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We propose a statistical modeling technique, called the Hierar-
chical Association Rule Model (HARM), that predicts a patient’s
possible future medical conditions given the patient’s current and
past history of reported conditions. The core of our technique is a
Bayesian hierarchical model for selecting predictive association rules
(such as “condition 1 and condition 2 → condition 3”) from a large
set of candidate rules. Because this method “borrows strength” using
the conditions of many similar patients, it is able to provide predic-
tions specialized to any given patient, even when little information
about the patient’s history of conditions is available.

1. Introduction. The emergence of large-scale medical record databases
presents exciting opportunities for data-based personalized medicine. Predic-
tion lies at the heart of personalized medicine and in this paper we propose
a statistical model for predicting patient-level sequences of medical condi-
tions. We draw on new approaches for predicting the next event within a
“current sequence,” given a “sequence database” of past event sequences
(Rudin et al., 2011a,b). Specifically we propose the Hierarchical Association
Rule Model (HARM) that generates a set of association rules such as dyspep-
sia and epigastric pain→ heartburn, indicating that dyspepsia and epigastric
pain are commonly followed by heartburn. HARM produces a ranked list of
these association rules. Both patients and caregivers can use the rules to
guide medical decisions. Built-in explanations represent a particular advan-
tage of the association rule framework—the rule predicts heartburn because
the patient has had dyspepsia and epigastric pain.

In our setup, we assume that each patient visits a healthcare provider
periodically. At each encounter, the provider records time-stamped medical
conditions experienced since the previous encounter. In this context, we
address several prediction problems such as:
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• Given data from a sequence of past encounters, predict the next con-
dition that a patient will report.
• Given basic demographic information, predict the first condition that

a patient will report.
• Given partial data from an encounter (and possibly prior encounters)

predict the next condition.

Though medical databases often contain records from thousands or even
millions of patients, most patients experience only a handful of the massive
set of potential conditions. This patient-level sparsity presents a challenge
for predictive modeling. Our hierarchical modeling approach attempts to
address this challenge by borrowing strength across patients.

The sequential event prediction problem is new a supervised learning
problem that has been formalized here and by Rudin et al. (2011a,b). Du-
Mouchel and Pregibon (2001) presented a Bayesian analysis of association
rules. Their approach, however, does not apply in our context because of the
sequential nature of our data. Rules are particularly useful in our context:
rules yield very interpretable models, and their conditional probabilities in-
volve few variables and are thus more reliable to estimate.

The experiments this paper presents indicate that HARM outperforms
several baseline approaches including a standard “maximum confidence,
minimum support threshold” technique used in association rule mining, and
also a non-hierarchical version of our Bayesian method (from Rudin et al.,
2011a,b) that ranks rules using “adjusted confidence.”

More generally, HARM yields a prediction algorithm for sequential data
that can potentially be used for a wide variety of applications beyond con-
dition prediction. For instance, the algorithm can be directly used as a rec-
ommender system (for instance, for vendors such as Netflix, amazon.com,
or online grocery stores such as Fresh Direct and Peapod). It can be used
to predict the next move in a video game in order to design a more inter-
esting game, or it can be used to predict the winners at each round of a
tournament (e.g., the winners of games in a football season). All of these
applications possess the same basic structure as the condition prediction
problem: a database consisting of sequences of events, where each event is
associated to an individual entity (medical patient, customer, football team).
As future events unfold in a new sequence, our goal is to predict the next
event.

In Section 2 we provide basic definitions and present our model. In Sec-
tion 3 we evaluate the predictive performance of HARM, along with several
baselines through experiments on clinical trial data. Section 4 provides re-
lated work, and Section 5 provides a discussion and offers potential exten-
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sions.

2. Method. This work presents a new approach to association rule min-
ing by determining the “interestingness” of rules using a particular (hierar-
chical) Bayesian estimate of the probability of exhibiting condition b, given
a set of current conditions, a. We will first discuss association rule mining
and its connection to Bayesian shrinkage estimators. Then we will present
our hierarchical method for providing personalized condition predictions.

2.1. Definitions. An association rule in our context is an implication
a→ b where the left side is a subset of conditions that the patient has expe-
rienced, and b is a single condition that the patient has not yet experienced
since the last encounter. Ultimately, we would like to rank rules in terms of
“interestingness” or relevance for a particular patient at a given time. Using
this ranking, we make predictions of subsequent conditions. Two common
determining factors of the “interestingness” of a rule are the “confidence”
and “support” of the rule (Agrawal, Imieliński and Swami, 1993; Piatetsky-
Shapiro, 1991).

The confidence of a rule a→ b for a patient is the empirical probability:

Conf(a→ b) :=
Number of times conditions a and b were experienced

Number of times conditions a were experienced

:= P̂ (b|a).

The support of set a is:

Support(a) := Number of times conditions a were experienced

∝ P̂ (a),

where P̂ (a) is the empirical proportion of times that conditions a were expe-
rienced. When a patient has experienced a particular set of conditions only
a few times, a new single observation can dramatically alter the confidence
P̂ (b|a) for many rules. This problem occurs commonly in our clinical trial
data, where most patients have reported fewer than 10 total conditions. The
vast majority of rule mining algorithms address this issue with a minimum
support threshold to exclude rare rules, and the remaining rules are eval-
uated for interestingness (reviews of interestingness measures include those
of Tan, Kumar and Srivastava, 2002; Geng and Hamilton, 2007). The defini-
tion of interestingness is often heuristic, and is not necessarily a meaningful
estimate of P (b|a).

It is well-known that problems arise from using a minimum support
threshold. For instance, consider the collection of rules meeting the min-
imum support threshold condition. Within this collection, the confidence
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alone should not be used to rank rules: among rules with similar confi-
dence, the rules with larger support should be preferred. More importantly,
“nuggets,” which are rules with low support but very high confidence, are
often excluded by the threshold. This is problematic, for instance, when a
condition that occurs rarely is strongly linked with another rare condition,
it is essential not to exclude the rules characterizing these conditions. In our
data, the distribution of conditions has a long tail, where the vast majority
of events happen rarely: out of 1800 possible conditions, 1400 occur less than
10 times. These 1400 conditions are precisely the ones in danger of being
excluded by a minimum support threshold.

Our work avoids problems with the minimum support threshold by rank-
ing rules with a shrinkage estimator of P (b|a). These estimators directly
incorporate the support of the rule. One example of such an estimator is the
“adjusted confidence” (Rudin et al., 2011a,b):

AdjConf(a→ b,K):=
Number of times conditions a and b were experienced

Number of times conditions a were experienced +K
.

The effect of the penalty term K is to pull low-support rules towards the
bottom of the list; any rule achieving a high adjusted confidence must over-
come this pull through either a high enough support or a high confidence.
Using the adjusted confidence avoids the problems discussed earlier: “in-
terestingness” is closely related to the conditional probability P (b|a), and
among rules with equal confidence the higher support rules are preferred,
and there is no strict minimum support threshold.

In this work, we extend the adjusted confidence model in an important
respect, in that our method shares information across similar patients to
better estimate the conditional probabilities. The adjusted confidence is a
particular Bayesian estimate of the confidence. Assuming a Beta prior dis-
tribution for the confidence, the posterior mean is:

P̃ (b|a) :=
α+ #(a&b)

α+ β + #a
,

where #x is the support of condition x, and α and β denote the parameters
of the (conjugate) Beta prior distribution. Our model allows the parameters
of the Binomial to be chosen differently for each patient and also for each
rule. This means that our model can determine, for instance, whether a
particular patient is more likely to repeat a condition that has occurred
only once, and also whether a particular condition is more likely to repeat
than another.

We note that our approach makes no explicit attempt to infer causal
relationships between conditions. The observed associations may in fact arise
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from common prior causes such as other conditions or drugs. Thus a rule
such as dyspepsia → heartburn does not necessarily imply that successful
treatment of dyspepsia will change the probability of heartburn. Rather the
goal is to accurately predict heartburn in order to facilitate effective medical
management.

2.2. Hierarchical Association Rule Model (HARM). For a patient i and a
given rule, r, say we observe yir co-occurrences (support for lhs ∪ rhs), where
there were a total of nir encounters that include the lhs (nir is the support
for lhs). We model the number of co-occurrences as Binomial(nir, pir) and
then model pir hierarchically to share information across groups of similar
individuals. Define M as a I ×D matrix of static observable characteristics
for a total of I individuals andD observable characteristics, where we assume
D > 1 (otherwise we revert back to a model with a rule-wise adjustment).
Each row of M corresponds to a patient and each column to a particular
characteristic. We define the columns of M to be indicators of particular
patient categories (gender, or age between 30 and 40, for example), though
they could be continuous in other applications. Let Mi denote the ith row
of the matrix M. We model the probability for the ith individual and the
rth rule pir as coming from a Beta distribution with parameters πir and
τi. We then define πir through the regression model πir = exp(M′iβr + γi)
where βr defines a vector of regression coefficients for rule r and γi is an
individual-specific random effect. More formally, we propose the following
model:

yir ∼ Binomial(nir, pir)

pir ∼ Beta(πir, τi)

πir = exp(M′iβr + γi).

Under this model,

E(pir|yir, nir) =
yir + πir

nir + πir + τi
,

which is a more flexible form of adjusted confidence. This expectation also
produces non-zero probabilities for a rule even if nir is zero (patient i has
never reported the conditions on the left hand side of r before). This could
allow rules to be ranked more highly even if nir is zero. The fixed effect
regression component, M′iβr, adjusts πir based on the patient characteristics
in the M matrix. For example, if the entries of M represented only gender,
then the regression model with intercept βr,0 would be βr,0 +βr,11male where
1male is one for male respondents and zero for females. Being male, therefore,
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has a multiplicative effect of eβr,1 on πir. In this example, the M′iβr value
is the same for all males, encouraging similar individuals to have similar
values of πir. For each rule r, we will use a common prior on all coefficients
in βr; this imposes a hierarchical structure, and has the effect of regularizing
coefficients associated with rare characteristics.

The πir’s allow rare but important “nuggets” to be recommended. Even
across multiple patient encounters, many conditions occur very infrequently.
In some cases these conditions may still be highly associated with certain
other conditions. For instance, compared to some conditions, migraines are
relatively rare. Patients who have migraines however typically also experi-
ence nausea. A minimum support threshold algorithm might easily exclude
the rule “migraines → nausea” if a patient hasn’t experienced many mi-
graines in the past. This is especially likely for patients who have few en-
counters. In our model, the πir term balances the regularization imposed
by τi to, for certain individuals, increase the ranking of rules with high
confidence but low support. The τi term reduces the probability associated
with rules that have appeared few times in the data (low support), with the
same effect as the penalty term (K) in the adjusted confidence. Unlike the
cross-validation or heuristic strategies suggested in Rudin et al. (2011a,b),
we estimate τi as part of an underlying statistical model. Within a given
rule, we assume τi for every individual comes from the same distribution.
This imposes additional structure across individuals, increasing stability for
individuals with few observations.

It remains now to describe the precise prior structure on the regression
parameters and hyperparameters. We assign Gaussian priors with mean 0
and variance σ2τ to the τ on the log scale. Since any given patient is unlikely to
experience a specific medical condition, the majority of probabilities are close
to zero. Giving τi a prior with mean zero improves stability by discouraging
excessive penalties. We assign all elements βr,d of vectors βr a common
Gaussian prior on the log scale with mean µβ and variance σ2β. We also
assume each γi comes from a Gaussian distribution on the log scale with
common mean µγ and variance σ2γ . Each individual has their own γi term,
which permits flexibility among individuals; however, all of the γi terms come
from the same distribution, which induces dependence between individuals.
We assume diffuse uniform priors on the hyperparameters σ2τ , µβ, and σ2β.
Denote Y as the matrix of yir values, N as the matrix of nir values, and
β as the collection of β1, . . . ,βR. The prior assumptions yield the following
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high cholesterol → myocardial infarction

probability

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

hyertension → myocardial infarction

probability

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig 1. Approximate posterior of two rules. These are histograms of the posterior means
for the set of patients.

posterior:

p, π, τ,β|Y,N,M ∝
I∏
i=1

R∏
r=1

pyir+πirir (1− pir)nir−yir+τi

×
R∏
r=1

D∏
d=1

Normal(log(βr,d)|µβ, σ2β)

×
I∏
i=1

Normal(log(γi)|µγ , σ2γ)Normal(log(τi)|0, σ2τ ).

HARM produces draws from the (approximate) posterior distribution for
each probability. Figure 1 shows estimates of the posterior probabilities for
high cholesterol → myocardial infarction and hypertension → myocardial
infarction. Comparing the distributions of related rules can often provide
insights into associations in the data, as we demonstrate in Section 3.2. In
the context of medical condition prediction, these probabilities are of interest
and we analyze our estimates of their full posterior distributions in Section
3.2. To rank association rules for the purpose of prediction, however, we
need a single estimate for each probability (rather than a full distribution),
which we chose as the posterior mean. In practice, we suggest evaluating
the mean as well other estimators for each probability (the mode or median,
for example) and selecting the one with the best performance in each par-
ticular application. We carry out our computations using a Gibbs sampling
algorithm, provided in Figure 2.

2.3. Approximate updating. Given a batch of data, HARM makes pre-
dictions based on the posterior distributions of the pir’s. Since the posteriors
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For a suitably initialized chain, at step v:

1. Update pir from the conjugate Beta distribution given πir, τi,Y,N,M.

2. Update τi using a Metropolis step with proposal τ∗i where

log(τ∗i ) ∼ N(τ
(v−1)
i , (scale of jumping dist)).

3. For each rule, update the vector βr using a Metropolis step with

log(β∗r) ∼ N(β(v−1)
r , (scale of jumping dist)).

4. Update γi using a Metropolis step with

log(γ∗i ) ∼ N(γ
(v−1)
i , (scale of jumping dist)).

5. Update πir = exp(M′iβr + γi).

6. Update µβ ∼ N(µ̂β, σ
2
β) where

µ̂β =
(

1

D +R

) R∑
r=1

D∑
d=1

βr,d.

7. Update σ2
β ∼ Inv-χ2(d− 1, σ̂2

β) where

σ̂2
β =

(
1

D +R− 1

) R∑
r=1

D∑
d=1

(βr,d − µβ)2.

8. Update σ2
τ ∼ Inv-χ2(I − 1, σ̂2

τ ) where σ̂2
τ = 1

I−1

∑I

i=1
(τi − µτ )2.

9. Update µγ ∼ N(µ̂γ , σ
2
γ) where µ̂γ = 1

I

∑I

i=1
γi.

10. Update σ2
γ ∼ Inv-χ2(I − 1, σ̂2

γ) where σ̂2
γ = 1

I−1

∑I

i=1
(γi − µγ)2.

Fig 2. Gibbs sampling algorithm for hierarchical bayesian association rule modeling for
sequential event prediction (HARM).
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are not available in closed form, we need to iterate the algorithm in Figure 2
to convergence in order to make predictions. Each time the patient visits
the physician, each pir could be updated by again iterating the algorithm
in Figure 2 to convergence. In some applications, new data continue arrive
frequently, making it impractical to compute approximate posterior distri-
butions using the algorithm in Figure 2 for each new encounter. In this
section we provide an approximate updating scheme to incorporate new pa-
tient data after an initial batch of encounters has already been processed.
The approximate scheme can be used for real-time online updating.

Beginning with an initial batch of data, we run the algorithm in Figure 2
to convergence in order to obtain τ̂i and π̂ir, which are defined to be the
posterior mean of the estimated distributions for τi and πir. The approximate
updating scheme keeps τi and πir fixed to be τ̂i and π̂ir. Given that up to

encounter e− 1, we have observed y
(e−1)
ir and n

(e−1)
ir , we are presented with

new observations that have counts y
(newobs.)
ir and n

(newobs.)
ir so that y

(e)
ir =

y
(e−1)
ir + y

(newobs.)
ir and n

(e)
ir = n

(e−1)
ir + n

(newobs.)
ir . In order to update the

probability estimates to reflect our total current data, y
(e)
ir , n

(e)
ir , we will use

the following relationship:

P (pir|y(e)ir , n
(e)
ir , τ̂i, π̂ir) ∝ P (y

(newobs.)
ir |n(newobs.)ir , pir)

×P (pir|y(e−1)ir , n
(e−1)
ir , τ̂i, π̂ir).

The expression P (pir|y(e−1)ir , n
(e−1)
ir , τ̂i, π̂ir) is the posterior up to encounter

e − 1 and has a Beta distribution. The likelihood of the new observations,

P (y
(newobs.)
ir |n(newobs.)ir , pir), is Binomial. Conjugacy implies that the updated

posterior also has a Beta distribution. In order to update the probability
estimates for our hierarchical model, we use the expectation of this distri-
bution, that is

E(pir|y(e)ir , n
(e)
ir , τ̂i, π̂ir) =

y
(e−1)
ir + ynewobs.ir + π̂ir

n
(e−1)
ir + nnewobs.ir + π̂ir + τ̂i

.

3. Application to repeated patient encounters. We present re-
sults of HARM, with the approximate updating scheme in Section 2.3, on
co-prescribing data from a large clinical trial. In the trial, each patient visits
a healthcare provider periodically. At each encounter, the provider records
time-stamped medical conditions (represented by MedDRA terms) experi-
enced since the previous encounter. Thus, each encounter is associated with
a sequence of medical conditions. These data are from around 42,000 patient
encounters from about 2,300 patients, all at least 40 years old. The matrix of
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observable characteristics encodes the basic demographic information: gen-
der, age group (40-49, etc.), ethnicity. For each patient we have a record of
each medication prescribed and the condition/chief complaint (back pain,
asthma, etc) that warranted the prescription. We chose to predict patient
complaints rather than prescriptions since there are often multiple prescrib-
ing options (medications) for the same complaint. Some patients had pre-
existing conditions that continued throughout the trial. For these patients,
we include these pre-existing conditions in the patient’s list of conditions
at each encounter. Other patients have recurrent conditions for which we
would like to predict the occurrences. If a patient reports the same condi-
tion more than once during the same thirty day period we only consider the
first occurrence of the condition at the first report. If the patient reports the
condition once and then again more than thirty days later, we consider this
two separate incidents.

As covariates, we used age, gender, race and drug/placebo (an indicator
of whether the patient was in the treatment or control group for the clinical
trial). We fit age using a series of indicator variables corresponding to four
groups (40-49, 50-59, 60-69, 70+). We included all available covariates in
our simulation studies. In practice, model selection will likely be essential to
select the best subset of covariates for predictive performance. We discuss
covariate selection in further detail in the supplement article (McCormick,
Rudin and Madigan, 2011).

Our experiments consider only the marginal probabilities (support) and
probabilities conditional on one previous condition. Thus, the left hand side
of each rule contains either 0 items or 1 item. In our simulations, we used
chains of 5,000 iterations keeping every 10th iteration to compute the mean
we used for ranking and discarding the first thousand iterations.

In Section 3.1 we present experimental results to compare the predictive
performance of our model to other rule mining algorithms for this type of
problem. In Section 3.2 we use the probability estimates from the model
to demonstrate its ability to find new associations; in particular, we find
associations that are present in the medical literature but that may not be
obvious by considering only the raw data.

3.1. Predictive performance. We selected a sample of patients by assign-
ing each patient a random draw from a Bernoulli distribution with success
probability selected to give a sample of patients on average around 200. For
each patient we drew uniformly an integer ti between 0 and the number of
encounters for that patient. We ordered the encounters chronologically and
used encounters 1 through ti as our training set and the remaining encoun-



BAYESIAN HIERARCHICAL RULE MODELING 11

ters as the test set. Through this approach, the training set encompasses
the complete set of encounters for some patients (“fully observed”), includes
no encounters for others (“new patients”), and a partial encounter history
of the majority of the test patients (“partially-observed patients”). We be-
lieve this to be a reasonable approximation of the context where this type of
method would be applied, with some patients having already been observed
several times and other new patients entering the system for the first time.
We evaluated HARM’s predictive performance using a combination of com-
mon and rare conditions. For each run of the simulation, we use the 25 most
popular conditions, then randomly select and additional 25 conditions for a
total of 50.

The algorithm was used to iteratively predict the conditions revealed at
each encounter. For each selected patient, starting with their first test en-
counter, and prior to that encounters’ first condition being revealed, the
algorithm made a prediction of c possible conditions, where c = 3. Note
that to predict the very first condition for a given patient when there are
no previous encounters, the recommendations come from posterior means of
the coefficients estimated from the training set. The algorithm earned one
point if it recommended the current condition before it was revealed, and no
points otherwise. Then, yir and nir were updated to include the revealed con-
dition. This process was repeated for the patient’s remaining conditions in
the first encounter, and repeated for each condition within each subsequent
encounter. We then moved to the next patient and repeated the procedure.

The total score of the algorithm for a given patient was computed as
the total number of points earned for that patient divided by the total
number of conditions experienced by the patient. The total score of the
algorithm is the average of the scores for the individual patients. Thus, the
total score is the average proportion of correct predictions per patient. We
repeated this entire process (beginning with selecting patients) 500 times and
recorded the distribution over the 500 scores. We compared the performance
of HARM (using the same scoring system) against an algorithm that ranks
rules by adjusted confidence, for several values of K. We also compared with
the “max confidence minimum support threshold” algorithm for different
values of the support threshold θ, where rules with support below θ are
excluded and the remaining rules are ranked by confidence. For both of
these algorithms, no information across patients is able to be used.

Figure 3 shows the results, as boxplots of the distribution of scores for
the entire collection of partially-observed, fully observed, and new patients.
Paired t-tests comparing the mean proportion of correct predictions from
HARM to each of the alternatives had p-values for a significant difference in
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Fig 3. Predictive performance for (a) all patients, (b) partially-observed patients, (c) new
patients. Each boxplot represents the distribution of scores over 500 runs. For (a), each
run’s score (an individual point on a boxplot) is based on a sample of approximately 200
patients. For (b) and (c), each point is based on a subset of these ∼ 200 patients.
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our favor less than 10−15. In other words, HARM has statistically superior
performance over all K and θ; i.e., better performance than either of the
two algorithms even if their parameters K and θ had been tuned to the
best possible value. For all four values of K for the adjusted confidence,
performance was slightly better than for the plain confidence (K = 0).
The “max confidence minimum support threshold” algorithm (which is a
standard approach to association rule mining problems) performed poorly
for minimum support thresholds of 2 and 3. This poor performance is likely
due to the sparse information we have for each patient. Setting a minimum
support threshold as low as even two eliminates many potential candidate
rules from consideration.

The main advantage of our model is that it shares information across pa-
tients in the training set. This means that in early stages where the observed
yir and nir are small, it may still be possible to obtain reasonably accurate
probability estimates, since when patients are new, our recommendations de-
pend heavily on the behavior of previously observed similar patients. This
advantage is shown explicitly through Figures 3(b) and 3(c), which per-
tain to partially-observed and new patients, respectively. The advantage of
HARM over the other methods is more pronounced for new patients: in
cases where there are no data for each patient, there is a large advantage to
sharing information. We performed additional simulations which further il-
lustrate this point and are presented in the supplement (McCormick, Rudin
and Madigan, 2011).

3.2. Association mining. The conditional probability estimates from our
model are also a way of mining a large and highly dependent set of associa-
tions.

Ethnicity, high cholesterol or hypertension → myocardial infarction: Figure
4(a) shows the distribution of posterior mean propensity for myocardial in-
farction (heart attack) given two conditions previously reported as risk fac-
tors for myocardial infarction: high cholesterol and hypertension (see Kuk-
line, Yoon and Keenan, 2010, for a recent review). Each bar in the figure
corresponds to the set of respondents in a specified ethnic group. For Cau-
casians, we typically estimate a higher probability of myocardial infarction
in patients who have previously had high cholesterol. In African Americans /
Hispanics and Asian patients, however, we estimate a generally higher prob-
ability for patients who have reported hypertension. This distinction demon-
strates the flexibility of our method in combining information across respon-
dents who are observably similar. Some other specific characteristics of the
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Fig 4. Propensity of myocardial infarction in patients who have reported high cholesterol
or hypertension using (a) HARM and (b) (unadjusted) confidence. For each demographic
group, high cholesterol (HC) is on the left and hypertension (Hy) is on the right. Thick
lines represent the middle half of the posterior mean propensities for respondents in the
indicated demographic group. Outer lines represent the middle 90% and dots represent
the mean. The vast majority of patients did not experience a myocardial infarction, which
places the middle 90% of the distribution in plot (b) approximately at zero.

estimated distributions vary with ethnicity, for instance, the propensity dis-
tribution for Caucasians who have had high cholesterol has a much longer
tail than those of the other ethnic groups.

As a comparison, we also included the same plot using (unadjusted) con-
fidence, in Figure 4(b). In both Figure 4(a) and Figure 4(b), the black dots
are the mean across all the patients, which are not uniformly at zero be-
cause there were some cases of myocardial infarction and hypertension or
high cholesterol. In Figure 4(b), the colored, smaller dots represent the rest
of the distribution (quartiles), which all appear to be at zero in plot (b)
since the vast majority of patients did not have a myocardial infarction at
all, so even fewer had a myocardial infarction after reporting hypertension
or high cholesterol.

Age, high cholesterol or hypertension, treatment or placebo →
myocardial infarction: Since our data come from a clinical trial, we also
included an indicator of treatment vs. placebo condition in the hierarchi-
cal regression component of HARM. Figures 5 and 6 display the posterior
means of propensity of myocardial infarction for respondents separated by
age and treatment condition. Figure 5 considers patients who have reported
hypertension, Figure 6 considers patients who have reported high cholesterol.
In both Figure 5 and Figure 6, it appears that the propensity of myocar-
dial infarction predicted by HARM is greatest for individuals between 50
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Fig 5. Propensity of myocardial infarction in patients who have reported hypertension,
estimated by (a) HARM and (b) (unadjusted) confidence. For each demographic group,
the placebo (P) is on the left and the treatment medication (T) is on the right. Thick
lines represent the middle half of the posterior mean propensities for respondents in the
indicated demographic group. Outer lines represent the middle 90% and dots represent the
mean. Overall the propensity is higher for individuals who take the study medication that
those who do not.
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Fig 6. Propensity of myocardial infarction in patients who have reported high cholesterol,
estimated by (a) HARM and (b) (unadjusted) confidence.

and 70, with the association again being stronger for high cholesterol than
hypertension.

For both individuals with either high cholesterol or hypertension, use
of the treatment medication was associated with increased propensity of
myocardial infarction. This effect is present across nearly every age category.
The distinction is perhaps most clear among patients in their fifties in both
Figure 5 and Figure 6. The treatment product in this trial has been linked
to increased risk of myocardial infarction in numerous other studies. The
product was eventually withdrawn from the market by the manufacturer
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because of its association with myocardial infarctions.
The structure imposed by our hierarchical model gives positive probabil-

ities even when no data are present in a given category; in several of the
categories, we observed no instances of a myocardial infarction, so estimates
using only the data cannot differentiate between the categories in terms
of risk for myocardial infarction, as particularly illustrated through Figure
6(b).

4. Related Works. Four relevant works on Bayesian hierarchical mod-
eling and recommender systems are those of DuMouchel and Pregibon (2001),
Breese, Heckerman and Kadie (1998), Condliff, Lewis and Madigan (1999)
and Agarwal, Zhang and Mazumder (2011). DuMouchel and Pregibon (2001)
deal with the identification of interesting itemsets (rather than identifica-
tion of rules). Specifically, they model the ratio of observed itemset frequen-
cies to baseline frequencies computed under a particular model for inde-
pendence. Neither Condliff, Lewis and Madigan (1999) nor Breese, Heck-
erman and Kadie (1998) aim to model repeat purchases (recurring condi-
tions). Breese, Heckerman and Kadie (1998) uses Bayesian methods to clus-
ter users, and also suggests a Bayesian network. Condliff, Lewis and Madi-
gan (1999) present a hierarchical Bayesian approach to collaborative filtering
that “borrows strength” across users. Agarwal, Zhang and Mazumder (2011)
also build a personalized recommender system that models item-item sim-
ilarities. Their model uses logistic regression for estimating pir rather than
using πir and τi. This has the advantage of being a simpler model, but loses
the interpretability our model has through using association rules. It also
loses the potential advantage of estimating only conditional probabilities
involving few variables.

As far as we know, the line of work by Davis et al. (2010) is the first to
use an approach from recommender systems to predict medical conditions,
though in a completely different way than ours; it is based on vector sim-
ilarity, in the same way as Breese, Heckerman and Kadie (1998). (Also see
references in Davis et al. (2010) for background on collaborative filtering.)

5. Conclusion and Future Work. We have presented a hierarchical
model for ranking association rules for sequential event prediction. The se-
quential nature of the data is captured through rules that are sensitive to
time order, that is, a → b indicates conditions a are followed by conditions
b. HARM uses information from observably similar individuals to augment
the (often sparse) data on a particular individual; this is how HARM is
able to estimate probabilities P (b|a) before conditions a have ever been re-
ported. In the absence of data, hierarchical modeling provides structure. As
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more data become available, the influence of the modeling choices fade as
greater weight is placed on the data. The sequential prediction approach is
especially well suited to medical condition prediction, where experiencing
two conditions in succession may have different clinical implications than
experiencing either condition in isolation.

Model selection is important for using our method in practice. There are
two types of model selection required for HARM: the choice of covariates
encoded by the matrix M, and the collection of available rules. For the
choice of covariates in M, standard feature selection methods can be used,
for instance, a forward stagewise procedure where one covariate at a time
is added as performance improves, or a backward stagewise method where
features are iteratively removed. Another possibility is to combine covari-
ates, potentially through a method similar to model-based clustering (Fraley
and Raftery, 2002). To perform model selection on the choice of rules, it is
possible to construct analogous “rule selection” methods as one might use
for a set of covariates. A forward stagewise procedure could be constructed,
where the set of rules is gradually expanded as prediction performance in-
creases. Further, it is possible to combine a set of rules into a single rule
as in model-based clustering; e.g., rather than separate rules where the left
side is either “dorsal pain,” “back pain,” “low back pain,” or “neck pain,”
we could use simply “back or neck pain” for all of them.

Another direction for future work is to incorporate higher-order depen-
dence, along the line of work by Berchtold and Raftery (2002). An algorithm
for sequential event prediction is presented in ongoing work (Letham, Rudin
and Madigan, 2011), which is loosely inspired by the ideas of Berchtold and
Raftery (2002), but does not depend on association rules. A third potential
future direction is to design a more sophisticated online updating procedure
than the one in Section 2.3. It may be possible to design a procedure that
approximately updates all of the hyperparameters as more data arrive.
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SUPPLEMENTARY MATERIAL

Supplement A: Additional simulation results
(http://lib.stat.cmu.edu/aoas/???/???). In this supplement, we present ad-
ditional simulation results which speak to the performance of HARM.

http://lib.stat.cmu.edu/aoas/???/???
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In the main text, we consider a combination of popular and randomly
selected rules. In Figure 7, we present results for a similar simulation set-up
with the to 50 most common rules. While HARM still outperforms the other
methods we consider, the distinction is less than with the randomly selected
rules. This difference reflects the benefits of the hierarchical structure in
HARM for rare rules.
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Fig 7. Simulation experiment with common rules. Each boxplot represents the performance
of HARM and other methods for 500 simulation iterations. In each simulation, 200 patients
are randomly selected and evaluated using the 50 most common rules.

The second set of supplementary material concerns model selection. In the
text, we use a model which contains all of the available covariates. Using
this model highlights the flexibility of our approach, but is not necessarily
the model which will give the best predictions. We fit a series of models
with an intercept and one demographic factor (age, race, gender, or treat-
ment). We also fit a model with only an intercept term. Figures 8 and 9
present boxplots of the predictive performance of several alternative mod-
els. The overall out of sample performance, generated by combining new and
partially observed patients, is displayed in Figure 10. The out-of-sample per-
formance of the more complicated model (the full model) is not as good as
the out-of-sample performance on some of the simpler models with fewer co-
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variates. Since this often indicates a problem with overfitting, we looked at
the in-sample performance to see whether it agreed with the out-of-sample
performance. Figure 11 presents boxplots of the in-sample predictive per-
formance of the models. As it turns out, the in-sample and out-of-sample
performance were similar, so there is no problem with generalization. To de-
termine why the simpler models performed better in-sample, we note that
the evaluation metric for the algorithm’s performance is different from the
quantity it actually optimizes. This means we are not directly optimizing
performance, and this mismatch could potentially cause a substantial differ-
ence in performance between the different algorithms.
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Fig 8. Simulation experiment for model selection using partially observed patients. Each
boxplot represents the performance of HARM with a subset of the available covariates. The
model using just race covariates performed the best out of the models we considered.

In practice, we suggest additional model selection in cases where predic-
tion is the main goal. The results we present could be the conceived as the
beginning of a forward stagewise procedure based on the simulation strategy
outlined in the paper.

In many cases, the best subset for prediction may change. In such cases
the computationally intensive strategies we have proposed will likely not be
pragmatic. Instead, an approach based on Bayes Factors or one-step-ahead
prediction could be implemented.
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Fig 9. Simulation experiment for model selection using new patients. Each boxplot repre-
sents the performance of HARM with a subset of the available covariates. The model using
just race covariates performed the best out of the models we considered.
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Fig 11. Simulation experiment for in-sample prediction. Each boxplot represents the per-
formance of HARM for a specific with a subset of the available covariates. For each run of
the simulation, patients we evaluated the performance of HARM in predicting the sequence
of encounters used for training.
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