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ABSTRACT

We show both theoretically and experimentally how stress concentrations affect the
velocity field around a borehole surrounded by a formation with intrinsic ortohombic
anisotropy. When Fx = Fy , no extra anisotropy is induced, however, isotropic stress
concentrations are developed in the neighborhood of the borehole. Extra anisotropy
is induced only when Fx # Fy , and the level of induced anisotropy is affected by the
intrinsic anisotropy of the formation. Experiments show that monopole acoustic waves
are more sensitive to properties in the neighborbood of the borehole than dipole waves.
However, only dipole logging can determine the direction of anisotropy. A combination
of monopole and dipole logging may lead to a better investigation of intrinsic as well as
induced anisotropy of the formation.

INTRODUCTION

The elastic velocity of a small-amplitude wave is affected by formation stresses or
pre-stresses presumably caused by tectonics and overburden. Traditionally, this phe­
nomenon has been modeled using distributions of microcracks (Eshelby, 1957; Anderson
et al., 1974). In recent years, laboratory experiments show that the theory of acous­
toelasticity can be used to model stress-induced velocity changes in formations or rocks
(Winkler and Liu, 1996; Winkler et ill., 1998). The theory of acoustoelasticity, original­
ly developed in the context of thermoelasticity (Toupin and Bernstein, 1961; Thurston
and Brugger, 1964; Sinha, 1982; Pao and Gamer, 1985), is based on the approach of
a small dynamic field superimposed on a static deformation. The pre-stress is thought
to change the effective elasticity of a medium. Accordingly, the anisotropic property
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and elastic velocities of the medium will change. Researchers have applied the theory
of acoustoelasticity to study the influence of pre-stresses on elastic waves propagating
along a fluid-filled borehole (Norris et al., 1994; Sinha and Kostek, 1996; Liu and Sin­
ha, 2000). It has been proven both numerically and experimentally that a crossover in
flexural dispersions is an indicator of stress-induced anisotropy. Crossover in flexural
dispersions has been observed in field data. Using a multi-frequency inversion technique,
Huang and Sinha (1999) estimated formation stresses using sonic logging data. Using a
phenomenological stress-velocity coupling relation, Tang et al. (1999) developed a the­
ory to explain shear-wave splitting observed in field monopole logging data. A further
derivation shows Tang's approach agrees with the theory of acoustoelasticity.

A common assumption is that the formation is isotropic, but a good number of un­
derground rocks exhibit considerable intrinsic anisotropy. In this paper, we present a
theoretical framework for wave propagation along a fluid-filled borehole surrounded by
a pre-stressed formation with intrinsically orthohombic anisotropy. Analytical results
show that the existence of a borehole always causes heterogeneous velocity field distri­
bution in the vicinity of a borehole subject to far field stresses. When far-field biaxially
stresses Fx and Fy are not balanced, Le., Fx # Fy , extra anisotropy is induced to the
formation which can be detected by both dipole and monopole tools. When Fx # Fv'
no extra anisotropy will be induced, but velocities in the formation are generally high­
er than without stresses. Theoretical results are validated by a repeatable laboratory
experiment consisting of measuring the intrinsic anisotropy of a granite rock and the
anisotropy induced by the stresses perpendicular to the borehole axis. Four nonlinear
elastic constants were inverted from shear velocity measurements based on theoreti­
cal expressions for formation shear velocities as functions of the magnitude of uniaxial
stresses. Our experiments also show that shear head waves received by monopoles are
more sensitive to formation stress variation than flexural waves received by dipole re­
ceivers.

EFFECTS OF FORMATION STRESSES ON VELOCITY FIELD
AROUND A BOREHOLE: THEORY

Consider a borehole surrounded by an originally homogeneous solid with orthohombic
anisotropy where the solid formation is subject to biaxial stresses, Fx and Fy , in the
x- and y-directions in the far field (Figure 1). The compressive biaxial stresses are
presumably caused by plate tectonics. The existence of a borehole leads to stress con­
centration near the borehole. The stress distribution in the vicinity of a borehole is
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given by Timoshenko and Goodier (1982)

a2 3a4 4a2
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where F+ = Fx!Fy and F- = Fx;Fy , and a denotes the radius of the borehole. Figure 2
shows the static stress concentration around the borehole induced by a compression­
al uniaxial stress Fx • In the neighbourhood of the borehole, Trr and Too developed
compressional concentration in the y direction and tensile stress concentration in the x
direction, whereas stress concentration of Tzz and Tro are 900 and 450 different, respec­
tively. Stress concentrations happen even when Fx = Fy in the far field (Figure 3). If
we denote static displacements caused by the aforementioned formation stresses in 1', e,
and z directions as Wr, Wo, and w., respectively, the corresponding static strains in the
formation are
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Because the borehole is very long in the axial or z-direction, the biaxial stresses are
perpendicular to axial direction and do not vary in the region of interest. It is reasonable
to assume that all cross sections are in the same condition and there is no displacement
in the axial direction. w., Ez., Ezr , Ezo, TzT , and Tzo vanish as a result. According to
the theory of acoustoelasticity, the relationship of the static stress and strain complies
with Hooke's Law. There are nine independent linear elastic constants for orthohombic
anisotropic solids: Cn, C12, C13, C22, C23, C33, C44, C55, and C66. The normal stress in the
axial direction Tzz is therefore

(3)
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where

and

Static displacements are obtained by integration of equations (4) and (5),

(4)

(5)
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Since it is more convenient to work in Cartesian coordinates later on, we convert static
stresses and displacements to Cartesian coordinates by rotating them by -Ii, and convert
Ii and pinto tan-1(yjx) and vx2 + y2, respectively, i.e.,

Txx
x2 y2 2xy

(8)= x2 + y2 Trr + x2 + y2 Tee - x2 + y2 Tre ,
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x y
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Y x

(13)wy = W r +wo ,
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W Z O. (14)
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In the presence of biaxial stresses in the propagating medium, equations of motion
describing small-amplitude waves are written in terms of the modified Piola-Kirchhoff
stress tensor of first-line Taj. Introducing Piola-Kirchhoff stresses is necessary in a
nonlinear formulation that accounts for changes in the surface area and surface normal
caused by a finite deformation of the material. Referring to the statically deformed
(intermediate) configuration, the equation of motion and constitutive relation of small­
amplitude wave propagating in a pre-stressed medium are (Norris et al., 1994)

(15)

and

(16)

where p is the formation density in the intermediate state, and Caj'Y{3 represents the
second-order elastic constant. We comply with the convention that a comma followed
by an index", or t, denotes differentiation with respect to the corresponding axis or time,
respectively. Both the lower case Latin and Greek letters take on the values 1, 2, and
3, corresponding to the x, y and z directions, respectively. The Einstein summation
convention for repeated tensor indices is also implied. Using Ca j'Y{3AB to denote the
third-order elastic constant, the effective elastic stiffness tensor Haj'Y{3 can be written as

(17)

where Po is the hydrostatic pressure in a borehole which we have set equal to zero, as
there is no water in the borehole in later experiment, and

9"'i'!{3 = -cai'!{3w~,~ + C",j'Y{3ABEAB + Wa ,LCLi'!{3

+ Wj,MC",M'Y{3 + w'Y,pCa jP{3 + w{3,Qc",j'YQ '

and Ta'Y and EAB are the static stress and strain in the formation given by

and

(18)

(19)

(20)
1

EAB = Z(WA,B + WB,A).

We next derive expressions for plan-wave speeds in terms of static stress field. The
resulting expressions for the compressional and shear wave velocities for wave propagat­
ing along the z-direction in a medium with orthohombic anisotropy subject to biaxial
stress field Fx and Fy in the far-field are given by

pV)(x, y)

+

C133 - C33 C233 - C33
C33 + A (C12 T yy - C22T xx) + A (C12 T xx - cllTyy )

C13 C23
A(C12Ty y - C22Txx) + A(C12Txx - cllTyy ) , (21)
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and

(22)

pVt,(X,y)
Cl44 - C44 C244 + C44

C44 + A (c12Tyy - C22Txx) + A (C12Txx - cllTyy )

Cl3 C23+ T(c12Tyy - C22Txx) + Th2Txx - cllTyy ). (23)

Substituting properties of an isotropic dry Berea Sandstone block measured by Winkler
et al. (1988), equations (21), (22) and (23) yield velocity predictions that are differ
within 5%. Velocity fields in the formation subject to compressional uniaxial stress
Fx = -IMPa, Fx = -3MPa, biaxial stress Fx = Fy = -IMPa, Fx = Fy = -3MPa
and Fx = -4MPaFy = -IMPa are shown in Figures 4, 5, 6, 7, and 8, respectively.
Conclusions drawn from the figures are: (1) The velocity field in the originally homoge­
neous formation becomes heterogeneous when the formation is subject to stresses even
when Fx = Fy in the far field; (2) when Fx # Fy, extra anisotropy is induced by stress­
es, and is much stronger in the vicinity of the borehole. Stress-induced anisotropy can
be detected, together with intrinsic anisotropy in the form of flexural wave splitting
in dipole logging or shear head wave splitting in monopole logging; and (3) no extra
anisotropy is induced when Fx = F y •

BOREHOLE MODEL AND MEASUREMENTS

Figure 1 shows a granite borehole model of 20 em x 10 em x 10 em. A hole of 1.1 em in
diameter is drilled along the long axis (Z axis). To illustrate the induced heterogeneity
of the effective elastic stiffness of the rock resulting from stress concentration around
the borehole, we selected three locations-A, B, and C-to measure the P- and S­
velocities. Locations A and B are close to the borehole and are in X and Y directions,
respectively. For each location, a P-wave and two shear wave velocities are measured
without applying any stresses. The velocities of the shear wave with polarization at the
X axis and at the Y axis are about 2400 m/s and 2700 mis, respectively. They are a
little higher at locations A and B, where they are close to the borehole, indicating the
existence of residual stresses during dilling. There are about 10% intrinsic anisotropy
(Figure 1). The diameter of the plane transducers used in our measurements is 1.27
em. The velocities measured at locations A and B are point values due to the size of
the transducers.

Effect of Stress on Borehole Anisotropy

We investigate the effects of a uniaxial stress perpendicular to the borehole axis on the
rock anisotropy by measuring the shear velocities at locations A, B, and C when a stress
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is applied in the X- or Y-direction. The properties of the rock are listed in Table 1.
Figure 9 shows the shear velocities with different polarization and at the three locations
when the uniaxial stress is in X-direction (Figure 9a) or at the Y-direction (Figure 9b).
All velocities increase when the applied stress increases. When the stress is in the X­
direction (the polarization direction of the slow shear wave), the increase of slow shear
velocities is higher than that of fast shear velocities at the three measurement locations.
If the stress is at the Y-direction (the polarization direction of the fast shear wave), the
increase of the slow shear velocity is higher than the fast one at location B, but is lower
than the fast one at location A and C. This phenomenon could be attributed to rock
heterogeneity, either intrinsic or caused by drilling. The stress at the Y-direction does
not change the ratio between fast and slow shear velocities at location C very much.
This shows that the stress-induced anisotropy is stronger around the borehole, which is
consistent with theoretical predications. Equations (22) and (23) show that pV§ and
pV§y are linear functions of uniaxial stress magnitude Fx or F y , and slopes of pVl and

pV§ with respect to uniaxial stress magnitude are functions of third-order nonlinear
y

elastic constants C155, C255 and c144, C244, respectively. As a result, these nonlinear elastic
constants can be estimated from laboratory measurements (Table 2).

P Cll C12 C13 C22 C23 C33 C44 C55 C66

(kgjm3 ) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
2660 32.96 -2.50 0.70 41.92 -0.35 50.10 19.78 16.12 16.36

Table 1: Material properties of the granite.

C155 C255 C144 C244

(GPa) (GPa) (GPa) (GPa)
-9030 24874 25882 -15864

Table 2: Nonlinear elastic constants inverted from Vs~,vl,Vf. and Vfv.

Logging Measurement in the Borehole

We performed experiments to measure the monopole and dipole responses in a stressed
borehole. The setup is shown schematically in Figure lOa. A pair of transducers with
0.9 cm in diameter is applied to generate and receive the monopole or dipole waves in
the borehole. The transducers can be connected as monopole or dipole transducers with
a switch (Zhu et al., 1994) One transducer is mounted at a lower section of the borehole
and excited by an electric pulse. The other one moves step by step along the borehole
and records the acoustic waves propagating along the borehole. Figure lOb shows a
typical record of the acoustic waveforms when a stress of 5 MPa is at the X-direction.
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From the waveforms we can see the P-wave, shear waves and Stoneley wave with high
amplitude. We can calculate the velocity for each wave from its slope. In the record
shown in Figure lOb, the sampling rate is 0.2 f.lS. When we decrease the sampling rate
to 0.1 f.ls, velocities can be calculated more accurately. There are two shear waves at
their arriving area with different velocity. When the stress is in the X- or Y-direction,
we record the monopole waveforms and calculate the velocities of the two shear waves.
Because the monopole transducer is symmetric with no polarization in the horizontal
plane, the directions of the anisotropy induced by stress can not be determined from
the monopole waveforms.

Figure 11 shows the relationship between stress and shear wave velocities when the
stress is in the X-direction (Figure lla) or the Y-direction (Figure lIb), and varies
from 0 to 6 MPa. The shear velocities measured in the borehole without a stress are
different from those measured on the rock block (Figure 1). The fast shear velocity of
2680 m/s measured in the borehole is lower than the velocity (2700 m/s or 2760 m/s)
measured on the rock block in Figure 1. On the other hand, the slow shear velocity of
2540 m/s measured in the borehole is obviously higher than the velocity of 2450 m/s
or 2490 m/s measured on the rock block. Theses results may be caused by intrinsic
heterogeneity of the rock and/or residual stresses induced by drilling. Figure 11 shows
the variation of fast and slow shear waves with the stress perpendicular to the borehole
axis. The fast shear velocity increases and the slow shear velocity decreases when
the stress increases. This is consistent with our theoretical predictions. According to
the theory, compressional stress concentrations develop in the direction perpendicular
to the uniaxial stress direction, and tensile stress concentrations develop in the stress
direction (Figure 2). Therefore, the slow shear wave is polarized in the same direction
as the uniaxial stress direction, and the fast shear wave is polarized in the perpendicular
direction. Furthermore, equations (2), (22) and (23) show that the fast shear velocity
increases while the slow shear velocity decreases with respect to uniaxial stress. In
particular, it is clearly shown in the experiment that, when the stress is at the Y­
direction, the polarization direction of the fast shear wave, the stress induces stronger
anisotropy on the borehole wall.

CONCLUSIONS

Far-field stresses in a plane perpendicular to a borehole axis will induce stress concentra­
tions near the borehole, whether or not Fx = Fy • As a result, the heterogeneous shear
wave velocity field is always developed in the vicinity of a borehole. When Fx = F y , no
extra anisotropy is induced despite the intrinsic elastic property of the formation. On
the other hand, extra anisotropy is induced only when Fx # Fy , and the level of induced
anisotropy is affected by the intrinsic anisotropy of the formation. Our experiment also
shows that monopole acoustic waves are more sensitive to properties in the neighbor­
hood of the borehole than dipole waves, however, only dipole logging can determine
the direction of anisotropy. A combination of monopole and dipole logging may lead to
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better investigation of the intrinsic as well as the induced anisotropy of the formation.
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Figure 1: Borehole model. The formation is of orthohombic anisotropy intrinsicly and
subject to biaxial stresses in the x and y direction. The diameter of the granite borehole
model used in the experiment is 1.1 em. Footnotes P, Sx and Sy refer to velocities of
the P-wave and shear waves polarized in x and y directions, respectively.
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Figure 2: Stress concentration around the borehole induced by compressional uniaxial
stress, F x = -IMPa
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Figure 9: Velocities of fast and slow shear waves when the formation is subject to
uniaxial stress in the (a) x- direction, or in the (b) y- direction. Locations (A, B, C)
and directions x and y refer to those in Figure 1.
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Figure 10: Schematic plot of the experimental setup of (a) monopole logging and (b)
typical full waveform record.
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Figure 11: Velocities of fast and slow shear waves measured from monopole logging
when the uniaxial stress is in (a) x direction and (b) y direction.
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