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ABSTRACT

In situ formation stress directions and magnitudes are estimated by inverting the bore
hole flexural and Stoneley dispersions obtained from standard acoustic logging data
(dipole and monopole logs). The underlying procedure consists of the following steps:
first, we locate stressed zones in the formation by searching for crossovers in flexural
dispersions. Second, the fast shear direction is estimated from the cross-dipole wave
forms. It corresponds to the direction of the maximum horizontal stress (SH). Finally, a
multi-frequency inversion of both the Stoneley and flexural dispersions yields the max
imum (SH) and minimum (Sh) horizontal stress magnitudes together with the three
formation nonlinear elastic constants, Cnb Cn2 and C123, defined about the selected
reference (isotropic) state. The inversion method is based on equations that relate SH

and Sh with variations in phase velocities of the borehole flexural and Stoneley waves
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in the stressed state from those in the assumed reference state, the state that is hydro
statically loaded and isotropic. Phase velocities of the borehole flexural and Stoneley
modes as a function of frequency can be obtained from processing the cross-dipole and
monopole waveforms, respectively. The borehole flexural and Stoneley dispersions in
the assumed reference (isotropic) state are obtained from the solution of a standard
boundary-value problem. The sensitivity functions for the inversion model are obtained
from the eigenfunctions of the boundary-value problem in the reference state. Results
for the stress directions and magnitudes obtained from the inversion of the Stoneley and
flexural dispersions over a selected bandwidth are consistent with focal mechanism and
borehole breakout data present in the world map database (Zoback, 1992).

INTRODUCTION

Detailed knowledge of formation stress state would aid in planning stimulation treat
ments for enhanced recovery of hydrocarbons, prevention of sand production and bore
hole instability. The formation stress state at a given location can be completely char
acterized by magnitudes and directions of three principal stresses, Sv, SH, and Sh,
denoting the vertical, maximum horizontal and minimum horizontal stresses, respec
tively (Zoback and Zoback, 1980; Zoback, 1992). Currently, borehole breakout analysis
is the most commonly used technique to estimate formation stresses. However, bore
hole breakouts are destructive processes that oil companies wish to avoid, because they
represent shear failure of the borehole wall centered in the Sh direction, the azimuth of
the maximum circumferential compressive stress (Gough and Bell, 1982; Zoback et at.,
1985). In addition, without shear failure, this technique will fail to determine the in
situ stress even when there is a stress concentration around the borehole.

In this paper, a nondestructive technique is described that can reliably estimate
the in situ state of stresses in boreholes from borehole sonic measurements. Sinha and
Kostek (1996) predicted in theory that a crossover in flexural dispersions is an indicator
of stress-induced anisotropy dominating over other sources of intrinsic anisotropy. These
predictions were subsequently verified in a scaled-borehole experiment (Winkler et al.,
1998. Therefore, highly stressed zones can be identified by a search of crossovers in flex
ural dispersions. In a stressed zone, the polarization direction of fast shear estimated
from cross-dipole waveforms corresponds to the direction of the maximum horizontal
stress. The direction of minimum horizontal stress is perpendicular to the fast shear
direction. In the presence of horizontal stresses, SH and Sh, changes in the Stoneley
and flexural dispersions from a nearby reference state can be described by a linear per
turbation model. This perturbation model can serve as the basis for the inversion of
borehole dispersions for the stress magnitudes above and beyond the stresses assumed
in the hydrostatically loaded reference state of the rock (Sinha, 1997). Following the
theorem of linear superposition, we derive equations that relate SH, Sh, and the forma
tion nonlinear elastic constants CllI, C112 and C123 to variations in flexural and Stoneley
dispersions. A multi-frequency inversion technique based on these equations yields the
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deviatoric stress magnitudes (SH and Sh) from those assumed in the reference state.

STRESS MAGNITUDE ESTIMATION

To evaluate magnitudes of horizontal stresses, a perturbation model is applied that
quantitatively describes how the magnitude of horizontal stresses is related to borehole
flexural dispersions (Tiersten, 1978; Norris et al., 1994; Sinha and Kostek, 1996).

Before we outline the perturbation derivation for a small dynamic field superim
posed on a prestress, we briefly introduce some preliminary terminology and notation.
The kinematics of deformation of a material point associated with a propagating wave
in a stressed medium can be described in terms of three different configurations of the
solid: the reference, intermediate, and current configurations of material points. These
configurations denote the undeformed state, statically deformed biasing state, and the
state of elastic wave-induced deformation superimposed on the bias, respectively. We
first note that under the static bias the material points move from the reference coordi
nates XL to the intermediate coordinates ~," and we can map points from the reference
coordinates to the intermediate coordinates by

~" = ~,,(XLl. (1)

Then, for the superposed small dynamic motion, the material points move from the
intermediate coordinates ~" to the present coordinates Yi, and we have

Yi = Yi(~", t) = Yi(XL, t). (2)

All notations follow the convention that capital Latin indices, lower-case Greek indices,
and lower-case Latin indices, refer to the Cartesian components of the reference coordi
nates, intermediate coordinates, and present coordinates of material points, respectively.
A comma followed by an index denotes partial differentiation with respect to a geomet
ric coordinate. Also, the summation convention for repeated tensor indices and the dot
notation for differentiation with respect to time hold here. The coordinate system is set
up as Xl along borehole axis, and X 2 and X 3 in the plane perpendicular to Xl. Equa
tions (1) and (2) are mapping functions that relate three configurations of the solid. In
this paper, the mass density, linear moduli and nonlinear moduli of the material refer
to a specific reference state.

In a reference state, the equations ofmotion for a borehole mode can be expressed
as

(3)

where J(I;;' is the Poila-Kirchhoff stress tensor in linear elasticity that defines stresses
in the intermediate and reference configurations (Truesdell and Noll, 1992), Po is the
mass density in the reference configuration, and u~ denotes a small amplitude dynamic
solution to the wave equation of a fluid-filled borehole surrounded by an isotropic and
homogeneous formation (reference state) at a harmonic frequency, W m (Biot, 1952).
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Piola-Kirchhoff stress tensors define stresses in the intermediate and reference configu
rations (Truesdell, 1992).

Referring to the reference state, the equation of motion in the presence of initial
stresses in the medium (i.e., a static bias) may be written in terms of Piola-Kirchhoff
stress tensor as

K£-y,L + Kf-Y~L + pow2u-y = 0 (4)

where Kf-yL is the nonlinear portion of the Piola-Kirchhoff stress tensor that denotes

the perturbation from the linear portion, K£-y. K£-y and Kf-yL may be expressed as

K£-y = CL-yMvUv,M (5)

(

and

}(NL -
£, = CL,MvUv,M

where

(6)

(7) (

with

(8)

and

(11)

1 NdK£:;u; - K £-yu';*lIso
Ivo dVoKf-Y~Lu';*

1
EAB = "2(WA,B + WB,A)' (9)

In equation (4), u-y denotes the small-amplitude dynamic solution at a harmonic fre
quency of w in the presence of a static bias, CL-yMv and CL-yMvAB are the second and
third-order elastic constants, respectively (Thurston and Brugger, 1964). In equations
(7), (8) and (9), TLM, EAB and w-y,[( denote the biasing stresses, strains and (static)
displacement gradients, respectively. Note that the biasing stresses, strains and dis
placement gradients are spatially varying due to borehole stress concentration; therefore,
K £-y,L and K f-Y~L are position dependent and a direct solution of the boundary-value
problem is not possible.

Equations (3) and (4) can be combined to form an integral equation valid for a
continuum of arbitrary volume Vo in the reference configuration:

1110 dVo[(K£-y,L + Kf-Y~L + pow2u-y)U';* - (K£:;:L + pow~u';)u;] = 0 (10)

where * denotes complex conjugate. According to Ouass's theorem of divergence, equa
tion (10) can be recast into a form that is convenient for calculating a small perturbation
at the frequency wm :

1dTT (2 m* 2 m *) =vQPO W U,,/U'Y - Wm U i U j
110
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where NL is the outward unit normal in the reference or undeformed configuration. So
is the surface surrounding Vo. The quantities in the perturbed state (i.e. in the presence
of biasing stresses and strains) are related to those in the unperturbed state by assuming
the linear relationships

and

u,=U~+€Ull

* * *U,=U"'{+EU,

(12)

(13)

(14)

(15)

where E is an arbitrary small number. Substituting equation (12), (13) and (14) into
equation (11) and neglecting quadratic or higher terms of E and ~wm yields a general
form of the perturbation integral for calculating changes in the eigenfrequency W m caused
by the biasing stresses and strains:

~w = 1sodSoNL[Kt;;'u~ - Kt.,.u:;'*J - Ivo dVoKf.,.~LU:;'*
m 2wm IVa pou!"fu?:f*dVo

The boundary surface So is at the borehole wall; therefore, NL denotes the negative
radial direction, and NLKL.,.U~ represents the energy flux in the negative radial direction.
There is no energy flow in the radial direction for any guided mode that decays away
from the borehole in both the unperturbed and perturbed states. Consequently, we
have

N T,-Lm m* 0
Ll~LI U, = ,

and in the perturbed state we have

NL(Kt.,. + Kf.,.L)u~ = o.

(16)

(17)

(18)

Applying Guass's theorem of divergence to the volume integral in the numerator of
equation (15) and incorporating equations (16) and (17), the first-order perturbation in
the eigenfrequency W m is obtained

Iv; Kf~Lu:;'LdVo
tJ.w= 0 I'

m 2wm IVa pou:;-u!:F'*dVo

Note that elements of the nonlinear part of the Piola-Kirchhoff stress tensor Kf.,.L in
equation (18) are completely known in terms of the second- and third-order elastic
constants and biasing stresses in the statically deformed state as given by equations
(7), (8) and (9). The index m refers to the family of normal modes for a borehole
in the reference state. For each of the modes that are sensitive to stress application,
such as the flexural mode and Stoneley mode, at a given wavenumber kz , the first-order
perturbation in the eigenfrequency W m is estimated with the perturbation procedure.
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(19)

Without reducing generality, let us assume SH is applied in the X 2-direction while
Sh is applied in the X3-direction. First, let us assume only SH is present, i.e., Sh = O.
Thus, the borehole is subject to a uniaxial stress SH. For a given eigenfrequency W m , a
first-order perturbation in eigenfrequencies of the Stoneley and flexural modes, W2, W3
and WSt, may be given by (Sinha, 1997)

!:"wfj = cfSH + cgSH Cm + cgSH Cm
Wm C6B C66

+ c oS Cl23
4 H--,

C66

!:"wfj CrOSH + CiOSH Cm + CjOSH Cm
Wm C66 C66

+ C 90S Cl23 (20)4 H--,
C66

and
!:,.WSt Clll C1l2

CISH + CZSH- + C3SH-
Wm C66 C66

(22)

(21)

+
wm

+ C S C123
4 H--,

C66

where !:"wfft, !:"wfj and !:"wfj denote first-order frequency perturbations for the Stoneley
wave and flexural waves polarized in the X 2- and X3-directions, respectively. Coeffi
cients c2, C;lD, and Ci, with i = 1, 2, 3 and 4, are frequency dependent integrals that
can be evaluated in terms of the known flexural wave solution in the reference state
and biasing stresses of unit-magnitude and corresponding strains in the formation (see
Appendix). The superscript 0 denotes flexural wave polarization along the far-field uni
axial stress direction, while 90 denotes flexural wave polarization in the perpendicular
direction.

Similarly, if only Sh is applied, the corresponding first-order perturbations in respec
tive eigenfrequencies Wz, W3 and WSt are

!:"wg

!:"wg
= cfsh + cgshCm + cgshCm

Wm C66 C66

+ CoS Cl23
4 h--,

C66

and

!:"w~t Cll1 C112
= CISh + CZSh- + C3Sh-

Wm C66 C66

+ C S Cl23
4 h--·

C66
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Note that Sh is in the X3-direction; thus flexural wave polarization oriented in the X 2

direction is perpendicular to the far-field uniaxial stress direction. Note that first-order
perturbations in the respective eigenfrequencies are linear function of stress magnitude.
The total first-order frequency perturbations due to the application of the two uniaxial
stresses of SH and Sh are linear combinations of !:>.w~ and !:>.w~, i.e., !:>.wm = !:>.w~ +
!:>.w~, with m = 2,3 and St, respectively. Frequency perturbations !:>.wm are added
to their respective eigenfrequencies W m for various values of the wavenumber along the
borehole axis, k z , to obtain changes in phase velocities of two principal flexural waves
and the Stoneley wave at a given frequency,

(25)

and

Sh(CD+ CD£J..ll + C D£ll2. + C D=)1 2 C66 3C66 4C66

+SH(C9D+ C 9D £J..ll + C9D£ll2. + C9D=)
1 2C66 3C66 4C66'

(26)

(27)

where vR and v~t are the flexural and Stoneley phase velocities in the reference state.
Equations (25), (26) and (27) are used to estimate SH, Sh, Clll, Cll2, and C123. Non
linear constants Clll, Cll2, and Cl23 are not provided by the current logging technique.
Therefore, we need to invert for them as well. In those equations, phase velocities of the
Stoneley wave, v Bt , and flexural waves, V2 and V3, can be estimated from the monopole
and cross-dipole waveforms, respectively. Phase velocities in the reference state can be
readily computed numerically by solving an eigenvalue problem of a fluid-filled bore
hole surrounded by an isotropic formation. Note that except for the five unknowns SH,
Sh, Clll, Cll2, and C123, and the formation elastic constant in the reference state C66,

all quantities in equations (25), (26) and (27) are frequency dependent. Consequently,
multiple frequencies may be selected in order to have redundancy in the inversion.

RESULTS FROM CROSS-DIPOLE AND MONOPOLE LOGS IN
CALIFORNIA

Here, we analyze a set of cross-dipole and monopole waveforms acquired by a sonic tool
in a vertical well for the estimation of formation stress directions and magnitudes. This
well is located in a tectonically active area in California. Tectonic stresses can cause
stress-induced shear anisotropy in such vertical wells. Our investigation of formation
stresses consists of the following steps:
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1. Low-pass filtering and time windowing of cross-dipole waveforms. First, we use
a short Fourier transform, a technique that estimates time-localized frequency
contents of a waveform and generates a time-frequency domain figure that is called
a spectrogram, to analyze various wave modes generated in the borehole by dipole
sources. Figure 1a shows a typical spectrogram of waveforms recorded by a cross
dipole log. Note the earliest arrival around 15 kHz is the tool mode followed by
a compressional headwave around 5 kHz. The flexural mode is a high amplitude
signal around 1.5 kHz with the lowest velocity around 600 m/s. Figure 1b shows
velocities of all the modes in their respective frequency ranges. These results show
the presence of a weak compressional mode around 5 kHz; a borehole flexural mode
around 1.5 kHz; and a tool arrival around 15 kHz. Since a borehole flexural wave
consists of low-frequency components and propagates the slowest among all the
generated waves, low-pass filtering and time windowing the recorded waveforms
help to obtain relatively pure flexural waves.

2. Fast shear azimuth estimation and rotation of recorded dipole waveforms to the
fast and slow shear directions. The orientation of the fast shear or flexural wave
polarization in the far field is obtained by using the low frequency part of cross
dipole flexural waveforms with the modified Alford rotation technique that takes
into account the signature mismatch of sources and receivers (Huang et al., 1998.
'Naveforms at each depth are then rotated so that the tool sources and receivers
are aligned with the principal flexural wave polarizations. As a result, the rotated
waveforms contain largely pure principal flexural waves and are ready for further
processing.

3. Dispersion analysis. In order to locate depths where crossovers in flexural disper
sions or stress-induced anisotropy occurs, flexural dispersions are extracted from
the data using one mode method (Nolte et aI., 1997. Dipole dispersion crossover
is continuously observed in the depth range of thickness 131 ft. Figure 2a presents
a typical dispersion crossover for the two principal flexural waves in the afore
mentioned stressed zone. Figure 2b shows the compressional headwave and the
dispersive Stoneley wave from monopole logging data in the same well at the
same depth. The compressional wave velocity is around 1600 mis, the same value
presented in Figure 1 The presence of crossovers indicates horizontal formation
stresses on a weakly anisotropic or isotropic formation at those depths where the
polarization direction of the fast flexural wave corresponds to the direction of
formation maximum horizontal stress. Figure 3 shows the maximum horizontal
formation stress directions in the stressed zone. Additionally, by computing the
cross-correlation of the low-frequency part of the fast and slow flexural waveforms,
we obtain the group delays between the slow and fast flexural waves (Figure 3).
The delays indicate the amount of stress-induced anisotropy in the formation. The
sonic tool consists of a linear array of eight receiver stations with an inter-receiver
spacing of 6 in. The dipole transmitter is located 11 ft from the nearest receiver.
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The group delay is averaged over eight receivers. The distance L from the trans
mitter to the mid-point of receiver array is 12.75 ft (3.886 m). The shear velocity
anisotropy can be expressed as

(28)

where V2 and V3 are the fast and slow shear velocities, respectively; and t::.t is the
group delay at a given depth as shown in the second panel of Figure 3. Typically,
we observe a group delay t::.t=l ms, and an average shear velocity V2=620 m/s
(2034 ft/s) in this depth interval. These values yield an average shear anisotropy
of about 16%. Note that the entire depth interval in Figure 3 shows dipole disper
sion crossovers and a significant amount of stress-induced shear anisotropy. The
maximum horizontal formation stress direction is oriented at 300 to 500 east from
north.

4. Stress magnitude estimation. The dotted lines in Figure 4 represent dispersions
measured from logs. From each of the dispersion curves of flexural waves and the
Stoneley wave, five frequency points from the frequency band 1 kHz to 2 kHz with
250 Hz spacing are selected for inversion. Borehole properties that are used as the
reference state in the inversion are listed below.

Formation compressional velocity

Formation shear velocity

Formation mass density

Borehole radius

Fluid compressional velocity

Fluid mass density

VI = 1693mls ,

V2 =570mls,

P = 2400kglm3
,

R=0.2m,

VI = 1500mls ,

PI = 1000kglm3
.

Magnitudes of the maximum and minimum horizontal formation stresses as well
as three formation nonlinear elastic constants are inverted using equations (25),
(26) and (27). The results are as follows:

SH = -40MPa,

Clli = -608.6GPa,

Cl23 = 201.2GPa.

Sh = -12MPa,

C1l2 = 25.4GPa,

Theoretical dispersion curves are calculated by substituting the estimation results
back to equations (25), (26) and {27). Agreement between measured and theoret
ical dispersion curves indicates very small mean-square errors of the inversion.

From the dispersion curves of flexural waves (Figure 4), it is obvious that the
formation of the well is very soft, i.e., with very low shear velocity, around 610
mls. As the formation mass density is about average, around 2300 kglm3 , we
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may conclude that the shear modulus, and thus shear stress, is relatively small
in the formation. Therefore, formation overburden can be a good approximation
of the vertical stress, Sv. Assuming that the average formation density from the
surface to the depth of 400 m is 2300 kg/m3 , the vertical stress in the depth range
of the stressed zone is on the order of 8.8 to 9.7 M Pa , and this magnitude is
comparable with Sh. Consequently, the stress field of the studied area is of the
form SH » Sh "" Sv, producing a combination of strike-slip and thrust faulting.
These results are consistent with results from borehole breakout studies (Mount
and Suppe, 1992), and with focal mechanism and borehole breakout data presented
in the world stress map database (Zoback, 1992).

DISCUSSION

The existence of a borehole alters the stress field in the formation. The stress field
distribution around a borehole caused by a far-field compressive stress S is given by
Timoshenko and Goodier (1982)

S a2 S 3a4 4a2

TRR 2(1 - R2) + 2(1 + R4 - R2 )cos2iP,

S a2 S 3a4

T<I>q, 2(1 + R2) - 2(1 + R4 )cos2iP,

S 3a4 2a2

TR<I> -2(1 - R4 + R2 )sin2iP,

Tzz = f1(TRR + T<I><I» ,

TZR = 0,

Tzq, = 0

(29)

where a is borehole radius, f1 is the formation Poisson's ratio, R is the radial distance
from the borehole axis, and iP is the azimuth angle that is measured relative to the far
field uniaxial stress direction. Figure 5 shows radial (TRR), circumferential(T<I><I» and
radial-azimuthal shear (TRq,) stress variations away from the borehole surface along
various azimuthal directions from the stress axis (iP = 0°,30°,60°, and 90°). All
stresses are normalized with respect to the far-field stress, S. When the radial distance,
R is over two to three times the borehole radius, the stress field is very close to that
of the far-field. Borehole guided waves can efficiently penetrate the formation to the
radial distance of one wavelength (Cheng and Toksiiz, 1981). The center frequency of
Stoneley and borehole flexural waves that are used in the stress magnitude inversion is
1 kHz. Velocities of Stoneley wave and both flexural waves are over 600 m/s. Therefore,
Stoneley wave and flexural waves are sensitive to formation properties up to 60 em from
the center of the borehole, or over three times of the borehole radius. Therefore, the
estimated stress magnitudes represent the far-field formation stress quite well.
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CONCLUSIONS

Techniques presented in this paper for studying in situ formation stresses are nondestruc
tive, require no extra measurement, as they make use of the standard acoustic logging
data, and are reasonably reliable in estimating absolute stress magnitudes. Inversions for
stress directions and magnitudes are simple, efficient and, moreover, well-conditioned.

Anisotropy in rocks can be characterized as either intrinsic or stress-induced. It is
possible to have a mixture of these two types of anisotropy in the earth. The stress mag
nitude inversion scheme presented in this paper requires observations of stress-induced
anisotropy dominating intrinsic anisotropy. When intrinsic anisotropy is comparable to
stress-induced anisotropy throughout the borehole, the current technique may not give
accurate results.
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APPENDIX

Sensitivity Coefficients for Flexural Dispersions to the Formation Stress
and Nonlinear Constants

The sensitivity coefficients Cr, cg, cg, c2, are given by the following integrals

o h (A-I)C1 = 2 2 I 'wm N

CO _ c66Iz (A-2)
2 - 2w;,,!N '

CO _ C66h (A-3)
3 - 2W;,,!N'

CO _ C66 I 4 (A-4)
4 - 2W;,,!N'

Since the integral h consists of several lengthy expressions, we express this integral as
a sum of 9 terms as shown below:

9

h = LhQ,
Q=1

where

III

(A-6)

(A-7)

(A-8)

(A-9)
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roo rk u¢
h5 Ja rdr J

o
d¢[C66 E RR(Uz,r + ur,z) + C66 E R<I> (~ + u¢,z)

+ (Tzz + C66ERR)Ur,z + C66 E R<I>U¢,z]u;,z ,

116 = 100

rdr 102" d¢[Tzzu¢,z + C66(ER<I>Ur,z + E<I><I>U¢,z)

+ C66 ER<I>(Uzr +Urz ) + C66 E <I><I> (U Z ,¢ +u~zl]uiz," r 'P, 'P,

(A-lO)

(A-ll)

(A-12)

The remaining integrals h, h, 14 and IN take the following forms

100 102" 1 U ¢ u¢h rdr d¢[[ERRUrr+-ER<I>(~--+U~r)]u;r
a 0 '2 r r '1', ,

1 **Ur ¢ U¢ U¢ ¢ Ur+ [E<I><I>UH + -ER<I>(-' - - +U¢r)](-' +-)
'2 r r' r r

+ ~[ERR(Ur,z +Uz,r) +ER<I>(U;:¢ +u¢,z)](u:,r +u;,z)

1 [ ( (UZ ¢ )](* U: ¢ ( )+ -4 ER<I> Ur,z + Uz,r) + E<I><I> -' + U¢,z u~ z +-') A-ISr '1-', r

+ -4
1

[( ERR + E<I><I» (Ur,¢ - U¢ + u~ r) + 2ER<I> (Ur r + U¢,¢ + Ur )](ui r + U; ~)] ,
r r ,+" 'T r 'P, ,'t'
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~ERiI>(UT,</> _ U</> + u'" )]u*
2 r r 'f',r T,T

+ [EiI>iI>uzz + (ERR + EiI>iI»UTT +ERR(U</>,</> + U
T
)_

, 'r r

1 * *_ERi/>(uT,</> _ u</> +U</>T)](U</>,</> + uT)
2 ,. ,. , ,. ,.

+ ~[(2EiI>iI> - ERR)(UT,z + UZ,T) - 3ERiI>(U~</> + u</>,Z)](U;,T + u;,z)

+ ~[(2ERR - EiI>iI»t;,</> + u</>,z) - 3ERiI>(UZ ,T + uT,z)](u;,z + u;,</»

1( E ) ( u</>,</> UT) ( * *)+ -2 2 RiI>Uz,z - ERiI> UT,T + -- + - u" T + uT"r r 'f', ,'I'

-2
1

(ERR + EiI>iI»(UT,</> - u</> +U</>,T)(U:T+U;",)],r r 'Y, ,'I'
(A-16)

(A-IS)

where Tzz is the axial stress in the formation; ERR, EiI>iI> and ERiI> are the static strains
in the formation written in the cylindrical-polar coordinates; Cn, C12 and CBB are the
linear elastic constants of the formation in the reference state; u!, u~ and u{ denote
flexural wave solutions in the fluid; and, u" u</> and Uz are flexural wave solutions in the
formation- with radial-polarization parallel to the far-field stress direction.

The sensitivity coefficients cio, cilo, clo and C£o are given by the same expressions
as for Cp, cg, cg and cg, except for the important difference that all of the biasing
stresses and strains are rotated by 90 0 from before so that the far-field stress direction
is now perpendicular to the flexural wave radial polarization direction.
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Sensitivity Coefficients for the Stoneley Dispersion to the Formation
Stress and Nonlinear Constants

The sensitivity coefficients C1 , C2, C3 and C4 are given by the following integrals

J 1
C1 = Z 2 J ' (A-19)

Wm N

C _ C66h (A-ZO)2-?2J'....wm N

C _ C66 J 3 (A-21)3- Z 2J 'Wm N (

C
4

= C66 J 4 (A-ZZ)
ZW;,']N

where J 1 , J 2 , J 3 and J 4 are expressed in terms of surface integrals as shown below:

J1 ['" rdr /02" d¢[[Tzzuz,z + C12(ERRUr,r + Eipip~ )ju;,z

+ [C12ERRUz z + (TRR + ZCllERR)Urr + C12(ERR + Eipip) ur]u;r, , r '

*+ [c12EipipUz z + (Tipip + ZCllEipip) Ur + C12(ERR + Eipip)urr]ur
, r ' r

+ [TRRUz,r + C66 E RRUr ,z]U:,r

+ [C66ERR(Uz,r + ur,z) + (Tzz + C66ERR)Ur,z]u;,z]' (A-Z3)

(

roo rdr r2
" d¢[[ERRUrr]U;r + [Eipip UrjU;Ja Jo " r r

+ ~[ERR(Uz,r + ur,z)](u;,r + u;,z)] ,

J3 = roo rdr rh
d¢[[ERR + Eipip )uz z + Eipip Ur + ERRUr r]U; zi a Jo 'r' ,

+ [ERRUz,z + EipipUr,r + (ERR + EN) ~]U;,r

+ [EipipUz,z + ERR Ur + (ERR + Eipip)Urr]U;
r ' r

+ ~[(ZEipip - ERR)(Uz,r + Ur,z)](U;,r + U;,z)],
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(A-Z5)

(A-Z6)

(



(A-27)

Formation Stress Estimation

IN 10" rdrt" d¢pj(u{u{* +u{u{*)

roo rh

+ Ja rdr Jo d¢p,(uru; + uzu~),

where u{ and u{ denote the Stoneley wave solution in the borehole fluid; and, Ur and
U z are the corresponding solution in the formation.
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Figure 1: Separation of all borehole modes that· are generated by the sonic tool.
(a, top): A typical spectrogram of recorded waveforms. Red and blue colors in
dicate high and low amplitudes of signals in the measurement frequency band of
approximately 1 to 20 kHz. (b.. bottom): Velocities and frequency band of the flex
ural mode, compressional headwave, and a first-order tool mode.
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Crossover of Flexural Waves
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Figure 2: Typical dispersion Curves of borehole modes in the stressed zone extracted
from the sonic logging data. (a, top): Flexural waves from cross-dipole logging;
(b, bottom): Compressional headwave and Stoneley wave from monopole logging.
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Figure 3: Maximum stress direction in the stressed zone where crossovers in flexural
dispersions are continuously observed. The second panel shows the group delay of
the slow flexural wave from the fast one by cross-correlating the low-frequency part
of the fast and slow flexural waveforms, indicating the amount of anisotropy that
the stress induces in the formation.
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Flexural Waves (Theoretical Results and Measurements)

::: l.-.~S~H~.~~4~0~M~p~a~S~~~.~1~2;-;:M~p~a~-:'-"':' "~~~~~=~R~'~f'~"~",~'~S~f'~"~~=======~
Ui Current Stale Fasl DirectionE _ Current Siale srow Direction
_ 700 L . . \1 Measurement (fast flexural)
.£ ....:... 0 Measurement (srow flexural)

".2 650
~
:Jl600
ctl

-c
0-

550

2

2

. .:.. '.

5000~----~----~----~-=------~==:=J
0.5 1 1.5

Frequency (kHz)

800[--;~~~~~~~~s=to~n;e~l~e~y~W_a_v_e"":-(T",:h...:e,o...:re::.t,,,:lc::a::,1::,R::e::s::u::lt::a::.n:::d~M~e~a~su~r~e~m~e~n~ts~)~;;;~~:===ll
SH .. ,40. ~p~ .Sh:. 12 MPa .. '1_ -'1- Reference Stale I

~(IJE 750 Current Stale
Measurement

;:700 .... ",'lv...

'6
-ll 650
>
:Jl600
ctl
-c
0-

550

Figure 4: Dispersion curves that are estimated from data as well as calculated by the
perturbation theory with inverted tectonic stresses and nonlinear elastic constants

as inputs.
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Figure 5: Radial (TRR), circumferential(TiPiP) and radial-azimuthal shear (TRiP) stress
variations away from the borehole surface along various azimuthal directions from
the stress axis (<I> = 0° , 30° , 60° , and 90°). All stresses are normalized with respect
to the far-field stress S.
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