (-oo, oo] is convex if, for any two points x, y E Rd, and

any t E [0, 11, we have

f (tx + (1 - t)y) < tf (x) + (1 - t)f(y).

" The effective domain of a function f : Rd + [-oo, oo], denoted dom(f), is

defined as

dom(f) = {x E Rd I f(x) < o.

f is said to be proper dom(f) is nonempty and the restriction of f to dom(f)

never attains -oo. In other words, f : Rd + [-oo, oo] is proper if f(x) < oo

for at least one x E Rd and f(x) > -oo for all x E Rd.

" A function g : Rd -+ R is continuously differentiable if its derivative exists and

is continuous. It is smooth if it has derivatives of all orders. However, in the

context of convex optimization, nonsmooth functions, usually refer to functions

that do not even have a first-order derivative.

" A function h : Rd + (-o, cc] is lower semi-continuous if the set

{X E Rd I h(x) < a}

20



is closed for every a E R.

" A function V : Rd - Rd' is called Lipschitz-continuous if there exists a constant

L > 0, call the Lipschitz constant, such that

|IV(x) - V(y)|| Lj|x - y||

for all x,y E Rd.

" If f : Rd -+ (-oo, oo] is a proper convex function, then a vector z E Rd is called

the subgradient of f at point x if

f(y) > f(x) + (z, y - x)

for all y E Rd. The set of all subgradients of f at x is called the subdifferential

and is denoted as f(x).

For a continuously differentiable real-valued convex function, the subgradient co-

incides with its gradient, and we have the following characterization of convexity [2,

Proposition B.3]:

Proposition 1. (Convexity of Continuously Differentiable Functions)

Let f : Rd -+ R be a continuously differentiable function. Then f is convex if and

only if

f(y) > f(x) + (Vf(x), y - X)

for all x,y E Rd.

For a function with a Lipschitz-continuous gradient, we have the following well-

known result [2, Proposition A.24]:

Proposition 2. (Descent Lemma)

Let f : Rd -+ R be a continuously differentiable function whose gradient is

Lipschitz-continuous with Lipschitz constant L(f) > 0, i.e.

||Vf(x) - Vf(y)|| L(f )I|x - y\|.

21



for every x, y E Rd. Then for every L > L(f) and x, y E Rd,

f(x) ; f(y) + (Vf(y),x - y) + L1x - yl12

Putting together both propositions above, we obtain the following useful expres-

sion:

Proposition 3. (Convexity and Lipschitz- Continuous Gradient)

Let f : Rd -+ R be a continuously differentiable function whose gradient is

Lipschitz-continuous with Lipschitz constant L. Then for every x, y, u E Rd,

f(u) 2 f(x) (Vf (y), u - 4) - LiX - Y1122

Proof. This follows directly by summing up the following expressions:

f(u) 2 f(y) + (Vf(y),u - y) (by Proposition 1)

f(y) f(x) - (Vf(y), x - y -) llx - y112 (by Proposition 2)

25

The Proximal Operator

The proximal operator with respect to a function f : Rd -+ (-oo, oo] is defined as

proxf(x) = argmin f(z) + -liz - X||2
ZERd' 2ak

In other words, the proximal operator represents the minimizer of the function f

localized around the operand x. Note that proxy(x) = proxgf(x), so when a is not

specified, it is understood that proxf (x) = prox) (x).

As an example, consider the case where f(x) = lx(x) is the indicator function of

22



the set X, with lx(x) = 0 if x E X and lx(x) = oo if x ( X. Then

x, xEX
proxyf (x) = 72x

argminzEx IIz - x| 2, X X

which is exactly the projection of x onto the set X. From this perspective, the

proximal operator can be seen as a generalization of the projection operator. This is

also why we're allowing the function f to be an extended real-value function.

The proximal operator has the following properties:

Proposition 4. (Basic properties of the proximal operator)

Let y = prozfj(x) for some function f : Rd -+ (-oo, oo]. Then

(a) (x - y) E af(y).

(b) y can be written as y = x - az, where z E f (y).

(c) For all u E Rd, f(u) f(y) + (X - yu - y).

Proof. (a) is clear from the observation that 0 E Of(y) + '(y - x) by the definition of

the proximal operator, and (b) is simply an alternative expression of (a). (c) follows

from (a) and the definition of a subgradient. 0

Another useful property of the proximal operator is that, like the projection op-

erator, it is nonexpansive:

Proposition 5. (Nonexpansiveness of the proximal operator)

Let y = proxf(x) and Q = prox;(z) for some function f : Rd _+ (-oo, o]. Then

Py - Pro < ||x - we|.

Proof. By Proposition 4, we have

f (D ;> f(y) + (X - y, 9 - y)

f (y) ;> fMy + (.z - y, y - y-)
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whose sum is

(x-y-. + , -y) <0

which, by the Cauchy-Schwarz inequality, further implies

|| y y|2 < (X j7 - ,y ) < ||X _ - ll l||-|y -

Cancelling the nonnegative term ||y - y| yields the desired result.

The proximal operator provides an alternative to the use of subgradients when

optimizing nonsmooth functions. It involves finding the minimum argument z E Rd

for the expression f(z) + I|z - x112 , which may be difficult to calculate. However,

there are certain well-structured nonsmooth functions for which this can be computed

easily, and in such cases, proximal methods may outperform subgradient methods.

We illustrate this by an example; more examples and applications in signal processing

can be found in [25, 2.2.2].

Consider the function f : R -+ R, f(x) = Aixi, with A > 0, and let y = prox)(x).

Then, by Proposition 4, we have

{ A}, y > 0

x - y E af(y) =[-AA], y = 0

{ -A}, y < 0

We can see that the first case, x - y = A, happens only if y > 0; in other words,

y =x-A if andonlyif x-A > 0. Similarly, y =x+A if andonlyif x+A < 0.

Finally, y = 0 if and only if x E [-A, A]. In summary,

prox}(x) = 0, -A <.x < A
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which is simple to compute. It can be easily extended to the multi-dimensional one-

norm f : Rd -+ R, f(x) = Al|x||j, which is a popular choice for regularization.

It is more effective to optimize the one-norm using the proximal operator rather

than the subgradient. This is clear from comparing the following two methods for

minimizing f (x) = A x|:

(Subgradient method)

(Proximal-point method)

x - af(x)
A

JI 1 Z %

X+ x - z, z E f(x)

z+ = prox)(x)

x+X+ = pToxf (x)
A

__________ I

~7
-A

(a) Subgradient Method (b) Proximal-point Method

Figure 2-1: Comparison between subgradient and proximal-point methods

Figure 2-1 illustrates the update map from the previous iterate x to the next iterate

x+. When the distance from x to the minumum 0 is greater than A, both methods take

a unit step towards 0. However, when x is within [-A, A], the subgradient method

overshoots and in some cases may not converge to 0, while the proximal-point method

brings the iterate to 0 in the following iteration and keeps it there. For this reason, the

proximal operator is preferred over the subgradient when optimizing well-structured

functions like the one-norm.
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The Proximal-Gradient Method

This thesis focuses on the proximal-gradient method, which combines the use of the

gradient for the continuously differentiable part of the function, and the proximal

operator for the nonsmooth part. Again, these methods are particularly favorable

when the proximal operator for the nonsmooth part is easy to compute.

Formally, the proximal-gradient method seeks to optimize

min f(x) = g(x) + h(x)
XERd

where g : Rd -+ R is convex, continuously differentiable, and has Lipschitz-continuous

gradients with Lipschitz constant L > 0, and h : Rd _ (-oo, oo] is convex, proper,

and lower-semicontinuous, but may not be differentiable.

The proximal-gradient method performs the following iterative updates:

xk = proxh{yk-1 - aV (yk-l)

It is referred to as basic if yk = xk and accelerated if yk = xk + k - xk-).

a is the constant step size, chosen such that a < . The basic method converges

with f(xk) - f(x*) = O(1/k), while the accelerated method converges with rate

O(1/k 2) [25].

We highlight two properties of the proximal-gradient method that are useful for

our anaylsis:

Proposition 6. (Proximal- Gradient Method)

Let

X+ = pro4z{x - aVg(x)}

with a < I and f (x) = g(x) + h(x). Then

(a) x+ can be written as

x+ = x - a (Vg(x) + z),

where z E ah(x+).
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(b) For every u E Rd,

f (X' - f U) <1 [lix X _U112 _ IJX+ SU 112] .

Proof. Part (a) follows directly from Proposition 4(b). As for (b), by Proposition 3,

we have

g(u) g(x+) + (Vg(x), u - x+) - 1x+ - x112

and by Proposition 4(c), we have

h(u) !h(x+ + 1(x-ag)-x+ -X+

Summing up the two expressions above, and noting that > ,

f(u) 1 f(x+) + X - x+,U _ X+ + _ 2
2a

Recall that for any two vectors a, b E Rd, 2 (a, b) - ||a 211 = ||b 211 - Ia - b 12. Therefore,

f(U) > f(X+)+ IIIIu - X+2- II -x12

Rearranging terms yields the desired expression.

2.2 Distributed Proximal- Gradient Methods

Consider a network of m agents. For each i = 1, ... , m, agent i has the local objective

function

f (x) = gj(x) + hi(x)

where gi : Rd -+ R is a convex, continuously differentiable function whose gradient

is Lipschitz-continuous, and hi : Rd -+ (-oo, oo] is a lower-semicontinuous proper

convex function that is not necessarily differentiable.
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The goal of our method is to solve the optimization problem

min f(x) := fx) (2.1)
XERd m i=1

f(x) is called the global objective function. Its optimal value, denoted by f*, is

assumed to be finite and attained at a unique x*.

We propose a class of first-order methods that solves the optimization problem

in a distributed fashion, where each agents in the network maintains an iterate that

is an estimation of the global optimum x*, using only its private objective, and the

iterates of its neighbors in the network. Agent i updates its iterate as follows:

i =proxk {wk- 1 - akVgi(w ~1)} (optimization)
2 hi I i(2.2)

Z = 1 Ajyj (consensus)

where 4, yk, 0 E Rd are vectors at agent i in iteration k, ak > 0 is the step size,

and An E [0, 1] are weights.

There are two stages in this method:

" The optimization stage performs a standard proximal gradient step with the

chosen step size ak. Note that if hi(x) = 0 for each i, then the method reduces

to the gradient method.

When yk = X, it is called the basic method, and when yfC = xj+ ± (4-xi-),

it is called the accelerated method.

" In the consensus stage, each agent communicates through the network to ex-

change iterates with its neighbors. Communication may happen either only

once, which we call the single-step consensus scheme, or many times, which we

call multi-step consensus.

The result is modelled as a linear combination of its own iterate and that of

its neighbors, and the weights A) are determined both by the communication

network and by the single- or multi-step consensus scheme.
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In practice, each agent only needs to maintains either y, or wi at any given

time; however, for clarity of analysis, we distinguish results of the optimization and

consensus stages by denoting them as y and 0f, respectively.

2.3 Conditions on Objective Functions

We assume that the functions of interest have the following properties:

Assumption 1. For every i,

(a) gi : Rd -* R is convex, continuously differentiable, and has a Lipschitz-continuous

gradient with Lipschitz constant L > 0, i.e. |IVgi(x) - Vgi(y)|| <; L||x - y||.

(b) hi : R d _ (-oo, 00] is convex, proper, and lower-semicontinuous.

(c) (Bounded gradients and subgradients) There exists a scalar G such that for all x,

IVgi(x)|| < G, and ||z\| < G for each subgradient z E ah(x).

(d) (Uniqueness of optimum) f (x) = I E' 1 fi(x) = I E' 1 gi(x) + hi(x) attains its

minimum at a unique x*.

Note that Assumption 1 implies that g(x) = 1 Eli gi(x) and h(x) = E hi(x)

also satisfy the same assumptions.

While (a), (b) and (d) are standard assumptions also common to centralized first-

order methods, (c) requires more justification. We now illustrate, by an exam-

ple, that distributed first-order methods given in (2.2) may not converge when the

(sub)gradient is not bounded. In particular, we construct a case with unbounded

gradients for the distributed gradient method, in which the estimates |x11l -+ oo as

k -± 00 for each agent i, while yk stays at the minimum of g(x) = gi. This
1M

occurs despite using a diminishing step size a. = .

We consider the most simple case with only two agents i, j, whose private functions

are differentiable and symmetric to each other with respect of the y-axis, i.e. gi(x) =

gj (-x), hi(x) = hy (x) = 0. If we also choose a symmetric weight matrix A and

symmetric initial points x9 = -xQ, then we would have x4 = -x and average iterate
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xk = - = 0 at every iteration k. We choose [Ak =1/3 2] and x - -1.

Then
k 1 2 k1k

1 = [3 1 [ 3 for each k > 1.
k 2 1 k 1. k
3_ _3 3 3 j

Next, we construct a function for which xi decreases with each step at a fixed

interval. In particular, we aim at x! = -2, x? = -3, ... , x= -(k + 1), which, by the

the previous formula, implies wk- 1 = j We wish to have xo = 0 - g

or Vgj(j) = k(k + (k + 1)). Therefore, if we set

Vgi(x) = 3x(4x + 1) = 12x 2 + 3x for x > 1

and calculate gj correspondingly, then we would end up with the desired divergent

sequence = -(k + 1) -+ -oo, x -4 oo as k -4 oo.

This gives V 2 g, (x) = 24x + 3, so it is convex on [- , oo]. On the other hand,

integration gives gi(x) = 4x 3 + jx 2, where we have taken the integration constant to

be zero for simplicity.

Finally, choose gi (x), x < 1 and gj (x), x > -1 so that they are convex and yk = 0

is the minimum of the global function gi + gj. We simply paste a quadratic function

of the form ax 2 + c to the left of x = I to ensure that the minimum is at 0. Using

zero- and first-order information at x = 1,

Vgj(1) = 15 = 2a

gj(1) - a + c
2

15
= a =- c= -2

2'

Therefore,

4x3 + X 2  x > 1

x2 - 2, x < 1
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as plotted below. gj (x) = g(-x) can be constructed easily.

40-

35- f(x)= 4x 3 +3/2 x2 ,x 1

30- -- (x)= x2 - 2. x < 1

25 -
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15
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We have thus obtained smooth convex functions for which the distributed gradient

method does not converge with diminishing step sizes ak = . Indeed, without a

bound on the gradients, there are instances where the distributed method fails to

converge, because there are functions whose (sub)gradients grow faster than the rate

at which the step size diminishes. The most straightforward fix to this is to assume

that the gradients are bounded.

2.4 Network Communication and Consensus

For the consensus stage of (2.2), we adopt the information exchange model developed

in [10, 13], which we summarize in this section. In the model, the agents form a

communication network, and in the communication step at time t, every agent takes

a linear combination of other agents' estimates according to a weight matrix A(t) =

[aij (t)]. While the weight matrix may change over time, the following conditions

should always be satisfied:

Assumption 2. (Communication Network Requirements)

Consider the weight matrices A(t) = [aij(t)], t = 1, 2,....

(a) (Significant weights) For every t, A(t) is doubly stochastic. Moreover, there exists

a scalar 7 E (0,1) such that for all i, agi(t) ;> 1, and for j = i, either agg(t) = 0,
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in which case j is not a neighbor of i at time t, or aij(t) ;> 7, in which case j is

a neighbor of i and receives the estimate of i at time t.

(b) (Connectivity and bounded intercommunication interval) Let

Et = {(j, i) | j receives the estimate of i at time t},

Ex = {(j, i) | j receives the estimate of i for infinitely many t}.

Then E. is connected. Moreover, there exists an integer B > 1 such that if

(j, i) E Eo, then (j, i) E Et U Et+1 U ... U Et+B-1-

In this assumption, part (a) ensures that each agent maintains an equal influence

on and by others in the network. It also guarantees the significance of every estimate

received by an agent. On the other hand, part (b) states that the overall communi-

cation network is capable of passing information from an agent to any other agent in

bounded time. As a result, if we take B = (m-1)B, then EtUEt+1U...UEt+--1 = Ex.

We then have the following result from [13]:

Lemma 1. [13, Proposition 1(b)] Let Assumption 2 hold, and let

4(t, s) = A(s)A(s + 1) - A(t - 1)A(t).

Then the entries [D(t, s)]ij converges to -L as t -+ oo with a geometric rate uniformly

with respect to i, j. Specifically, for all i, j E {1, ... , m} and all t, s with t > s,

m - B

For simplicity, we shall denote F = 2 1+ -, 0 <# < 1, and quote

this theorem as

[d(t, s)]i - < pYk-s (2.3)

The above lemma implies that the distance between each local iterate and the
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average iterate decreases geometrically with respect to the number of communication

steps taken in the consensus stage. This result is crucial for our analysis later on,

when showing convergence of the iterates to the average iterate.

2.5 Convergence Rate Notions

In this section, we clarify the distinction between exact convergence and convergence

to an error neighborhood, and specify two possible convergence rate notions used to

describe the latter.

Traditionally, the rate of convergence is characterized in terms of the number of

iterations required to reach an E-optimal solution. x E Rd is said to be an E-optimal

solution of the function f : Rd -+ (-o, oo] if

f(x) -f* 

For example, suppose that for a given method, the function values converge to

the optimal value with a bound of

f(x") - f* < - (2.4)
n

for some scalar Do > 0, where n is the number of iterations. Setting the right-hand

side to c, we see that it takes n = A iterations to find an e-optimal solution. In this

case, we say that the method converges exactly, and the convergence rate is 0 (1/n).

Another type of convergence, which usually arises in methods that use a constant

step size, involves terms that depend on the step size a and do not diminish as n

increases. As an example, consider the bound

f(x") - f* < + D2c (2.5)

for some positive scalars D 1, D 2 . Under the traditional E-optimality convergence rate

characterization, if we fix the number of iterations n that this method is allowed to
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run, then by choosing o = to minimize -. + D 20, the bound becomes

V n an/DD

f(x n)f* < .
n

Therefore, with a budget of n iterations, the best solution we can achieve is an NDiD2

optimal solution. In other words, to reach an c-optimal solution, at least n = VDiD 2

iterations are required. In this case, since e = VDiD 2 , we say that the convergence

rate of this method is 0 (1/n).

While this conventional convergence rate notion provides a common basis for

comparison between methods that converge exactly and methods that converge to

an error neighborhood, note that it does not differentiate between the rates of (2.4)

and (2.5), although they are quite different. The expression (2.4) does not require

fixing a budget of iterations in advance so as to find the optimal constant step size,

and it approaches the optimal solution as the method continues to run for more

iterations. On the other hand, once the constant step size is fixed, (2.5) does not

reach the optimal solution even if the method continues for more iterations; however,

in the early stages, the rate of decrease in function value is in effect 1/n 2 , and it may

outperform than (2.4), until (2.4) decreases beyond the error neighborhood of (2.5).

Therefore, as an alternative interpretation of convergence rate in the latter case,

it is often helpful explicitly state the rate at which the error neighborhood is being

reached. For example, (2.5) is also said to (2.5) converge to an error neighborhood

D 2a with rate 0(1/n 2). In the upcoming chapters, it should be clear from the context

which interpretation is being used.
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Chapter 3

Distributed First-Order Methods

with Single-Step Consensus

In this chapter, we consider the distributed method where only one communication

step is taken at each iteration. This is called the "single-step consensus" scheme, in-

troduced in Section 3.1. In Section 3.2, we show that the basic method converges with

rates O(1/Vn) for a constant step size, and O(logn/v~i) for a class of diminishing

step sizes. Section 3.3 outlines challenges for using Nesterov's technique to accelerate

distributed methods with single-step consensus.

3.1 Introduction

Recall from Section 2.2 that the distributed proximal-gradient method solves

min f(x) = E fi(x) = gi(x) + hi(x)
XERd m m

by iteratively performing the following:

{ 4= prox f {wz- -Vgi(-)}

wk = r_ av k yjk

(optimization)

(consensus)
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where yk = xo is call the basic method, and yi = 4f + k(xC - x4-1) is called the

accelerated method. With single-step consensus, communication only happens once in

the consensus stage, and the weight matrices [at,] satisfy Assumption 2. The method

is initialized with {w9}T,=.

For a constant step size, [13] showed that the basic subgradient method (with

yi = x,) converges with rate O(1/vrk). We shall see that although the proximal-

gradient method makes better use of function properties in the optimization stage, it

suffers from the same bottleneck due to consensus. Therefore, the convergence rate is

similar to that of the subgradient method. We also extend the analysis to arbitrary

step sizes and characterize the result in terms of step size choices. In particular, for

the class of diminishing step sizes ak = 1/k', a > 0, we show that the best exact

convergence rate is achieved when a = 1/2.

On the other hand, in the accelerated case (with yf = + ± (x4 - xh)), there

are instances of this problem that my not converge, due to the distributed nature of

this problem, and the sensitivity of the accelerated method to error. In order to take

advantage of the acceleration technique, we have to control the quality of consensus

by using multiple consensus steps, which will be discussed in the next chapter.

3.2 Convergence Rate of the Basic Method

In order to derive the convergence rate of the basic proximal-gradient method, we

first provide an upper bound on consensus of iterates, using properties of network

communication. This is then used to derive the convergence rate, given in terms of

step sizes. Finally, we characterize the rate according to the step size rule.

3.2.1 Consensus of Iterates

Recall that the goal for each agent is to maintain an estimate of the global optimum

x*. If this is achieved, then the local estimates must be equal to each other, because

by Assumption 1(d), x* is unique. However, since each agent moves its iterate in a

different direction according to the gradient and subgradient of its private function,
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the question arises as to whether local iterates will actually converge to the same

point. In other words, is the single communication step in the consensus stage strong

enough to "pull" the iterates close to each other?

The following lemma addresses this question:

Lemma 2. (Consensus of iterates, limited consensus) In Algorithm (3.1),

k-1

kX - yk-1 ( ||w ||+ 2mrG(
j=1 r=O

Yk-r-1a, +4akG

where xk = - ' x, I and -y are given in Lemma 1, and G is the bound on the

gradient of gi and the subgradients of hi for every i, as in Assumption 1.

Proof. By Proposition 6, (3.1) can be written as

X = Wk-i [g(w-1) +]± (3.2)

where z E ahj(x4). Since wk- 1 = a - 1 x - 1 due to the consensus stage, we can

write (3.2) recursively:

m

x = a,-k kx~- [Vg(w- 1) + 4]
j=1
m m

[k- 1, k - 2)]x- 2 - a)-la._1 [Vgj(w 2) ± z-1] - ak [gi w- 1 ) +
j=1 j=1

m k-1 m

= Z[4(k - 1, O)]w - [ j (k - 1, r)]ijar [Vgj(w'-) + zj] - ak [Vg,(w- 1) + zik]
j=1 r=O j=1

(3.3)
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Taking the average, we have

1yk X

m k-1 m 1 1 +
-wO a, [Vg_(wr-) + z ] ak rg 9 w - ± z1 (34

j=1 r=O j=1

where we used the fact that Zi=1[O(t, s)] i = 1, since D(t, s) is doubly stochastic for

all s < t.

Subtracting (3.4) from (3.3),

I k-1 m -

x -k [D(k - 1, 0)]i[ - -O [E(k - 1, r)]i - jar [Vgy (wr-1) + z ]
j=1 - r-0 1 -

m - 1 1 k [Vg(Wh 1) ± Z ] + 1: Cfk [Vgj(W h) ± Zk]

Finally, taking the norm,

mm

- E11|| Xj < [4,(k - 1, 0)];g - - WO
j=1
k-1 m

+ EE [ D(k - 1, r)]i - a'Ci , gy(Wr~1)j + II0ll
r=0 j=1

+±m-l ak (Vgi(wk- 1)j + Iz ± Zak Vg (w- 1)11 + ZII)
i~i

7n k-1 2m-1
< rk-1 0IWII + m(k-r-12arG + 2(m-1) . 2akG

j=1 r-O m

where in the last line we used Lemma 1 and Assumption 1 (c), respectively, to bound

terms of the form |I[D(k - 1, r)] i - and ||Vgj(wr- 1)|| + 11zj1|. This implies the

desired result.

The key idea behind this proof is that without the optimization stage, the algo-

rithm is in effect an averaging algorithm, and the iterates 4 = wf converge to the

mean Yk. In light of this, we treat the optimization stage as a process that introduces
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error to the averaging process, and study its affect on the averaging algorithm. By

(3.2), the error that occurs at each stage is Iwk-' - Xf|| = jVgi(wO 1) + z jl < 2akG.

From Lemma 2, it is clear that the error which happened k -r iterations ago is attenu-

ated geometrically by yk-r, in line with our understanding of the consensus algorithm.

This leads to the bound above.

Clearly, the choice of step sizes has a significant effect on the accumulated error.

For example, if we use a constant step size, then the average error over all iterations

is actually finite:

Corollary 1. (Average consensus for a constant step size)

Let ak = O in Algorithm (3.1). Then there exists scalars C 1 , C 2 such that for

n = 1,2, ...

n n
k=1

Proof. This is obtained simply by averaging the statement of Lemma 2 over k =

1, .. n:

n n m n k-1 n

E 14 -||l <lkW + 2amG yk + E 4G
k=1 n k=1 j=1 k=1 r= k=1

< -w| + 2arG +4aG
n I- 3=1 -

Note that the given initial points {wojm } can be treated as known constants.

Then the corollary is obtained with

F m

C'1 = E ||41
j=1

1
C2' = 2amnrG + AaG

1- Y

More generally, when the step size is not constant, the error can be expressed in

terms of the step sizes. The following lemma gives the total error in n iterations, in
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the form that will be applied directly in the following section.

Corollary 2. (Accumulated consensus of iterates for arbitrary step sizes)

In Algorithm (3.1), there exists scalars C1,C2 such that for all iterations n =

1, 2,..,

ak Xk _ k 11 + G2 ak 2  (3.5)
k=1 i=1

Proof. The accumulated consensus, weighed by step sizes ak, is

n n) ak k-1 + 2mPG E
k=1 k=1

k-1

ak E
r=O

n

7k-r-1 r+ 4G ak 2
k=1

(3.6)

To separate the product terms, we use the fact that ab < j (a 2 + b2). Therefore,

k-1 <

k=1
in

<Ek 2

k=1

I2 n
k ~+ E 72(k-1)

k=1

1
± 2 (1 - -2

7k-r-1akar

n k-

k=1 r=0

nk 
k-r-

1  2 2)

k=1 r-O 2
n k-1

2 L ak2 
k-r-1

k=1 r=0O

n-1
2 2 a

r=0

n

k=r+1

k-r-1

n n-1

(2(1 - y) ak2+ a 1 -Y

where in the second-to-last line we swapped the order of k and r, and in the last line

we used the definition ak = 0 for k < 0 and 0 k > 0 for k > 0.

Substituting (3.7) and (3.8) into (3.6),

+ 2mrG- 1ak= - k2 2
k=1 j=1 .k=1

n n

ak 2+ 4GEak2
k=1 k=1
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ak Xk
k=1

k=1

(3.7)

n

Eak 2
k=1

(3.8)

(j=1 
i



Gathering terms gives the statement in the corollary with

C1= 2(1 - 72)

(,=l1141 2mrG
C2 = + +4G

2 1l- y

0

3.2.2 Convergence Rate Analysis

With consensus results from Corollary 2, we are now ready to evaluate the quality

of a local iterate x with respect to the global function, f(x) = - E'i fd() =

1 gi(x) + hi(x). The result is summarized in the following theorem:

Theorem 1. (Convergence rate of the basic distributed proximal-gradient method)

Algorithm (3.1), with step sizes ak < -, maintains local estimates x with

n

D1 + D 2 E k 2

fj - f* < n k=1

Zak
k=1

where fj = min f(x4) is the best global function value obtained so far, f* is the
1<k<n

optimal global function value, and D1, D2 are scalars.

Proof. Before looking at the global function f(x) = E'i fi(x), we first consider

the private function value of the local estimate, fi(x) = g;(x4) + hi(z4). This part

is the standard analysis inherited from the centralized proximal gradient method.

Indeed, by Proposition 6 (c),

f( xu- 1 k - k-i12
ak I 2ak u - -

=fi(z4) + 11 - U12 _ 1- _ U12]
2ak
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Since the squared-norm function is convex and w- =E a=,-1zx- is a convex

combination of {x - 1}m_1, we have

k-1 k-1_

i 1j=1

Therefore, averaging the previous expression over all i and taking u = x* to be the

global optimum, we have

fi(X ) - fi(X*)] 2 I x*||2  - x x*I 2 (3.9)

Note that the right-hand side of (3.9) is handy for recursive sums. Indeed, sum-

ming (3.9) over k = 1, .., n yields

n m M

E [fi( ) -fi(X*)]< 1 xI- IIX *|2 L- X *|2 2

k= mr 2 2m
k=1 = i=1

(3.10)

Returning to the global objective function, f(x) = "_1 fi(x), we wish to eval-

uate the performance of x with respect to it. However, since x is not optimized

according to fi(x) for i 5 j, the best we can do is to bound fi(x ) with fi(x) using

convexity:

fi(xk) > f-(Xk) + (Vf,(x ), x4 - x) > fi(x ) - G|1x1 - xI (3.11)

Substituting (3.11) into (3.10) bounds the global function value at xk:

n n m

ak [f(x,) - f* = (fi(x, f(X*)]
k=1 k=1 i=1

s : lk1][fi(x ) + llzIXk _ -iX*)
k=1 i=1

< X9 - x*| + a1 ix, -- x, (3.12)
i=1k=1 i=1
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The left-hand side of (3.12) is bounded below by

\ fk) [=1 - f k= f (k) -

k=1 k=1

by the definition f!'= mi f(x ).1<k<n I

On the other hand, concerning the final term in (3.12), note that

IIX _ X'~Il < llX _ X.kII ± lIX _ ykII'

which leads to

mk
mi=1 I~ k1

Also, recall that by Lermma 2 we have, for all i,

ok _kIl < C1 + C2Zk 2

k=1 k=1

Therefore, utting these together,

n2 n

n m

Zk E 1
k=1 i=1

n

-xkII <G aIk _ -k 11
k=1 .

<2G (C 1 +C2 L

k=1

1 m I~

+ -Zakl 4
i=1

ak2

Finally, substituting (3.13) and (3.14) back to (3.12) gives the desired result:

\ Ck) [kf= -
-2m

-, 2
i= x - x*11 +2G C1 + C2 ak 2

\k=1 /

or equivalently,

Di + D2 Ck 2

k=1

k=1

(3.13)

G
Im

--

(3.14)

fjn- f* <
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where the constants are given by

2m,Di= zZI x*2±+2GC1

D2= 2GC 2

We have thus explicitly characterized the convergence rate of the basic proximal

gradient method in terms of step sizes. In the following sections, we discuss the effect

of different step size rules on the convergence rate.

3.2.3 Error with Constant Step Size

Observe that if we use a constant step size, the convergence bound reduces to the

following:

Corollary 3. (Convergence rate of the basic distributed proximal gradient method

with a constant step size) Consider Algorithm (3.1) with ak = a < 1. Then we have

D1/a

ffn f* +aD 2n

where f!, f*, D 1, D2 are defined as in Theroem 1.

The first term diminishes with the rate of O(!), similar to its centralized coun-

terpart; however, instead of converging exactly to the optimum, the method is only

able to converge to an error neighborhood. The size of the error neighborhood is

proportional to a. Under the conventional notion of convergence rates described in

Section 2.5, this amounts to a convergence rate of O(1/fri), which is the same as

that of both the centralized and the distributed subgradient methods [4,13].

We next present an example showing that due to the distributed nature of the

problem, an error neighborhood will be inevitable when a constant step size is used,

and therefore, exact convergence cannot be guaranteed.For simplicity, we consider
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the gradient method, i.e. h (x) = 0 for all i, but similar examples could also be

constructed for the proximal-gradient method.

6

2 2 x

C -C O C

(a) g(x; c) (b) A distributed problem with 3 agents

Figure 3-1: Error neighborhood inevitable with a constant step size: an example

Consider the function g : R - R, parametrized by c E R, defined as

____ -) c[2,(|x.g-cc.gp<;J1

3 7 X _- ) ' JX C

g(x;c)= X-c-1) X - C > 1(315)

a2

-X +-c < -1

Figure 3-1 (a) illustrates the function. It is convex, continuously differentiable,

and its gradient is Lipschitz-continuous with a Lipschitz constant L = 1. Moreover,

the gradient is bounded by G = 1.

Suppose we have a network of three agents whose respective functions are gi =

g(x; -C), g2 = g(x; C), and g3 = g(x; 0), where C > 0 is a very large constant. Figure

3-1(b) show that the global objective g(x) = }(gi(x) + g2 (x) + 93 (x)) is also convex

and has a unique minimum x* = 0.

Next, we construct the communication network that would result in the iterates

x, and x2 being symmetric with respect to the y-axis, and 3i = 0 for all k. Suppose

there is a communication link between each pair of agents, and that the transition

matrix Ak = A is symmetric and static. We choose to x9 = 0 to be the common

initial point of all three agents. Also, let a3 i = a 32, i.e. agent 3 gives equal weights
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to the other two agents. Since gi (x) and g2(x) are symmetric, the average of x' and

z is always 0, so = 0 for all k, and X = = E"' 1 a x will also remain at the

global optimum 0. Moreover, let aii > ai2 for i = 1, 2, j = 1, 2. Then for agents 1 and

2, the result of consensus stage can be modeled as

k 2k=x, i=1 2

for some positive scalar J E [0, 1] that depends on the entries of A. In other words,

6 measures the effectiveness of the communication step in pulling the iterates toward

the average Yk = 0. Indeed, 6 = 0 amounts to w. = 0 = yk-1, where the consensus

stage in fact performs averaging. On the other hand, if J is close to 1, then the

consensus stage performs poorly in averaging the iterates, and each wi is close to z.

Now let's consider the optimization stage. For agents 1 and 2, if they are not

close to their local minimum, so that the gradient has a magnitude of G = 1, then

the optimization stage brings the iterates closer to their respective local minimum by

aG = a. More formally, if x -1 > -C + 1 and xi- < C - 1, then

1k k1 x1 ±

Expressing this recursively, we obtain

k = okXO -6k-la - , --- a C -a k1-6

1- 6 k

1-6

This means that when k -+ oo, the iterates of agent 1 oscillate between wi =

ox1 and x1 = -i = w- a, and similarly for agent 2. For any a > 0, this

error limk,4oo lx - yk|| = j will always be present. Indeed, this error represents a

"tug-of-war" between the local optimum of fi(x) and the average iterate Tk, and is

inevitable in a distributed problem.
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3.2.4 Diminishing Step Size Choices

In contrast to having an error neighborhood when using a constant step size, we can

guarantee exact convergence by using a diminishing step size rule. For example, if the

step sizes satisfy the infinite-travel property, 1 ak = oo, but is square-summable,

=1 ak 2 < 00, then it is clear from Theorem 1 that f7 - f* - 0. However, there is a

trade-off: diminishing step sizes result in a slower convergence rate. The relationship

between the two is the focus for the following section.

We now investigate the convergence rate of Algorithm (3.1) for a parametric class

of diminishing step size choices, ak = _, with a > 0.

The convergence bound given in Theorem 1 can be decomposed into two terms:

the first of order 0 (n), and the second of order 0 (=' .To bound these
k 1tk k o

terms, we use the continuous approximation s(x) = y, a > 0, which is a function

decreasing in x and satisfies s(x 1 ) < ak = s(k) < s(x 2) for x 1 > k > x2 . Then we

have the following bounds:

n n+1 n n

( ak > s(x)dx > js(x)dx = x-adx
k=1

In n, a = 1

n-a-+1-1
-a+1 #

n 
n n 

((1)) 2  
j (s(X)) 2 dX = x2adx

k=1

1+Inn, a

+ n-
2

a+ll _ -
2

a+
1-2a 1

-2a+1 -2a+1 a 4 2

Therefore, the following cases should be considered:
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Case 1. 0 < a < }

1-a
< a

1-a 1-2a _

-1 - 2a ni-a _ I

Since 1 - a > a, the first term decreases faster than the second term, so the

second term dominates.

Case 2. a = }

1
n

E Ck
k=1
n

E ak2
k=1

n
k

k=1

1-a
nl-a - 1

1 +Inn

1/2 1

=-O(
n

0QIn n
= 0 r-

Therefore, the second term dominates, and the overall convergence rate is

Case 3. } < a <1

1
n

k=1
n

, t 2

1-a

- al-a _ 1 0 (na)

2a -1 n-a _ I
EZak
k=1

Here, the first term dominates.
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Case 4. a> 1

1 a - i
-+ a -

k=1

k 1 a k 2
k=1 a- I 2a - ~2- 1)2a

n 2a -1 1 -1 (2a - 1)
k=1

Both terms approach constant values. Step sizes under this choice dimin-

ishes too quickly to guarantee exact convergence.

Note that in the first and third cases, the convergence rate is 0 (h), where b <1j.

Observe that all such convergence rates are in fact slower than 0 nn in the second

case. Indeed, if we compare 0 (n1/2-b) and 0 (ln n), the former grows faster since it

is a polynomial.

In conclusion, the optimal convergence rate is achieved by choosing a = or

equivalently, ak = 7. [7, p.1579] also gives the same conclusion, though an analysis

was not given.

We also remark that this choice step sizes is not square-summable, because (_)2

=0 = oo. Square-summable step sizes are sufficient for absolute convergence, but

not necessary, and certainly not optimal. In contrast, the infinite-travel property is

necessary: if E,'1 ak < oo, then 1 approaches a constant, creating an error

k=1

neighborhood instead of guarenteeing exact convergence.

3.3 Challenges for the Accelerated Method

The method presented in the previous section is an extension of the (centralized)

basic proximal-gradient method, which is outperformed by Nesterov's accelerated

method [3]. This leads us to wonder whether Nesterov's techniques could also be

applied to distributed methods so as to accelerate the convergence rate.

[21] studied this for a static communication network whose weight matrix is fixed
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and positive-definite. They found that for a constant step size, the function values

converge to an error neighborhood of the optimal value with the rate of O(1/n 2).

They also proposed a method that uses diminishing step sizes crk = 1/k and achieves

exact convergence at the rate of 0(log n/n), which exhibits a loss, due to consensus

effects, from the rate of 0(1/n) for the centralized accelerated method with the same

diminishing step sizes.

Unfortunately, our time-varying network does not guarantee such a performance.

Since the acceleration analysis is more sensitive to error (see [9]), the inevitable con-

sensus terms ||4 - Yk results in an accumulation of error that leads to a bound that

grows with the iteration number n. From simulation results, we see that in some

cases, the iterates indeed diverge and grow unbounded.

To see why this is the case, recall that the acceleration technique makes the

prediction y. about where the the function is decreasing, and then takes a proximal-

gradient step from there. In the distributed method (3.1), they exchange their iterates

yk before taking the proximal-gradient step; other variations for the are possible- for

example, the agents may communicate their o4 before making a prediction. In any

case, information exchange in the consensus stage is the key component for distributed

methods. However, time-varying communication weights prevent the prediction from

representing a move in the decreasing function of the overall function. In particular,

sincew k-1 and 0 are different convex combinations of the other agents' iterates,

Xi- and 4f do not have the same relationship as their counterparts in the centralized

method, and the prediction yk = of +#3(x - zi 1) may take the iterate even farther

from the decreasing direction than without a prediction.

We do note that, in our simulations, when the time-varying weight matrix is re-

stricted to being a positive-definite matrix at all times (which is ensured by additional

assumptions on diagonals of the weight matrix, i.e. the weight every agent assigns to

itself), the method seems to converge with rate 0(1/n 2 ) to an error neighborhood.

It is an open question as to what condition is required of the weight matrix so as to

guarantee this performance.

Sensitivity of the (centralized) accelerated method to error leads us to consider al-

50



ternative ways to control the error so as to provide a convergent bound for distributed

accelerated methods. Our solution is to utilize multiple communication steps in the

consensus stage, which allows us to bound the error due to consensus. In the next

chapter, we shall see that this leads to exact convergence with rate O(1/t) (where

t is the number of communication steps), an even better performance than existing

accelerated methods with single-step consensus.
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Chapter 4

Distributed First-Order Methods

with Multi-Step Consensus

In this chapter, we present distributed first-order methods that achieves exact con-

vergence at a rate superior than O(1/t), where t is number of communication steps

taken'.

Section 4.1 is a preliminary discussion that explains the concept of multiple com-

munication steps within the consensus stage, as well as present relevant results per-

taining to the convergence of inexact proximal-gradient methods and the summation

of polynomial-geometric sequences. In Section 4.2, we present a distributed gradient

method with multi-step consensus, and in Section 4.3, a proximal-gradient method.

We differentiate the analysis of the two due to the extra consensus stage required in

the latter. Finally, in Section 4.4, we show that if the number of communication steps

are chosen optimally, these methods can in fact perform better than O(1/t).

'Since the number of communication steps are increasing in our multi-step consensus scheme, we
assume that it dominates the time required for the optimization stage, and therefore our results are
characterized in terms of the number of communication steps. In reality, if the time required for
communication steps is significantly less than that of the optimization stage, then the convergence
rate of the method could be characterized in terms of the number of optimization stages, and
the result would be 0(1/n 2) (where n is the iteration number, with one optimization stages per
iteration), same as the centralized accelerated method.
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4.1 Preliminaries

We saw, in the previous chapter, that the effect of consensus may result in divergence

of the accelerated method. Is it possible to somehow control the consensus so as to

take advantage of the technique for acceleration? The answer is yes! In this chapter,

we present a method that converges exactly to the optimal solution with a rate that

is superior than 0 (1/t), where t is the total number of communication steps.

The main idea is to take an increasing number of communication steps in the

consensus stage, so that the effect of the consensus stage becomes more and more like

averaging. Due to this extra effort required in the consensus stage, the time required

to complete iteration n is increasing with n, so the overall rate does not match up with

the centralized version, which converges at rate 0 (a) = 0 (#) since each iteration

only takes unit time. Nevertheless, the method achieves a rate of O(1/t), which to

our knowledge is faster than all other existing distributed methods for solving (2.1).

With multi-step consensus, the distributed methods can be formulated as inexact

first-order methods, i.e. centralized first-order methods with error. In the remainder

of this section, we state two results that are crucial to our formulation and analysis.

The first characterizes the convergence rate of the inexact proximal-point method

in terms of errors.

Proposition 7. [8, Proposition 2] Let g : Rd - R be a convex function that has a

Lipschitz continuous gradient with Lipschitz constant L, and let h : Rd -4 (-o oci

be a lower semi-continuous proper convex function. Suppose the function f = g + h

attains its minimum at a certain x* E Rd.

Given two sequences {ek}, 1 and {Ekl 1, where ek E Rd and e E R for every k,

consider the accelerated inexact proximal gradient method, which iterates the following

recursion:

x E prok E{yk- -- a (Vg(yk-1) + ek)}
Pxo±8(xk 1(4.1)
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where the step size is a = -, and

prooe{y} = x E Rd I h(x) + || - y112 < min h(z) + |z - y112
2a zEnd 2a

(4.2)

indicates the set of all E-optimal solutions for the proximal operator.

Then, for all n > 1, we have

f (xn) - f (x*) (n1)2 (x -x*|+2An± 23k)

where

An = k + L n =
k=1 k=1

Proposition 7 indicates that as long as the sequences {k e kI1 l and {kFE}'_ 1

are both summable, then the accelerated inexact gradient method achieves the op-

timal convergence rate of O(1z). It is straightforward to verify that according to

the analysis in [8], the result also holds for a constant step size a < 1. Also, note

that if we simply set h(x) = 0 and Ek = 0, then the result holds for inexact gradient

methods, which will be considered in Section 4.2.

We shall see that errors in our inexact formulation, introduced by the distributed

nature of our problem and controlled by multi-step consensus, can be bounded by

polynomial-geometric sequences, i.e. sequences of the form {p(k)yk}, I1 for some

y E (0, 1) and some polynomial p(k) of k. The next proposition show that such

sequences are summable.

Proposition 8. (Summability of polynomial-geometric sequences)

Let -y be a positive scalar such that -y < 1, and let

P(k, N) = {cNkN + cN-1kN-1 +... + clk + co I cj E R, j = 0, ... ,N}

denote the set of all N-th order polynomials of k, where N is a nonnegative integer.
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Then for all p(k) E P(k, N),
oo

1: p(k)_Yk < 00
k=0

Proof. We proceed by induction on N, the degree of the polynomial.

For N = 0, every polynomial p(k) E P(k, N) is a constant, i.e., p(k) = co for some

scalar co. Therefore, EIO p(k) k - ,, which is the well-known geometric series.

Now suppose the induction hypothesis holds for some nonnegative interger N. We

show that it holds for N+ 1. Note that it is sufficient to show that E 0 kN+1 yk <

because P(k, N + 1) = {cN+lkN+1 + p(k) I CN+1 E R, p(k) E P(k, N)}. Using simple

algebraic identities, we can write

E kN+1'Y k
k=O

o k

E Z [IN+1 (1 )N+1] k

k=1 1=1
00 00

E ZZ [N+1 _ -)N+1] k

1=1 k=l

[lN+1 _( - )N+1] E 7k

=1 k=l
00

lN+1_ N+1

Note that lN+1 _ (1 _ I)N+1 is a N-th order polynomial of 1, i.e., lN+1 (1 _ 1)N+1 E

P(l, N). Therefore, by the induction hypothesis on N, __1 (lN+1 _ (1 i)N+1) f
1  <

oo, and thus, E10 kN+1 k <00.

The result of this proposition for p(k, N) = kN will be particularly useful for our

analysis in the upcoming sections. Therefore, we make the following definition:

S : kN k <00.

k-O

(4.3)
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4.2 Gradient Method

4.2.1 Introduction

Consider the optimization problem

min g(x) = gi (x)
XERd m

where for each i = 1, ..., m, gi : Rd -+ R is a convex and continuously differentiable

function whose gradient is Lipschitz-continuous with Lipschitz constant L.

The distributed accelerated gradient method with multi-step consensus solves this

by iteratively performing the following updates for k > 1 from intial points {wq};I1 :

Xk = Wk-i. w. OkVg(W ) (4.4a)

yik = Xk + (x - xk-1) (4.4b)
m

v4 = A yy (4.4c)
j=1

Similar to (2.2), this method also has two stages:

" In the optimization stage (4.4a)-(4.4b), ak < is the constant step size, and

#k = g is chosen so as to achieve the optimal convergence rate. We shall focus

on the constant step size rule, i.e. ak = a for all k > 1.

" In the consensus stage (4.4c), the effect of consensus is controlled by per-

forming multiple communication steps in each consensus stage. Specifically,

Ak = [(D(tk, tk-1 + 1)];i, where to = 0 and tk = tk-1 + k + 1 for k > 1. In other

words, k communication steps are taken in the consensus stage of iteration k.

We note two implications of the consensus stage that will be useful for our

analysis in relating w0 to the average iterate Wk = E wk. First, since [At-]
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is doubly stochastic, we have

1m i=1 j=1 j=1

similar to the single-step consensus case.

Secondly, we have

w3 - - y - yj
j=1 Mj=1

< y F y ||l, (4.5)
j=1

where in the final inequality, we used Lemma 1 to obtain that for the multi-step

consensus stage,

1 1
S[<b(tk, tk_1 + 1)]2, - -pyk
m m

The effect of having multiple communication steps in the consensus stage is that

the problem can be reformulated as the centralized gradient method with an error is

controllable by the consensus stage. To understand this relationship, we first examine

the case where the consensus stage provides complete information that allows the

agents to reach perfect consensus, i.e. Ak = 1for every i, j and w0 = ik for every

i. Then, taking the average of (4.4) and recalling that Vg(x) = 1 KL Vgi(x), we

have

fX = pk-1 - aVg(p-g1) (4.6a)

Fk = Yk + Ae (X - T"-) (4.6b)

which is the centralized accelerated gradient method, known to converge with rate

O(1/n2) [4].

In general, however, w0 is not W5k, but an approximation of it, and the quality

of this approximation is bounded by (4.5). The problem then becomes an inexact

proximal-point method under the framework of [8]. Indeed, taking the average of
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(4.4), we have the following formulation:

Proposition 9. (Distributed gradient method as an inexact centralized gradient method)

Algorithm (4.4), with a constant step size ak = a, can be written as

yk = k-l_ a [Vg(Vkl) ± e k](47= ±k k W- Fk-1(4.7)

where

liekj LLk E
j=1

Proof. Note that

1m

i=1

Since the gradients of gi are Lipschitz-continuous with Lipschitz constant L, we

have

lie kI < - 5 1vgWk- 1 ) _ Vgi(D,- 1)11 < -k Iwh1 _-Wk-1 (4.8)

where we recall that k-1 - jk1. The right-hand side, in turn, can be bounded by

(4.5), giving the desired expression.

In the next subsection, we shall see that the term y= | can be bounded by

a polynomial of k. This in turn allows for, first, the use of Lemma 8 in showing that

{kllek lj} is summable, and then, the application of Lemma 7 for the convergence rate

in the final subsection

4.2.2 Bound on Iterates

In this subsection, we show that E" yj| can be bounded by a second-order poly-

nomial of k. We need the following recursive expressions of the iterates:

Proposition 10. (Recursive expressions of iterates)
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Consider Algorithm (4.4) with a constant step size ak = a. Then we have, for

every k > 2,

(a) E ~I 1 yj ± G±kZi= Z1 -xl

(b) E 14 xI 2mr E_ Y ,E7"_1 | y I+Cx+(k -2)5maG for some scalar

CX.

Proof. (a) Substituting (4.4c) into (4.4a), we have

m

x = 1:Af~ 1  - aVgi(wf~) (4.9)
j=1

Applying this to (4.4b), we have

m
y= S k-1 - aVg - ) - #k (4 - X-1)

j=1

which, upon taking the norm and summing over all i, yields (a):

_jjj 5 EE 1 yk1 11 + _, jjgj(Wk 1)jj + _ 114l~ k-1

i=1 i=1 j=1 i=1 i=1

m m

< E y'-1||1 + mcG + fk 1x - x4-11
j=1 i=1

where in the last line we used the fact that [Akj] = <>(tktk1 + 1) is doubly

stochastic, and that the gradients are bounded by Assumption 1. (These two

properties will also be used extensively in deriving the following expressions, and

we shall avoid repeating this sentence when the application is straightforward.)

(b) Next, we focus on the last term of part (a), Em 1 J11 - 111. Substituting

(4.4b) into (4.9) gives

m
k. N7k-1 ±X- k-1 - Xk-2 k-~w1 ).ki = E... Aij [x + k-1 (X 3 vgjw

j=1

60



Therefore, subtracting xk- and taking the norm, we obtain

k-11 < k1 -1_ -1 + k- -1_ 2i114 - 41 A [IlX 1 -k ± 1k-i1X Xk~'- 2 1] + aG,
j=1

which, upon summation over all i, yields

f ix - 4- 1 1 Z A k-1 -1

i=1 i=1 j=1

_ 11 + -1 Il- 1 _ X-2| + maG.
j=1

(4.10)

The first term on the right-hand side of (4.10) is a measure of how "scattered"

the iterates 4 are, and is bounded by their distance to the average iterate Tk:

m m

i=1 j=1

m m

i=1 j=1

m m1

i= j =1
+= i=

m

2E jx -Tk.

i=1

This can, in turn, be bounded using (4.4a) and (4.5),

(4.11)

IIX _- ykj= k -1_W - [ Vi(Wk) -Ii
_mE

:1=1

Vg (Wi )]

m

< p7 k-1 EIjj-1| + 2aG.
j=1

(4.12)

Therefore,

i=1

m m

A I - x 2mp-yk - + 4maG.
j=1 j=1
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Substituting this (with a decrement of 1 in the indices) into (4.10), we have

Z 11 - xk1I < 2mryk- 2 ZI-2I11 + #k-1
i=1 j=1 i=1

IJx -1 - X-2|| + 5maG.

Recursively expanding the term Ejh1 1x1 - x'~ yields

m k-2 m

i= x k - <12m Y
i=1 =1 j=1

m

IyjI l1+#2Z Ix1 - x 11+ (k - 2)5maG.

Concerning the term #2 1 |x - xi |, note that

m m

I1x~II = E 1jwO - aVg(wO)II
i=1 i=1

wO|| + maG < oo.

Also, since #1 = 0 and yi = x!, (4.9) gives

m

< E1|4|+
j=1

maG < oo.

Therefore, given initial points {w%}9iL1 , there exists a scalar C2 such that

m

#2 ||x2 - X 11|| CX.
i= 1

We now present the main lemma that leads to a polynomial bound on EI1||y| |:

Lemma 3. (Polynomial bound on Em,|I|yf||)

Let sequences {x}|_1m and {y }%i 1 be generated as in algorithm (4.4). Then there

exist nonnegative scalars Co, C 1 , C2 such that for k ;> 1,

m

yI||1 < 0 + 1 k + 2k2

i=1

Proof. We proceed by induction on the iteration number k. First, we show that

the result holds for k = 1 by showing that E'I 2 1|yI| < oo and simply choosing
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o ;> Z I|yf||.

Since #1 = 0, we have y! = X1 = w - avgi(w9) for all i. Therefore,

i=1
yl| < w (|w?||+ aG) < 00.

i=1

for arbitrarily given initial points {w?}gi.

Now suppose the result holds for all nonnegative integers no greater than k - 1.

We wish to show that it also holds for k.

By Proposition 10(b) and the induction hypothesis for 1, ... , k - 2,

x k
i=1

k-2

-x | 2mT o+ + C, + (k - 2)5maG
L=1

< 2mF (- 0 S + 1 S + 2 'I) + C, + (k - 2)5maG,

where the last line is due to Proposition 8, with scalars So', S', S2 defined in (4.3) as

00

Sk :=ZkNYk, N = 0, 1, 2.
k=o

Substituting this into Proposition 10(a), using the induction hypothesis for k - 1,

we obtain

IyI|| < 0o + 1(k - 1) + 2(k - 1)2 + 2mr (UoSo +Z1S + 2 S2) + C + (5k - 9)maG

=C 2 k2 ( 1 - 2C 2 + 5maG)k

+o +02- 1 + 2mr (CoSi + 1S_± +? 2S2") + C, - 9maG

Comparing coefficients, we see that the right-hand side is bounded above by Co +

C 1k± + 2k2 if

Z1 - 2Z2+5maG C 1,
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for the coefficient of k, and

+1 2S) + C - 9maG < o,

for the constant coefficient. Therefore, the following choices of scalars ensure that the

induction hypothesis also holds for k:

-2 5
C2 = mG2

2m1'SJCo + (1 + 2mIrSn ) C2 + C, - 9maG
1 =1 - 2mrS"'

m

i=1

4.2.3 Convergence Rate

We now apply Lemma 5 on the error sequences in (4.19) to show that {kIlekI} i is

a polynomial-geometric sequence, and therefore summable.

Lemma 4. In the formulation (4.7), where

j=1

we have

E k||e k( < 00
k=1

Proof. It is clear from Lemma 3 that

k||ektt < Lpyk k (CO + 1 k + 2 k2 )

which is a polynomial-geometric sequence, thus summable by Lemma 8. 0

Empowered by the lemma above, we can apply the convergence result of the

inexact gradient method in Proposition 7 to show that the method achieves exact
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convergence with
D

f (X") - f (X*)<
- (n + 1)2

for some scalar D, where n is the number of full iterations of (4.4). However, the

computation time required to complete each iteration is increasing, due to the in-

creasing number of communication steps taken. The following theorem expresses the

convergence rate in terms of the actual running time, which is proportional to the

number of optimization and communication steps taken.

Theorem 2. (Convergence rate of the distributed gradient method with multi-step

consensus)

Let Algorithm (4.4) be such that k communication steps are performed within

(4.4c) at iteration k, i.e. A = [1b(t, tk-1 + 1)]i, where tk = tk-1 + k + 1 and to = 0.

Suppose also that optimization and communication steps each takes unit time. Then,

for all t > 1, where t is the total number of communication steps taken, we have

f (7) - f(x*) = O(1/t).

Proof. Since it takes k communication steps to complete iteration k, the total number

of communication steps required to execute iterations 1, ... , n is

n

k n(n +1
2

k=1

In other words, after t communication steps, the number of iterations completed is

n, where n is the greatest integer such that

n(n +1) - 2 +n < t
2 2

or equivalently,

n=- 1 + v/1 +8t

1 2
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As a result,

(+1 2 -1I + V/1 +8t )2 2 + 8t - 2V1 +8t
2 4

and thus,
D 2D

f - _ _f (X*) D 2:5 = O(1/t).
(n + 1) 2  4t + 1 - Vf1+ 8t

0

We have thus shown that our distributed gradient method with multi-step con-

sensus achieves a convergence rate of O(1/t), which is superior than currently known

distributed gradient methods.

Finally, we remark that although this convergence rate is given in terms of the

average iterate Tk, the local iterates x also comes close to Yk because of the increasing

number of consensus steps. Due to the distributed nature of the problem, there is no

guarantee that 4f will converge exactly to Y', because even at the global optimum

x*, where Vg(x*) = i >L Vgi(x*) = 0, each local component of the gradient,

Vgi(x*), may still be nonzero, causing x = w - aVgj(w ) to be taken away from

4 ~ x*. Therefore wo may be a better estimate of x* than x in terms of practical

implementation.

4.3 Proximal-Gradient Method

4.3.1 Introduction

In the previous section, we developed a distributed gradient method using multi-step

consensus that converges exactly. We now wish to extend this to the proximal-

gradient method for functions that have a non-differentiable component.

A straightforward extension is as follows:

rx = proxg {wc- 1 - akVgi(w-1)

yi 1 = X k + - Xi 1 ) (4.13)

0 A .2
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The difficulty in this approach is that its formulation as an inexact centralized

proximal-gradient method has an error sequence that does not leads to exact con-

vergence as in the previous chapter. To see why, we consider the special case where

the nonsmooth function hi(x) = h(x) for every i, and all weights A are equal to ,

implying that Wo = Wk. Taking the average of (4.13) and using a constant step size

ak = a, we have

yk - ' E', proxc {Uk-1 - aVg(Uk-1 )}

k _ yk + A (Tk _ k-1

Recall from (4.1) that the centralized proximal gradient method for g(x) = E' gj(x)

and h(x) = 1 hi (x) is

{k E prox {pk-a(V yk-1) ± ek)
04,l I~k a (V (Fk(4.14)

Let zk = proxa{h1k - a (Vg(k-1) + ek) }. Then by (4.2), we can define Ek using

the following:

h(7k) ± I - [~1 - a (Vg(- 1) ± ek)] 112

- h(zk) - j-I-k - - a (Vg(V-1) + ek)] 112

whrh f inequaity ±i [ ey - a (Vg(om funk)o h-

< jjik _ XkjjII I +zi ± I -Z_ [-k -1 - az (Vg(-Yk 1) ± e k)] 1i) = k,

where the first inequality is due to convexity of the proximal function h (x)± + LI x -Y11
2,
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and z E ah(Tk). Thus, we have lizi| G. As for the term |1zk -k 11, we have

-- Ik 1 = prox {gh-l - a g~'~ 1 ) + ek) - proxh {-1 - avg -

< 1  Iproxh{k~1 - a (Vg(k-1) + ek) - proxh {F~ - a-Vgj(5k

< a E 11-Vg(Fk~ 1) - ek + 99g-1)

< a (2G +||ek 11 ),

where the inequalities are due to the property of the norm function in the second line,

the nonexpansiveness of proximal operators (Proposition 5) in the third line, and the

gradient bound in the final line. Therefore, the error sequence {Ek} is bounded below

by

Sk > k _ k|I -||z|| > a (2G +Ilek|) G > 2aG 2.

In other words, under this formulation, {CE} is bounded below by a constant, and thus

{ kf/I~7} is not summable. Therefore, the inexact method (4.14) does not converge

exactly.

This difficulty can be avoided by performing multi-step consensus between the

gradient and proximal steps, and limiting our attention to the case where all pri-

vate functions have the same non-differentiable component, that is, hi(x) = h(x) for

all i, which is often the case for applications of our interest (such as when h is a

regularization term that does not depend on local information.)

Our proposed distributed proximal-gradient method with multi-step consensus is

as follows:

qi = yl-1 - akVg (y-1) (4.15a)

qi = ^\ qj (4.15b)
j=1

Xi = proxg {q} (4.15c)

k = Xf +Op (X -z-1 (4.15d)
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In this method, optimization is divided into two parts, (4.15a) and (4.15c)-(4.15d),

with multi-step consensus inserted between them. More specifically:

" In (4.15a), qi denotes the result of the gradient step from the previous iterate

k-1yi
" (4.15b) is the consensus stage, in which we take k communication steps for

iteration k, i.e.

14-- <I>y .

The result is Q, which is an estimate of mk = , El qik and a convex com-

bination of other agents' gradient step results. Note that by Lemma 1, we

have

m m

j=1 j=1

17 q || (4.16)
j=1

This expression will help us bound the error in the inexact formulation, to be

introduced shortly.

* In (4.15c), 4f denotes the result of the proximal step from 4f. Note that we

could also write

k = ki - azk, where zk E ah(x ). (4.17)

Since h has bounded subgradients, this also implies

||x - 4/|| < aG. (4.18)

" (4.15d) is the Nesterov-type acceleration step, with #k - k-.

We now show that this method can be formulated as an inexact centralized prox-

imal gradient method in the framework of [8]:
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Proposition 11. (Distributed proximal-gradient method as an inexact centralized

proximal-gradient method)

Algorithm (4.15), with a constant step size ak = a, can be written as

Yk E proe,{k1-a gk1 k{:- a F + e k] }(4.19)

Yk Yk -|-6k (k _ Xk-1)

where Mk = x i x k - j = y , and pro4e{-} is as defined in (4.2). More-

over, we have

e --l > L Iy- 1 - lI (4.20)

i=.12G m m )2

Ekik_ -q 1k

i=1i=

Proof. By taking the average of (4.15a), we can see that

q = a(Vg(=--) +ek)

where, similar to (4.8) in the gradient method of the previous section,

k 1 [Vgj(k-1) _ Vgi(ykl)

1

Let

= proxt{qk} = argmin h(x) + ||z -X ||

denote the result of the exact centralized proximal step. Then -yk = 1 E7 k =

Em, proxa{q}, the result of the proximal step in the distributed method, can be

seen as an approximation of ik.
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We next relate zk and jk by formulating the latter as an inexact proximal step

with error Ek. A simple algebraic expansion gives

h (7k)±+I Ilk _ 4k 112

=n1 hk) ± zGI - k 2 - 2 + ||z - gk ± - z I2

=Mnhoz ± z- k112} ± II-Xk _ ikII (G ± 1i - qkIjI) ±,IIyk _ ikII2

where in the inequality we used the convexity of h(x) and the bound on the subgra-

dient ah(Yk) to obtain h(zk) < h(z-) G - k|; and in the equality, we used the

fact that by definition, zk is the optimizer of h(x) + A Ix - qk12

With this expression, we can write

' = proxh,,, {k}

where

Ek = (G + |z" - +) ± - zkII2

By Proposition 4, zk = prox'{hk} also implies -1 (-k - zk) E ah(ik), and therefore

its norm is bounded by G. As a result,

6k 2G|| -ik + -skI2

Combined with the nonexpansiveness of the proximal operator (Proposition 5),

<k Iprox{I} - prox {g}j 1 < m

i=1i=

we arrive at the desired expression.

Under this formulation, the two error sequences ek and Ek have upper bounds in

terms of M 1Z1Ly -Iy- yk1 1 and gL Z j1  - qk 11, respectively, which are in turn

controlled by the two multi-step consensus stages. According to [8, Proposition 2], if
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{klleklj} and {kVfi} are both summable, then the inexact proximal-gradient method

exhibits the optimal exact convergence rate of 0(1/n 2 ). In the following subsections,

we shall see that this is indeed the case.

4.3.2 Bounds on Iterates

Note that the upper bounds of Ieki| and es involve E yfC1 - yk-1 and - k
respectively, and the latter is in turn bounded by Fyk ET 11 1 qjll according to (4.16).

We shall see that they are both polynomial-geometric sequences.

As in the multi-step gradient method, we first give some helpful expressions of the

iterates:

Proposition 12. (Recursive expressions of iterates)

Let the sequences {4x}j|_1, {y}j;_1 , {qi1|4_1 ,{ f}_ 1,i = 1, ... , m, be generated as

in Algorithm 4.15, with a constant step size ak = a. Then we have, for every k > 2,

(a) Z1 1 ||qk+1|| ZE> I|ql|| + 2cmG + ZE 1 |x -x 1||

(b) 1l 111 - x <2mFZP ' ' E,'m_ q ± (k - 1)2amG

(c) IIyk - ykll < 4 +± 2Fyl- qh-

Proof. (a) Taking norm of (4.15a) and summing over i, we have

q~I l = S yh - - i)j - || amG (4.22)
i=1 i=1

According to (4.15d), we have yh 1 = Xk- 1 + #3k-1(z-1 - X- 2 ), and by (4.18),

we have ||zk-1|| - < jlx-' - <-1|| < aG. Therefore,

FIinall < use(4.5b) +aG+ k- l =- X AI- (4.23)

Finally, we use (4.15b), which states that qj = j IL 1= 5ijiqj is a convex
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combination of {q- 1 }m 1 , so

mm

5 qi-I < Yqk-1
i=1

(4.24)
i=1

Substituting (4.23)-(4.24) back in (4.22), we have

||q|| < E ||qk-111 + 2amG +#k-1l E x-1 - x-2I
i=1 i=1 i=1

Finally, we omit #k-1 < 1, and increment the indices by 1 so that the expression

is applicable to k > 2.

(b) Starting with (4.17) and applying (4.15b), (4.15a), (4.15d) in order, we have

k 4'-k _ Cek

m

j=1
M

j=1
m

aVgj(y - 1)] - azi

m

A 5 A. [Xk- ± - (8k1( _ - 2)] - k a 4,Vgj(yjk1 ) - azik.
j=1 j=1

Subtracting x - from the previous expression and taking the sum of the norm,

we have

m m

i=1 j=1

m

-11 ± k-1 k-2±

j=1

(4.25)

where we used the convexity of the norm operator along with the fact that

Now cnd -. tr _ m i 1 1 in the expression above.Now consider the term E 1M ' ii~ 11 - in h xrsinaoe
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By the nonexpansiveness of the proximal operator,

k-1 _h-1 se-1 _ k-1

Applying the same argument as in (4.11), we have

m m
-1 1

i=1 j=1

m

-k-1-
- qz 11 < i= 11 k- - - 1

and finally, we can bound the right-hand side with (4.16). As a result,

M M
k-1 k-1 k-11 k-1

i=1 j=1

Substituting this back to (4.25),

m

E I k-1

j=1

-1 k-1 j 1
k-1 k-1 _ - 11 ± 2amG

i=1 j=1 i=1

k-i

< ( 2mr i

m

E Iqj'i + 2amG
j=1

where the final line is due to recursion, and omitting 31 < 1 for 1 > 1 while

using #1 = 0 to eliminate the tailing term Zj 1 | |x! - xQI|. This is the desired

expression.

(c) By (4.15d),

yk - y =X ) k-1 - -1)

Note also that

Ilk ykil
i=1

1m
m

ZI4x _ Il: 2ryk E qj 1
i=1 j=1 j=1
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by a similar reasoning as that for (4.26). As a result,

5 (1 + #k)2F q, -1 Ok y- -m m

< (1 ± 0Ok2Py k EZ I qj ± + k2pykl Z I jk- 1 11
j=1 j=1

Omitting #4 < 1 gives statement (c).

Next, we use the expressions established in Proposition 12 to show that E,"'_= ||
is bounded by second-order polynomials of k.

Lemma 5. (Polynomial Bounds on E"'_1 ||qI||)

Let the sequences {x})|4 {y}j|4 1 , {qij 1, {q ,i = 1, ... , m, be generated as

in Algorithm 4.15, with a constant step size ak = a and initial points {yj}Mi1 . Then

there exists scalars C., C', C" such that for k > 2,

qj < Cq± C 'k +C"k 2

Proof. We proceed by induction on k. First, we show that the result holds for k = 2

by choosing C. = ZE' Jjqjl|. It suffices to show that, given the initial points yj,

E,"_> lIq)|| is bounded.

Indeed, by (4.22),

mn M

|q1 ZI|yI|| + 2amG < oo
i=1 i=1
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and

ft
j=1

m

j=1
m

IIyl| + 2amG

I ll + 2armG
j=1
m m

jq1| +4amG ||+4amG < oo

where the second line is due to the fact that 1 = 0 so y = xi, and the third line is

because of (4.17) and (4.24).

Now suppose the result holds for some positive integer k > 2. We show that it

also holds for k + 1.

Substituting the induction hypothesis for k into Proposition 12(b), we have

m k-1

S||x - '1| (2mLW (Cq+C'k + C"k2 ) + 2amG).
i 8=1

By Proposition 8 and (4.3), there exists constants SJ, Si, S such that

00

S Y' (Cq±+Cq~k±+Clk 2)
1=0

< CqS +C'S +C'S.

m

S x1 - xk-11 2m1r (CqSJ + C' St + C ±"S) + 2amG(k - 1).

Proposition 12(a) and the induction hypothesis then gives us

Sj i +111 < Cq+ck'kCqk 22amG±+2mP (CqSJ ± + C'S 2 +2amG(k -1)

Comparing coefficients, we see that the right-hand side can be bounded by

Cq+ C'(k +1) + C"(k +1)2 = Cq+ C'k + C"k2 + (2Ck + C' + C" )
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if

2amG <C"

for the coefficient of k, and

2m7 (CqSO +C'SS' + C"si) <C' + C",

for the constant coefficient. Therefore, the induction hypothesis holds for k + 1 if we

take

m

11

C'
2m'CqSOJ + (2mrS' - 1)C"

2mPS' - 1

C" = 2amG.

5

4.3.3 Convergence Rate

We now apply Lemma 5 on the error sequences in (4.19) to show that {kllek I} and

{k.,f/5} are polynomial-geometric sequences, thus summable:

Lemma 6. (Summability of {k|Iek|I} and {k f' })

In the formulation (4.19), where

i=1

i=1

we have

(a) WC k||e k ( < x0

(b) 00, k ,,E- < oo
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Proof. In both cases, it suffices to show that the sequence is a polynomial-geometric

sequence; then, it is summable by Proposition 8.

(a) By Proposition 12(c),

and by Lemma 5(a),

-FkII < 417yk E1 jjq~ikj + 2pk1E lqk11
i=1 i=1

qi| C q+ C'k + C"k2

i=1

Therefore,

k||ek| 1 4Lryk k (Cq+ Ck + C"k2) +2L1 k-lk (Cq + C'(k - 1) + C"(k

which is a polynomial-geometric sequence.

(b) Recall (4.16),

and Lemma 5(a),

m

j=1

m

1%kllI < Cq
j=1

+ Ck +C"k2 .

ek 2Gryk (Cq+ C'k +C"k 2 ) + 1 [lFyk (Cq+ C'k + C'k2 2

Using the fact that v'a +b < / + V4 for all nonnegative real numbers a, b, we

have

xe~ k 2Gryk (Cq +C'k± Cqk2) ± [rk (Cq + C'k +C''k2 )]

Ck + (Cqk) I,
± 7*_Yk(C±Ck±+Cq 22a ( q k2)

where in the last line we used the fact that v k < k for all k > 1.
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polynomial-geometric sequence. Therefore, kV- is also a polynomial-geometric

sequence.

Using the lemma above, we can establish the convergence rate of our distributed

proximal-gradient method, with the same proof as that of the distributed gradient

method in Section 4.2.3:

Theorem 3. (Convergence rate of the distributed proximal-gradient method with

multi-step consensus)

Let Algorithm (4.15) be such that k communication steps are performed within the

consensus stage (4.15b) at iteration k, i.e.

I k 1 p

Then, for all t > 1, where t is the total number of communication steps taken, we

have

f(1) - f(x*) = O(1/t).

4.4 Beyond O(1/t)

In the previous sections, we saw that taking k communication steps in the k-th iter-

ation results in the summability of error sequences {k IIek II} and {kfi~k}. A natural

question arises: can we do better? In particular, will the error sequences still converge

if we took less than k communication steps in the k-th iteration? We address the

question in this section.

Let sk be the number of communication steps taken in the consensus stage at

iteration k. In our methods presented earlier, sk = k. We wish to find a smaller

choice of sk that would reduce the steps required for each iteration, while preserving

the guarantee for exact convergence.
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With sk, we see that (4.5) for the gradient method can be written as

m

j=1

and (4.16) for the proximal-gradient method can be written as

m

j=1

Therefore, Proposition 10(b) and Proposition 12(b) becomes

II4 -Xk-1|| 1

x k- xh-I 1

k-2

2m17 Z 1
i=1

Z IIyflI + C, + (k - 2)5maG (gradient)
j=1
m

2mry8 1" Y IqjII + (k - 1)2amG (proximal-gradient)
l=1

As a result, if we have the equivalent of Proposition 8 for Sk, i.e. if

oo

E k N Sk <0
k=0

for any given y E (0, 1) and nonnegative integer N, then Lemmas 3 and 5 would hold,

and so would Theorems 2 and 3.

Since E"o k' < oo for a < -1, a sufficient condition for the above is

Sk < k-N-1

or equivalently,
-N-i1

Sk > log k.
log 7

Note that while this is at the order of O(log k), which is smaller than our previous

choice of sk = k = 0(k), the hidden constant depends on N. Fortunately, in our
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case, we only require the condition to hold up to N = 3. Therefore, by choosing

Sk = log(k + 1) , (4.27)
-log -Y

the distributed first-order methods are guaranteed to converge with rate 0(1/n 2),

where n is the iteration number.

The time it takes to complete iterations 1, ..., n, which we denote by T(n), is then

T(n) = Sk = O(nlogn - n)
k=1

since f log xdx = x(log x - 1). Unfortunately, T(n) has the form of what is known as

the Lambert W function, for which there is no explicit inverse expression. Therefore,

we can only express the convergence rate as

f(7) - f (x*) = O(1/(T-1(t))2)

which we know is better than 0(1/t).

In closing, we remark that the improved choice of sk in (4.27) requires the knowl-

edge of -y, which may not be readily available if detailed information or performance

guarantees of the communication network is unknown. In such cases, the safe choice

of Sk = k is still recommended.
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Chapter 5

Numerical Experiments

This chapter presents the performance of our methods applied to a machine learn-

ing task on a benchmark dataset for text categorization. Convergence results verify

bounds and properties given in our theoretical analysis, demonstrating the potential

of our distributed first-order methods in real-world applications.

5.1 Setup

In this chapter, we present experimental results on the 20 Newsgroups dataset.

The 20 Newsgroups dataset [26, 27] consists of about 20,000 news articles, each

labelled with one news topic out of 20; we use the preprocessed version found on [28].

Since the articles are evenly distributed among the 20 topics, we arbitrarily pick topic

1 as the label to learn in this experiment.

The task is to perform L1-regularized logistic regression so as to learn the classi-

fication model for the chosen topic. Specifically, we wish to minimize

1 N

f(X) = log (1 + exp(-bj (aj, x))) + AI|x|j 1
j=1

where N is the total number of news articles, aj is the 8615-dimensional feature vector

of article j, and by is its the label for the chosen topic, which is equal to 1 if this article

belongs to the topic, and -1 otherwise. x contains parameters of the classification
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model that we wish to learn, and f(x) is its corresponding regularized loss function.

It has both a smooth and a nonsmooth component, so it is appropriate to use our

proximal gradient method to search for the optimizer. The reader is referred to [29]

for details on logistic regression and gradient descent.

The data is partitioned into a training set and a test set of 60% and 40%, respec-

tively. We shall only concern ourselves with the training set, since our major focus

is to compare the rate with which various optimization algorithms find the optimal

solution to the above function in the training phase, rather than evaluate the per-

formance of a new machine learning algorithm. For the same reason, we do not A,

but simply chose A = 0.005 since the convergence properties of the proximal-gradient

methods are clearly demonstrated with this level of regularization.

Our experiment focuses on distributed proximal gradient methods for logistic re-

gression. Instead of having a single processing unit, we consider the case where data

is distributed across a network of m data centers. Each data center has the following

private objective function:

fA(Xi) = log (1 + exp(-by (aj, xi))) + A IxiI
1 J ENi o

where xi, i = 1, ... , m is a local estimate of the global classification model, and Ni is

its data set.

We divide our data into m = 10 data centers, each of which contain 1129 data

points. In order to make the private functions as different from each other as possible,

the data was partitioned roughly according to the labels, so that each data center

contains data of similar labels. The power of distributed methods is manifest in that

even though not all data centers have information pertaining to the label of interest,

each of them are still able to learn the model for it.

Randomness in the communication network is simulated as follows: we generate

5 sets of weights from each of the graphs illustrated in Figure 5-1. For every commu-

nication step, the program randomly selects one of the 10 communication networks.

The resulting communication pattern satisfies the requirements of Assumption 2.
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Figure 5-1: Underlying Communication Networks

5.2 Experiments and Results

5.2.1 Step Size Choices for Single-Step Consensus

This experiment explores the effect of step size choices in the single-step consensus

scheme described in Chapter 3. The performance is tested both for different constant

step sizes, and for diminishing step sizes of the class ak = 1/ka, where a > 0.

Figure 5-2(a) illustrates the effect of the constant step size on the error neighbor-

hood. As expected, the function value converges to within an error neighborhood of

the optimal value at rate 0(1/n), and the size of this neighborhood increases with a.

On the other hand, the optimal choice of parameter a for the class of diminishing

step sizes ak = 1/k' is clear from Figure 5-2(b), where the rate of exact convergence

is the fastest when a = 0.5.

5.2.2 Convergence Rate Comparison for Single- and Multi-

Step Consensus

In this experiment, we verify and compare the convergence rates of methods developed

in Chapters 2 and 3, namely, the basic and accelerated proximal-gradient methods

with single-step consensus (3.1), and the accelerated proximal-gradient method with

multi-step consensus (4.15). To illustrate the need for an additional consensus stage
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in (4.15), we also include the accelerated proximal-gradient method with only one

multi-step consensus stage after the gradient method (4.13), which we refer to as

"gradient multi-step" for short.

We explore two conditions for communication weights, the results for which are

presented in Figure 5-3. In each communication step, the method randomly chooses

a weight matrix from the pool of 10 weight matrices as mentioned previously. For (a),

we simply generate weight matrices by setting 77 = 0.2, i.e. every link has a weight

no smaller than 0.2. For (b), we take convex combinations of matrices in (b) and

the identity matrix so as to give sufficient weights on the diagonal, thus ensuring the

matrices to be positive-definite.

In both cases, as expected, the basic proximal-gradient single-step method con-

verges to an error neighborhood at rate O(1/t), as does the gradient multi-step

method. The accelerated method with single-step consensus, in (a), fails to converge

even to an error neighborhood; instead, the iterates grow unbounded, as explained in

Section 3.3; in (b), where the weight matrix is always positive-definite, the acceler-

ated single-step method converges to an error neighborhood. Finally, our accelerated

multi-step method attains exact convergence with rate O(1/t) in both cases, outper-

forming the convergence property of all methods above with a comparable rate.
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Chapter 6

Conclusions

This thesis develops a framework for the analysis of distributed proximal-gradient

methods in multi-agent networks. We showed that it is possible for an agent to

optimize the global objective function using only local information both from its

private function and from the communication network. The basic method with a

constant step size does not convergence exactly, and the convergence rate is O(1//nA);

on the other hand, with a diminishing step size rule of the form ak = 1/k", the method

achieves exact convergence at the rate of O(logn/v/u) with the optimal choice of a

being 1/2.

We also presented a new method that combined Nesterov-type acceleration tech-

niques and multi-step communication. While the time required to execute one itera-

tion is longer than the single-step scheme due to the extra effort required of commu-

nication, it improves the quality of consensus, thus guaranteeing exact convergence.

Moreover, with the help of acceleration techniques, this method achieves a conver-

gence rate of O(1/t), with t being the number of communication steps executed.

Simulation results also verified our theoretical findings, and show that the method

with multi-step consensus can be superior in robustness where single-step consensus

methods fail to converge.

There are several potential directions for future work. First of all, it is of in-

terest to characterize conditions for network communication under which methods

with single-step consensus have stable performance, as opposed to the oscillating or
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divergent behavior seen in simulation results. In addition, to understand the nature

of distributed problems, it would be helpful to determine the lower bound on the

convergence rate of this class of distributed methods, similar to the optimal achiev-

able rates obtained in centralized methods. Finally, other variations in the distributed

proximal-gradient method may be considered, including asynchronous updates, objec-

tive functions that are time-varying or stochastic, or even online optimization settings

where information is revealed over time.
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