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ABSTRACT

In this paper we compared scattered waves from 2-D and 3-D interface structures. The
modeling technique is the 3-D time domain finite difference method. The scheme is
second-order accurate in time and fourth-order accurate in space. It is implemented on
a massively parallel nCUBE computer. In order to investigate the characteristics of 2-D
and 3-D rough surface scattering, we consider an acoustic-elastic boundary, which is
described by a Gaussian autocorrelation function. The F-K analysis of reflected signals
shows that 2-D scattering generates similar amounts of forward and back scattering,
while in the 3-D case, more forward and less back scattering. The 3-D effects also show
larger reflected energy than the 2-D case, especially near the normal incident. The out-
of-plane scatterings are clearly demonstrated on the F-K spectra in the 3-D case. In
the 2-D simulations, we have to keep in mind that it tends to overestimate the amount
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of backscattering energy.

INTRODUCTION

Many boundaries in the Earth may be characterized as irregular interfaces, such as
the ocean floor, the Moho discontinuity, and surface terrain. The wave scattering from
interfaces has become a subject of wide interest. The effects of scattering on the ob-
servations can often be identified on amplitudes, traveltimes, spectra, and waveforms.
Although scattering from smooth interfaces is easily modeled and well-understood, the
roughness inherent in many natural interfaces introduces an incoherent component into
the wavefield, which is poorly understood. A number of theoretical approaches have
been developed to help us understand the rough interface scattering problem. Reviews
of these works were given by Ogilvy (1987) and Thorsos and Jackson (1989). These stud-
ies are based on the perturbation method. They require interface properties, such as the
overall topography {(amplitude and slope), to be small compared with the incident wave-
length. Under the approximation these studies give analytical solutions to the problems.
Full-waveform techniques, such as the boundary integral method, are implemented to
model completely the wave interaction with the interface topography (Bouchon, 1985;
Kawase, 1988; Gerstoft and Schmidt, 1991; Sanchez-Sesma and Campillo, 1991). The
finite difference method has also become effective in studying scattering from a rough
interface (Lavender and Hill, 1985; Burns and Stephen, 1990; Dougherty and Stephen,
1991; Fricke, 1993).

Most numerical modelings have focused on two-dimensional models, such as the
ocean floor, ice sheet, and shallow crust. These 2-D simulations have demonstrated
the basic effects of scattering and wave conversions af interfaces. Nature boundaries,
however, are three dimensional. The 3-D scattering features, such as the out-of-plane
effect, cannot be addressed adequately by 2-D modeling. It is important to understand
the difference between 2-D and 3-D surface scattering. This knowledge can help us
assess the limitations of 2-D modeling. It is the purpose of this paper to show an
example of the differences between 2-D and 3-D rough surface scattering. We chose the
finite difference method as the modeling technique. The finite difference method can
propagate complete wave fields through arbitrarily complex media. However, the finite
difference method is very computationally intensive, especially for the 3-D problem.
Parallel computing makes the finite difference method a very attractive choice. The
massively parallel computer is used in this paper to implement the 3-D finite difference
scheme. We chose the rough interface as an acoustic-elastic boundary. The interface is
changed from 1-D (flat) to 2-D (variation in one direction) and to 3-D (variations in two
directions) to do the numerical simulations. This enables us to compare the scattering
from 2-D and 3-D rough surfaces directly.
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3-D FINITE DIFFERENCE METHOD

Wave propagation in elastic media can be described by first-order hyperbolic equations
in a Cartesian coordinate as:

vy OTue OTay + Iy

ot dx Oy Oz
va OTpy  OTyy  OTy:

"ot = Bz T By T a: (1)

v:  OTes n 07y + O

ot = 8z T By | o2

and
T, S v v,
== (oSt Okt
5 (A+ ) + A 5y + A 5
OTyy Juy vay S,
— 2 - 2 R
Bt Agp TOF G A
722 Jug Oy 5’vz
Ylzz = 2 2
5 A 5 + 2= 2y +()\—%- ,u) (2)
OTey ov, Oy
ot & dy + 8:2:)
OTyz % n sz)
8t oz oz
Ory. duy  Ov,
ot S 9z + oy )

where v is velocity, p is density, and 7 is stress. A and p are Lamé constants. The reason
for formulating the second-order wave equations into the first-order hyperbolic system
of equations is that once this system is discretized on a staggered grid, it is valid for
any Poisson’s ratio (Virieux, 1986). The fluid-solid boundary can be treated simply by
setting shear modulus to zero.

The first-order hyperbolic equations (1) and (2) are discretized on a staggered grid
(Madariaga, 1976), which is shown in Figure 1. We approximate the first-order time
derivative by second order centered finite difference and the first-order spatial derivatives
by fourth-order centered finite difference. The media parameters p, A and pu are given at
the grid point where the normal stresses 7.y, 7yy, 7-- are assigned {(see Figure 1). In the
calculation to update velocities, the needed density values are obtained from the average
of the two assigned densities nearby. The shear modull used to update the shear stress
are determined by the harmonic average of the four shear moduli nearby instead of the
arithmetic average (Kostek, 1991). This harmonic average method can automatically
put the shear modulus zero at the fluid-solid boundary.

The dispersion analysis shows thai the fourth-order finite difference has much less
dispersion and grid anisotropy than the second-order one for both P and S waves. The
rule of thumb is that we need five samples per wavelength for the fourth-order finite
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difference to control the dispersion and the anisotropy at less than 1%. The stability
condition of the scheme is given by (Cheng, 1994)

A
A< alml + )

3)

under the condition of grid size Az = Ay = Az = A, where 9 = % and 72 = —%

are the coefficients of the fourth-order finite difference approximation to the first-order
derivative. « is the maximum P wave velocity in the model. The absorbing boundary
condition is applied to the outside boundaries of the grid to minimize the reflections.
Higdon’s absorbing boundary condition is used (Higdon, 1990).

Parallel computing provides a new means to overcome the limitations of the memory
and the speed of a single processor. In the finite difference method all the calculations
involve only local interactions of the velocities and stresses. IFor example, in the fourth-
order finite difference scheme only two nearby grid points data are needed to update
the current grid point. This can be efficiently executed on a multiple instruction and
multiple data (MIMD) parallel computer. A staggered-grid fourth-order finite difference
scheme discussed above is paralleled on nCUBE 28 massively parallel computer {Cheng,
1994).

NUMERICAL EXAMPLES AND F-K ANALYSIS

Test of the Finite Difference Method

We consider a fluid-filled cylindrical borehole embedded in a homogeneous elastic forma-
tion. The finite difference results are compared with the discrete wavenumber method.
The physical property of the fluid and solid are listed in Table 1. The borehole radius
is 0.1 m. A point explosion source and the pressure receivers are located at the center
of the borehole. The Kelly wavelet at center frequency 14 kHz is used as the source
time function (Kelly et al., 1976). A grid size of 0.01 m and a time step of 0.001 ms
were chosen. The second-order Higdon’s absorbing boundary condition is used to reduce
the artificial boundary reflections. The local P and S wave velocities are used at the
absorbing boundary. A grid of 70 x 70 x 200 is used to build the borehole model. The
finite difference results are compared with the discrete wavenumber solutions (Cheng
and Toksoz, 1981) in Figure 2. There are body waves (refracted P and S) and guided
waves (Stoneley and pseudo-Rayleigh) propagated inside the borehole. The comparison
shows excellent agreement between the two solutions. This test shows the finite differ-
ence scheme handled the sharp fluid-solid boundary very well. Even if the borehole is
approximated by a rough edged circle in the finite difference method, we still can get a
good match between the two methods.
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Synthetic Reflection Data

In order to investigate the reflection characteristics from the rough surface, we consider
an irregular fluid-solid interface. There are only reflected P waves in the fiuid. This will
greatly simplify the analysis of reflected signals. The property of the fluid and the solid
are listed in Table 1 and a 3-D view of the model is shown in Figure 3. The source time
function of a point explosion is a Kelly wavelet with a center frequency of 15 Hz., We
choose the grid discretization interval to be one-tenth the shortest wavelength at the
source center frequency, which is 100 m. The time step is 0.001 s and the size of the
model is 200 x 200 x 100.

In this study, we place a 2-D pressure receiver array (64 x 64) in a plane parallel
to the interface and on one side of the source. The array receiver spacing is 20 m. We
adopt a Gaussian surface to describe the fluid and solid boundary. It has a Gaussian
spatial correlation function and a Gaussian distribution about the mean (Frankel and
Clayton, 1986). This interface can be described by two properties: the correlation
length, a, and the standard deviation in height, §. The correlation length corresponds
to the average distance between nearby peaks and valleys along the interface, and the
standard deviation gives the root mean square (rms) deviation of the interface height
from its mean, which is set to zero. The rms slope @ of the interface is given by

tan(¢) = \/52 , (4)

where the correlation length is set equal to the central incident wavelength (100 m) and
rms slope is set at 30 °.

A 3-D rough surface is introduced with the correlation length in the X and Y direc-
tion both equal to 100 m, while the 2-D rough interface has a correlation length in the
X direction of 100 m, and of oo in the Y direction. The 2-D Gaussian rough surface is
plotted in Figure 4a and the 3-D rough surface is plotted in Figure 4b. The 2-D rough
surface is inherited from the 3-D one. It is simply obtained by extending the 3-D rough
surface at Y=1 in the Y direction. This will make the amplitude comparison interesting
later. In that case we obtain the amplitudes from 3-D scattering at the plane which
has the exactly same surface profile as the 2-D one. The source-receiver plane is 600 m
above the mean height of the rough interface.

We have calculated the synthetic data set first for a flat interface, as shown in Figure
Ba. Figures 5b and ¢ show the seismogram obtained from 2-D and 3-D rough interface
models. These plots are a 2-D slice of the 3-D data set for fixed Y. The direct arrivals
from the finite difference calculation are removed, and they are not shown in the plots.
The coda waves in Figures 5b and ¢ show the effect of the rough interface. The coda
generated from the 2-D rough interface have more structures than the 3-D one. Also
the clear reflections from the flat interface are smeared in the 2-D and 3-D rough surface
cases. The F-K analysis of the reflected signals will follow.
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F-K Anaiysis of the Reflected Data

F-K analysis is a useful technique to illustrate the magnitude and direction of energy
arriving at the array. It is widely used in the seismic coda analysis, and Dainty and
Toksoz (1990) give a good summary of this approach. In this case we use a simple 3-D
Fourier transform algorithm on the synthetic data, transforming in both spatial direc-
tions, and in time. The data is displayed at a given frequency to show the magnitude
and direction of the scattered waves. The source center frequency will be of interest
here. Before we analyze the reflected data from the interfaces, we first look at the direct
arrivals (Figure 6a). The direct arrivals are propagated straight from the source to the
receivers on the same plane. A radius of 10 corresponds to the direct wave arriving
with a horizontal phase velocity of 1.5 km/s at 15 Hz. Ounly half of the circle is shown
on the figure. This is because the receivers are only on one side of the source. For the
purpose of comparison the F-K spectra of the reflections from the flat surface is shown
in Figure 6b. The small wavenumber range is because of the limited aperture of the
receiver array.

Figures 6¢ and d give the F-I spectra for the seismograms recorded over the 2-D and
3-D interfaces. The F-K spectra for the 2-D interface clearly shows that similar amounts
of both backscattered and forward scattered energy are present in the seismogram. This
distribution is in agreement with the numerical mean reflection coefficients presented for
the 2-D interface by Schultz and Toksoz {1993a), which show similar amounts of both
forward and back scattering. The structure of the spectra is parallel to the K just like
the rough surface is parallel to the Y axis. The F-IX spectra for the 3-D interface also
shows a large amount of both forward and back scattered energy. However, the forward
scattered energy appears to be dominant. This suggests that more forward scattering
appears to exist. However, one must remember that it is possible for energy, which is
diffracted back towards the seismic line from a side scatterer, to appear with a positive
K, wavenumber. Thus, in the 3-D case, out-of-plane scattering can give the appearance
of more forward scattering and less backscattering. Nevertheless, these results appear to
support the results of Schultz and Toks6z (1993b), which showed, based on experimental
data, that 3-D interfaces tend to show a more rapid decrease in backscattering combined
with a more rapid increase in forward scattering as an incident wave arrives at larger
incident angles (with respect to the vertical). In the 3-D case the wide spread of energy
in the F-K spectra clearly demonstrates the out-of-plane reflections.

Figure 7 gives the rms amplitude of the primary reflection versus incident angle.
The seismogram section is taken from Y=1, where the 3-D and the 2-D surface have the
same profile. The geometric spreading is compensated according to the flat interface.
The rms amplitudes of the first cycle is shown in Figure 7a. The 2-D and 3-D rms
amplitudes are similar, but they are both smaller than the flat interface amplitude.
This is exactly what we expected. As we add more cycles into the rms amplitude
(Figure 7b), more scattered energy is accounted for. It clearly shows that the extra
degree of freedom associated with the 3-D interface geometry can result in a larger
contribution of scattered energy. The 3-D variation of the interface topography results
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in a larger amplitude than the 2-D one near normally incident angles. This gives a first
estimate of the scaling differences between the 2-D and 3-D reflection coefficients studied
by Schultz (1994) in his thesis, where the rms amplitude from 2-D numerical calculations
and 3-D ultrasonic experiments are compared. The out-of-plane contributions from 3-D
topography also result in the amplitude being larger than the flat interface.

SUMMARY

The 3-D time domain finite difference method is used to investigate the rough fluid-
solid interface scattering. The scheme is implemented on the nCUBE 25 massively
parallel computer. The synthetic reflection data is analyzed by the F-IX spectra. The
2-D scattering clearly shows the similar amount of forward and backward scattering,
while in the 3-D case out-of-plane reflections give more forward scattering and less back
scattering. The 3-D effects are also shown on the larger reflected rms amplitude than
the 2-D case near normally incident angles. This is because of the contributions from
out-of-plane scattering from 3-D topography. This 3-D out-of-plane scattering can be
easily identified on the F-K spectra.

In this paper we only take a first step to demonstrate the difference of 2-D and 3-D
surface scattering. More thorough investigations are needed. For example, we need to
test a large amount of realizations of the interface to obtain statistical insight into 2-D
and 3-D rough surface scattering. In our simulation we only consider the point source.
To achieve high angular resolution of the reflection, we need to form a beam to the
interface instead of the point source {Stephen and Swift, 1994). This will give us a more
quantitative measure of the 2-D and 3-D reflection.
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P wave velocity o ; S wave velocity § | density p
(m/s) (m/s) (g/c.c.)
Fluid 1500 o 1.0
Solid 4000 2300 2.3

Table 1: The velocity and the density values of the fluid and the solid.
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Figure 1: Staggered grid used to discretize equations (2.5) and (2.6). Solid circles
represent the velocities. Open circles represent the shear stresses. The solid square
represents the normal stresses.
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Figure 2: Comparison of the finite difference solutions (solid line) with the discrete
wavenumber solutions (dot) in a fluid-filled borehole. The explosion source at center

frequency 14 kHz is used. The amplitudes are normalized.

10-12

i,



Scattering From 2-D and 3-D Rough Interface

N

Figure 3: Schematic diagram of the model geometry used to compute the synthetic
rough interface reflection data. The source-receiver arrangement is also shown.
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{a} 2-D Rough Surface
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Figure 4: One example of a Gaussian rough surface. The correlation length is 100 m
and the rms slope is 30 degrees. (a) 2-D rough interface, (b) 3-D rough interface.
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(b) 3-D Rough Surface
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Figure 4: continued
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(a) Flat Interface
0

TIME (s)

Figure 5: Synthetic seismograms of fluid-solid interface reflections. They are 2-D slices
of the 3-D data set. The direct arrivals are removed from the data set. (a) flat interface,
(b) 2-D rough interface, {c) 3-D rough interface.
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{b) 2D Interface

Figure 5: continued
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{¢) 3D Interface
0

Figure 5: continued
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(a) Direct Wave
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Figure 6: FK plots of synthetic data at frequency 15 Hz. (a) direct arrivals, (b) flat
interface reflection, {¢) 2-D rough interface reflection, (d) 3-D rough interface reflection.
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(b) Flat Interface
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Figure 6: continued
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(c) 2D Interface
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Figure 6: continued

10-21



Ky (/km)

Cheng et al.

{d) 3D Interface
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Figure 6: continued
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Figure 7: Plot illustrating the rms amplitudes of the waves reflected from the flat, 2-D
and 3-D interfaces. Amplitude scale is arbitrary. (a) first cycle of the primary reflection,
(b) first 2 cycles of the primary reflection.
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