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ABSTRACT

Traditional joint inversion methods reqnire an a priori prescribed operator that links the
reservoir properties to the observed seismic response. The methods also rely on a lin­
earized approach to the solution that makes them heavily dependent on the selection of
the starting model. Neural networks provide a useful alternative that is inherently non­
linear and completely data-driven, but the performance of traditional back-propagation
networks in production settings has been inconsistent due to the extensive parameter
tweaking needed to achieve satisfactory results and to avoid overfitting the data. In
addition, the accuracy of these traditional networks is sensitive to network parameters,
such as the network size and training length. We present an approach to estimate the
point-values of the reservoir rock properties (such as porosity) from seismic and well
log data through the use of regularized back propagation and radial basis networks.
Both types of networks have inherent smoothness characteristics that alleviate the non­
monotonous generalization problem associated with traditional networks and help to
avert overfitting the data. The approach we present therefore avoids the drawbacks of
both the joint inversion methods and traditional back-propagation networks. Specifi­
cally, it is inherently nonlinear, requires no a priori operator or initial model, and is not
prone to overfitting problems, thus requiring no extensive parameter experimentation.
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INTRODUCTION

Although seismic data have been used for a long time to delineate the structure of
petroleum reservoirs, quantitative amplitude analysis to estimate the spatial distribu­
tion of the reservoir rock properties has gained momentum only recently. The advent
of precise logging instruments has enabled well log data to provide a very accurate
description of the reservoir properties. Unfortunately, this knowledge is available only
at the well locations, which usually have a very sparse coverage of the field. Because
well drilling is such an expensive endeavor, it is not commercially practical to drill any­
thing but the most essential wells needed to develop the reservoir. Seismic data, on the
other hand, is much less expensive to acquire and can be gathered economically over
the entire field. The problem, however, is that seismic data provide only an indirect
sampling of the rock properties. Therefore, correlating well log and seismic information
can provide a natural and convenient way of extending the knowledge of the reservoir
rock properties gained at the well locations to the entire field, thus providing a much
more complete description of the reservoir.

Traditional methods tackled this issue by joint inversion of well log and seismic
data (Angeleri and Carpi, 1982; de Buyl et al., 1986; Anderson, 1996; Brac et al.,
1998). One difficulty with these approaches, however, is that they require an a priori
prescribed theoretical operator that links the rock properties derived from the well log
data to the observed seismic response. This relationship between the individual rock
properties and the seismic response is certainly not obvious and is exceedingly difficult
to characterize because the seismic response is affected by numerous rock characteristics,
such as porosity, pore pressure, lithology, and water content. Also, the way these factors
combine to affect the seismic data can vary regionally. The accuracy of joint inversion
methods is thus hindered by the need to prescribe an a priori theoretical relation that
is difficult to determine and that frequently holds only under ideal conditions.

Moreover, even though the relation between rock properties and seismic response
is decidedly nonlinear, joint inversion methods have to linearize their approach and
solve for the final model by perturbing an initial guess and iteratively updating that
.model by comparing with the observed response until a satisfactory convergence to the
final model is reached. This iterative linearization makes the performance and accuracy
of the entire procedure heavily dependent on the choice of the initial model. Three
potential sources of inaccuracies exist in these joint inversion methods: the selection
of the a priori operator, linearizing the nonlinear relation, and numerical convergence.
The latter two are notoriously dependent on the choice of the initial model. There is,
therefore, a need for an alternative approach that is robust, inherently nonlinear, and
avoids the difficulties associated with the necessity to pick an initial model and an a
priori operator. Neural networks provide such an alternative.

Neural networks are deeply rooted in biological origins. Cognitive psychology has
developed models for human behavior, learning, and perception, and has linked them
with brain physiology. (The link between the physical makeup of the brain and hu-
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man thinking is entirely nontrivial. In fact, several Nobel Prizes have been awarded
for research that addressed that relation, such as feature-extraction models of the visu­
8.1 cortex, goal-directed behavioral models, and propagation of electrical signals along
neural cells.) Neural networks attempt to mimic the cognitive thought processes of
the brain, and they are often used to emulate some of the vision system and mental
processes used by humans to analyze data.

The history of neural network computing goes back to the 1940s, when McCulloch
and Pitts (1943) introduced the first neural network computing model. In the fifties, the
perceptron model of Rosenblatt (1958) became popular. This simple two-layer network
was able to successfully learn to classify input patterns by adjusting the weights of
the connections between the nodes. At the time, neural networks looked promising,
especially as classical artificial intelligence techniques were becoming too cumbersome
to handle the ever more challenging applications. Neural networks were thus expected
to solve many problems of the time. However, interest declined as limitations in their
performance arose. The perceptron model, for example, was shown to be incapable of
classifying simple input patterns that belong to nonseparable vector spaces (Minsky and
Papert, 1969).

In the early eighties there 'was a renewed interest in neural networks, fueled not only
by disappointments in classical artificial intelligence methods in solving large, compli­
cated systems, but also encouraged by many innovations in neural computing that laid
solid foundations for numerous new neural models, such as recurrent networks (Hop­
field, 1982) and the back-propagation rule (Rumelhart et al., 1986). These days, neural
networks have wide-ranging applications in several fields that include not only banking,
electronics, and defense, but also exploration geophysics (Poulton et al., 1992; Wang
and Mendel, 1992; McCormack et al., 1993; Boadu, 1998; Calderon-Macias et al., 1998;
Liu and Liu, 1998) and petroleum geology (Baldwin et al., 1990; Rogers et al., 1992;
Huang et al., 1996; Saggaf and Nebrija, 2000).

One of the major difficulties with neural network methods, despite their promise
and success in research environments, is that in practice their performance has been
inconsistent due to the significant amount of parameter tweaking required to achieve
satisfactory results. Although they can be made to perform well, this is often only after
extensive experimentation with their parameters. In fact, utilizing neural networks has
sometimes been described as an art that one develops a feel for slowly. Although this
may be acceptable in research settings, it is certainly not so in production environ­
ments, where time is critical and staff are less familiar with the inner workings of the
methodology.

The selection of optimal neural network parameters can be challenging because tra­
ditional neural networks have a nonmonotonous generalization behavior (overfitting,
large networks often perform worse than smaller ones in test data). In this paper, we
present an approach to estimate the reservoir properties in the inter-well regions of the
field by correlating seismic and well log information through the use of neural networks
that have inherent smoothness constraints. This smoothness improves the generaliza-
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tion behavior of the network and alleviates the problem of overfitting. This gives rise
to a methodology that avoids the difficulties associated with both the traditional joint
inversion procedures and traditional back propagation networks that require extensive
parameter tweaking and are prone to overfitting. The approach we present here thus has
four advantages over traditional methods: (1) it is inherently nonlinear and there is no
need to linearize it, so it is adept at capturing the intrinsic nonlinearity of the problem;
(2) it is virtually model-free, and no a priori theoretical operator is required to link the
reservoir properties to the observed seismic response; (3) a starting model is not needed,
thus the final outcome is not dependent on the proper choice of that initial guess; and
(4) it is naturally smooth, and hence has a more monotonous generalization behavior
than traditional neural network methods. In this paper, we describe the background
and methodology of our approach, and in a companion paper (Saggaf et al., 2000) we
apply the methodology for the estimation of porosity in the inter-well regions of the
reservoir.

NEURAL NETWORKS STRUCTURE

Neural networks, in general, are grossly simplified versions of their biological counter­
parts (Figure la), consisting of interconnected nodes (neurons) corresponding to the
neural cells in the brain (the human brain has over 50 billion such cells). The nodes
respond to input signals by transmitting excitatory and inhibitory signals to other neu­
rons. Thus, the signal is transmitted through the network, and is modified as it travels
from one neuron to another. It is the simultaneous operation of those highly intercon­
nected neurons that produces mind-like characteristics that can perform sophisticated
analyses.

The nodes in each layer of the network receive input from the nodes of the previous
layer and transmit it through to the following layer. As this input propagates through
the network, it is acted upon by the weights and transfer function assigned to each
layer. A variety of transfer functions (sometimes called activation functions) exist that
help give the network its characteristics. Some of the more common ones are the linear,
log sigmoidal, and hyperbolic tangent sigmoidal functions. These are defined as follows,
respectively:

ft(x) - x (1)

fts(x)
1

(2)- 1 + e x

fts(x)
eX _ e-x

(3)- eX + e x

Figure 2 shows example plots of each of these functions. A neural network is charac­
terized by the type of transfer function acting on the output of each layer and linking
it to the following layer to which it is connected, in addition to the number of layers in
the network and the number of nodes in each layer.
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Each network must have an input layer and an output layer. The number of nodes in
each ofthese two layers is dictated by the geometry of the problem at hand. Additionally,
the network may also have one or more internal (so-called hidden) layers. The number of
these internal layers, the number of nodes in each internal layer, and the type of transfer
functions assigned to the internal and output layers represent the network parameters
to be selected by the operator. Each layer is often designated by the transfer function
assigned to it (acting on its output); for example, a linear layer is one to which a linear
transfer function is assigned. It is in this sense that the input layer is sometimes not
considered a layer at all, as no transfer function acts on its output and it is assigned no
weights; it merely feeds the input directly into the first internal layer. With this notion,
then, a network that has an input "'layer," one internal layer with a tangent sigmoidal
transfer function, and an output layer with a linear transfer function is considered a
two-layer network with a tangent sigmoidal internal layer and a linear output layer. As
we discuss below, such a network structure is one of the most widely used. The structure
of the network, along with the weights assigned to each layer, completely describe the
network.

Neural networks work as model-free point-value estimators for any arbitrary function
to be approximated. The process of computing the optimal weights that minimize the
error between the observed data and network output is called the training process. A
series of sparse data points are fed to the network during the training stage, along
with the desired output. After training, the network represents a predictive model of
the data and can be used to estimate the data value for any point in the input space
(Figure 1b). Training a neural network can thus be viewed as a purely mathematical
optimization problem, where the optimal weights are sought so as to minimize the
network error. In fact, this is how neural networks are implemented by software (where
they are sometimes called artificial neural networks). Several algorithms exist that
speed up this optimization (training) step. Once the optimal weights are calculated,
the network can be readily applied on nontraining data to derive the prediction output.

Neural networks possess some interesting and advantageous properties that make
them suitable for various applications that involve human-like pattern identification,
prediction, and analysis (Hrycej, 1992). Some of these properties are:

• Generalization: For similar inputs, outputs are similar. The network is able to
generalize from the training data, so that its output is similar for input data that
are almost, but not quite, the same. In contrast, conventional artificial intelligence
has no concept of similarity, since it is based on logic, and the concept of similarity
cannot be ascribed to logical rules.

• Graceful degradation: A small distortion of the input data produces only
proportionally small performance deterioration. In other words, noisy or incom­
plete input data would not produce considerable deviation in the inference results.
Thus, neural networks are well suited to handling geophysical and geological da­
ta, where there is an abundance of vagueness, imperfection, incompleteness, and

2-5



Saggaf et al.

uncertainty.

• Adaptivity and learning: Learning is done by example, and the network adapts
to changing input. There is no need for manual encoding of rules or prescription
of a priori operators linking the model data with the observables, as is the case
in traditional joint inversion methods. This can be called automatic knowledge
extraction; it not only eases and streamlines the task of modeling, but it is also
more objective, since it is not affected by human errors and biases induced by
manual generation of the inversion operator.

• Parallelism: Neurons operate simultaneously, not sequentially, and hence neu­
ral networks are well suited for implementations on parallel computers. This is
especially useful for large networks.

Undoubtedly, the most important advantage of neural networks is that they represent
a model-less approach to inversion, where it is not necessary to specify the underlying
physical model. This is very useful in complex problems where the physical relation is
hard to identify, or where that relation changes from one group of input data to another.

REGULARIZED BACK-PROPAGATION NETWORKS

Perhaps the most popular type of neural networks are back-propagation networks.
These are also sometimes called multi-layer perceptrons or feed-forward networks (back­
propagation describes the learning rule of the network, whereas feed-forward describes
how the network operates). A typical back-propagation network has one sigmoidal in­
ternal layer and a linear output layer. Such a network has been shown to be able to
approximate virtually any function of interest as accurately as desired, given a sufficient
number of nodes in the internal layer (Hornik et al., 1989). Adding extra internal layers
increases the complexity of the network and may allow it to achieve its goal with fewer
nodes overall. We shall adhere to two-layer networks in this work, however, as they
are much simpler to characterize and build. Mathematically, each node j in layer k
is assigned a weight vector that belongs to a vector space of the same dimension as
the space of the input to the layer. The output of the layer is computed as the value
of the transfer function acting on the inner product of the input vector with the node
weights. A scalar that represents an offset (sometimes called the bias) is often added to
the product before the transfer function is evaluated. This offset improves the network's
ability to fit the data and can be regarded as the equivalent of the v-intercept in linear
regression. Thus, denoting the output of the kth layer by Yk> the weight vector assigned
to the ith node in the layer by Wk,i, and the offset for that node by bk,i, then the ith
output of that layer (ith element of the vector Yk) is given by:

Yk,i = !(Wk,i' Yk-l + bk,i) i: 1 -+ N k, (4)

where! is the transfer function of the layer, Nk is the number of nodes in the layer,
and the inner product between the two vectors is performed. For the typical two-layer
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network we mentioned above, the network output Y2 is therefore given by:

YI,i - ft,(WI,i' x + bl,i) i : 1 -+ N I ,

Y2,i W2,i . Yl,i + ~,i i : 1 -r N2l

(5)
(6)

where x is the input vector to the network, ft, is the tangent sigmoidal transfer function
defined in equation (3), and NI and N 2 are the number of nodes in the internal and
output layers, respectively.

For a simple network with a single set of connections (Le., with only an input and
an output layer-no internal layers), the weights can be computed by directly solving
the network with a standard optimization method (e.g., steepest descent or conjugate
gradient). For more complicated networks, the back-propagation rule represents a more
efficient way of attaining the optimal weights than the direct solution of the network.
In this case, the weights for each layer are obtained separately. In each iteration,
the weights for the outermost layer are computed as before (direct solution), since all
required information is available there (input and prediction error). For internal layers,
however, the prediction error is not available. For these layers, the error is successively
propagated back through the outermost layers, and the solution is computed for those
internal layer weights (Figure 1c). The name back-propagation stems from this training
method, which is also called the generalized delta rule.

As mentioned in the introduction, one of the obstacles that has reduced the us­
ability of neural networks and hindered wider adoption in production environments is
the extensive parameter tweaking required to obtain accurate and consistent results.
This is because the relative complexity of the network to the complexity of the data
is an important variable that affects the performance and generalization behavior of

'traditional back-propagation networks. A network that is too complex relative to the
data results in overfitting: it performs well on the training data set, driving the misfit
between the observed data and network output virtually to zero, but tends to produce a
rough output that is a poor interpolator between the training points. Thus, the network
solution is all but useless as a predictive model. On the other hand, a network that is
too simple relative to the complexity of the data would invariably fail to capture the
intricacies of the data characteristics and would thus underfit the data.

We illustrate this shortening with an example. We construct a nonlinear model
according to the deterministic relation:

(7)

where B I = 1, B2 = 2, and Ba = 1. Noise-free data were generated according to this
model for 100 points spanning an interval form 0 to 5. Of these data, a subset of 10
points was selected, and the network was trained on this training subset. After training,
the entire data set was recreated by applying the network on the whole data range. The
recreated (estimated) data are compared to the true data to gauge the accuracy of the
network prediction.
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We start with a network that is just large enough to provide an adequate fit to the
data. This network has a typical back-propagation structure with a tangent sigmoidal
internal layer of two nodes, and a linear output layer. The result is shown in Figure 3a,
which compares the actual and estimated data values (the figure also shows the points
used to train the network). It can be seen that the estimated and actual data overlap
significantly, indicating that the network prediction was quite accurate. This is a good
result, especially keeping in mind that unlike model-based inversion, the network had no
knowledge of the underlying operator that was used to create the data. The same test
was rerun on data that have been encumbered by 10% random Gaussian noise (relative
to the mean of the data), and the result is shown in Figure 3b. Again, the fit between
the actual and estimated data is excellent.

We next use too large a network-one of a similar structure to the above but with
50 nodes in the internal layer. The result appears in Figure 4a. The network was able to
fit the training points quite well (in fact, much better than before). However, the model
it produced was so rough that it is a poor interpolator of the data between the training
points, and thus the predictive model generated by this network is all but useless. The
corresponding result for the data encumbered by 10% noise is shown in Figure 4b, and
is equally poor. Next, we give an example in which a network that is too simple for a
given problem underfits the data. The same data range described above was used to
generate 100 data points according to the relation:

T(z) = sin(B1z), (8)

where B 1 = l A ten-point training subset was employed to train a network of a similar
structure as discussed above, which has five nodes in its internal layer. The entire data
set was subsequently recreated using this network and compared to the actual data. The
result is shown in Figure 5a, where it can be seen that the network, which is just large
enough to provide an adequate fit to this problem, was quite successful in predicting the
data. Figure 5b shows the result of a network that is similar in structure but slightly
smaller. This network has just two nodes in its internal layer, and is evidently much too
weak to sufficiently fit the data in this case. This network thus produced too smooth a
model that severely underfits the data.

Choosing a back-propagation network of the right size, therefore, is an important
factor in attaining a reasonable predictive model. The obstacle is that it is difficult to
determine beforehand just the right size for the problem at hand. Though the optimal
network size can be estimated by systematic cross-validation tests, this can be a very
lengthy and compute-intensive process that is not suitable for production settings. The
overfitting problem is not limited to neural network methods; it is also encountered
often in various applications of function fitting. Choosing too complex a function not
ouly wastes valuable compute resources (a tolerable cost), but also results in a rough
solution that is not usable as a predictive model. We next investigate three approaches
that can help alleviate the problem.
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Regularization

As we mentioned previously, the optimal network weights are computed by minimizing
the misfit error between the training data and the network output. The objective
function is thus the mean square error of the misfit:

(9)

where ei is the misfit error for the ith training observation and N is the total number
of observations in the training data set. The nonmonotonous generalization behavior of
the network can be alleviated by modifying the objective function such that not only is
the misfit error reduced, but so are the network weights (and offsets):

(10)

where Wi is the ith network weight (or offset) and M is the total number of weights and
offsets in the network.

The modified objective function resnlts in a network that not only fits the data, but
also has small weights and offsets that give rise to smaller variations in the network
output and thus yield a smoother result in the output space that is less likely to overfit
the data. We will call such a network a regularized back-propagation network. Note
that, in essence, this approach is not unlike that of Tikhonov regularization (Tikhonov
and Arsenin, 1977), but with a slight distinction. Exploration geophysicists are familiar

··with Tikhonov-style regularization, which smoothes the actual model (e.g., velocity), s·
ince the model itself is the desired outcome in many applications (Constable et al., 1987;
Sambridge, 1990). However, in our case we are interested in smoothness in the data
space (network output) rather than in the model space (network weights), so we con­
strain the network weights to be small (rather than smooth) to yield a smooth network
output. The regularization parameter A determines the relative emphasis of smoothness
versus degree of fit to the training data. A small value of A results in an unregularized
network. On the other hand, if A is too large, then the network would not adequately
fit the data. The optimal smoothing parameter need not be prescribed manually; it
can be determined automatically by statistical Bayesian interpolation (MacKay, 1992;
Foresee and Hagan, 1997), where the regularization parameter is related to a random
distribution of the network weights.

We return now to the overfitting example given earlier. In this case, we use the same
large network (50 nodes in the internal layer) as before, but the objective function is
modified according to equation (10) to yield a regularized back-propagation network.
The regularization parameter was automatically selected by Bayesian interpolation. The
result is shown in Figure 6a, where it is evident that the model produced here represents
a much better predictor of the data than the traditional back-propagation network of
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Figure 4a, and is comparable to the model produced by the traditional network of the
optimal size (Figure 3a). In fact, Figures 6a and 3a look almost identical, a testament
to the effectiveness of this method (the regularized network was more accurate, as it
produced a smaller RMS error, 0.2%, versus 1% for the traditional network of optimal
size). Figure 6b shows the result when the regularized back-propagation network was
built from the data that have been encumbered by 10% noise. Again, this looks similar
to the result obtained by the neural network of the optimal size (Figure 3b), even though
the regularized network utilized here was much larger than the optimal.

Utilizing regularized back-propagation networks thus eliminates the need for ex­
tensive parameter tweaking and produces networks that have more consistent results
than their traditional back-propagation counterparts. The operator need only pick a
network of adequate size; there· is no danger of overfitting the data if the network
was too large. In fact, the operator is encouraged to err on the safe side and over­
estimate the network size required for a given problem. The only penalty incurred here
is slightly increased training time--a tolerable cost given today's compute resources
and the general compute-efficiency of neural networks. We believe that regularized
back-propagation networks would be quite conducive to more widespread use of neural
networks in production settings, where there are usually no sufficient human resources
to handle the extensive network parameter selection and experimentation required by
traditional back-propagation networks.

Redundant Data Interpolation

Smoothness in the data space may also be achieved by redundant data interpolation.
This is done by interpolating between the training data points with a smooth function,
performing the training on the expanded data set, and then discarding the interpolated
data after training. This sequence produces a smoother solution even for larger net­
works and helps stabilize network training. The reason for this is that interpolating
the data increases the data complexity, and therefore reduces the ratio of the complex­
ity of the network relative to that of the data. Figure 7a shows the result when the
same traditional 50-node network used before was utilized, albeit this time the lo-point
training data set was locally interpolated by cubic splines to 50 points prior to training,
and the network was trained on the interpolated data. Again, the network output is
much smoother than in the unregularized case, and it looks comparable to that of the
traditional network of the optimal size (Figure 3a) or the regularized back-propagation
network (Figure 6a). Overfitting has thus been alleviated even though the network is
much larger than needed.

The advantage of the redundant data interpolation approach over regularized back­
propagation networks is that this method would never underfit the data (assuming the
network is large enough) since the expanded training data set is derived wholly from the
original data, whereas, as we mentioned above, an improper manual selection of a fixed
regularization parameter can produce a regularized back-propagation network that is too
smooth to adequately fit the data. (This is averted, however, by the automatic selection
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of the regularization parameter via the Bayesian interpolation method we mentioned
earlier.) The disadvantage of redundant interpolation is that it is difficult to determine
beforehand the amount of interpolation required for a given problem, which means that
this approach does not completely solve the parameter tweaking issue. Moreover, each
fold of interpolation doubles the time required to train the network, and so this method
can be quite demanding in its compute and storage requirements, and is not suitable
for large data sets.

Also note that the redundant data interpolation approach is less resistant to noise
in the data than the regularized back-propagation method, since interpolation is carried
here over the noisy data. Thus, spurious characteristics, induced by noise in the data,
may be introduced into the solution, as the training data set is honored here more
faithfully. Figure 7b shows the result when redundant data interpolation was utilized
to obtain the 50-node network for the data that have been encumbered by 10% noise.
Although the final outcome is smooth, the accuracy is not as good as that of the network
of the optimal size (Figure 3b) or the regularized back-propagation network (Figure 6b).
The data trend characteristics were not recreated as closely, since the original noisy data
set is fitted more faithfully here.

Validating Data Set

As training progresses for a traditional back-propagation network, the misfit error is
increasingly driven to ever smaller values. While this indicates that longer training
times cause the network to fit the data well, it is not a desirable effect. As the misfit
error gets progressively smaller, the network starts to memorize the training data set
and gradually loses it ability to generalize well. In other words, the network will overfit

-. the data and will not represent a good predictive model. While in the previous two
approaches overfitting was alleviated by constraining the network to produce smoother
output, overfitting may also be lessened by stopping the training phase early to prevent
the network from losing its generalization behavior. The result is a network that fits the
data less perfectly but is more useful as a predictive model because it can generalize well
to data it has not encountered. Huang et al. (1996) employed this method to predict
permeability from well logs.

In the validating data set approach, the data available for training are split into a
training data set and a validating data set. The validating data set is not used directly
in the training. Instead, the network error on this set is merely monitored at each stage
during training. Initially, the error for both the training and validating sets will decrease,
but as training progresses, the error on the validating data set will eventually start to
increase (while it continues to decrease on the training data set). This indicates that
the network has started to memorize the training data and is losing its generalization
ability. At this point, training is stopped and the weights obtained at the minimum
validation error are used to build the network.

Figure 8a shows the result when the same traditional 50-node network as above was
utilized, except this time the data set was split into a training set and a validating set,

2-11



Saggaf et al.

and training was stopped once the validation error started to increase. The training
and validation data points are also indicated in the figure. Unfortunately, because half
the original data available for training were used for validation rather than training,
this dramatically decreased the size of the training data set, and the network accuracy
was therefore qnite poor. The test was rerun, but this time the entire original training
data set was employed for training the network, and an additional, distinct subset of the
data was used for validation. The result, along with the training and validation points,
is shown in Figure 8b. This result is an improvement over the result of Figure 8a (the
RMS error decreased from 32% to 15%), and over that traditional network (Figure 4a).
However, the accuracy obtained here is nowhere near that of the traditional network of
the optimal size (Figure 3a) or the regularized back-propagation network (Figure 6a).

Although the validating data set method is workable, we believe it to be much less
effective and less accurate than the regularized back-propagation method. Its chief
disadvantage is that there is a reduced amount of data on which to train the network,
since part of the training data are used for validation and not utilized directly in training
the network. This is problematic when the data available for training are limited, which
is not an uncommon scenario. In addition, the final solution is sensitive to the rather
arbitrary split of the data into training and validation subsets, which makes the network
solution less consistent and adversely affects its reproducibility. On the other hand, the
training time required by this method is smaller than those of the first two approaches
mentioned above, so this can be a favorable method when a massive training data set
is to be employed.

Of the three approaches we presented here, we believe the regularized back-propagation
method to be the most robust, accurate, and consistent. Its compute time is moderate
and it does not waste valuable training data or require redundant interpolation. We
will thus focus on this method in subsequent discussion.

RADIAL BASIS NETWORKS

Radial basis networks are in general similar in structure to back-propagation networks,
but with some important distinctions that cause them to operate in an entirely different
manner. A typical radial basis network has one internal layer and an output layer.
The output layer is usually linear. The internal layer, on the other hand, is always a
radial basis layer. Such a layer differs from those in back-propagation networks in three
aspects. First, the transfer function is the radial basis function, given by:

(11)

An example plot of this function is shown in Figure 9a. Second, instead of computing
the inner product between the input vector and the layer weights, the Euclidian distance
of the two is calculated. Third, this distance is divided by the offset rather than added.
The responses of all neurons of the radial basis layer are then aggregated in the linear
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layer. The output of a typical two-layer radial basis network is thus given by:

Yl,i

Y2 ,i

frb(lIwI,i - xll/bl,i) I : 1 -+ N I,

w2,i . Yl,i + b2,i i : 1 --+ N 2 ,

(12)

(13)

where the symbols are defined as in equations (5) and (6).
From Figure 9a we see that the radial basis function acts as a discriminator that

produces a high value whenever the input vector is similar to the neuron (I.e., when the
Euclidian distance in equation (12) between the input vector and the neuron is small).
The purpose of the offset is to modify the neuron's region of sensitivity to the input
vector. A larger offset causes the neuron to be sensitive to a larger region of the input
space, whereas a smaller offset restricts the neuron to respond only to the narrow band
of the input space that is most similar to that neuron. The different plots in Figure 9a
correspond to radial basis functions in which various offsets are utilized, according to
the equation:

() -x'/bfrb x = e . (14)

Thus, a radial basis network can be thought of as performing interpolation in the
model space (in contrast to the more familiar interpolation in the data space). It is
in this sense that radial basis networks achieve natural smootlmess, and this intrinsic
smoothness is controlled by varying the offset in the network's radial basis layer. As
we mentioned, a large offset causes the neurons to respond to large areas of the input
space, thus increasing smootlmess by increased overlapping of the neural responses at
the expense of reduced fit to the data. On the other hand, a small offset would severely
restrict any overlap in the neural responses and would thus produce a network with poor
generalization. The offset is an important parameter for radial basis networks; the size
of the network is not as critical in affecting the network accuracy. Figure 9b shows a
similar example to that of Figure 3a, except here a radial basis network is used. With a
reasonable choice of the offset, the network produced an excellent predictive model that
recreated the entire data set very well (Figure 9b). With too large an offset, though,
the network produced an output that is too smooth and thus severely underfit the data
(Figure lOa, where the offset used was 10) or was completely insensitive to the data
(Figure lOb, where the offset was 100). On the other hand, when the offset is too small,
the network generalization was poor such that it would give meaningful predictions only
in narrow zones around the training data points (Figure lla, where the offset was 0.2),
and that behavior becomes worse as the offset is reduced further (Figure 11b, where the
offset was 0.01).

The advantage of radial basis networks is that they are simple to build. In fact,
designing an exact radial basis network with zero misfit error can be done in a fraction
of the time needed to train an equivalent back-propagation network (Chen et al., 1991).
There are drawbacks, however. Radial basis networks are often much larger than their
back-propagation counterparts, especially if numerous training vectors are utilized. In
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fact, the exact method produces a radial basis network with as many nodes in the radial
basis layer as there are input vectors. Although alternate methods exist that produce
smaller radial basis networks than the ones obtained by the exact method, those smaller
networks are still usually larger than their back-propagation counterparts, since the
sigmoidal neurons of the back-propagation networks respond to much larger areas of
the input space than the radial basis neurons. Therefore, more radial basis neurons are
usually needed for a good fit to the input. Because of their size, radial basis networks are
often slower to apply at the forward modeling phase than back-propagation networks.

Although radial basis networks have inherent smoothness by design, such smoothness
depends on the offset parameter, which has to be selected manually beforehand. This
selection is subjective (not methodological) and the choice affects the results greatly.
As we mentioned earlier, regularized back-propagation networks can be designed with
automatic selection of the regularization parameter. Therefore, as far as smoothness
is concerned, radial basis networks may be superior to traditional back-propagation
networks, but not as versatile as regularized back-propagation networks. Still, both
regularized back-propagation and radial basis networks are useful, and they tend to
produce rather comparable results in general. We investigate the application of both
types of networks in subsequent sections, and comment on the cases where the applica­
tion of either may be more optimal.

INPUT/OUTPUT ARCHITECTURE

We discuss two distinct geometries for setting up the network with regard to its input
and output vectors. During training, in both architectures, a seismic trace near a well
is presented to the network input while the observed reservoir property in the well (we
focus on porosity) is presented at the output. After training, seismic traces in the
inter-well regions are fed to the network to estimate the porosity there. Also, in both
architectures, either a back-propagation or a radial basis network may be used. In other
words, these architectures describe the input/output geometry and are independent of
the network type and structure.

Columnar Architecture

Columnar architecture represents the conventional geometry that is most often used with
neural networks. In this setup, each seismic trace is represented by an input vector, and
hence the network has as many input nodes as there are time samples in the seismic
trace. At the network output, each node can represent either an instantaneous time
sample of the reservoir porosity or an interval average of that porosity. The number of
nodes in the input and output layers are decoupled and there is no requirement for these
two numbers to be the same. A schematic of the architecture is shown in Figure 12a.

Columnar geometry allows the most flexibility in terms of setting up the problem,
since any number of output samples can be ascribed, independent of the number of
input samples. The downside, though, is that the size of the back-propagation network
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required here is significantly increased by any rise in the number of time samples of the
seismic trace, since the number of nodes in the input layer is directly tied to the number
of samples in the input. For a typical back-propagation network that has 50 nodes in
its internal layer, each extra time sample adds 50 extra neural weights to be determined
(and one extra offset). On the other hand, the number of input vectors presented to the
network is equal to the number of traces in the training data set, which is usually smalL
This results in a radial basis network of manageable size for this geometry. Therefore, for
columnar architecture, radial basis networks are preferred, since the required network is
comparatively faster to build than the equivalent back-propagation network in this case.
In general, back-propagation networks are more suitable to problems with numerous but
small input vectors, whereas radial basis networks are more effective in cases with few
but large input vectors.

Serialized Architecture

In serialized architecture, each sample in the seismic trace is fed to the network in se­
quence, and the output represents the instantaneous porosity at that time sample. The
entire seismic samples for all traces are thus streamed through the network one by one in
continuum. This simple geometry is shown in Figure 12b. It is too optimistic, however,
to expect such an unsophisticated network to be powerful enough to capture the intri­
cacies of anything but the simplest of cases, and indeed such a network performs rather
poorly in our data tests. The reason behind this is that, compared to the columnar
architecture, this simple serialized architecture not only has very little vertical spatial
coverage of the data, but also there is no delineation of the data belonging to one trace
from the next, thus undermining the correlation characteristics of the input, which we
believe is important.

The above shortcomings can be readily remedied, however, by: (1) extending the
vertical spatial coverage of each input vector by including the sample just before the
current input sample and the sample just after it, and (2) adding depth information,
which is simply the sample time index in this case. Hence, instead of using just one
input node, four nodes are utilized. The first receives the seismic sample at ti, the
second receives the seismic sample at ti-b the third accepts the seismic sample at ti+l,

and the fourth receives the index i itself. The input is fed sequentially for each time
sample ti in the seismic trace (when ti is the first sample or last sample in the trace, zero
is used for ti-l and ti+l, respectively). A schematic of serialized architecture is shown
in Figure 12c. Of the two remedies above, the first adds vertical spatial information and
enhances the spatial coverage of the input, while the second delineates each well data
set (sharp discontinuities at the boundaries between the well data sets) and moderates
the input by adding a low frequency integrator component that enhances the continuity
and smoothness of the output.

In contrast to the simple one-input-node architecture of Figure 12b, this improved
serialized configuration performs as well as the columnar configuration. Even more
spatial correlation can be added to enhance the effectiveness of this architecture by
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Columnar Architecture Serialized Architecture

Number of input samples need not equal Number of input samples must equal
number of output samples. number of output samples.
Size of input layer equals size of Size of input layer is independent of
input trace. size of input trace.
Produces few input vectors. Produces numerous input vectors.
Produces large input vectors. Produces small input vectors.
Requires large back-propagation networks. Requires small back-propagation networks.
Requires small radial basis networks. Requires large radial basis networks.

Table 1: Summary of the properties of the columnar and serialized network input/ output
architectures.

adding more points at the sides of the current input sample. As a matter of fact, as the
number of such points increases, the serialized architecture approaches the columnar one
in the limit. However, the current geometry (Figure 12c), with just one extra sample at
each side and the depth index, performed satisfactorily for our purpose. Furthermore,
as the number of additional points is increased, edge inconsistencies due to the zeros at
the beginning and end of the seismic trace start to become significant.

The advantage of serialized architecture is that it requires rather small back-propagation
networks to handle even large seismic traces. In fact, in this case, the size of the back­
propagation network is totally independent of the size of the seismic trace or the number
traces in the training data set. This makes this configuration quite suitable to back­
propagation networks. On the other hand, since the number of input vectors is signif­
icantly increased by serializing them, serialized architecture requires very large radial
basis networks, which makes utilizing such networks for this configuration inefficient.
Additionally, the number of time samples for both the input (seismic trace) and output
(porosity) has to be the same. This limitation may be alleviated, however, by subsequent
averaging of the output if interval averages of porosity are desired. Table 1 summarizes
the properties of the columnar and serialized architectures. In general, though, with
equivalent networks used in the two architectures, the serialized configuration tends to
be more efficient and less sensitive to the network parameters (such as the selection of
the radial basis network offset). The latter is perhaps due to the enhanced smoothness
provided by the low frequency depth index integrator.

RELATION TO MODEL-BASED INVERSION AND GLOBAL
METHODS

As we stated previously, neural networks represent a more suitable approach to nonlinear
problems than linear inversion since they are inherently nonlinear. They are also more
effective than model-based nonlinear inversion in complex problems where the relation
between input and output cannot be described by a priori analytical or numerical mod-
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els. However, where the physical model is reasonably accurately known, model-based
inversion yields better performance. Also, knowledge of the exact underlying model
makes the solution more resistive to noise and helps avoid fitting that noise, since the
predictive model is constrained to have the shape of the exact underlying model.

For the synthetic data constructed from equation (7), the neural network that pro­
duced the results of Figure 6a required about 1 Mflops (million floating point opera­
tions), or roughly 0.6 seconds to build. To compare, the system was also solved by
model-based nonlinear inversion utilizing equation (7) as the operator (i.e., using the
exact model) via the Levenberg-Marquardt algorithm (the algorithm we use throughout
this work). In that case, it took the system 0.1 Mflops (about 0.1 seconds) to converge.
Hence, neural networks take more time to arrive at the solution, but require no knowl­
edge of the underlying operator. These comparisons are only approximate, of course, as
several other factors affect the computations (for example, the starting model for the
nonlinear model-based inversion). In addition, because the times quoted here represen­
t real time rather than CPU time, the relation between the number of floating-point
operations and run times is not always linear.

Nonlinear model-based inversion can also be used to solve directly for the network
weights. In other words, the network output can be regarded as a black-box numerical
function to be approximated by using the network itself as the model and attempting to
compute its weights. This represents a direct solution to the network where the network
layers are treated simultaneously rather than separately, and it is therefore a less efficient
approach than using the back-propagation rule. However, it may be necessary to utilize
the direct solution method when application of the back-propagation technique becomes
difficult, such as when employing complex regularization or constraining the solution
by some rules. As an example, the solution to the network used in the tests mentioned
at the beginning of this section was computed directly by nonlinear inversion. The
network solution was similar to that obtained by the back-propagation rule, but this
time it took the system 2 Mflops (about 1.2 seconds) to converge, about twice as much
compute time as the back-propagation method.

The solution space for the network weights can be quite complex and may have
numerous flat valleys and several local minima (Hagan et al., 1995). Figure 13 shows
the error surface for a simple one-node network with respect to the two network coef­
ficients (weight and offset), and it does indeed look complicated even for this simple
network. Global search methods (such as simulated annealing and genetic algorithms)
can be used to obtain the network weights that represent the global network solution.
This represents an improvement over the local optimization solutions discussed above
(including back-propagation) at the expense of greater run time. As an example, the
solution for the network used in the previous tests was obtained using genetic algorithms
(seven binary digits were used, the zero position was taken to be three, the crossover and
mutation probabilities were fixed at 0.7, and an initial population of 500 was employed).
The method converged to a solution that is similar to the ones obtained previously (it
seems this problem is simple enough that the global solution was arrived at previously

2-17



Method

Saggaf et al.

I Mfiops I Time (seconds) I
Exact Model 0.1 0.1

Back-Propagation 1 0.6
Direct Solution 2 1.2

(Levenberg-Marquardt)
Direct Solution 50 60

(Genetic Algorithms)

Table 2: Summary of the compute operations and times needed to obtain the inversion
model parameters and the neural network weights using various techniques. The direct
solution methods treat the network as a black-box and solve for its weights directly,
thus bypassing the back-propagation rule. Mfiops = million fioating point operations.

even with local optimization algorithms), but the compute time was enormous: about
50 Mfiops (over one minute). This is at least an order of magnitude more compute
time than before. However, this may be a price worth paying iflocal minima become a
problem. Table 2 summarizes the compute times for the different approaches discussed
here.

SUMMARY AND CONCLUSIONS

Traditional joint inversion methods have the drawback of requiring an a priori prescribed
operator that links the reservoir properties to the observed seismic response. Such
operators are difficult to characterize, they vary regionally, and often hold only under
ideal conditions. A further disadvantage is that these methods rely on a linearized
approach to the solution and are thus heavily dependent on the selection of the starting
model. Neural networks provide a useful alternative that is inherently nonlinear and
completely data-driven, requiring no initial model and no explicit a priori operator
linking the measured rock properties to the seismic response. However, the performance
of traditional neural networks in production settings has been inconsistent due to the
extensive parameter tweaking needed to achieve satisfactory results. The reason the
results of traditional networks are sensitive to the network parameters (such as the
size and training length) is that these networks have a nonmonotonous generalization
behavior and tend to overfit the data if the network complexity is high relative to that
of the data.

In this paper, we presented an approach to estimate reservoir rock properties (such
as porosity) from seismic data through the use of regularized back propagation and
radial basis networks. These networks have inherent smoothness characteristics that al­
leviate the nonmonotonous generalization problem associated with traditional networks
and help to avoid overfitting the data. Our approach has several advantages over the
traditional joint inversion and neural network methods, as it is inherently nonlinear, re­
quires no a priori operator or initial model, and is not prone to the overfitting problems
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that hinder the effectiveness of traditional networks. Therefore it requires no extensive
parameter experimentation.

Traditional back-propagation networks are regularized by adjusting their objective
function such that not only is the training misfit error reduced, but the network weights
are reduced as well. This gives rise to smaller variations in the network output and
thus yields smoother results that are less likely to overfit the data. Other approaches
that aim to alleviate the network's tendency to overfit the data include redundant
data interpolation (where the training data is interpolated by a smooth function prior
to training) and early stopping of the network training by monitoring the error on a
validating data set. However, we have demonstrated that both of these approaches are
less accurate and less flexib!e than the regularization method. The former is compute­
intensive and less resistive to noise in the data, since the interpolation is carried on the
noisy data and the noise is fitted faithfully, while the latter results in a reduced training
data set, which can be detrimental to network accuracy, and is also sensitive to the
arbitrary split of the data available for training into training and validation subsets.
The regularization method, on the other hand, does not waste valuable training data
or require redundant interpolation, and its regularization parameter can be estimated
automatically within the technique.

Radial basis networks can be thought of as performing interpolation in the model
space by overlapping their neural responses to the input, and it is in this sense that
they achieve natural smoothness. Although these networks are simpler to build than
the corresponding back-propagation networks, large radial basis networks are required
when the training data set contains numerous input vectors. Also, the network offset,
which controls the amount of smoothness exhibited by the network, has to be prescribed
manually and the choice affects the network output significantly. In terms of smoothness,
then, radial basis networks may be superior to traditional back-propagation networks,
but not as versatile as regularized back-propagation networks.

We presented two architectures for setting up the input/output network geometry:
the columnar and serialized architectures. The former allows the most flexibility, since
the number of output samples of the network is independent of that of the input, but
requires the size of the input layer to be as large as the size of the input vector and
thus yields very large back-propagation networks. The latter requires the number of
samples of the network input and output to be the same, but the size of the resulting
back-propagation network is independent of the size of the input vector or the number
of vectors in the training data set, and thus produces much smaller back-propagation
networks. Serialized architecture proved to be as effective as the columnar configuration
when extra samples are used besides the current input sample (which enhances the verti­
cal spatial coverage ofthe input) and the time index is added to the input vector (which
delineates each well data set and moderates the input by adding a low frequency inte­
grator component). Since back-propagation networks favor small but numerous input
vectors, while radial basis networks favor few but large input vectors, serialized archi­
tecture is more appropriate for back-propagation networks, while columnar architecture
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is more efficient for radial basis networks.
Finally, traditional nonlinear model-based inversion techniques (including global

search methods such as simulated annealing and genetic algorithms) can be used to
solve directly for network weights. Although this is much less efficient than the back­
propagation rule, the direct solution is an alternative that can be pursued when appli­
cation of the back-propagation rule is difficult (such as when applying complex regular­
ization or constraining the solution), or when local minima in the error surface of the
network become a problem that requires global optimization in order to avoid it.
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Figure 1: Neural networks: (a) typical structure of the network, data are passed from
input to output, going through the nodes (neurons) in each layer, and is modified
along the way; (b) the network acts as a function approximator and constructs a
predictive model for an unknown function from a sparse set of data points presented
to the network during training; and (c) in the back-propagation rule, the error is
successively propagated back through the outermost layers, and the solution is thus
computed for each internal layer.

2-23



Saggaf et al.
(a)

1 ---.'•.•.• "--' •.--.• - - .•.• -- •.--

0.8

§ 0.6

'g OA,
~ 0.2

'"~ Or-------.....,~------_I
E

E-o -0.

"
~ -0.

::;
-0.

-0.

-1 -.'__,•.__.• . .•

(b)

1 •.•'.'•.•.•.__.• ' __ •. _' •.•.•.• __'.'•._ .•

c 0.8

~ 0.6 .,
~ 0.4

.!!i:l 0.2

~ of-====::::..----t--------~..
~ -0.

~-o.

'"~-O .
..l

-0.

(e)

1 --'.' . . • __ .__,_,__,_._~_._

c
:.§l 0.8

~
~ 0.6

"] 0.4

E 0.2.... 0r-----~l----c--~
1-0·
Ci.i -0.
E
~-o.
c
~ -0.

~ -----~._-_._-- -----~-_._~--

Figure 2: Typical plots for the (a) linear, (b) log sigmoidal, and (c) hyperbolic tangent
sigmoidal transfer (activation) functions.
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Figure 3: For a traditional back-propagation network that has two nodes in its internal
layer, a comparison of the original data series and the network prediction when the
data are: (a) noise-free, and (b) encumbered by 10% noise relative to the mean of
the data. The training data points are indicated on the plots.
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Figure 4: For a traditional back-propagation network that has 50 nodes in its internal
layer, a comparison of the original data series and the network prediction when the
data are: (a) noise-free, and (b) encumbered by 10% noise relative to the mean of
the data. The training data points are indicated on the plots. Overfitting is quite
evident here: the training data points are fit very well, but the network fails to
generalize well to other points in the data.
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Figure 5: Attempt to estimate a sine function from a sparse training subset of the
data: (a) network with five nodes in its internal layer gives rise to an adequate
fit to the data since the network is powerful enough to model the data, while (b)
smaller network that has two nodes in its internal layer results in underfitting, as
the network is not complex enough to capture the intricacies of the data.
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Figure 6: For a regularized back-propagation network That has 50 nodes in its internal
layer, a comparison of the original data series and the network prediction when the
data are: (a) noise-free, and (b) encumbered by 10% noise relative to the mean
of the data. The training data points are indicated on the plots. Overfitting was
averted even though the network complexity is large compared to that of the data.
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Figure 7: For a traditional back-propagation network that has 5() nodes in its internal
layer and whose training data have been interpolated by cubic splines prior to train­
ing, a comparison of the original data series and the network prediction when the
data are: (a) noise-free, and (b) encumbered by 10% noise relative to the mean of
the data. The training data points are indicated on the plots. Note how the network
in (b) loses some accuracy since it fits the noise interpolated in the data.
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z
Figure 8: For a traditional back-propagation network that has 50 nodes in its internal

layer and whose training was stopped once the error on a validating data set started
to increase, a comparison of the original data series and the network prediction when
the data are noise-free: (a) the original training data set was split into a training set
and a validation set, and (b) the entire original training data set was used for training
and an additional set was used for validation. Note how the network purposely does
not attempt to fit the training data perfectly to avoid memorizing the training data
set and losing its ability to generalize well.
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Figure 9: Radial basis networks: (a) typical plots of the radial basis transfer function
with various offsets, the function becomes sensitive to more of the input space as
the offset is increased, and (b) for a radial basis network that has an optimal offset,
a comparison of the original data series and the network prediction when the data
are noise-free. The training data points are indicated on the plot.
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Figure 10: For a radial basis network that has too large an offset, a comparison of the
original data series and the network prediction when the data are noise-free: (a) the
offset is too large and the resulting output is too smooth, thus underfitting the data,
and (b) the offset is so large that the network is no longer sensitive to the input.
The training data points are indicated on the plots.
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Figure 11: For a radial basis network that has too small an offset, a comparison of the
original data series and the network prediction when the data are noise-free: (a) the
offset is too small and the resulting output is poor for everything but the zones close
to the training data since the network is sensitive only to narrow zones around its
training points, and (b) with an even smaller offset, the zones of sensitivity become
even narrower. The training data points are indicated on the plots.
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Figure 12: Schematic of the input/output architectures: (a) columnar architecture,
where the number of input nodes need not be equal to the number of output n­
odes, but large input vectors require a large back-propagation network; (b) simple
serialized architecture; and (c) expanded serialized architecture. For serialized ar­
chitectures, the number of samples in the input vector must be equal to the number
of samples in the output vector, but the size of the back-propagation network is in­
dependent of the number of samples in the trace or number of traces in the training
data set.
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Weight
Offset

Figure 13: Error surface for a simple one-node network with respect to the two network
coefficients (weight and offset). Note how complicated the surface looks, even for
such a simple network.
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