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ABSTRACT

An algorithm based on the boundary element method is established for modeling seismic
source radiation from open or cased boreholes in layered transversely isotropic (TI)
media. The axis of symmetry of TI layers is assumed to be parallel to the borehole
axis. Under this assumption, the problem is significantly simplified because the element
discretization of the borehole remains one dimensional. For fluid-filled open boreholes,
three equivalent sources on each element are required to represent the boundary effects
on the inner fluid and the outer solid. The three boundary conditions for a f1uid
solid interface set up a system of equations for the equivalent sources on all elements.
Once the sources are known, displacements in the solid and pressure in the fluid are
obtained. For fluid-filled and cased boreholes, the method treats borehole fluid, casing,
and cement as a cylindricaliy layered isotropic medium. In this case, the boundary
conditions to be satisfied at the borehole wall are four (continuity of the normal and
tangential displacements and stresses). The implementation of the method is illustrated
through a few examples.

INTRODUCTION

Wave propagation along a fluid-filled borehole embedded in an isotropic or transversely
isotropic half space has been studied by matching boundary conditions on the borehole
wall and evaluating wave number integrals (Cheng and Toks6z, 1981; Schoenberg et al.,
1981; White and Tongtaow, 1981; Schmitt and Bouchon, 1985; Schmitt, 1989). Tubman
et al. (1984) applied the same method for waves in a cased borehole embedded in a
homogeneous isotropic half space. The radiation pattern of borehole sources in homo
geneous isotropic and anisotropic media have been studied in a similar fashion (Lee and
Baich, 1981; Meredith, 1990; Winbow, 1991; Gibson, 1993; Dong and Toks6z, 1993). If
the formation becomes inhomogeneous, this method no longer applies and other numer
ical techniques have to be utilized. The finite difference and finite element methods have
been extensively used by many researchers to investigate the acoustic logging problems
(Stephen et al., 1985; Randali et al., 1991; Eliefsen, 1990). Difficulties arise when these
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two methods are used to model radiation into the formation at some distance from the
borehole, because of the large scale difference between borehole diameter and forma
tion extent. The ability to calculate the solution is then severely restricted by memory
space needed for both methods. Accuracy of these methods is also hampered by grid
dispersion and inaccurate handiing of fluid and formation interface.

A boundary element-based modeling technique proposed by Bouchon (1993) over
comes these problems. The boundary element method (BEM) is well suited to the
borehole geometry and the scale problem is easily dealt with. Bouchon (1993) used the
method in an infinite open borehole in layered isotropic media. Prior to this implemen
tation, BEM was used by Kawase (1988) in studying seismic wave scattering by surface
topographies. Bouchon and Schmitt (1989) applied a boundary integral and discrete
wavenumber formulation to model an irregular borehole in a homogeneous formation.

This paper presents two extensions to Bouchon's BEM modeling method. First,
the formation is generalized to incorporate transversely isotropic layers. This is im
portant because many sedimentary rocks exhibit transverse isotropy (e.g., Thomsen,
1986). Including anisotropy will lead to a better understanding of real data. The other
extension is to include casing and cement in the formulation. The effect of casing and
cement has been shown to have significant influence on the logging waveform (Tubman
et al., 1984). They also strongly affect wave diffraction and radiation into the formation.
Figure 1 shows the configuration of the problem. In addition to the explosion source,
other source types, such as the vertical and orbital vibrators and bender source, are also
accommodated. Examples are given at the end to illustrate the implementation.

THE INDIRECT BEM METHOD

.,
There are two types of BEM implementation. The one often used by engineers is called
the direct formulation, where both the field and its gradient are solved for (e.g., Banerjee
and Rutterfield, 1981; Brebbia and Dominguez, 1989). This approach is the one usually
applied in the static problems of elasticity. Another approach used in wave propagation
is named indirect formulation, because the quantities to be solved at the boundary have
no direct physical meanings. In the following, the indirect formulation is used and its
implementation is discussed.

Indirect Boundary Integral Equations

If a volume point source is placed inside a fluid-filled borehole, the total displacement
potential in the borehole fluid is the sum of a direct potential pertaining to the source
and a reflected potential due to the boundary. In the case of steady state radiation
(or in the frequency domain) the reflected field can be expressed as the integral of a
fictitious source distribution over the borehole surface, with the Green's function being
the integrand. Therefore, the displacement potential in the fluid is

(1)
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where, the volume of borehole fluid and the borehole surface are denoted by Vi, and E
respectively. Subscript 1 stands for the fluid region and 'Pi is the incident potential.
The fictitious source distribution over the borehole surface is denoted by 'I/J(x'). Integral
kernel, g1, is the scalar Green's function in an infinite homogeneous medium. It may be
expressed in the well-known form

eikflx-x'i

gl(X,X') = 4 I II'
1fX-X

(2)

where, k f = w/cf is the wavenumber for the fluid. Equation (1) states that the influence
of the elastic medium on the wavefield inside the borehole is equivalent to impressing a
sheet of fictitious sources on the boundary between the fluid and the elastic medium. The
fictitious source distribution density is the unknown function to be determined. Figure 2
shows the equivalent problem for the borehole fluid in open and cased boreholes.

For the source-free elastic medium outside the borehole, the displacement field can
be expressed as

U2(X) = is dSIG(x, Xl) . w(x/) for x E Ve + E, (3)

where, w(x/) is a vector fictitious source distribution on the boundary. G(x, Xl) is the
dyadic Green's function for displacement and has the following form for a homogeneous
isotropic formation

-( , 1 { 2- I [I I J}G x, x ) = pw2 kIJIglJ(x, x) + \J\J glJ(x, x) - g,,(x, x) . (4)

Here, get and glJ are scalar Green's functions of the same form as in Equation (2), except
that kf is changed to k" for the dilatational wave and to klJ for the shear wave. Equation
(3) says that the displacement in the outside region, (Ve), results from the vector
fictitious source distributed along the boundary. For axially symmetrical problems
in cylindrical coordinates, the vector fictitious source can be decomposed into source
distributions in radial and vertical directions. Therefore, one has to determine the two
unknown distribution functions before calculating the displacement field in the elastic
medium. Figure 3 describes the equivalent problem for the surrounding formation.

BEM Implementation

The essence of Indirect BEM implementation is to discretize the boundary between
borehole fluid and the surrounding formation into a set of small size surfaces called
elements. Each element is a ring-shaped surface with height dz and borehole radius
roo The density of the fictitious source is assumed to be constant on each element.
According to the previous boundary integrals, a fictitious volume source distribution for
the fluid, and a fictitious source vector for the elastic medium are required in order to
uniquely describe the borehole source radiation. A fictitious source vector in an axially
symmetrical system consists of the vertical and radial components only. Therefore,
on each element, i, three unknowns are to be determined: the fictitious fluid volume
source, V/; the vertical source for the elastic medium, F;"; and the radial source for the
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elastic medium, F[. Our goal is to obtain these sources on each element so that one can
calculate the displacement fields in the elastic medium and the pressure in the fluid.

The maximum number of elements is restricted by the power of current computers
and the specified accuracy. In practice, three elements per shortest wavelength are used
and the number of elements depends on the time window and the fastest wave speed.
Thus, the element heights dz and the number of elements, Ne, are

d
_ min(c,l3)

z - 3f '
No _ 3f x tmax x a

e - min(c,l3) . (5)

The frequency and the maximum time window are denoted by f and tmax ' With each
element, the usual fluid/solid boundary conditions for open borehole, and the solid/solid
boundary conditions for cased borehole, have to be satisfied. The boundary conditions
are satisfied at the center of each element. Displacements and stresses (or pressure)
at the center of each element are contributed by all three fictitious sources on all the
elements. To calculate the displacement at the j-th element due to a source at the i-th
element, we use the indirect formulations in Equations (1) and (3). At the j-th element,
the boundary conditions for the open borehole case become

N e N e N e

LA{iV,! + LA'ji.Fl' + LAj;FT -
i=I i=l i=l
N e N e N e

L Bf;v,! + L B'jiFiv + L BjiF[ =
i=1 i=1 i=l

N e N e

L G'jiFiv + L Gj;F[ -
i=l i=I

Dj,

DC:rz
J •

(6)

A{i' A'ji and Aii represent displacements at the j-th element due to the volume, vertical,
and radial ring sources of unit strength at the i-th element, respectively. They are
surface integrals of the Green's functions over the surfaces of the borehole (bottom +
wall). The B's and G's are the radial and tangential stresses at the j-th element due to
sources at the i-th element. They are the surface integrals of the stress Green's function.
The D's are the exciting fields or initial data (indicated by their superscripts) at the
j-th element. With j ranging from 1 to N., we obtain 3 x N e equations that can be
solved for the 3 x Ne unknowns. Once these fictitious source densities are available,
fields inside and outside the borehole can be easily obtained using Equations (1) and
(3).

Element Surface Integration

Surface integration of Green's functions is accomplished in two steps. The integrals
are first transformed into wave number integrals by applying the Sommerfeld integral
representation to the function eikR/ R. The wavenumber integration is then evaluated
by the discrete wavenumber method.



Boundary Element Modeling 363

Expressed in a horizontal wavenumber integral, the scalar Green's function, 91, is

(7)

where vf = VkJ - k2 and D = vr2 + r~ - 2rro cos(ep - epo) is the source-receiver dis
tance. Physically, this equation represents the synthesis of a spherical wavefront using
infinitely many cylindrical wavefronts. It is the use of the Sommerfeld integral repre
sentation that allows vertical layering to be incorporated. Using the addition theorem
for the zeroth order Bessel function (Watson, 1944)

one obtains

00

Jo(kD) = L cmJm(kr)Jm(kro) cosm(ep - epo),
m=O

(8)

where, co = 1 and em = 2 for m 2: 1, and Jm is the m-th order Bessel function of the
first kind. Given the above relations, the rodepo part of surface integration (rodepodz)
simplifies the integrand of the wavenumber integral significantly, thanks to the orthog
onal cosine and sine functions over the range of 0 to 211", The result of this integration
represents the response of a circular ring source. The dz part of the surface integral
can be analytically evaluated through integrating the ring source results over z', Thus,
the element surface integration of the Green's function basically reduces to a horizontal
wavenumber integral. Essentially, this simplification results from the axial symmetry of
the problem.

The coefficients in Equation (6) form a fully populated, non-symmetrical, and com
plex matrix. This is often regarded as the disadvantage of BEM as compared to FEM
or FDM. In the latter two methods, tridiagonal matrices are obtained, and a special
faster algorithm exists for this kind of matrix. Nevertheless, this matrix can still be
easily manipulated as the number of elements is not exceedingly high and the system
of equations is only solved once for each frequency.

RING SOURCE RESULTS IN TI MEDIA

If the surrounding formation is anisotropic with a low degree of sYll1metry, the Green's
function cannot be reduced to a simple expression like Equation (4). However, for a
transversely isotropic medium, Dong (1993) and Dong and Schmitt (1993) provided a
simple and numerically feasible Green's function similar to the isotropic Green's func
tion. The dynamic Green's function in a transversely isotropic medium is

(10)
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L z =

g(x,x') -

q,(x, x') -

1f;(x, x') -

f(z, z') =

Dong et aI.

In these equations, k is the horizontal wave number, D = Jr2 + ra - 2rro cos(<p - <po)
is the source-receiver distance. The five elastic constants are cu, C33, CI3, C44, and C66.

Va, Vb, and Vc are the vertical wave numbers for the quasi-P, quasi-SV, and quasi-SH
waves in the medium, respectively. Va and Vb are the solutions of the following equation

C33C44k; + [(CUC33 - Ci3 - 2C13C44)e - (C33 + C44)p,,?]k~

+ (C44k2 - pw2)(cu k2 - pw2) = 0, (11)

and Vc = )(pw2 - C66k2 )/C44 and Vz = )(pw2 cuk2 )/C44.

Vertical Ring Forces

For a vertical ring source of unit strength, F = zli(z - z')Ii(r - ro). Integration over <Po
is nonzero only for m = 0 according to the orthogonality of the set {I, cos <p, cos 2<p, ...}.
The two displacement components are

UT = sgn(z2- z') 10'''' Sabk2roJo(kro)Jl(kr) [eiVblz-z'l - eivolz-z'l] dk, (12)

Uz = ~ roo kroJo(kro)Jo(kr) [SbeiV,lz-z'l _ Saeivolz-z'l] dk, (13)
Jo .

where,

Using Ur and Uz in the equations for strain and stresses in cylindrical coordinates, and
bearing in mind that the static contribution has to be taken into account in (jTZ when
the observation point is at the source point, we obtain the stresses at x = (r, z):

sgn(z - z') faoo
(jTT = kroJo(kro)Iodk,

2 a
(14)
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10 = [-(cnSabk2 - C13SaVa)JO(kr) + 2CS6kSabJl(kr)/r] eivalz-z'l
+ [(CnSabk2 - C13SWb)Jo(kr) - 2CS6kSabJl(kr)/r] eiVblz-z'l,

1( ') i{002= -2" z - z + 2J
o

k roJo(krO)Jl(kr)lIdk,

II = -C44(SaWa - Sa)eiVaIZ-z'l + C44(SaWb - Sb)eiVblz-z'l

Radial Ring Forces

365

(15)

(17)

(16)

For a radial ring source of unit strength, F(x) = [rcos(cp - cpo) - <psin(cp - cpo)]8(r
ro)8(z - Zl). Using orthogonality in the integration over CPo, we obtain displacements at
(r, z) by a ring of radial forces at x' = (ro, Zl) in a TI medium:

Ur = ~ looo kroJ1 (krO)Jl (kr) [Taeivalz-z'l - TbeiVblz-z'l] dk,

U = sgn(z - Zl) roo S k2r J (kr )J, (kr) [eivalz-z'l _ eiVblz-z'l] dk
z 2 Jo ab 0 1 0 0 .

The stresses are

1 ' roo
(J"rr = -28(z - Zl) + ~ J

o
krOJl(kro)I3dk,

h = [(cnTa + C13SaWa)kJo(kr) - 2CS6TaJl(kr)/r] eivalz-z'l
- [(CnTb + C13SaWb)kJo(kr) - 2CS6TbJl(kr)/r] eiVblz-z'l,

sgn(z - Zl) roo
(J"rz 2 Jo krOJl(kro)Jl(kr)I4dk,

14 = C44 {(TWb + k2Sab)eivblz-z'l - (Tava + k2Sab)eiValz-z'l}

In the above equations,

(18)

(19)

(20)

Explosive Ring Source in Fluid

For a ring of explosive point sources, the displacement potential is obtained by integrat
ing Equation (2) with respect to angle CPo,

i loo kro iv Iz-z'l1> = -- -Jo(kro)Jo(kr)e f dk.
2 0 vf

Upon taking the derivative of this potential with respect to rand z, and adding the
static contribution to Ur for a volume source, we obtain

(21)

(22)
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CIrr

The stresses inside the fluid are

2
i 2 ["" kro Jo(kro)Jo(kr)eiV/lz-z'ldk,

pw io IIf

0.

(23)

(24)

INCORPORATION OF LAYERED TI FORMATION

(25)

From the displacement and stress expressions for the circular sources, we may infer that
for a given k (plane wave), the recorded displacements and stresses at a receiver away
from the circular source in a layered TI medium would have the following form:

Ur(r, z) = Jooo ur(k,z) kJl(kr)dk, Uz(r,z) = Jrf" uz(k, z) kJo(kr)dk,
CIzz(r,z) = Jooo Tzz(k,z)kJo(kr)dk, CIrz(r,z) = Jooo Trz(k,z)kJ1(kr)dk.

(26)

These displacements and stresses satisfy the stress-strain relation and the wave equation
in cylindrical coordinates with axial symmetry. These equations can be arranged to yield
(Takeuchi and Saito, 1972):

BUz
Bz

BUr
Bz

BCIzz
Bz

= _ C13 (BUr + Ur ) + ~CIzz,
C33 Br r C33
BUz 1

= - Br + C44 CIrz ,

2U (BCIrz CIrz)-pw z -B+- ,r r

BCIrz = (-cll + cf3) ~ (BUr + Ur ) _ C13 BCIzz _ pw2Ur,
Bz C33 Br Br r C33 Br

which reduce to equations for the unknown integrands in Equation (25). Written in a
matrix form, they are

(28)

(27)i4][~:j.k Tzz
o T rz

°...!..
C33

°
B

[

u
r

] [ -kOfll
U z C33

Bz Tzz = °
Trz k2 (en _~) _pw2

The solution of this differential equation is

( )T _ D A4(Z-z')D-1( 0 0 0 O)T
U r , u z , T ZZl 'Trz - 4e 4 U r1 U Z1 'TZZ1 'Trz ,

where A4 and D 4 are the eigenvalue and the eigenvector matrices of the coefficient
matrix in Equation (27). The four eigenvalues are

(29)

The corresponding eigenvector (column vector) matrix and its inverse are

D4 = [-x~ -xg x~ xg] D-1 _ [-;:~ -~:i -; -~:~] (30)
x~ xg x~ xg' 4 - pxg -qx~ -p qx~ .

a bab a a a
-X4 -X4 X4 X4 -PX3 qX4 P -qx2
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-ik//a,b (C13 + C44)
pw2 - k2C44 - C33//~,b '

a,b (. k a,b) 0.5 0.5
x4 = C44 2//a,b - x2 , P = b ' q = b b .

x3 - x~ x~x2 - x4x~

If the positive z-axis is chosen to point downward, the first two columns of D 4 and the
first two rows of D;;I correspond to the up-going P and S waves. The others are for
the down-going waves.

The stress-displacement vector, (UT> U., Tz., Trz)T, represents the z-dependent part of
displacements and stresses at level z due to up and down-going P - SV waves. If the am
plitudes ofthese waves are represented by wave vector V4, with V4 = (P", SV", Pd, SVd)T,
the stress-displacement vector can be written as

(Ur,U.,Tz.,Trz)T = D4(z)V4(Z). (31)

That is, the contribution of each wave to the displacements and stresses is allocated
according to the eigenvector or the direction of propagation of each wave. The relation
between wave vectors on both sides of an interface separating two different TI media
follows from the boundary conditions of two media in welded contact: the continuity of
the stress-displacement vector (ur , Uz , Tzz> TrzjT. Thus, we have

V4(ZtJ = D;;I(ZtJD4(zilv4(zil,

where, z; denotes the side above the interface and zi below the interface.

Reflection and Transmission Coefficients

(32)

The relations in Equation (32) can be used to obtain the reflection and transmission
coefficients of down-going and up-going waves at an interface (e.g., Mandai, 1991). If
these reflection and transmission coefficients are denoted by 2 x 2 matrices Rd, Td, Ru
and T", we have

[
~+ ] = [~d ~" ][~+ ] , [~l [;, i.] [~+ ] . (33)

SV/ SV,,- SVd- J SV,,-

In the above, the 2 x 2 zero and identity matrices are represented by 0 and 1. Substi
tuting Equation (33) into Equation (32) and defining W (4 x 4) as the resultant matrix
of D;;I (ZtJD4 (zil, we then have

[
Rd T,,] = [WI2~r21 Wn - W':'1W221W2I ] . (34)
Td Ru W 22 - W22 W2I

The 2 x 2 submatrices of the 4 x 4 matrix Ware represented by Wn , W12, W2I and W22 .
Equation (34) applies only to a single interface separating two half spaces. These are
the simple reflection or transmission coefficients. To calculate the generalized reflection
and transmission coefficient for a stack of layers, the reflectivity method (Kennet, 1983;
Muller, 1985) can be followed.
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(36)

(35)

Initial Wave Amplitudes for the Reflectivity Method

As indicated by Equation (31), the wave amplitudes can be obtained by applying the
inverse eigenvector operator to the stress-displacement vector of the direct waves, which
are given by Equations (12) through (19). This yields the following simple expressions
for the up- and down-going direct P and SV wave amplitudes for the vertical and radial
ring forces.

[{v,,] = D4-1 [~:] = [-:e~~::;~~~:;)]
Pd rzz pei~.(Z-Z'; roJo(kro),

SVd v rrz v _peWb(z-z )

[

P. ] [U] r_qx~e-iv.(z-z') ]

sf" = Di1 u: = l qX~~-::b((:~~,)) rOJl(krO)'
r d rzz -qx2e •

SVd r Trz ~ qx~eillb(Z-zl)

In the BEM implementation, Equations (35) and (36) need to be integrated over the
source position z' for the wall elements. The results of these integrations are the input
to the reflectivity program.

INCORPORATION OF FLUID, CASING, AND CEMENT

When casing and cement are installed in a borehole, the original fluid column changes
to a cylindrically layered isotropic medium. Similarly to the case of a plane layered
medium, wave propagation in the cylindrically layered medium can be studied by
rewriting the wave equation into an ordinary differential equation for the displacement
stress vector. Nevertheless, it is more expedient to work with potentials because of the
isotropic nature of each layer. Furthermore, for the plane layered medium displacements
are expressed as horizontal wave number integrals so as to satisfy the phase-matching
condition at the interfaces. For the cylindrically layered medium, the phase-matching
condition is satisfied by expressing the potentials as integrals over the vertical wave
number. Let As, B., Ao, and Bo represent the amplitudes of the incoming (standing)
and outgoing P and S wave potentials in any solid layer, Cs and Co be the correspond
ing potential amplitudes for the P wave in any fluid layer, then the potentials assume
the following form

</> = 2~ J.~oo[Aslo(~ar) + AoKo(~ar)]eik.(z-z')dk.,

7jJ = 2~ C'oo'[Bsh(~br) + BoKl(~br)]eik,(z-z')dk., (37)
</>f = 2~ J.~oo[Cslo(~fr) + CoKo(~fr)]eik.(z-z')dkz.

where,

~a = iVk~ - k;, ~b = iVks - k;, ~f = iJkJ - k;,

and ka , kb, and kf are the total P and S wavenumbers in the solid and P wavenumber
in the fluid. Using the following relationship between displacements and potentials,

o</> o7jJ o</> o(T7f;)
Ur = or - oz' U z = oz + ror ' (38)
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the displacements-stress vectors in the solid and fluid are
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(39)

where, V4 = (A., B., Ao, Bo)T and V2 = (C., ColT are the amplitude vectors. From
matrices S and F, the reflection and transmission coefficients of P and S waves at the
solid-solid and solid-fluid interfaces Can be readily obtained. The procedure for the
solid-solid contact is the same as in the previous section. The solid-fluid contact case is
illustrated in the following.

Reflection and Transmission Coefficients

For an interface at T = TO between a fluid column (T < TO) and an elastic formation
(T > TO), the following equations hold

R'j,p ] [ As ]1 Bs ·
Co

(40)

[

1
o

Ri
P.P

R~s

The above equations simply state that the outgoing P and S waves in the formation
result from the reflection of incoming P and S waves in the formation, plus the trans
mission of an outgoing P wave in the fluid. An incoming P wave in the fluid is the
consequence of an outgoing P wave reflection and an incoming P and S wave transmis
sion. Substituting Equation (40) into Equation (39) and applying the three boundary
conditions, we obtain

~ ~ j_[FU F12] [Th, T;p R;,]
RiTa -F31 F32 001'

~p PJ' F41 F42R;s Tps
(41)

The nine unknown coefficients can be obtained from the nine equations implied by
Equation (41). These coefficients can in turn be used in the reflectivity method for
cylindrical layered media.

If T > TO is the fluid region and T < TO the solid region, the resulting equation for
the coefficients differs from Equation (41) only in the column position of the Sand F
matrices, the individual coefficients can be readily obtained by corresponding element
substitution.

Initial Potential of Element Sources

Upon expressing the scalar Green's functions of Equation (4) in terms of modified Bessel
functions, and then comparing the resultant displacement for vertical and radial ring
sources with Equation (38), the initial potentials can be obtained. For a vertical ring
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force, the radial displacement is

Dong et aI.

A comparison of this result with Equation (38) yields immediately the P and SV wave
potentials due to a vertical ring force. They are

4>~ = 2:;;;;;'0" J.:ooo kzKo(~aro)Io(~ar)eik=(z-:J)dkz>

..p~ = 2;;;1,. J.:ooo~bKo(~bro)h(~br)eik=(z-z')dkz.

For a radial ring force, the vertical displacement is

(43)

(44)

Thus, a comparison with Equation (38) gives the P and SV wave potentials produced
by a radial ring source

4>; = 2;;~' J.:ooo ~aKl(~aro)Io(~ar)eikz(z-z')dkz>

..p; = 2;~ J.:oookzKl(6ro)h(~br)eikz(z-z')dkz.
(45)

These expressions provide the incident potential amplitude at the outer cylindrical
interface. The products (matrix multiplication) of these incident potentials with the
reflection and transmission coefficient matrices yield the reflected potentials in the solid
layer and transmitted potentials in the fluid. The total potentials then yield the total
displacements and stresses used for matching boundary conditions and for program
output.

THE INITIAL DATA AT THE ELEMENTS

To solve the system of equations in Equation (6) for the fictitious sources on each
element, the initial displacements and stresses directly due to the physical source are
required. They appear on the right hand side of the system of equations. These data
depend on the type of sources used and whether or not the borehole is cased. We consider
three conventional sources here: the explosive volume source, the axial source, and the
radial source. In practice, they correspond to an air gun or dynamite, wall-clamped
vibrators, and a bender source or cavity resonator, respectively.

Sources in an Open Borehole

For sources in an open borehole, empty or fluid-filled. either the physical source or its
direct wavefield is in contact with the formation. With the axial and radial sources, the
vibrating forces are applied directly at the boundary of interest. Thus, the initial data
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for these two sources are just the driving forces applied to the elements. The initial
data for the displacements are set to zero. For an explosive source at the center of a
fluid-filled borehole, the initial data at the boundary are

Ur V. it'" k
2

Jl(kro)eivflz-z,ldk,
41r Jo vf

(Jrr = V. i t'" ~Jo(kro)eiVflz-z,ldk, (46)
41rPfW2 Jo vf

(Jrz = O.

The vertical position of the source and the element is Zs and z respectively. The strength
of the volume source is denoted by 11,. The value of V. for commonly used explosion
sources is about 1600 c:m3 •

Sources in a Cased Borehole

In a cased borehole, the sources and their direct fields are not in direct contact with
the boundary elements. The initial data is infiuenced by the casing and the cement.
Since the cement and formation are in welded contact, four boundary conditions have
to be satisfied. Consequently, four pieces of data are needed on each element. In what
follows, we present the P and S potentials that can be used to derive the displacements
and stresses by applying matrix S(ro) to their amplitudes, as indicated by Equation
(39).

The two potentials due to a volume source of strength V. are

¢ = -8 J":"oo T:.. Ko(Earo)eik.(z-z')dk.,
..p = i1 J":"oo r;' K1(Ebro)eik,(z-z')dk., (47)

where, T~p and T~8 ;"'e the overall P - P and P - S transmission coefficients from the
fiuid to the elements.

To obtain data for the other two sources, let us first define a 4 x 4 matrix, E,

E = S(rl)S-l(ri)S(rt), (48)

where, S is the matrix defined in Equation (39), and n and r2 are the inner and outer
radii of the casing. Then, the potentials at the boundary element and in the fiuid, due
to an axial force applied on the casing over a depth range of 21 and centered at z., are

¢ = 2~ J":"oo F"E"DE~3JEJ4F(kz)Ko(Earo)eik,(z-z')dk.,

..p = 2~ J":"oo F1JE£~3JEJ3F(kz)Kl(Ebro)eik,CZ-Z')dk., (49)
'" - --L J'oo Ep " EJ4E33 F(k )L « r)eik,(z-z'}dk'Yf - 27r -00 DET z 0 -f z·

Eij in the above is the corresponding (i, j) element of the E matrix, and DET =
Fu(E43E34-E33E44)+F31(E13E44-E14E43). Function F(kz ) = 2Isinc(kz l) represents
the source spectrum. Similarly, the potentials for the radial source are

'" = --L Joo -F"E44 F(k )K, « r Jeik,(Z-z'}dk
'Y 27r -00 D~T z 0 ~a 0 z,
1/J = 2~ J":"oo F"E 31 F(kz)Kl(Ebro)eik.Cz-z'}dk., (50)
<Pf = 2~ J":"oo !j;141£'!JE~J3E44 F(kz)Io(Efr )eik,CZ-z'}dkz'
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It should be pointed out that when pressure in the fluid is calculated from the
fictitious sources on the boundary, the resulting pressure is only part of the solution. The
total pressure in the fluid should include the casing reflection from the direct wavefield
in the case of the volume source. In the case of the axial and the radial sources, direct
contributions from the source to the pressure field should be added, because this part of
the wavefield did not contribute to the BEM fictitious source solution on the boundary.

MORE ON BEM IMPLEMENTATION

Once the circular source results are incorporated into the reflectivity scheme, the end
products are two wavenumber integrals, a horizontal wavenumber integral for the plane
layered isotropic or anisotropic formation, and a vertical wavenumber integral for the
cylindrically layered isotropic medium. Since integral over element height depends on
wavenumbers, its evaluation must precede the wavenumber integration. The integration
over the source element coordinate, Zl, for plane layers is of two types: integral of
a complex exponential, and integral of a sign function multiplied by the exponential
function. Both can be integrated analytically.

An exact analytical evaluation of the wavenumber integrals (both k and kz ) is im
possible, and a numerical method is necessary. Bessel functions Jo and h in the k
integrals suggest the use of fast Hankel transform algorithms. Unfortunately, one can
not employ these fast algorithms because the upper bound of the wavenumber is not
known for a certain accuracy specification. That is, given an accuracy requirement

. for the integrated results, one cannot predict up to which wavenumber the inputs to
these algorithms should be prepared. Thus, the only alternative is to evaluate these
integrals by discrete summation for many wavenumbers. This is the so-called Discrete
Wavenumber Method (Bouchon and Aki, 1977).

In wavenumber summation, the convergence of the partial sums are tested using
asymptotic approximations. This is because the integrands are oscillatory functions
of the wavenumber. Instead of the actual N-th term, the modulus of its asymptotic
expression is used to compare with the partial sum. If the ratio of the N-th term to the
partial sum is smaller than the specified accuracy, summation is stopped.

EXAMPLES

BEM results for a borehole in a homogeneous TI medium are first checked against
those from a discrete wavenumber (DWN) calculation. Then, the technique is used to
illustrate the effect of a borehole, either open or cased, in a three-layer medium.

BEM vs. DWN: Waveform Comparison

Figure 4 shows the radial (UR) and tangential (Uo) displacements in a TI formation
computed by the BEM and DWN methods. The waveforms calculated by two totally
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different numerical methods agree with each other very well. The elastic parameters
of the formation are: cn = 50.78, C33 = 36.85, C13 = 21.49, C44 = 11.01, C6s = 14.87,
P = 2.56. The wavefield is recorded by a circular receiver array which is 40 m from
the explosion source placed in a water-filled open borehole of radius "0 = 0.1 m. The
strong P-wave anisotropy is clearly shown in Figure 4 by the different arrival time for
P waves traveling in different directions. The large contribution of a quasi-SV wave on
the UR section, and the negligible quasi-P energy on the Uo section, agree with what
has been discussed in Dong and Toks5z (1993). That is, the dilatational component of
the quasi-SV wave is on the same order as that of the quasi-P wave. The rotational
component of the quasi-P wave is two orders of magnitude smaller than that of the
quasi-SV wave.

Borehole in Three-Layer Media

When a fluid-filled borehole is inside a layered isotropic or anisotropic medium, the tube
waves, excited by the source and propagating along the borehole, will interact with the
vertical inhomogeneities. This interaction results in wave scattering and conversion
along the path of the tube wave. The phenomenon is illustrated here through a few
examples.

Figure 5 shows the solid displacements for volume, radial, and vertical sources in
a water-filled borehole embedded in a three-layer isotropic medium. The medium pa
rameters of this example are taken from Bouchon (1993) and listed in Table 1. The
sources are located 2 m above the low velocity layer. And the vertical geophone array
(1 m vertical offset from the source) is 4 m away from the borehole axis. Center fre
quency of the Ricker wavelet is 2.5 kHz. In addition to the primary P and S waves
in the displacement seismograms, which are normally observable if the borehole is ab
sent, strong events appear at a later time and with energy concentrated in the second
and third layer. Comparing to volume and radial sources which are efficient tube wave
generators, the vertical source induces a much lower amount of tube wave energy. The
fact that these late arrivals are much weaker for vertical source illustrate that they are
of tube wave origin and trapped in the second layer as guided modes.

Figure 6 displays the time response of the diffracting sources on the borehole bound
ary for the. three physical borehole sources in the three-layer medium. The diagrams
represent the source borehole radiation into the formation and specify uniquely how
a borehole source could be equivalently approximated. The reflection of a tube wave
at the upper and lower interfaces of the low velocity zone is clearly indicated in these
figures. Because of these reverbrations, the part of the borehole embedded in the low
velocity layer radiates energy into the formation for a long time. In agreement with
the observation from Figure 6, the equivalent sources within the low velocity layer are
relatively weaker for the vertical source than for the other two sources. The reflections
from the top and bottom of each figUre result from the finite borehole length used in
the calculation.

In the next three cases (see Table 1 for parameters), the parameters of the first
and third layers remain unchanged, while the parameters of the second layer vary.
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Figure 7 shows the displacements due to volume source when the second layer is a
soft TI formation, a harder isotropic formation, and a hard isotropic formation. When
the velocities of the second layer are increased, the trapped energy decreases, and it
disappears when the velocities are very high. This illustrates that tube wave conversion
is mainly associated with low velocity chapnels. In the case of a TI ~econd layer (Test
#1), the overall appearance of the displacement sections is similar to that of Figure 5.
On the other hand, differences do exist due to anisotropy. For instance, in the isotropic
case, particle motion of shear wave is perpendicular to the direction of its propagation
(almost vertical due to large shear wave velocity contrast), resulting in large Ur and small
Uz • In the anisotropic case, however, directions of particle motion and propagation are
no longer perpendicular. In our case, the particle motion tends to align toward vertical,
leading to larger Uz . Another difference is that the trapped modes in the TI case tend
to spread out and have recognizable separation in time.

The displacements for a volume source in a cased borehole are shown in Figure 8.
The medium parameters of the TI case in Figure 7 are used. Comparison with Figure 7
shows that the amplitude of the trapped energy is relatively larger in Figure 8. This
illustrates the fact that casing and cement reduce the amplitude of primary body waves,
while they only slightly affect the tube wave and its conversions.

CONCLUSIONS

The BEM-discrete wavenumber modeling method is extended to include transverse
isotropy and cased boreholes. The method overcomes the problem of scale associated
with other numerical methods in the borehole environment. It is especially suitable for
modeling wave radiation and propagation from or inside a fluid-filled borehole, open or
cased. The method is semi-analytical in the sense that the only discretization occurs on
the borehole wall, and wave propagation is realized through the analytical Green's func
tion of the layered TI medium outside the borehole, and through the isotropic Green's
function for cylindrical layers inside the borehole. Comparison of the BEM results with
their discrete wavenumber counterparts validates the implementation. Tests on several
three-layer media show the importance oflow velocity layers in the tube wave interaction
with the surrounding formation. The by-product of the method - "fictitious boundary
sources - can be used to study approximations for actual borehole sources.
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tests borehole fluid 1st and 3m layer 2nd layer
Bouchon cf = 1.5, Pf = 1 vp = 3, Vs = 1.7, P = 2.7 vp = 2, Vs = .85, P = 2.4
Test #1 same same Cll = 11.6, C33 = 9.6

Ci3 = 5.6, C44 = 1.5
C66 = 1.7, P = 2.4

Test #2 same same vp = 3, V s = 1.5, P = 2.0
Test #3 same same vp = 5, V s = 3.0, P = 2.3
Cased steel & cement same same as Test #1

Table 1: Parameters used for the three-layer model simulations. Units of velocity and
density are km/s and 9/cm3. Elastic constants are in GPa. Borehole radius is 12 cm.
For cased borehole, casing and cement are each 2 cm thick.
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casing &
cement receivers

***** ***

isotropic or
anisotropic
layers

**. *

****
**

borehole
wall

Figure 1: Problem configuration for a cased borehole in a layered transversely isotropic
medium. Given a downhole source (explosion; vibrator; bender), the problem is to
determine the fluid pressure inside the borehole and the displacements in the solid
formation.
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Qpen boreho 1e

explos ive b0 undary
sources

(a)

Cased boreho 1e

vertical & radial

boundary forces

(b)

Figure 2: Equivalent problem for borehole fluid in an open borehole (a), and in a cased
borehole (b). The effect of a solid formation on the wavefield is equivalent to a sheet
of explosion sources at the borehole wall for case (a), and a sheet of vertical and
radial forces at the wall for case (b). Once these assumed source sheets are known,
pressure in the borehole fluid is readily computed.
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borehole &tsymmetry axis
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379
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for formation
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Figure 3: Equivalent problem for the layered formation in the cases of open and cased
boreholes. The effect of the borehole fluid, casing, and cement on the out-going
wavefield is equivalent to a sheet of vertical and radial forces at the wall. Once these
assumed source sheets are known, displacements in the surrounding formation are
readily obtained.
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Figure 4: Comparison of BEM and DWN results for a volume source in a fluid-filled
borehole embedded in a homogeneous TI medium. Parameters: TO = 0.1, fo =
500 Hz, R = 40 m, Cll = 50.78, C33 = 36.85, Ci3 = 21.49, C44 = 11.01, CBB = 14.87,
P = 2.56, receiver array radius R = 30 m.
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Figure 5: Horizontal and vertical displacements in the formation for volume, radial, and
vertical sources in a fluid-filled borehole penetrating a three-layer isotropic medium.
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Figure 6: Equivalent time domain boundary sources (ficr and fie" for horizontal and
vertical forces, respectively) for the physical sources in Figure 5. In studying these
figures, one needs to be aware that the vertical coordinates are numbers of elements.
Since the element height in the different layers is different, one cannot simply measure
the velocity from these figures.
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Figure 7: Horizontal and vertical displacements for a volume source in three-layer media
with the same first and third layer parameters as in Figure 5. The second layer
parameters for the three test cases are tabulated in Table 1.
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Figure 8: Displacements for an explosion in a cased borehole in the three-layer medium
of test #1 in Figure 7. Borehole radius, casing thickness, and cement thickness are
12, 2, 2 in em.


