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ABSTRACT

Reflection coefficients are observed in nature to have stochastic behavior that departs
significantly from the white noise model. Conventional deconvolution methods, how­
ever, assume reflectivity to be a white noise process. In this paper we analyze the
deconvolution process, study the implications of the assumption of white noise, and
show that the conventional operator can recover only the white component of reflec­
tivity. A new stochastic model, fractionally integrated noise, is proposed for modeling
reflectivity. This model more closely approximates its spectral character and that en­
compasses white noise as a special case. We discuss different techniques to generalize
the conventional deconvolution method based on the new model in order to handle re­
flectivity that is not white, and compare the results of the conventional and generalized
filters using data derived from well logs.

INTRODUCTION

Conventional deconvolution schemes assume that the earth's reflectivity has a white
noise correlation structure. However, reflection coefficients in nature tend to behave in
a different manner: generally their power spectra are proportional to frequency (Hosken,
1980; Walden and Hosken, 1985; Todoeschuck et al., 1990; Rosa and Ulrych, 1991).

Figures 1a-f show the power spectra of typical reflectivity logs from four different
wells. These were derived from sonic and density logs in various areas of the central
and eastern regions of Saudi Arabia and were computed for a plane wave with normal
incidence by r = (P2V2-PIVr)/(P2V2+PIVd, where Pi and Vi are the density and acoustic
velocity in layer i, respectively. The spectra were calculated by FFT analysis on the

12-1



Saggaf and Toksoz

samples using the Welch method of power spectrum estimation and a Hanning window.
Note how each spectrum has a richer content of high frequencies (sometimes referred
to as "blueness," borrowing the term from the visible light spectrum), and appears to
be directly proportional to frequency. Such behavior is encountered quite frequently
in nature and has been noted over the years. This behavior is sometimes described as
quasi-cyclic and blocky layering and can be interpreted as evidence of self-organization
and structuring in the crust (Shtatland, 1991).

Reflectivity is thus observed to have spectral behavior that departs significantly from
the white noise model. In this paper, we analyze how the assumption of white noise can
adversely affect the deconvolution process, propose an alternate model for reflectivity,
and suggest techniques to generalize deconvolution to handle the more general case of
reflectivity that has a nonwhite correlation structure.

By far the most widely used method of calculating the deconvolution filter is Wiener
filtering (Robinson, 1957; Robinson and Treitel, 1967, 1980). Among the other methods
are the II norm criterion (Barrodale and Roberts, 1973), Burg's method (Burg, 1975),
Kalman filtering (Ott and Meder, 1972), minimum entropy deconvolution (Wiggins,
1978), homomorphic deconvolution (Ulrych, 1971), zero-phase deconvolution, and time­
adaptive algorithms (Griffiths et ai., 1977). Jurkevics and Wiggins (1984) compared
these methods and concluded that Wiener filters are the most robust under a wide
variety of input conditions. Wiener deconvolution is sometimes also called least-squares
filtering. We will consider optimal Wiener filtering here, though the discussion applies
to any form of deconvolution that assumes reflectivity to have white noise correlation
and spectral properties.

WHITE NOISE AND FRACTIONALLY INTEGRATED NOISE

A process {z,} is said to be white noise if it consists of uncorrelated random variables.
The auto-correlation function of such a process is a simple unit spike and the power
spectrum is flat. The process can be Gaussian, but does not have to be so, i.e., being
white noise is a description of the correlation structure of the process, not the probability
distribution structure.

A process {y,} is said to be fractionally integrated noise of order d (denoted some­
times by the acronym FIN) if its dth differencing is white noise (Hosking, 1981). This
process may be written as \Jdy, = z" where {z,} is a white noise process and the
differencing operator \Jd can be written in terms of the backward shift operator B as
\Jd = (1 - B)d, By, = y'_I. In this definition d does not need to be an integer (frac­
tional differencing), and the fractional differencing operator is defined by its binomial
series expansion:

d ~(d)( k 1 2 1 ( 3\J =~ k -B) = 1 - dB - -d(l - d)B - -d 1 - d)(2 - d)B - .... (1)
k=O 2 6

The term "differencing" is used here rather than "derivative" as the process is in-
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trinsically defined for discrete-time series, and is not merely an approximation of a
continuos-time process. Note that d = 0 corresponds to the case of white noise (i.e.
zero differencing). The process is stationary for d < 0.5 and Gaussian if {zt}.

The auto-cor,,;lation function Py and power spectrum Py are given by

and

k _ r(1 - d)f(k + d)
py( ) - f(d)f(k + 1 - d) (2)

r(1 - d) . -2d( f)

( )
sm 7[,

r ! - d
. .

(3)

where a 2 is the variance, the mean is taken to be zero, f is the frequency normalized
by the folding frequency, and r is the Gamma function. Figures 2a and 2b show the
auto-correlation function and power spectrum of fractionally integrated noise processes
of various orders (the auto-correlation at lag zero is always 1 and is not shown).

Fractionally integrated noise can be used to simulate both long-memory and short­
memory processes (where memory refers to the span of interdependence between obser­
vations) and can thus be adapted to model reflection coefficients (d < 0) and acoustic
impedance (d > 0). Its power spectrum approximates well the characteristics of reflec­
tivity. In addition, the process has analytically calculable auto-correlation and spec­
tral density functions. Moreover, it is extendable to a larger class of processes, namely
ARIMA(p, d, q): fractionally integrated auto-regressive moving-average processes (Hosk­
ing, 1981). This is a generalization of the process described by Box and Jenkins (1976),
where the parameter d was restricted to have integral values. Fractionally integrated
noise can therefore also be referred to as ARIMA(O, d, 0).

THE CONVENTIONAL DECONVOLUTION PROCESS

The simplest convolutional model regards the trace as the convolution of the effective
seismic wavelet with the earth's reflection coefficients. Reverberatory multiples and
propagation effects are often included in this effective wavelet (Robinson, 1985). If we
denote the trace by s, the seismic wavelet by w, and reflectivity by r, we have:

(4)

where * denotes the convolution operator.
The goal in deconvolution is to develop a filter f such that when applied to the

trace, it recovers the earth's reflectivity behavior. To design the deconvolution operator,
a knowledge of the auto-correlation of the wavelet is required. Since that quantity is
unknown, conventional schemes assume that reflection coefficients behave as white noise.
Since the auto-correlation of the latter process is a spike, this assumption justifies using
the auto-correlation of the trace in place of that of the wavelet, as they should be equal
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in this case. This assumption is mades the problem more tractable, and is often accepted
since the method works sufficiently in many situations.

We now analyze what happens when the reflectivity is not white noise. Consider the
trace given by (4). We assume for the time being that the wavelet is minimum-phase
(another common assumption in deconvolution, which we will not tackle here). We can
always factor reflectivity into a minimum-phase nonwhite-noise component, r m, and
an all-pass component, ra, that is white noise of some phase, since a minimum-phase
equivalent can always be calculated for any signal with a finite, nonvanishing power
spectrum:

T = T m * T a . (5)
(

When reflectivity is not white noise, the minimum-phase component r m does not
vanish. Figure 3a shows a 100-point realization of such reflectivity sampled at 4 ms,
while Figures 3b and 3c show its minimum-phase and all-pass components, respectively.
Such factorization can be done by calculating the minimum-phase version of reflectivity
and then deconvolving to get the all-pass component by dividing it by the frequency
domain. The minimum-phase version can be found by least squares, by performing FFT
(noting that the phase spectrum of a minimum-phase signal equals the Hilbert transform
of the logarithm of the amplitude spectrum), or by factoring the polynomial of the z­
transform and projecting the roots outside the unit circle. Although in practice these
techniques do not always give identical outcomes due to the limited operator length
of the least squares method and the finite FFT series length of the Hilbert transform
method, equivalent results can be obtained with adequate choice of parameters. Figure
3d shows the power spectrum of the full reflectivity and the spectrum of a fractionally
integrated noise process of order -0.8 (dashed). Figure 3e shows the power spectrum
of the all-pass component of reflectivity. We note that it is indeed white (flat), unlike
that of the full reflectivity.

The conventional deconvolution operator is the inverse of the minimum-phase com­
ponent of the trace. Thus, it acts as a discriminator that removes the nonwhite
minimum-phase component from the trace. Since, by assumption, the wavelet is minimum­
phase, the minimum-phase component of the trace is thus the convolution of the wavelet
with the minimum-phase component of reflectivity. This can be stated in another way
by noting that since ra is white, we have:

(

acts) ac(w*rm*ra )

= ac(w * rm)

=} f = (w * rm)-l, (6)

where ac denotes the auto-correlation function. For prediction error deconvolution (gap
deconvolution), the filter operator is the same as that of spiking deconvolution but
smoothed by the leading part of the inverse of the spiking filter (up to the gap length).
Therefore, the same argument made above applies, except that a smoothing operator is
applied afterwards to the output.
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Applying the conventional deconvolution filter to the trace, we get:

]*s = ]*w*rm*ra

= If * (w *Trn )] *Ta

(7)

Thus, we see that conventional deconvolution does not recover the full reflectivity; it
recovers only its white all-pass component. Thus, the output of the conventional filter
is often white. That the output is white should not be taken, however, to indicate
that reflectivity itself is white. As we have just shown, it should only mean that the
conventional deconvolution filter can recover only the white component of reflectivity.
In effect, our assumption of whiteness has biased the filter to produce an output that
conforms to that assumption. We should therefore expect that a better model for
reflectivity other than white noise would give rise to a better deconvolution filter.

Figures 4a and 4b show, respectively, a trace produced from the reflectivity of Figure
3a and the minimum-phase wavelet that was used to produce that trace. Figures 4c
and 4d show the reflectivity recovered from the trace by conventional deconvolution
and the power spectrum of that reflectivity, respectively. Comparing with Figures 3c
and 3e, we see that the output of conventional deconvolution is essentially the same as
the all-pass component of true reflectivity. In other words, conventional deconvolution
fails to recover the nonwhite component of reflectivity, and the RlvIS (TOot-mean-square)
error in this case between the true and recovered reflectivity series is 43%. The RlvIS
error is defined here as:

L,(e, - r,)2
RlvIS error = . '" 2

LA et
(8)

where {e,} is the exact reflectivity series and {r,} is the recovered reflectivity series (the
output of the deconvolution filter).

Figures 4e and 4f show the reflectivity recovered by a generalized version of deconvo­
lution and the power spectrum of that reflectivity, respectively. We discuss this method
in the next section. For now, we note that in this case, the deconvolution operator was
able to recover the full reflectivity, not just its white component; the match is almost
perfect (compare with Figures 3a and 3d), with only a 9% RlvIS error.

RESIDUAL WAVELET

The residual wavelet is a popular method for measuring the effectiveness of deconvo­
lution when the true reflectivity is known. It is most often calculated by dividing the
recovered reflectivity series by the true one in the frequency domain (Jurkevics and
Wiggins, 1984). The residual wavelet can thus be represented as:

W - ,. * ,.-1l' - r ,

12-5

(9)



Saggaf and Toksoz

where rr is the recovered reflectivity. Therefore, we have:

W r = ! * s *r-
1

= !*w*r*7:-1

= !*w. (10)

Conventional analysis hence considers the spikeness of the residual wavelet as a
measure of how effectively the deconvolution operator removes the wavelet. This view
would be correct if reflectivity were white. However, since the seismic wavelet in this
case is minimum-phase, we would expect the deconvolution operator to approximate the
inverse of the wavelet to a much better degree than is indicated by the residual wavelet
as calculated by either the usual method (9) or. by (10), shown in Figures 5a and 5b,
respectively. In fact, the width of the residual wavelet here is comparable to that of the
first lobe of the seismic wavelet, indicating that deconvolution has done a poor job of
compressing the seismic wavelet.

The reason for this inconsistency is explained as follows. Since reflectivity is not
white, the conventional deconvolution operator, being a discriminator for white noise,
removes not only the wavelet but also part ofthe reflectivity as well. Namely, it removes
the nonwhite part of reflectivity. Hence, regarding the residual wavelet as a measure
of how successful the deconvolution operator in removing the wavelet is only partially
correct. Moreover, the degree to which the conventional operator successfully removes
the nonwhite component of the trace (an undesirable feat, since this removes the non­
white part of reflectivity) can be calculated by evaluating! *w * r m . This expression is
shown in Figure 5c, and it is a measure of the filter numerical performance as an inverse
operator. Indeed, we see that this is almost a perfect spike (compare with Figure 5a).

Let us look at the residual wavelet in a different way:

W r Tr*r- 1

! * s *r-
1

If * (w*rm )] *ra *r- 1

T * 1'-1a (ll)

This is what happens when reflectivity is not white. The deconvolution operator here
is actually the inverse of the convolution of the wavelet with the nonwhite component
of reflectivity. Indeed, if we calculate the residual wavelet by (11) instead of the usual
method (9), we get essentially the same answer, as shown in Figure 5d. Compare that
with Figures 5a and 5b. In fact, the differences between Figures 5a,b, and d are primarily
due to time windowing effects. In contrast, Figure 5e shows the residual wavelet left by
the generalized filter mentioned in the previous section. This is a sharper spike, and is
more in line with what we expect deconvolution to do-compress the seismic wavelet.

Hence, for a minimum-phase seismic wavelet, the residual wavelet is actually a mea­
sure of how close the all-pass component of reflectivity is to being the true reflectivity.
In other words, it is a measure of the whiteness of reflectivity; and in this sense, the

12-6



An Analysis of Deconvolution

name "residual wavelet" is essentially a misnomer. When the seismic wavelet is not
minimum-phase, the meaning of the residual wavelet is a combination of the two views,
i.e., it is a measure of the whiteness of reflectivity as well as how close the seismic
wavelet is to being minimum-phase. For a more complex convolutional model, it is also
a measure of the filter performance in the presence of noise. Nevertheless, regardless of
the interpretation we attach to it, the residual wavelet remains a useful tool to gauge the
effectiveness of the deconvolution process as a whole, in the sense that it is a benchmark
of the difference between the true and recovered reflectivity series.

In short, conventional deconvolution removes part of reflectivity as well as the
wavelet, which is obviously undesirable. Also, the residual wavelet depends on how
well we model reflectivity, not just on the success of the filter in compressing the seismic
wavelet.

CALCULATING THE GENERALIZED DECONVOLUTION
OPERATOR

How can we generalize the conventional deconvolution process to handle reflectivity that
is not white noise? We first begin by choosing an appropriate model for reflectivity, one
that mimics its stochastic behavior to a much better degree than white noise. In this
paper, we propose the use of fractionally integrated noise as such a model.

The dashed lines in Figures 1a-f show the power spectrum of the fractionally inte­
grated noise process used to model reflectivity in each of the wells. The order of the
process (its single relevant parameter here) can be calculated by a simple fit to the spec­
trum of the well log data. Alternatively, fitting can also be done in the time domain by
a modification to the procedure described by Box and Jenkins (1976) to model ARMA
processes. That model, however obtained, can then be used to process data in proximate
locations. Doing this would be especially convenient if the success of the generalized
technique were relatively insensitive to the process order. VI/e will see later that this
process indeed seems to be the case. Walden and Hosken (1985) observed reflection
coefficients derived from eight well logs to have power spectra that are proportional to
frequency according to a power law ff!, where 0.5 < {3 < 1.5. Their observation is con­
sistent with our findings, as (from (3)) the process order d is approximately equivalent
to -{3/2; thus we would expect -0.75 < d < -0.25, which is the case in the wells we
examined (Figures la-d).

Conventional deconvolution is inadequate because the assumption of white noise
reflectivity is essentially flawed, and thus the auto-correlation of the trace is a rather
poor estimate of that of the wavelet. The most obvious way to generalize the con­
ventional deconvolution scheme given a chosen model is to let deconvolution utilize a
better estimate of the wavelet auto-correlation. To this end, we can design an opti­
mal least-squares inverse filter g that is the inverse of the minimum-phase component
of reflectivity. The design of this filter relies on the model, since the auto-correlation
function used to calculate the filter operator is found from (2). We will call this filter
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the reflectivity whitening filter since it removes the minimum-phase component of re­
flectivity and leaves only the white all-pass component. Hence, if reflectivity is given
by (5), then we have:

-1
9 = Tm ·

Therefore, after application of the filter, we have:

W * 1'a'

(12)

(13)

Since T a is white, the auto-correlation of the filtered trace is then a good estimate of
the auto-correlation of the wavelet.

With this improved estimate of the auto-correlation, we can proceed to calculate the
usual deconvolution filter 1 and apply it to the original trace (Figure 6e, method 1).
From (13) we get:

ac(g * 8) = ac(w)

'* 1 = w-1

'* 1*8 j *w *r

= r. (14)

We have denoted this conventional deconvolution filter by 1 to differentiate it from the
filter f mentioned previously (defined in (7)) since the two filters are distinct, in general,
as they are calculated from different inputs. When the order of the fractionally inte­
grated noise process is zero (i.e., reflectivity is modeled by white noise), the whitening
filter is the identity filter, and the filtered trace is unchanged. So, in this special case,
the technique reduces to the conventional deconvolution method, as it should.

Figure 6a shows the trace minus the minimum-phase component of reflectivity (i.e.,
it shows the convolution of the wavelet with the all-pass component of reflectivity).
Figure 6b shows the original full trace after application of the whitening filter. The
two look similar. Figure 6c shows the power spectrum of reflectivity after application
of the whitening filter. Comparing Figure 6c with Figure 3e (the spectrum of the all­
pass component of reflectivity), we see that the two look alike; the whitening filter has
whitened the reflectivity.

It is instructive to look at the above in the frequency domain also. To get a good
estimate of the auto-correlation of the wavelet from the trace, we can whiten the spec­
trum of the reflectivity component in the trace by dividing the Fourier transform of the
trace by the square root ofthe power spectrum of the model, as given by (3). After that,
reflectivity would be whitened, and the modified trace should thus give a good estimate
of the auto-correlation of the wavelet. We can then proceed as before by calculating the
usual deconvolution operator from the modified trace and applying it to the original
trace (Figure 6e, method 2).
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We note that the process described here is essentially the same as applying the zero­
phase version of the whitening filter. Both this filter and the whitening filter whiten
the reflectivity component of the trace. The phase spectrum of the filter is irrelevant
here since we are using the filtered trace only to calculate the auto-correlation function
(which is independent of phase), and the final deconvolution operator 1 is applied to
the original unfiltered trace. Figure 6d shows the power spectrum of reflectivity before
and after whitening in the frequency domain.

Both schemes described above require modification of the actual conventional de­
convolution code, since the trace passed to the conventional deconvolution step (Le.,
the trace filtered by the whitening filter or its zero-phase version) is not the same as the
trace to which the final deconvolution operator is to be applied (which is the original
trace). It would be useful perhaps to use the existing deconvolution code and modify
the above schemes so that they reuse established deconvolution programs. This can be
done by applying the whitening filter to the trace, feeding it to an existing conventional
deconvolution routine, and then filtering the output by the inverse of the whitening
filter (Figure 6e, method 3). From (14) we have:

g-I*1*g*8 1*8

T. (15)

In this case, it is important that the whitening filter be minimum phase. Otherwise,
the conventional deconvolution routine used as part of the technique would produce a
sub-optimal result that will not be compensated by the inverse filter. Also, having a
minimum-phase filter guarantees that it has a stable inverse.

Even more useful would be a filter that can be applied after conventional decon­
volution to restore the nonwhite component of reflectivity that was removed by the
conventional deconvolution operator (Figure 6e, method 4). Indeed, this is perhaps the
easiest technique to implement and use, though the other three techniques mentioned
above shed more light on the inner workings of the generalized deconvolution scheme.
Designing such an "after-the-fact" filter is easy enough; it is the inverse of the whitening
filter. From (12) we have:

-1
9 = T m ·

Hence, by using (7) we get:

g-1 * f * 8 = g-1 *Ta

Tm * Ta

T.

(16)

(17)

We will call g-1 the spectral compensation filter.
The results obtained by using any of the four techniques should be the same, of

course. We can see this in Figure 6e, which shows the reflectivity recovered from the
trace using the four methods. The results shown previously in Figures 4e, 4f, and 5e
were obtained using the spectral compensation filter method.

12-9



Saggaf and Toksoz

We mentioned previously that our assumption of the whiteness of reflectivity biased
the output of conventional deconvolution into having a stochastic behavior consistent
with that assumption. This assumption generalizes and follows directly from (16) and
(17) since the compensation filter is essentially the minimum-phase component of reflec­
tivity that has the power spectrum governed by (3). When the order of the fractionally
integrated noise model is zero, the compensation filter is the identity filter, and the
outcome of deconvolution is white (since T a is white), just as in the case of conventional
deconvolution. For a fractionally integrated noise model of any other order, the final
deconvolution output will have a spectrum consistent with that of the compensation fil­
ter. In other words, it will have spectral density governed by the particular fractionally
integrated noise model used.

In fact, we can generalize further and state that whatever model is utilized (be it
fractionally integrated noise, auto-regressive moving-average, scaling Gaussian noise,
fractional Brownian motion, or any other model), the final deconvolution outcome will
have the spectral density dictated by that model. If instead of using a stochastic model,
we use the exact auto-correlation function of reflectivity (say, from a well log) in calcu­
lating the whitening filter, the result would lead to a spectral compensation filter that is
almost the same as the minimum-phase version of reflectivity, and deconvolution would
recover reflectivity almost fully. Figure 7a shows the recovered reflectivity obtained in
this case. Note how close the match is to the true reflectivity (Figure 3a). The RMS
errOr here is only 1%, which is mostly due to the numerical inexactness of the 10-point
filter used. Figure 7b shows that the residual wavelet left in this case is practically a
perfect spike, indicating nearly perfect deconvolution. Of course, away from the well
location this does not help us, and the use of stochastic modeling is therefore essential.

In short, the success of deconvolution invariably depends on the model. The con­
ventional method of deconvolution recovers only the white component of reflectivity,
the generalized scheme recovers more of reflectivity, as dictated by the model. Using
fractionally integrated noise, the conventional method becomes a special case of the
generalized one (when the order of the model process is zero). While it may appear
that generalizing the conventional scheme adds the burden of a governing stochastic
model to be estimated, in actuality, stochastic modeling is implicitly performed even
in the conventional method. Conventional deconvolution indeed relies on a stochastic
model (white noise), albeit a parameterless (and arguably inadequate) one.

TESTS USING WELL LOG DATA

Here we use reflectivity series derived from sonic and density logs of two wells in Saudi
Arabia: well A, on-shore in the central province, and D, an off-shore well in the Gulf.
The former is finely sampled at 0.5 ms and the latter is sampled at 2 ms. The reflection
coefficients were computed as described in the introduction. The wavelet used to pro­
duce the traces has the same shape as that in Figure 4b but it was sampled according
to the sampling interval of reflectivity.
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The reflection coefficients for well A appear in Figure 8a. Their power spectrum
was shown in Figure la along with the best-fitting fractionally integrated noise process,
which was found to have an order of roughly -0.45. Figures 8c and 8d show, respectively,
the reflectivity recovered from the trace (Figure 8b) by the conventional and generalized
deconvolution approaches. It can be seen that the one produced by the generalized filter
resembles true reflectivity much more closely than that of conventional deconvolution.
In fact, the RMS error for the conventional approach is 20% and an error of 1% for
the generalized approach. Figures 9a and 9b show the residual wavelet left by the two
deconvolution methods. We see that the residual wavelet left by the generalized filter
is a much sharper spike than that left by the conventional one, the width of the latter
being comparable to that of the first lobe of the seismic wavelet, indicating poor wavelet
compression. Therefore, visual inspection, RMS error, and the residual wavelet all show
that utilizing a better model for reflectivity than white noise could lead to a significant
improvement in the performance of the deconvolution filter.

Figure 9c shows the residual wavelet left by the generalized deconvolution filter for
a range of the order of the fractionally integrated noise model. It is encouraging to see
that as long as the order of the process is chosen within a reasonable interval (-0.75 to
-0.25, say), the generalized filter consistently outperforms the conventional one. Thus,
the generalized method is not very sensitive to the order of the fractionally integrated
noise model. This is shown even more emphatically in Figure 9d, where the RMS error
between the true and recovered reflectivity series is plotted against the order of the
fractionally integrated noise process used in constructing the filter. An order of zero
corresponds to conventional deconvolution.

Figure lOa shows the reflection coefficients of well D, whose power spectrum ap­
peared in Figures Ie and 1£ along with that of the fractionally integrated noise process
of order -0.55. Figures 10c and 10d show the reflectivity recovered from the trace (Fig­
ure lOb) by the conventional and generalized deconvolution filters, respectively. Again,
the similarity to the true series is much closer for the latter. The RMS errors are 25%
and 3%, respectively. Figures lla and lIb show the residual wavelet left by the two de­
convolution filters. Figure llc shows the residual wavelets produced by the generalized
method for a varying number of model process orders. Finally, Figure lId shows the
RMS error versus the process order used in constructing the generalized filter.

The same conclusions can be drawn from these figures as before. It would seem,
therefore, that an accurate estimate of the fractionally integrated noise model order
is not necessary. A rough estimate drawn from a nearby well would be enough to
produce a satisfactory improvement in the deconvolution output. This is not surprising,
considering that reflection coefficients are observed to deviate from the white noise model
to some degree in the majority of cases. Thus, a conservative correction to the white
conventional deconvolution output would only bring it closer to the actual reflectivity
series.
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NONSTATIONARITY

Figures 12a-d show the order of the best-fitting fractionally integrated noise process for
a SOD-point sliding window along the well logs whose power spectra appear in Figures
1a-d, plotted against the center point of each window. From these figures it can be seen
that the stochastic properties of reflectivity seem to change significantly with depth. In
other words, strictly speaking, reflectivity is not a stationary time series. Of course, in
each case, the average of the orders along the plot is roughly the same as the order of
the fractionally integrated noise process used to model the entire data set. However, the
character of the variations in the stochastic behavior is distinct for each well: blocky
(Figure 12a, where it can be divided into two regions the order in each of the which
is mostly constant), parabolic (Figure 12b), monotonically decreasing (Figure 12c), or
monotonically increasing (Figure 12d).

Designing a multi-gate generalized deconvolution filter, using fractionally integrated
noise models of differing orders for each gate, leads to even better performance. However,
the design of such filters would require even more knowledge of the underlying stochastic
parameters. It is arguable whether the uncertainty in the estimates of those parameters
warrants such a scheme, at least not without further examination of the extent of the
lateral variations in the stochastic properties of reflectivity with depth (or dense coverage
of logs).

A more interesting issue (one which we do not tackle here) is the correlation between
the shape of the plots in Figures 12a-d and the underlying stratigraphic lithology.
Perhaps correlating the lithology with the changing stochastic parameters of reflectivity
would aid in understanding the geological processes responsible for the nonwhite spectral
behavior of reflectivity.

CONCLUSIONS

The deconvolution process relies implicitly on stochastic modeling to recover reflectivity.
The model used invariably biases the output of the deconvolution operator to have spec­
tral character consistent with that of the governing model. Conventional deconvolution,
using white noise as its model, can recover only the white component of reflectivity, and
the rest of reflectivity is removed with the wavelet. Utilizing a model that more closely
matches the stochastic behavior of reflectivity observed in nature from well 109 data
thus leads to a deconvolution operator that does a better job of recovering the reflection
coefficients from the trace.

We see that by using fractionally integrated noise, the conventional deconvolution
process can be generalized to handle reflectivity that departs stochastically from the
white noise model; the generalized filter encompasses conventional deconvolution as
a special case. Additionally, it appears that an accurate knowledge of the spectral
properties of reflectivity is not needed in order for the generalized filter to perform
satisfactorily. Thus, estimates of the order of the fractionally integrated noise model
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can be drawn from a rough analysis of the stochastic properties of reflectivity derived
from well logs in proximate locations.

The nonstationarity of the stochastic properties of reflectivity is an interesting issue
for further research, and the correlation with lithology could shed more light on the
geological processes responsible for the observed spectral behavior of reflectivity.
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Figure 1: Power spectrum of reflectivity derived from well logs and the spectrum (dashed
line) for the best-fitting fractionally integrated noise process: (a) well A (process
order = -0.45), (b) well B (-0.53), (c) well C (-0.49), (d) well D at 0.5 ms sampling
(----'0.55), (e) well D at 2 ms sampling (-0.55), and (f) well D at 2 ms sampling shown
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