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ABSTRACT

The presence of azimuthal anisotropy causes shear wave propagation to split into fast
and slow shear waves. The most common azimuthally anisotropic models used to de­
scribe fractured reservoirs are transverse isotropy with a horizontal axis of symmetry
(HTI), and orthorhombic. In this paper, we study shear-wave reflection moveout in
azimuthally anisotropic media with special attention paid to orthorhombic media with
horizontal interfaces. In such cases the shear-wave reflection moveout is azimuthally
variant and nonhyperbolic. We analyze the azimuthal dependence of normal moveout
(NMO) velocity and we validate the accuracy of the conventional hyperbolic moveout
equation. The azimuthal variation of NMO velocity is elliptical for both wave modes.
In the presence of anisotropy-induced, nonhyperbolic moveout (NHMO), the hyperbolic
moveout equation loses its accuracy with increasing offset (e.g., offset-to-depth ratio>
1). To study the azimuthal behavior of the NHMO for shear-wave reflections, we intro­
duce an analytic representation for the quartic coefficient of the Taylor's series expansion
of the two-way traveltime. In an orthorhombic medium the quartic coefficient for shear­
wave reflections has a relatively simple form, especially in comparison to P-wave. The
reflection moveout for each shear-wave mode in a homogeneous orthorhombic medium
is purely hyperbolic in the direction normal to the polarization. The nonhyperbolic
portion of the moveout, on the other hand, reaches its maximum along the polarization
direction, and it reduces rapidly away from the direction of pOlarization. As a result,
the anisotropy-induced, nonhyperbolic reflection moveout is significant in the vicini­
ty of the polarization directions (e.g., ±30° and for large offset-to-depth ratios). The
implementation of the NHM0 equation and the utilization of the moveout coefficients
allow for not only enhanced seismic imaging but also provide the link between seismic
signatures and medium parameters.

9-1



Al-Dajani and Toksoz

INTRODUCTION

Reflection moveout is sensitive to the presence of azimuthal anisotropy. Transverse
isotropy with a horizontal axis of symmetry (HTI) is the simplest azimuthally anisotrop­
ic model caused by vertical penny-shaped cracks embedded in an isotropic matrix. The
orthorhombic model, on the other hand, is a better representative of a wide class of
fractured reservoirs (e.g., orthogonal fracture systems in an isotropic matrix and a ver­
tical fracture system in a transverse isotropic matrix such as shale). As a result, we
give special attention to orthorhombic media. Both models are characterized by three
orthogonal symmetry planes: (Xl, X3), (X2, X3), and (Xl, X2) given in a Cartesian co­
ordinate system. We assume that the symmetry planes coincide with the coordinate
system, and the (Xl, X2) plane (i.e., the reflector) is horizontal. Figure 1 shows an
example of an orthorhombic model. The orthorhombic symmetry, the focus of this
paper, is defined through nine stiffnesses of the fourth-ranked stiffness tensor Cijkl as:
Cl1,C22,C33,C44,C55,C66,CI2,CI3, and C23. Here, the stiffnesses Cijkl are normalized by the
medium density, p.

The presence of azimuthal anisotropy causes shear-wave propagation to split into
fast and slow shear waves. Assuming a medium with a horizontal interface, the interest
of Our study, the particles displacements for the splitted shear waves are perpendicular
to the propagation direction and are polarized parallel to the vertical symmetry planes.
It is obvious that seismic surveys with a multicomponent source and receiver generate
two perpendicularly polarized shear waves. In our notation, the two shear waves are
called 81 and 82, where in a Cartesian coordinate system, 81 is polarized perpendicular
to the (X2, X3) plane (i.e., parallel to the Xl axis), and 82 is polarized perpendicular to
the (Xl, X3) plane (i.e., parallel to the X2 axis).

Some studies on the kinematics of shear wave reflection moveout in azimuthally
anisotropic media have been limited to zero-to-short offsets and weak anisotropy approx­
imations (e.g., Sena, 1991; Li and Crampin, 1993). Other studies discuss the amplitude
(i.e., energy) differences between the splitted shear waves (e.g., Thomsen, 1988). Key
studies related to this paper include those by Thomsen (1986), Tsvankin and Thomsen
(1994), Dix (1955), Tsvankin (1997a,b), Grechka and Tsvankin (1998), Al-Dajani and
Tsvankin (1998), and Al-Dajani and Toksoz (1999).

Reflection moveout for P-wave propagation has been discussed in detail by Al-Dajani
and Toksoz (1999). In this study, we focus our attention on shear-wave reflection move­
out in azimuthally anisotropic media with orthorhombic symmetry and horizontal in­
terfaces. Our goal is to develop analytical insights into the azimuthal behavior of shear­
wave reflection moveout in common midpoint (CMP) gathers. We evaluate the NMO
velocity equation of Grechka and Tsvankin (1998) for shear-wave propagation. As we
should expect, the conventional hyperbolic normal moveout (NMO) equation parame­
terized by the stacking (NMO) velocity loses accuracy with increasing spreadlength due
to the anisotropy-induced, nonhyperbolic moveout. As a result, we study the longspread
nonhyperbolic reflection moveout (NHMO) for shear-wave propagation in azimuthally
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anisotropic media. We introduce the exact representation for the quartic coefficient
for shear-wave propagation and analyze the azimuthal behavior of the nonhyperbolic
reflection moevout. Our study is valid for arbitrary strength of anisotropy. Ray-traced
synthetic data are used to support this work.

ANALYTIC APPROXIMATIONS OF REFLECTION MOVEOUT

Figure 2 shows an example of an exact "ray-traced" reflection moveout for (a) an 51­
wave and (b) an 52-wave propagation in an orthorhombic medium with a horizontal
reflector at a depth of 1 km. The reflections are generated using a 3-D ray tracing code
which is developed for 3-D laterally inhomogeneous anisotropic media (Gajewski and
Psencik, 1987). The curves correspond to CMP azimuths 0°, 30°, 45°, 60°, and 90°
(see Figure 3 for geometry and model parameters). The traveltime curves are displayed
as a function of offset-to-reflector-depth (X/D) ratio. It is obvious that the reflection
moveout for both shear waves is azimuthally variant.

The Normal Moveout (NMO) "Hyperbolic" Equation

Reflection moveout in common-midpoint (CMP) gathers is conventionally approximated
by the hyperbolic equation:

2 2 A 2t = to + 2X , (1)

where t is the reflection traveltime at source-receiver offset x, to is the two-way zero­
offset traveltime, and the quadratic moveout coefficient A2 = 1/V;mo. Vnmo is the
normal-moveout (NMO) velocity defined in the zero-spread limit.

The Normal Moveout (NMO) Velocity

To obtain the moveout coefficients for any (arbitrary) model, we express the two-way
traveltime of any pure (non-converted) reflected mode as a double Taylor's series expan­
sion in the vicinity of the zero-offset point. Keeping only the quartic and lower-order
terms of the two-way traveltime squared, we obtain the quadratic (A2 ) and quartic (A4)
coefficients for pure mode reflection in a homogeneous arbitrary anisotropic layer. The
exact derivation is discussed in detail by Al-Dajani and Toksiiz (1999).

The quadratic moveout coefficient A2 (or the NMO velocity) in a single arbitrary
anisotropic layer was introduced by Grechka and Tsvankin (1998) for pure mode prop­
agation and arbitrary strength of anisotropy as an ellipse. After recasting, it is given
as:

(2)

where the superscripts (1) and (2) indicate directions along the vertical planes (X2, X3)

and (Xl, X3), respectively. a is the azimuth of the CMP line from one of the vertical
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planes (i.e., the (Xl, xa) plane). A~x) is a cross-term which absorbs the mutual influence
of all principal planes. For any horizontal, azimuthally anisotropic medium with a
horizontal symmetry plane (e.g., HTI, orthorhombic, and monoclinic), A~x) = 0 and
equation (2) reduces to, after recasting

v2 V 2
V2 ( ) = orno,1 nmo,2

nrno Q' v2 2 V2 . 2 1
nrno 1 COS Q:' + orno 2 Sin a, ,

(3)

where the semi-axes of the NMO ellipse: Vnmo,l and I'nmo,2 are the NMO velocities along
the two vertical symmetry planes, (X2,Xa) and (Xl,Xa), respectively. a is the azimuth
of the eMP gather relative to one of the symmetry planes (e.g., the positive xl-axis
of the (Xl, xa) plane). Here, we assume that the coordinate system coincides with the
principal planes.

The NMO velocity for shear-wave propagation in an HTI medium is given in Tsvankin
(1997a). Following the suggestion of Grechka and Tsvankin (1998) for P-wave propaga­
tion, the components of the NMO velocity for shear-wave propagation in an orthorhom­
bic medium are obtained. They are given as:

• For 51-wave propagation:

V;mo 1 = c66,

v2 _ (cl32 + 2cl3c55 + c552 + cH( -c33 + c55))
nmo,2 - (-c33 + c55) .

In Tsvankin's (1997b) notation: ~2mo,1 = V~o, (2,./1) +1), while V;mo,2 = V~o, (20-(2) +
1).

• For 52-wave propagation:

v2 _ (c232 + 2c23c44 + c442 + c22( -c33 + c44))
nmo,l - (-c33 + c44)

V;mo,2 = c66.

Similarly, in Tsvankin's (1997b) notation: V;mo,l = V~Ol (20-(1) +1), while V;mo,2 =
V

S
2
01

(2,.(2) + 1).

Note that Vso, is equivalent to Tsvankin's (1997b) Vso, while o-(i) = (e(i) _o(i))vflo/vS
2
0.,

where i = 1,2. Vpo, e(i), o(i), ,.(i) are Tsvankin's (1997b) parameters for orthorhombic'
media, defined analogously to Thomsen's parameters for VTI. VSO, and Vso, are two ver­
tical velocities for shear-wave propagation. It is clear that V~Ol (2,.(2) + 1) = V~o, (2,.(1) +
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1). Note that the shear-wave splitting parameter, ,(5) "" (V~Ol - V~02)/{2Vi02)

h(l) - ,(2))/{1 + 2,(2)) (Tsvankin, 1997b).
Figure 4 shows a schematic diagram for the azimuthal variation of the quadratic

coefficient A2 and its inverse (the square of the NMO velocity). Note that Figures 4a,b
correspond to the case of an arbitrary medium, while Figures 4c,d correspond to an
azimuthally anisotropic medium with horizontal reflector and symmetry planes (e.g.,
HTI and orthorhombic). As seen in Figures 4b,d, the azimuthal variation of the NM0
velocity in azimuthally anisotropic media is elliptical.

Next, let us verify the accuracy of the analytical representation of the NMO velocity
(equation (3)) for 81- and 82-wave types for an orthorhombic medium. We also evaluate
the hyperbolic moveout equation (I). The moveout velocity on finite spreads can be
obtained by least-squares fitting of a hyperbolic moveout equation to the calculated
traveltimes, i.e.,

(4)

where Xj is the offset of the j-th trace, tj is the corresponding two-way reflection trav­
eltime, to is the two-way vertical traveltime, and N is the number of traces.

As seen in Figure 5, the moveout velocity obtained from the exact traveltimes using
equation (4) in general coincides with the analytic NMO value (compare Figure 5 with
Figure 6). Surprisingly, this is true even at large offset-to-depth (X/D) ratios and for
most azimuth ranges. It is obvious that the conventional NMO equation (I), which
is parameterized by the azimuthally-dependent NMO velocity (equations (2) and (3)),
accurately represents the reflection moveout for shear-wave propagation {especially for
conventional spreadlengths (X/D :$ 1)). Interestingly, the anisotropy-induced deviations
of the moveout curve from a hyperbola, a phenomenon which is well-known for P­
wave propagation in azimuthally anisotropic media (Al-Dajani and Tsvankin, 1998; Al­
Dajani and Toksiiz, 1999), is rather different in the case of shear-wave propagation in
orthorhombic media. To understand this difference we need to look at the nonhyperbolic
portion of the reflection moveout for shear-wave propagation.

The Nonhyperbolic Moveout (NHMO) Equation

The reflection moveout for pure shear wave propagation in azimuthally anisotropic me­
dia is nonhyperbolic (except for the cases where we have elliptical anisotropy and/or fast
shear-wave reflection moveout in HTI media). The nonhyperbolic moveout (NHMO)
equation originally developed by Tsvankin and Thomsen (1994) for VTI media is used
as a basis for our study:

(5)
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where A4 is the quartic coefficient of the Taylor series expansion for t2 (x2
), and A =

A4/(I/Vh2or-l/Vrtmo); Vbor is the horizontal velocity. The denominator of the nonhyper­
bolic term ensures the convergence of this approximation at infinitely large horizontal
offsets. Although equation (5) was originally designed for VTI media, it is generic and
can be used in arbitrary anisotropic media if the appropriate coefficients (A2 , A 4 , and
A) were found, honoring the azimuthal anisotropic dependency. In fact, earlier studies
by Al-Dajani and Tsvankin (1998) and Al-Dajani and ToksDz (1999) demonstrate the
accuracy of equation (5) for P-wave propagation in azimuthally anisotropic media. Our
objective is to study the validity of equation (5) for shear-wave propagation.

Figure 7 shows the time residuals (nonhyperbolic portion) of the reflection moveout
as a function of offset-to-depth ratio (X/D) for an 51-wave and an 52-wave propagation
in an orthorhombic layer, given in Figure 3. The time residuals are computed by taking
the difference between the exact reflections (Figure 2) and the computed traveltimes us­
ing the hyperbolic moveout equation (1) which is parameterized by the analytic NMO
velocity equation (3). The anisotropy-induced nonhyperbolic moveout causes deviations
in the reflection moevout from a hyperbola (I.e., nonzero time difference). Interestingly,
the nonhyperbolic reflection moveout (I.e., time residuals) is maximum along the di­
rection parallel to the polarization and ·it rapidly decreases away from the polarization
direction. Obviously, the reflection moveout for both wave types are purely hyperbol­
ic along the directions that are perpendicular to their polarizations (Figure 7). This
observation can be explained by studying the nonhyperbolic moevout coefficient (A4 ).

The NHMO Coefficient

Application of the nonhyperbolic moveout equation (5) requires knowledge of the quar­
tic moveout coefficient A4. The quartic coefficient A4 for pure mode reflection in a
homogeneous arbitrary anisotropic layer is given by AI-Dajani and ToksDZ (1999) as:

(

A 4(a) A~l) sin4 a + A~2) cos4 a + A~x) sin2 a cos2 a

+ A~Xl) sin a cos3 a + A~X2) sin3 a cos a, (6)

where A~l) and A~2) are the components of quartic coefficient along the two vertical

principal planes (in Cartesian coordinates, (X2,Xa) and (Xj,xa), respectively). A~x),

A~Xl), and A~X2) are cross-terms which absorb the mutual influence from all principal
planes. The components of the quartic coefficient are presented in terms of the medium
parameters, while the azimuthal dependence is governed by trigonometric functions.
Again, a is the azimuth of the CMP line from one of the vertical planes (I.e., (Xl, X3)

plane). No assumptions have been made about the type of symmetry to which the
medium might pertain, nor about the wave type or the strength of anisotropy. The
only assumptions made so far are the fact that we have a horizontal symmetry plane in
order to have analytic representation, and that the medium symmetry (if any) coincides
with our Cartesian coordinate system. In fact, equation (6) represents all sources of
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nonhyperbolic moevouts (e.g., lateral heterogeneity, structure, anisotropy, etc.), and
it has important applications in moveout analysis and seismic imaging. Our focus
is on the anisotropy-induced nonhyperbolic reflection moveout. Because an anisotropic
symmetry plane is transversely isotropic (TI), the moveout coefficients along the vertical
symmetry planes are given analogously to the VTI, which is discussed in detail by
Tsvankin (1997a,b) and Al-Dajani and Toksoz (1999). The problem, however, is to
obtain the components of the moveout coefficients outside the symmetry planes.

As we expect, the more complicated the anisotropy model (lower symmetry), the
more involved is the quartic coefficient given by equation (6). For example, in the case
of VTI symmetry, equation (6) reduces to the known azimuthally independent quartic
coefficient A4 given by Tsvankin and Thomsen (1994). In the case of HTI, on the

other hand, with a horizontal symmetry axis in the (Xl, X3) plane, the components A~x),

A~XI), A~X2), and A~l) vanish, and equation (6) reduces to the expression of Al-Dajani

and Tsvankin (1998): A4 = A~2) cos4 a. For such HTI symmetry and unlike SI-wave
(= SV) propagation, the reflection moveout for S2-wave (= SH) propagation is purely
hyperbolic (I.e., A4 = 0). The quartic coefficient for shear-wave propagation in a HTI
medium is provided in Al-Dajani and Tsvankin (1998).

In the case of a single homogeneous orthorhombic medium, both A~Xl) and A~X2)
vanish, and equation (6) reduces to:

Equation (7) is valid for models with arbitrary strength of anisotropy and can be used
for any pure-mode reflection moveout. Following the derivation of Al-Dajani and Toksoz
(1999) for shear-wave propagation, we obtain that

• For SI-wave propagation, A~l) = 0, while

A~2) = (c55(cl3 + c55)2( -c33 + c55)

(cl32 + 2cl3c55 + c33c55 + cll( -c33 + c55)))j

((cl32
- cllc33 + cllc55 + 2cl3c55 + c552)4 t02)
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A~X) = -((c55(c122 (c33 - c55)2 + c232c552 +

2c23c44c552 + c44c553 - 2c23c33c55c66 ­

2c33c44c55c66 + 2c23c552c66 + 3c44c552c66 ­

c553c66 + c332c662 - 2c33c55c662 + c552c662 +

c132 (c232 + 2c23c44 + c44c55 + c44c66 - c55c66) ­

2c12(c33 - c55)(c23c55 + c44c55 - c33c66 +

c55c66) - 2c13(c12(c23 + c44)(c33 - c55) ­

c232c55 - 2c23c44c55 -c44c552 +c23c33c66 +

c33c44c66 -c23c55c66 -2c44c55c66 +

c552c66)))/(( -c44 + c55) (c132 + 2c13c55 +
c552 + cll( -c33 + c55))2c662tQ2)) .

• For 52-wave propagation, A~2) = 0, while

A~l) = (c44(c23 + c44) 2
( -c33 + c44)

(c232 + 2c23c44 + c33c44 + c22( -c33 + c44))) /

((c23 2 - c22c33 + c22c44 + 2c23c44 + c442)4tQ2)

A~X) = -((c44(c122 (c33 - c44)2 + c132 (c23 + c44)2 +

c232c44c55 + 2c23c442c55 + c443c55­

c232c44c66 - 2c23c442c66 - c443c66 +

c232c55c66 - 2c23c33c55c66 + 4c23c44c55c66 ­

2c33c44c55c66 +3c442c55c66 +c332c662 ­

2c33c44c662 +c442c662 -

2c12(c33 - c44)(c23c55 + c44c55 - c33c66 +

c44c66) + 2c13(c23 + c44)(c12( -c33 + c44) +

c23c55 + c44c55 - c33c66 + c44c66)))

/((c23 2 + 2c23c44 + c442 + c22(-c33 + c44))2

(c44 - c55 )c662t02)).

Hence, the quartic coefficient for both modes of shear-wave propagation in an or­
thorhombic medium reduces to a simple form with only two components. Similar to the
NMO velocity, we can conveniently represent the quartic coefficient for orthorhombic
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media in terms of Tsvankin's (1997b) notation by applying the following substitutions:

c33 = V~o

c44 V~Ol

c55 = VS
2
0 = VS

2
02

cll Vfo (2€(2) + 1)

c22 = Vfo(2€(1) + 1)

c66 VS
2
01 (2-P) + 1) = V~o2(2-P) + 1)

cl3 V(dl(2Vfo6(2) + dl)) - VS
2
02

c23 V(d2(2Vfo6(1) + d2)) - V~Ol

cl2 = V(d3(2Vfo(2€(2) + 1)6(3) + d3)) -

V~Ol (2,(2) + 1) ,

where dl = Vfo - VS
2
02 , d2 = Vfo - V~Ol' and d3 = Vfo(2€(2) +1) - V~Ol (2,(2) +1). 6(3) is

Tsvankin's (1997b) notation, defined analogously to Thomsen's 6 parameter for VTI.
To perform the transformation, however, we need either the two vertical shear velocities
and one, or one vertical shear velocity and two ,(s).

Despite the complexity of the orthorhombic symmetry, it is interesting to note that
the reflection moveout for any shear-wave mode is purely hyperbolic in the direction
normal to the polarization, and that the nonhyperbolic portion of the moveout reduces
rapidly away from the direction of the polarization. In fact, the quartic coefficient in the
case of shear-wave propagation is simple compared to the case of P-wave propagation.
Figure 8 shows a schematic diagram for the azimuthal variation of the quartic coefficient
A4• A sketch of the general representation (equation (6)) is given in Figure 8a. Fig­
ures 8b,c,d, on the other hand, show sketches for the azimuthal variation of the quartic
coefficient for the three pure wave modes in the case of an orthorhombic medium with a
horizontal interface (equation (7)). The shapes given in Figure 8 might vary depending
on the relative magnitudes of the components of the quartic coefficient. For example, in
some cases of orthorhombic media and according to equations (6) and/or (7), the quartic
coefficient for P-wave reflections (Figure 8b) might appear as a flower-like shape (e.g.,
imagine Figures 8c and 8d combined). Here, we are interested in the quartic coefficient
for shear-wave propagation. It is obvious from Figures 8c and 8d that the quartic coef­
ficient, hence the nonhyperbolic reflection moveout, is significant in the vicinity of the
polarization directions for 51- and 52-waves (e.g., ±30° and for large ofIset-to-depth
ratios). Away from the polarization directions, the quartic coefficient decreases rapidly
and vanishes along perpendicular directions relative to the polarizations. This fact can
be used, in addition to the ellipticity of the NMO velocity, to detect the orientation of
the principal symmetry planes of the medium (hence, the fractures orientation) from
shear-wave reflection moveout.

As mentioned earlier, the equivalence between orthorhombic and VTI media along
the symmetry planes allows the application of VTI expressions along those directions.
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This fact was useful to Tsvankin (1997b) when he introduced the anisotropic parameters
for orthorhombic media, and following the notation of the well-known Thomsen's (1986)
coefficients E, (j and 'Y for vertical transverse isotropy. As seen above, the anisotropy­
induced nonhyperbolic reflection moveout for shear-wave propagation is significant in
the vicinity of the symmetry planes. An earlier work by Tsvankin and Thomsen (1994)
on shear-wave reflection moveout for vertical transverse isotropy (VTI) demonstrated
that the NHMO equation (5) is accurate for offset-to-depth ratios of 1.7-2. This con­
clusion remains valid for shear-wave propagation in orthorhombic media. In fact, the
3-D representation of both NMO velocity and the quartic coefficient, in azimuthally
anisotropic media, makes the NHMO equation (5) more accurate for longer offset-to­
depth ratios, especially outside the symmetry planes. In order to implement equation
(5), we need to obtain the horizontal velocity Vhor as well. From the VTI equivalence
along the horizontal symmetry plane, however, we can represent the phase velocity
analytically, and hence obtain the horizontal group velocity which is evaluated at the
azimuth of the source-to-receiver (eMP) gather. In multilayered anisotropic media, on
the other hand, both the quadratic and quartic moveout coefficients are averaged using
Dix-type equations and using the interval values which honor the azimuthal dependence
of each layer (Al-Dajani and Tsvankin, 1998; Al-Dajani and Toks6z, 1999).

CONCLUSIONS

The use of multicomponent sources and receivers to acquire seismic data over azimuthal­
ly anisotropic media and/or the propagation of shear waves at normal incidence over
fractured media cause the presence of two pure modes for shear waves: fast and slow
waves. We have presented analytic descriptions for the quadratic (A2 ) and quartic (A4 )

coefficients of the Taylor's series expansion of the two-way traveltime for both modes
of shear waves in azimuthally anisotropic media, with special attention paid to or­
thorhombic media with horizontal interfaces. In such media, the 81 and 82 shear waves
are polarized parallel to the horizontal principal axes. The conventional NMO equa­
tion, which is parameterized by the azimuthally dependent NMO velocity for shear-wave
propagation, accurately represents the reflection moveout (especially for conventional
spreadlengths (X/D ::::: 1)). The azimuthal variation of the NMO velocity is elliptical
for shear-wave propagation. On the other hand, the azimuthally-dependent quartic co­
efficient for pure shear-wave propagation, in a homogeneous arbitrary anisotropic layer
with arbitrary strength of anisotropy, has a relatively simple trigonometric form. For
an orthorhombic medium with a horizontal interface, the quartic coefficient for pure 81­
and 82-wave reflection moveout has a simple azimuthal representation. The reflection
moveout for any shear-wave mode in a homogeneous orthorhombic medium is purely
hyperbolic in the direction normal to the polarization, and the nonhyperbolic portion
of the moveout reduces rapidly away from the direction of polarization. As a result,
the need for NHMO treatment for shear-wave propagation is significant in the vicinity
of the polarization directions and for large offsets (e.g., ±30° and for offset-to-depth
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ratio > 1). The NHM0 equation, which is parameterized by the analytic NM0 veloci­
ty and quartic coefficient for shear-wave propagation, provides more accurate moveout
representation than the hyperbolic equation at large offsets (e.g., offset-to-depth ratios
> 1). In multilayered anisotropic media, the moveout coefficients are averaged using
Dix-type equations and using the interval values which honor the azimuthal dependence
of each layer. The implementation of the NHMO equation and the utilization of the
moveout coefficients allow for not only enhanced seismic imaging, but also provide the
link between seismic signatures and the medium parameters.
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Figure 1: Orthorhombic media (shown above) have three mutually orthogonal planes
of mirror symmetry. One of the reasons for orthorhombic anisotropy is a combination
of parallel vertical cracks and vertical transverse isotropy (e.g., due to thin horizontal
layering) in the background medium.
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Figure 2: Exact ray-traced reflection moveout for (a) 51-wave and (b) 52-wave prop­
agation. The curves correspond to eMP azimuths 0°, 30°, 45°, 60°, and 90°. The
traveltime curves are displayed as a function of offset-to-reflector-depth (X/D) ratio.
The geometry and model parameters are given in Figure 3.
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Figure 3: Orientation of the eMP azimuths (survey lines) over a horizontal orthorhom­
bic layer. The model parameters are provided using Tsvankin's notation (see Tsvankin,
1997b; Al-Dajani aud Toksiiz, 1999).
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Figure 4: A plan view of the general behavior of the quadratic coefficient (A2 ) and its
inverse (V;mo) for both modes of shear-wave propagation in an arbitrary medium (a and
b), and in an orthorhombic medium with a horizontal reflector (c and d).
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Figure 5: Estimated NMO velocity as a fllllction of spreadlength-to-depth (X/D) ratio
for (a) 51-wave (b) 52-wave propagation (equation (4)). The curves correspond to eMP
azimuths 0°, 30°, 45°, 60°, and 90° (see Figures 2 and 3). The anisotropy-induced,
nonhyperbolic moveout causes deviation (error) in the NMO velocity estimates. The
error is proportional to the nonhyperbolic reflection rnoevout.
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Figure 6: Exact azimuthal variation of NMO velocity for 81- and 82-wave modes, as
computed using equation (3). The model parameters and geometry are given in Figure 3.
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Figure 7: Time residuals (nonhyperbolic portion) of the reflection moveout as a func­
tion of offset-to-depth ratio (X/D) for (a) SI-wave and (b) S2-wave propagation. The
anisotropy-induced nonhyperbolic moveout causes deviations in the reflection moevout
from being hyperbolic (i.e., nonzero time residuals).
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Figure 8: A plan view of the general behavior of the quartic coefficient A 4 in azimuthally
anisotropic media. (a) shows a sketch of~ in an arbitrary medium, while (b), (c), and
(d) show sketches of A4 for P, 81, and 82, in an orthorhombic medium with a horizontal
interface, respectively.
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