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ABSTRACT

Information about reservoir properties usually comes from two sources: seismic data
and well logs. The former provide an indirect, low resolution image of rock velocity
and density. The latter provide direct, high resolution (but laterally sparse) sampling
of these and other rock parameters. An important problem in reservoir characterization
is how best to combine these data sets, allowing the well information to constrain the
seismic inversion and, conversely, using the seismic data to spatially interpolate and
extrapolate the well logs.

We have developed a seismic/well log inversion method that combines geostatistical
methods for well log interpolation (i.e., kriging) with a Monte Carlo search technique
for seismic inversion. Our method follows the approach used by Haas and Dubrule
(1994) in their sequential inversion algorithm. Kriging is applied to the well data to
obtain velocity estimates and their variances for use as a priori constraints in the seismic
inversion. Further, inversion of a complete 2-D seismic section is performed one trace
at a time. The velocity profiles derived from previous seismic traces are incorporated as
"pseudo well logs" in subsequent applications of kriging. Our version of this algorithm
employs a more efficient Monte Carlo search algorithm in the seismic inversion step,
and moves progressively away from the wells so as to minimize the kriging variance at
each step. Numerical experiments with synthetic data demonstrate the viability of our
seismic/well data inversion scheme.
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INTRODUCTION

Conventional seismic processing techniques produce a distorted image of the subsurface
in two way travel time as opposed to depth. Inversion must be performed upon the
seismic data to obtain the true velocity field. A potentially useful yet underutilized
constraint on seismic inversion problems comes in the form of well logs, and limited
local samples of the true velocity field.

Recently, geostatisticians have begun to make better quantitative use of well log
data, primarily through a set of techniques known collectively as "kriging" (Doyen,
1988). These methods globally estimate the value of subsurface parameters,when only
sparse local samples are available. A method by Haas and Dubrule (1994) attempts to
move one step further and combine kriging with post-stack seismic inversion. They use
a convolutional model to simulate seismic wave propagation and a Monte Carlo method
to do inversion. Other related methods attempt to invert post-stack seismic data via
Monte Carlo methods to obtain a velocity model of the subsurface but do not address
the use of well data (Mosegaard and Vestergaard, 1991; (Vestergaard and Mosegaard,
1991).

This paper attempts to improve upon the method put forth by Haas and Dubrule
(1994) by making better use of well data and using a more efficient Monte Carlo inversion
method to invert a 2-D seismic data set.

G EOSTATISTICS

Given a field of parameters to be estimated, say a 2-D velocity field, geostatistics seeks
to model each parameter as a random variable (RV). This leads to the definition of a
probability density fnnction at each parameter locatioil and a covariance between each
two parameters. If the field is discrete, the covariance between each of these RV's can
be put into a covariance matrix. If each RV is additionally constrained to be Gaussian,
the covariance matrix, along with a mean, fully characterizes the random field.

A function can be defined which describes the covariance vs. spatial separation (lag).
It is known as the (auto)covariogram or, if normalized, the (auto)correlogram. The
distance it takes for the function to almost reach 0 is known as the range or correlation
length. This function can take a number of forms. Two popular ones used in geophysical
applications are Gaussian and exponential. Gaussian and exponential correlograms have
the following forms, respectively:

ex'la' e-Ixl/a

where a. is the correlation length and x is the lag.
It is simple to create realizations possessing an exponential or Gaussian autocovari

ance function. One must generate Gaussian white noise with variance of the desired
stationary process in the state domain, transform it into the frequency domain, multiply
it by the square root of the desired power spectrum, and then transform back to the
state domain. The realization will have the desired covariance.
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The choice of which correlogram to use depends on what the application is. In trying
to model the heterogeneity of geology in a realistic manner, an exponential correlogram
is preferred because it contains more high frequency components than the Gaussian,
which is more representative of the intermittancy visible in geologic sections. In this
paper, only exponential covariograms are used.

A geostatistical estimation technique known as kriging is seeing routine use in geo
physics recently. Given sparse spatial samples of a geophysical variable, it allows for
interpolation as well as error bars on the interpolated value. It involves construction of
a square covariance matrix with dimensionality equal to the number of data within a
prescribed distance of the estimated point. Such a matrix must be inverted for every
point to be estimated. As such it can be a very expensive operation when a large field
needs to be estimated and/or a large number of data exist.

There are many different versions of kriging in the current literature. They are cat
egorized according to their assumptions: "Simple kriging" assumes a known covariance
function and a known mean of the underlying process; "ordinary kriging" assumes only
a known covariance function, its mean is a constant unknown function; "universal krig
ing" assumes a known covariance and an unknown mean which is a linear combination
of known functions. There are many other forms of kriging (see Cressie, 1993, for a
summary). In this work ordinary kriging is used as the estimation methodology.

Following Cressie (1993), we let

V(z) = /1- + n(z), zED

be the random field of interest where /1- is the unknown constant mean, n(z) is a station
ary random process, and D is the spatial domain of interest. Assume that the estimate
is a linear function of the observed RV's,

n

v(zo) = L AiVi(Zi),
i=l

Then,

and

n

where C(O) is the variance of any random variable in the field (i.e., the value of the
covariance function at 0 lag) and d is the vector of covariance values between the esti
mated point and the data points(C(zi - zo)). The weights, A, and Lagrange multiplier,
m, of the ordinary kriging estimate at location Zo will be,

m=
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where C = C(Zj - Zj) is the matrix of covariance values between all sampled RV's in
the random field.

An example of an application of these kriging equations is shown in Figures 1 and
2. Figure 1 is a realization of a 2-D exponential random field, v(z). The field represents
the P-wave velocity of the subsurface. It is anisotropic, having a range of 100 ftls in
the horizontal direction, and 10 ftls in the vertical direction. Also, the variance of each
RV, C(O), is 250 ft/s. Two vertical samples (i.e., well logs) are extracted from this field
at trace locations 10 and 40. Figure 2 shows the results of kriging these well locations
when the autocovariance of the media is assumed known. Finally, Figure 3 shows the
velocity field (Figure 1) converted into a seismogram via a convolutional model.

MONTE CARLO INVERSION

In recent years, adaptive search methods have gained popularity as a tool for finding
optimal solutions to geophysical inverse problems. Their popularity has been motivated
by vast increases in computing power and the fact that these methods are more effective
than traditional gradient-based methods in finding globally, rather than just locally, op
timal solutions to nonlinear problems. Recent applications of adaptive search methods
to seismic inversion include genetic algorithms (Stoffa and Sen, 1991), simulated an
nealing (Rothman, 1985; Sen and Stoffa, 1991; Vestergaard and Mosegaard, 1991), and
Monte Carlo sampling (Haas and Dubrule, 1994).

The search algorithm employed by Haas and Dubrule (1994) is a simple Monte Carlo
method, whereby the velocity profile, v(z), fit to a given seismic trace, u(t), is obtained
as a realization of a specified random process. Many realizations of the process are
generated and the one yielding the smallest error of fit, E, is chosen as the solution. E
is defined as E = J(u(t) - U cal(t))2 dt where Ucal(t) denotes the synthetic seismogram
calculated from v(z), computed using the standard convolutional model. Haas and
Dubrule generate velocity realizations by sampling a fixed random process whose mean
and variance are derived from the posterior mean and variance resulting from kriging of
previous well data. However, they ignore correlations between the velocity at different
depths.

Our Monte Carlo search algorithm differs in two main respects. First, we retain
correlation information in the kriging variance, i.e., our realizations are from a correlated
process. To accomplish this efficiently, we approximate the process as stationary, which
is a reasonable approximation given the geometry of our kriging problem. Second, we
borrow a very useful concept from simulated annealing: we allow the process from
which realizations are generated to change adaptively during the search. In simulated
annealing, this is accomplished by specifying a temperature schedule, whose choice is
one of the most difficult aspects of the algorithm. Our approach is to gradually shift
the mean and reduce the variance of the sampling process such that, like simulated
annealing, the search becomes more and more local as better solutions are found. The
"annealing" in our algorithm is not controlled by a temperature schedule but, rather,
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is determined only by the total number of trials, which must be specified as input.

Proposed Monte Carlo Method

A new Monte Carlo inversion method presented in this paper is easy to apply (no
temperature schedule needed) and provides good results for the convolutional seismic
problem. The crux of this method is based on some properties of the following process

n(z) = a1'(z) + (38(Z)

where 7'(Z) and 8(Z) are independent Gaussian processes. The covariance matrix, An,
of n(z), therefore, can be expressed as

An = a 2Ar + (32 As.

If we further impose the constraint that An = Ar = As = A, the constants a and (3 must
satisfy a 2 + (32 = 1. We therefore have three zero mean Gaussian random processes,
n, 7', 8, with the same covariance matrix. The purpose of constructing n(z) in such a
way will be made clear below.

The algorithm proceeds as follows:

1. Perform kriging at a location adjacent to a well log using only points within three
correlation lengths of each estimated point. This is done to reduce computational
burden. This will give a kriged mean, JL( z) at every point in a pseudo well log
along with a kriged variance matrix, A, which is approximately constant as a
function of depth.

2. Specify the total nnmber of iterations N tot to be performed

3. For i = 1 ... Ntotal let

V;(Z) = JL(z) +n;(z)

where

and

Ti ni_lifEi < £i-101'

Ti Ti_1ifEi ~ Ei - 1 ·

4. As the algorithm proceeds, let a 2 = N,~~-;±1 and (32 = Ni :- 1 . Thus, more and
1 tot tot

more weight will be applied to 8(Z) while still ensuring that all realizations of n(z)
have covariance A.
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APPLICATION

We now apply the proposed method to the 2-D problem. Using the model presented
in Figure 1, we extract the two well logs and assume that we know the correct 2-D
covariance function for purposes of kriging. Kriging is applied at a location adjacent to
a well location. This provides a probability distribution from which to draw realizations.
The inversion algorithm is then applied for 1000 iterations at this location. The model
that provides the best fit to the seismic data in Figure 3 is kept and folded back into the
data set at that location as a "pseudo well log." Kriging is then performed again at the
next adjacent location using only the previous pseudo well log and the next closest well
as data. The algorithm proceeds this way until every seismic trace has been inverted.
The entire inversion of 50 traces requires approximately 45 minutes with M atlabT M on
a 400 MHz PC.

This sequential method bears resemblance to the method proposed by Haas and
Dubrule (1994) and, in fact, was based upon it. However, their methodology applies
kriging at locations away from (not adjacent to) the existing well logs thus giving them a
much larger variance when implementing their Monte Carlo algorithm. Their algorithm
performs sequential inversion by leap frogging through the field. They also limit their
parameter space to 30 samples in the vertical direction corresponding to a total of 120
ms. This corresponds to a few wiggles of the seismic trace, thus making it easier to
fit the data. In contrast, the models used in this work are sampled in depth at 1 ft
intervals over 512 ft depth. Thus there are 512 parameters to invert for.

The results for the 2-D inversion are presented in Figures 4 through 6. Figure 4
shows the result of the inversion when we know the true covariance function of the
underlying process. The next figures show the sensitivity of the inversion method to
changes in the assumed covariance function. Figure 5 incorrectly assumes that the
vertical correlation length is twice what it actually is. Figure 6 incorrectly assumes that
the vertical correlation length is half what it actually is. As can be seen, all the models
closely approximate the true velocity model of Figure 1.

CONCLUSIONS

We have presented a method for inverting post-stack seismic data given limited well log
data. Numerous methods exist to estimate petrophysical properties away from wells.
lvlany methods also exist to invert seismiC data. However, few workers attempt to
combine these methodologies·'n a coherent way.

The Monte Carlo method introduced proves itself to be easy to implement as well as
robust in the sense that it still finds satisfactory solutions even when a pTioTi assump
tions are bad. It has an advantage over simulated annealing in that it doesn't require a
cooling schedule to invert the data.
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Figure 1: 2-D exponential random field.
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Figure 2: Kriging applied to wells assuming known covariogram.
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Figure 3: Seismogram converted from 2-D field via convolutional model
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Figure 4: Inversion results assuming correct parameters.
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Inverted velocity field
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Figure 5: Inversion results assuming twice true vertical correlation.
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Figure 6: Inversion results assuming half true vertical correlation.
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