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ABSTRACT

We have developed a two-dimensional viscoelastic finite-difference modeling method
for highly complex topography. Realistic modeling of seismic wave propagation in the
near surface is complicated by many factors, such as strong heterogeneity, topographic
relief and large attenuation. In order to account for these complications, we use a
velocity-stress staggered grid and employ an 0(2,4) accurate viscoelastic finite-difference
scheme. The implementation includes an irregular free surface condition for topographic
relief and a variable grid technique in the shallow parts of the model. Numerical tests
indicate that approximately ten grid-points per shortest wavelength results in accurate
calculations. The method is accurate and stable, and allows us to handle complex
structure in finite-difference modeling.

INTRODUCTION

The demand for investigations of complex geological features is increasing. The seismic
method will play a very important role for such investigations, but efficient forward
modeling methods are needed. The finite-difference method is one modeling technique
that can be used for such complex structures. This method can account for the fac-
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tors that complicate seismic wave propagation such as large velocity contrasts, strong
heterogeneity, topographic relief, and large attenuation. The modeling of irregular free
surface topography and the inclusion of attenuation are two factors that are particularly
important in modeling.

Numerical modeling of linear viscoelastic seismic responses in the time domain has
recently become practical through algorithms based on the superposition of relaxation
mechanisms. These algorithms enable us to calculate attenuating effects inexpensively.
For finite-difference modeling of irregular free surfaces, several computation methods
have been presented. They can be classified into two main groups. The first is the
method in which the finite-difference grid is deformed to match exactly the free surface
relief (Hestholm and Ruud, 1994). The second is the method that employs a rectangular
grid and generalizes the free surface condition (Robertsson, 1996). The first method is
effective for relatively smooth topography, but has limitations for steep topography.
On the contrary, the second method has no limitations on the shape of topographic
relief. The obvious drawback of the second method is that it requires very fine gridding.
Robertsson (1996) found that at least 15 grid-points per wavelength are required. An
efficient solution to this dilemma is to use a variable grid approach (De Lilla, 1997) with
finer sampling of the grid in the vicinity of the irregular free surface, and a coarse grid
in the deeper parts of the model.

In this paper, we will show that the generalized free surface condition combined with
the variable grid approach enables us to apply viscoelastic finite-difference modeling to
steep and complex structures.

A FREE SURFACE APPROXIMATION IN THE PRESENCE OF
TOPOGRAPHY

Our discussion of the free surface condition and the variable grid method will be con
cerned with the viscoelastic case. Blanch et al. (1995) presented efficient viscoelastic
modeling based on standard linear solids (Appendix A). Robertsson et al. (1994) pre
sented a finite-difference scheme based on the 0(2,4) accurate velocity-stress staggered
grid (Levander, 1988) to solve this viscoelastic modeling (Appendix B). We employ this
method because the additional memory requirement is small compared with the elastic
case. In this method, the stress and strain relaxation times can be calculated by the
least square method.

Robertsson (1996) proposed a generalized image method for the free surface condi
tion in which stress-tensor components are imaged and the irregular free surface bound
ary condition is enforced to ensure that the normal and shear stresses perpendicular to
the boundary are zero. This method is based on a robust theoretical derivation and
the criteria for stability and accuracy are well established. An alternative method to
model surface topography is to let V p, V s -> 0 in the region above the free surface (the
density in the region above the free surface is not 0 to avoid numerical instability). This
method is called the vacuum formulation (Graves, 1996). This approach is attractive
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Table l' Three methods of free-surface approximation
Calculation of particle velocities Calculation of stresses

Robertsson's generalized Imaging stresses Free surface condition
image method (the normal and shear

stresses perpendicular to
the boundary are zero).
Set particle velocities to
zero above the free surface.

Vacuum formulation No specific calculation No specific calculation.
Set P and S wave velocities
to zero above the free surface.

Proposed method No specific calculation Free surface condition
(the normal and shear
stresses perpendicular to
the boundary are zero).
Set particle velocities to
zero above the free surface.

because it can be implemented with the same difference equations used in the interior of
the model, and thus, the effects of surface topography are modeled in the same manner
as internal media interfaces. It is, however, well known that the method is unstable and
inaccurate.

To respect the simplicity of the vacuum method as well as the accuracy of the image
method, we propose an accurate and simple condition based on a combination of these
approaches. In the proposed method, stresses are calculated so that the normal and
shear stresses perpendicular to the boundary are zero, just as in Robertsson's generalized
image method. However, the calculation of particle velocities does not involve any
specific boundary calculation. Table 1 shows the comparison of the different free surface
conditions. Figure 1 shows the staggered finite-difference grid in the vicinity of the free
surface used in the proposed method.

To examine the validity of the method, we have carried out a number of numerical
tests to compare the three methods (Robertsson's generalized image method, vacuum
formulation, and proposed method). Here, we show two examples of the results of
numerical tests.

A flat semi-infinite elastic medium was chosen to be the first numerical test for the
free surface with topography. This model is similar to the model from a simulation
presented by Robertsson (1996). The model is a Poisson solid with P- and S-velocities
of 3000 and 1730 mis, respectively, and a density of 2500 kg/m3 . In this test, the
slope of the surface within the model was varied. If wave propagation is successfully
modeled independent of the slope of the surface, then the algorithm should also allow
for accurate modeling of a free surface with more general shapes. To avoid problems
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due to the uncertainly of the exact location of the source, a P-wave source (15 Hz Ricker
wavelet) located 30 m below the surface was employed. The slope of the free surface was
varied from -90° to 90° at 15° intervals, and the waveforms were collected at 1000 m
source receiver offset in a direction parallel to the free surface. The recorded particle
velocity (perpendicular to the free surface) was rotated to the coordinate system of the
0° case, so that all waveforms can be compared to each other directly. The solution
for the 0° slope can be regard as the exact solution. In Figures 2-4, particle velocity
from the simulations with various slopes and their methods are plotted. The receivers
were located 50 m below the surface, and the grid size of 2 m and 5 m were used.
For the grid size of 2 m (approximately 50 grid points per wavelength), all methods
yield sufficiently accurate results. However, for the grid size of 5 m (approximately
20 grid points per wavelength), we can see the significant numerical dispersion in the
image method and the vacuum method. On the contrary, the dispersion of the proposed
method is relatively small.

Figure 5 shows the model used in the second numerical test. The model is an elastic
Poisson solid with P- and S-velocities of 2000 and 1155 mis, respectively, and a density
of 1000 kg/m3. A P-wave source (110 Hz Ricker wavelet) located at a distance of
30 m and 5 m below the surface was employed. In Figure 6, particle velocity (vertical
component) from the simulations with the various grid sizes is plotted. The receivers
were located at a distance of 120 m and 4 m below the surface. For a large number
of grid-points per wavelength (40 or 80), all methods yield sufficiently accurate results.
However, in the case of a smaller number of grid points (10 or 20), we can see that the
proposed method is most accurate.

These results imply that the proposed method is most accurate, and at least 20 to
40 grid-points per wavelength is required.

INVESTIGATION OF STAIR-SHAPED BOUNDARY

Robertsson (1996) mentioned that the generalized free surface condition that we em
ployed yields a good representation of a "staircase-shaped" function, whereas a smooth
boundary must be discretized in terms of such steps. Fuyuki and Matsumoto (1980)
found that the scattering of Rayleigh waves can be substantial from relatively small
steps compared to the wavelength. This scattering from the stair-shaped boundary
should be avoided when we model a smooth boundary. In addition, our free surface
numerical tests did not reveal whether the observed Rayleigh wave dispersion was an
actual wave phenomenon or a numerical error. Thus, we performed the following tests
to reveal the effect of stair-shaped discretization on a smooth free surface.

Figure 7 shows the 45° slope model used in the numerical test. The model is an
elastic solid with P- and S-velocities of 5082 and 3000 mis, respectively, and a density
of 2000 kg/ma A P-wave source (200 Hz Ricker wavelet) located at a distance of 25 m
and 6 m below the surface was employed. In this test, not only the grid size but also the
step size of the slope was varied. The step size and the grid size are defined in Figure 8.
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Table 2· Grid and step sizes and the resulting dispersion

Model Grid size Step size Wavelength/ Wavelength/ Dispersion I Figure I
(m) (m) grid size step size

A 0.5 0.5 30 30 No Figure 9a
B 0.5 1.0 30 15 No Figure 9b
C 1.0 1.0 15 15 No Figure 9c
D 0.5 1.5 30 10 No Figure 9d
E 1.5 1.5 10 10 Small Figure ge
F 0.5 2.0 30 7.5 Small Figure 9f
G 2.0 2.0 7.5 7.5 Medium Figure 9g
H 0.5 3.0 30 5 Medium Figure 9h
I 3.0 3.0 5 5 Large Figure 9i

In Figure 9, particle velocity (vertical component) from the simulations with the various
grid and step sizes is plotted. The receivers were located 4 m below the surface and at
6 m distance intervals. Table 2 shows the list of the grid and step sizes as well as the
results of the computation.

The results of the computation can be summarized as follows. The results from
model A to C (Figures 9a-c) have no large difference and no dispersion; we can consider
these waveforms to be accurate. Model D (Figure 9d) and model E (Figure ge) are the
same step size, however, the dispersion of model E is larger than that of model D. We
can see a similar tendency in model F, G (Figures 9f and 9g) and model H, I (Figure
9h and 9i) in which the step sizes are equivalent. This result implies that the numerical
errors due to large grid sizes are larger than the Rayleigh wave scattering due to the
stair-shaped boundary.

The above numerical tests were performed on a model with a constant slope of 45°.
However, we can expect that the constant slope is accurate compared to the surface
with arbitrary slope. To confirm that the accuracy does not depend on the curvature of
the free surface boundary, we performed another numerical test using the model shown
in Figure 10. In this test, the free surface boundary is curved smoothly. The model
is an elastic solid with P- and S-velocities of 6000 and 3000 mis, respectively, and a
density of 1800 kg/m3 . A P-wave source (100 Hz Ricker wavelet) located at a distance
of 24 m and 12 m below the surface was employed. In this test, the grid sizes were set
to 0.5 m, 1.0 m, 2.0 m and 3.0 m, and the shortest wavelength is approximately 30 ill

(corresponding to grid-points per wavelength of 60, 30, 15 and 10, respectively). The
grid size and step size are equivalent in this test. In Figure 11, particle velocity (vertical
component) from the simulations with the various grid sizes is plotted. The waveforms
were obtained at receivers located 12 m below the surface and at 12 m distance intervals.
With 60 grid-points per wave length (Figure 11a), there is no dispersion and it can be
considered as accurate. As the grid size increases, the dispersion due to the stair-shaped
surface boundary increases. However, we can see that the dispersion is mainly generated
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at the distance between 200 and 250 m where the slope of surface is relatively gentle.
To compare this result with the constant 45° case mentioned before, we can see that
the dispersion of the latter is larger than the former.

These results imply that the proposed method requires at least 30 grid-points per
wavelength. In particular, relatively gentle slopes require a large number of grid points
per wavelength. The cause of the dispersion is mainly a numerical error due to the large
grid sizes rather than the actual Rayleigh wave scattering due to the stair-shaped free
surface boundary.

VARIABLE GRID FINITE-DIFFERENCE METHOD

A uniformly-spaced grid used in a model containing an irregular surface and low veloc
ities in the shallow subsurface would require large portions of the model to be strongly
over sampled. The resulting memory requirements would severely limit the size of the
models. An obvious solution to this dilemma is to use a finer sampling of the grid in
the vicinity of the free surface compared to the deeper parts of the model. The vari
able grid approach allows us to vary the discretization of the model and the wavefield
with respect to the velocity structure. Compared to a standard uniform finite-difference
grid approach, this method saves a considerable amount of memory and computations.
Therefore, we combined the variable grid method with our irregular free-surface mod
eling.

Figure 12 shows the staggered finite-difference grid in the vicinity of the boundary
between different grid sizes. We use a three times finer grid (both horizontally and verti
cally) in the near surface or low velocity region compared to the rest of the model. This
implementation allows us to avoid any limitation of the shape of the grid size boundary.
Figure 13 shows the computation procedure of the proposed variable grid method. An
example of the snapshot of the variable grid calculation is shown in Figure 14. We
can see that artificial reflections from the boundary between the different grid sizes is
sufficiently small.

However, the simple implementation of this variable grid method is not stable if we
perform a large number of time steps. Figure 15 shows an example of the instability due
to the variable grid computation. In order to reduce the instability of the computation,
we applied averaging or weighting to the replacement of the coarse grid components
within the fine grid. Figure 16 shows several methods of averaging or weighting applied
to the replacement components. Figure 17 shows the energy of the waveforms shown
in Figure 15 integrated over time with various replacement methods. As a result of
this comparison, we conclude that 5 point averaging or 9 point weighting is most stable.
This result implies that the weight of the center node ofthe stencil is crucial for a stable
computation.

We applied the variable grid method to the calculation of irregular topography
mentioned above. The area of the fine grid is shown in Figure 18. The calculated
waveforms by the proposed method with the various grid sizes are shown in Figure 19.
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The result shows that a coarse grid size of 1 m combined with a fine grid size of 1/3 m
gives a mOre accurate solution than using a 0.5 m uniform grid. This result suggests
that approximately ten grid-points per wavelength, combined with the variable grid
method, will give an accurate solution to a model with an irregular surface.

CONCLUSIONS

An accurate and simple irregular free surface condition and a stable variable grid finite
difference approximation are proposed. These two techniques can be applied to irregular
free surface calculations simultaneously. The new method is simple to implement in
conventional staggered grid finite-difference schemes, is computationally efficient, and
enables modeling of highly irregular topography. It can be seen that approximately ten
grid-points per wavelength ensures accuracy in the calculation of an irregular surface
when combined with a variable grid implementation.
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Appendix A. VISCOELASTIC MODELING USING,

This appendix will briefly describe the ,-method for the viscoelastic modeling proposed
by Blanch et al. (1995). The SLS (a spring and dashpot in series, in parallel with a
spring) has been shown to be a general mechanical viscoelastic model. An array of
L-SLS has the stress relaxation function.

G(t) =MR (1 -t (1 - 'el) e::,) 8(t)
1=1 Tal

where 8(t) is the Heaviside function, MR is the relaxed stress modulus corresponding
to G(t), and '~I and 'el are the stress and strain relaxation times for the Ith SLS.

The complex stress modulus Mc(",) is defined as the Fourier transform of the stress
relaxation function. The quality factor Q is defined as,

Q(w) = Re(Mc(w)) .
Irn(Mc(w))

This equation defines Q as the number of wavelengths a pulse may propagate before its
amplitude drops by a factor of e-". Thus, Q is a function of frequency. For an array of
standard linear solids, (A-I) and (A-2) yields,

(A-3)

The, method is based on the simple observation that the level of attenuation caused
by an SLS can be determined by a dimensionless (frequency scale independent) variable
7. If we defined 7 as,

Tel Tel - Tal7=--1=-=--=
Tal Tal

(A-4)

(A-6)

the inverse of Q for one SLS can be written as,

Q-l = W7el7

1 + w27;1(1 + 7)" (A-5)

Using the parameter 7 to tune an array of SLS's, and assuming that 1 + 7 "" 1, equa
tion (A-3) yields,

L

Q-l = '" W7el7
L. 2 2 .
I~l 1 + W 7~1

In this expression Q-l is linear in 7. Therefore, we can easily find the best approximation
in the least square sense over a predefined frequency range to any Qo by minimizing
over T the expression,

(A-7)
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to zero and solve for T. To find the minimum, we set the derivative of J with respect
to T to zero and solve for T.

dJ = 21wb (Q-l( )_Q-l dQ-l(w,Tul,T)d =0
d

W, T, TI 0 x d W.
T ~ T

The final formula for T is

1 I:f-1IOl
T = -Q . "L I "L 1 "L I

o L.Jl=1 11 + 2 L.Jl=1 L.Jk=I+1 2kl

where,

(A-8)

(A-9)

101

III =

I 21k =

Tul =

(A-10)

(A-Il)

(A-12)

(A-l3)
WI
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Appendix B. VISCOELASTIC STAGGERED GRID
FINITE-DIFFERENCE METHOD

This appendix briefly describes the viscoelastic finite-difference modeling proposed by
Robertsson et al. (1994). In 2-D viscoelastic staggered grid finite-difference modeling,
the following three sets of equations are solved.

Equations governing stress:

8(J'xx

at
8azz

at
aaxz

at

(B-I)

(B-2)

(B-3)

Equations governing particle velocities:

= ~ (aaxx + aaxz )
p ax az
~ (aaxz + aazz ) .
p ax az

(B-4)

(B-5)

Equations governing the so-called memory variables, which are introduced to elim
inate the numerically inconvenient convolution arising in the viscoelastic constitutive
relation:

8TXX

at
aTzz

at
arXZ

at

1 ( (Tf) (allx allz ) (Ti ) all_)-- T xx +7f --1 -+- -2JL --1 -.--Ta Ta ax az Ta az
= _~ (r zz + 7f (Tf -1) (allx + allz) _ 2JL (Ti -1) allx

)Ta Ta ax az Ta ax
1 ( (Ti) (allx all_))-- T xz + JL - - 1 - + -- .

Ta Ta az ax

(B-6)

(B-7)

(B-8)

aij: the ijth component of the symmetric stress tensor.

lIi: the ith component of the particle velocity.

Tij: the memory variables.

Tf, T;: the viscoelastic strain relaxation times for P- and SV-waves, respectively.

Ta : the viscoelastic stress relaxation time for both the P- and SV waves.

JL= the relaxation modulus corresponding to SV-waves, which is analogous to Lame
constant JL in the elastic case.

7f: the relaxation modulus corresponding to P-waves, which is analogous to A+ 2JL
in the elastic case.
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p: the density.

In the 2-D case, the viscoelastic horizontal free-surface satisfies the following condi
tions:

o
o.

(B-9)

(B-10)

These conditions lead the following equations by the use of equations (B-l) to (B-3):

aI/X 8uz
(B-ll )=

8z 8x
8uz _ (1 _ 2T; '!:.) 8ux . (B-12)=
8z T[ 7r ax

Vertical free-surface boundaries can be implemented in the same way.
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DyEJ~IDDDDDDDDD AM
DODD ~=FC b-:S
DOD 0 "==0 ~

DO
DO
D

Figure 1: Staggered finite-difference grid in the vicinity offree surface boundary. On the
boundary, free surface condition (F.G.) is that the normal and shear stresses perpen
dicular to the boundary are zero. Within the grid-cells, the solid squares represent
the (TXXI (Tzz, TXXI Tzz components; the light squares the a XZl Txz components; the
solid circles the V x components; and the light circles represent the v= components
(0-: stress; r: memory variable; v: velocity).
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(a) Image method. Grid size = 2 m (1/L1x = 50).
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(b) Image method. Grid size = 5 m ( 1/L1 x = 20).

Figure 2: Image method. Time series collected at 50 m below the free surface and 100 m
source-receiver offset. Particle velocity perpendicular to the free surface is plotted.
The angles correspond to the dip of the flat free surface (0° is horizontal). (a) Grid
size = 2 m (A (wavelength)/L1x (grid size) = 50). (b) Grid size = 5 m (A/ L1x = 20).
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(b) Vacuum fonnulation. Grid size = 5 m ( A. / b. x = 20).

Figure 3: Vacuum formulation. Time series collected at 50 m below the free surface and
1000 m source-receiver offset. Particle velocity perpendicular to the free surface is
plotted. The angles correspond to the dip of the flat free surface (0° is horizontal).
(a) Grid size = 2 m (Aj b.x = 50). (b) Grid size = 5 m (Aj b.x = 20).
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Figure 4: Proposed method. Time series collected at 50 m below the free surface and
1000 m source-receiver offset. Particle velocity perpendicular to the free surface is
plotted. The angles correspond to the dip of the flat free surface (0° is horizontal).
(a) Grid size = 2 m (AI ll.x = 50). (b) Grid size = 5 m (AI6.x = 20).
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Figure 5: Model used in the second numerical test. P-velocity = 2000 m/s;
S-velocity = 1155 m/s; density = 1000 kg/m3 ; Qp = 10000; Qs = 10000; Sourcer = Ricker
wavelet (110 Hz). Minimum wavelength (S-wave) is approximately 10 m.
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Figure 6: Time series of partie! velocity perpendicular to the free surface with various
grid sizes for the model given in Figure 5. Lx: grid size; A: minimum wavelength
(approximately 10 m). Image: Robertsson's generalized image method. Vacuum:
Vacuum formulation. Proposed: Proposed method.

13-18



Variable Grid Finite-Difference Modeling

TIme- 251

Receivers

(rei
lEO160,,,120100

D II tin c e

20o

SourJe
aot--+-r-i--+---+-+_____,

,m)
'00 I-,----;-----:C---H~~----;----::-----::--t_-_t_-___;_-_t

00

"

. "
w

(a) Model A. Grid size = a.5m, Step size = a.5m

Time- 2$.0

(m)
20C'lBOHiD'"120100BO60o

,

60

,m)
100 ,~--.r_--.~c---t"---j--__r_-___;______,_____,_j_---;.--~--

,,+---+----!----l--..+--

(b) Model F. Grid size = a.5m, Step size = 2.am

Figure 7: Two models from Table 2 used in the numerical test, with a wavefleld of
particle velocity (vertical component) at time 25 msec. P-velocity = 5082 m/s;
S-velocity = 3000 m/s; density = 2000 kg/m3

.

13-19



Hayashi and Burns

J. ..
Step size

~r
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Figure 9: Particle velocity (vertical component) from the simulation with the various
grid and step sizes for the models given in Table 2.
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Figure 9, continued:
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Figure 9, continued:
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(i) Modell. Grid size = 3,Om, Step size = 3.0m
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Figure 10: Model used in the numerical test, with a wavefield of particle velocity (vertical
component) at time 100 msec, P-velocity = 6000 m/s; S-velocity = 3000 m/s; density
= 1800 kg/m3
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Figure 11: Particle velocity (vertical component) from the simulation with the various
grid sizes for the model in Figure 10.
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Figure 11, continued:
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Figure 12: Staggered finite-difference grid m the vicinity of the boundary between
different grid sizes.
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Figure 13: Computation procedure for the variable grid method. (1) Update the coarse
grid. (2) The fine grid at the boundary is interpolated by the coarse grid. (3) Update
the fine grid without the boundary. (4) Coarse grid components within the fine grid
are replaced by the fine grid.
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Figure 14: Wavefield snapshot across a variable grid zone (homogeneous case).

13-30



Variable Grid Finite-Difference Modeling

Tim e (msec)9.Om

100 200 300 400 500 600 700 8 900

"r

Source"" 9

0

3
13
23
33
43
53
63

E1 73
~ 83u

" 93
~- 103-.-
0 113

123
133
143
153
163
173

Figure 15: Instability due to the variable grid implementation.
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Figure 16: Method of averaging and weighting applied to the replacement of the coarse
grid components within the fine grid (Figure 13. Step 4).
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Figure 17: Energy of waveforms shown in Figure 15 with various weighting methods.
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Figure 19: Comparison of waveforms calculated by the proposed method with the vari

ous grid sizes.
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