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ABSTRACT

In this paper we extend the 3-D finite difference method to simulate wave propagations in
an anisotropic medium. The scheme is tested in the homogeneous medium. The finite
difference results agree excellently with the analytic solutions of a point force source
in the transversely isotropic medium. The finite difference synthetics are compared
with ultrasonic lab measurements in a scaled borehole drilled along the X axis in an
orthorhombic phenolite solid. Both monopole and dipole logs agree well.

The 3-D time domain finite difference method is applied to the fluid-filled borehole
wave propagation problems in the anisotropic formation. The following results are
obtained:

1. In a borehole drilled along the Z axis in a phenolite formation, the monopole log
shows the P wave travelling with velocity Vzz . There are no shear-pseudo-Rayleigh
wave arrivals. The dipole log is dominated by the single slow flexural mode.

2. In a borehole drilled along the Y axis in a phenolite formation, the monopole log
shows the P wave travelling with velocity V yy • There are shear-pseudo-Rayleigh
wave arrivals shown on the monopole seismograms between the P and Stoneley
waves due to the shear wave anisotropy. The anisotropy also causes the shear
wave splitting in the dipole log. The two shear wave arrivals correspond to the
fast and the slow flexural modes.

3. The disagreement between the shear wave velocity from the Stoneley wave inver
sion and the direct shear wave log velocity from field data is beyond the errors in
the measurements. It is shown that the formation permeability is not the cause
of the discrepancy. From the estimated "shear/pseudo-Rayleigh" phase veloci
ties in the array full waveform log and the 3-D finite difference synthetics in the
anisotropic formation, the discrepancy can be explained as shear wave anisotropy.
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INTRODUCTION

The crust of the Earth is slightly anisotropic, which is related to geological processes.
For example, anisotropy can be caused by aligned fractures in the rock. Knowledge
of this anisotropy might help to determine stress or fluid flow directions. Fine layered
sedimentary rocks possess transverse isotropy. Acoustic logging provides a technique to
measure the anisotropy in the crust.

The effects of the formation anisotropy on the fluid-filled borehole wave propagation
are studied by a number of authors. In the case of a transversely isotropic formation with
the symmetry axis aligned with the borehole axis, White and Tongtaow (1981) studied
the monopole and the dipole logs. Chan and Tsang (1983) examined the refracted waves
in a radially layered transversely isotropic formation. Schmitt (1989) investigated the
body waves and normal modes in a radially layered transversely isotropic and permeable
formation. Leveille and Seriff (1989) and Nicoletis et al. (1990) determined the particle
motion and the phase velocity of the Stoneley wave at the zero frequency limit in the case
of transverse isotropy with a symmetry axis perpendicular to the borehole axis. Ellefsen
(1990) developed the perturbation and finite element method to study borehole normal
modes in a general anisotropic formation. Sinha et al. (1991) extended the perturbation
method to compute borehole flexural waveforms in an anisotropic formation. Norris
and Sinha (1993) also applied the perturbation method to derive Stoneley wave phase
velocity in a weak anisotropy formation. Renlie and Raaen (1993) examined an acoustic
log in a borehole surrounded by a formation with stress-relief-induced anisotropy, which
is called radial transverse isotropy. Leslie and Randall (1992) extended their 2.5-D
finite difference method to model acoustic wave propagation in a borehole penetrating
a general anisotropic formation. The numerical examples are shown for a transversely
isotropic formation. Ultrasonic experiments are performed on a scaled borehole model
in a phenolite solid. The orthorhombic phenolite is approximated as a transversely
isotropic solid. The lab measurements are compared with the 2.5-D finite difference
dipole synthetics.

In this paper the 3-D time domain finite difference method is extended to include
anisotropy. The finite difference results are compared with the analytic solutions in a
transversely isotropic solid. Borehole wave propagations in the orthorhombic formation
are simulated with a borehole drilled in different directions. Finite difference simulations
are compared with the ultrasonic lab measurements using a scaled borehole model.

FINITE DIFFERENCE METHOD IN AN ANISOTROPIC
MEDIUM

Wave propagation in an anisotropic elastic medium can also be described by the equation
of motion:

(1)
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where p is the density, Ui is the displacement vector, and Tij is the stress tensor. The
generalized Hooke's law links the stress tensor Tij to the strain tensor Cij in a linear
fashion:

(2)

where Cf.jkl is the fourth-order elastic constant tensor. The strain tensor is defined as:

1
c" - -(u' . + u··)'LJ - 2 t,j j,t . (3)

In order to simplify the elastic constants tensor in Cartesian coordinates the strain
tensor is replaced by the strain vector defined as

E=

Cxx

Cyy

Czz

2cyz

2exz

2cxy

(4)

The stress tensor is replaced by the stress vector

Txx
Tyy

T= Tzz
Tyz
Txz
Txy

(5)

The fourth order elastic constant tensor can be replaced by a 6 x 6 symmetric stiffness
matrix because of the symmetry property of the tensor:

cn CI2 CI3 C14 CI5 CI6

C22 C23 C24 C25 C26

c= C33 C34 C35 C36 (6)
C44 C45 C46

C55 C56

symmetric CU6

Here the abbreviated subscript notations are used to reduce the four subscripts of the
tensor. The relations between the full subscripts and the abbreviated subscripts in
Cartesian coordinates are:



94 Cheng et aI.

Full subscript (ij) or (kl)
xx
yy
zz

yz or zy
xz or zx
xy or yx

Abbreviated subscripts (I)
1
2
3
4
5
6.

The generalized Hooke's law can be written in the matrix form as:

T=GE. (7)

In this chapter, orthorhombic anisotropy with nine elastic constants is considered.
The reasons are the following: orthorhombic anisotropy gives the most general case
without the normal stress and the shear strain coupling. It can be straightforward to
implement on the staggered grid used in Chapter 2 (for the general anisotropy case,
some average schemes are needed to make a centered finite difference operator on the
staggered grid due to the offset of the normal and the shear stress). For practical
geophysical applications, orthorhombic anisotropy provides very good models for most
actual rocks.

An orthorhombic solid has three perpendicular planes of symmetry. The stiffness
matrix is

Cll C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
(8)

C44 0 0
C55 0

symmetric C66

For example, some type of granites possess this kind of anisotropy.

A widely used anisotropic type is the transverse isotropy, which can be reduced
from the orthorhombic system. It has one axis of rotational symmetry. This solid is
represented by 5 independent elastic constants. The stiffness matrix is

Cll C12 C13 0 0 0
Cll C13 0 0 0

C33 0 0 0
(9)

C44 0 0
C44 0

symmetric C66

where C12 = cll-2C66' Transverse isotropy is used to model rocks with aligned fractures,
sedimentary rocks or the layered earth in which the layer thickness is much smaller than
the wavelength.

Orthorhombic anisotropy can be reduced to the other types. For example, when
Cn = C22, C23 = C13 and C44 = C55, the orthorhombic system reduces to a 6 constants
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tetragonal system. When cll = C22 = C33, C44 = C55 = C66 and C12 = C)3 = C23, the
orthorhombic system reduces to a 3 independent elastic constants cubic system.

When the elastic constants are not dependent on the orientation, the solid is called
isotropy. There are two independent parameters. The stiffness matrix is

Cll C13 C13 0 0 0
Cll Cl3 0 0 0

Cll 0 0 0
(10)

C44 0 0
c44 0

symmetric C44

where Cll = C13 + 2C44· Using Lame constants, C13 = '\, C44 = /1 and Cll = ,\ + 2/1. This
is the case we discussed in the previous papers.

Equation (1) and (7) are reformulated by using velocity and stress for the orthorhom
bic anisotropic medium. The first order hyperbolic equations in Cartesian coordinates
can be written in their components form as

8vx 87xx 87xy 87xzp-=-+-+-at 8x By 8z
8vy _ 87xy 87yy 87yz (11)P 8t - 8x + 8y + 8z
8vz 87xz 87yz 87zz

P 8t = 8x + 8y + 8z

and

87xx 8vx 8vy 8vz= Cll- + C12- +C13-
8t 8x 8y 8z

87yy 8vx 8vy 8vz= C12- +C22- + C23-
8t 8x 8y 8z

87zz 8vx 8vy 8vz (12)= C13- +C23- +C33-at 8x 8y 8z
8rxy (8vx 8vy )= C44 -+-at 8y 8x
87xz (8vx 8vz )= C55 -+-at 8z 8x
87yz (8vy 8vz )

at - C66 8z + 8y .

The above equations are discretized on the staggered grid shown in paper I. Because
we only consider the orthorhombic anisotropic medium, the normal stress and shear
strain are not related by Hooke's law. The finite difference operators, defined paper r,
are properly centered. The first order time derivative is approximated by the second
order finite difference operator and the first order space derivatives are approximated
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by the fourth order finite difference operators. These operators are described in paper
1. The medium parameters Cll, C12, C13, C22, C23, C33, C44, C55, Gsa and p are assigned at the
grid point (m +~, n+~, k). In order to update the velocities, the needed density values
are obtained from the average of two nearby assigned densities. In order to update
the shear stress, the needed shear moduli are determined by four nearby assigned shear
moduli using the harmonic average. This automatically puts the shear modulus zero at
the fluid-solid boundary.

To control the grid dispersion and the grid anisotropy we adopt the same rule of
thumb used in the paper 1. The stable condition used to determine the time step size is

t:>.t < -;:~::--t:>.-,------:-c:-
v'3vp (!1)I1 + 11)21)

where vp is the fastest quasi-P wave velocity in the model.

(13)

In order to simulate the infinite medium on a computer with limited memory we have
to eliminate the reflections from the artificial boundaries. Higdon's absorbing boundary
condition operator is generalized for an anisotropic medium

m a a
B = II(Cj- - a-) (14)

j=l 8t ax
because in the anisotropic medium, the wave propagates with the different velocity in
the different directions. The velocity a in the absorbing boundary condition is properly
chosen according to the direction of the boundary. For example, for the boundary at

x = Xo for the P wave absorbing term we choose a = JC~l and for the boundary at

Y = Yo for the P wave absorbing term we choose a = ~.

Finally, a 3-D finite difference scheme for an orthorhombic medium is implemented
on the nCUBE parallel computer by using the Grid Decomposition Package. The con
stants of the orthorhombic medium are stored in a small data array instead of ten full
3-D arrays so as to reduce the memory requirements. At every grid point an index file
is searched to determine which constants will be used in the calculations.

COMPARISON WITH THE ANALYTIC SOLUTION

In this section the finite difference method is tested in a homogeneous transversely
isotropic medium. The same test is used by Carcione et al. (1992) to verify their 3-D
spectral scheme for wave propagation in anisotropic media.

The medium chosen for the test is Mesaverde clay shale (Thomsen, 1986). It is a
transversely isotropic solid. The properties of the clay shale are listed in Table 1. The
slowness surfaces are plotted in Figure 1. The 3-D slowness surfaces have azimuthal
symmetry. The plotted 2-D section (X-Z plane) contains the symmetry axis. There are
three types of wave: quasi-P, quasi-S and pure shear. Quasi-P and quasi-S are coupled.
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The parameters used for the finite difference calculations are the following: A 70 x
70 x 200 grid with grid size of 4 em and time step size 0.002 ms. The source is a
point vertical force. The source time function is a Kelly wavelet at center frequency 2.5
kHz. The source-receiver distance is 4 m along the Z axis. The second order Higdon's
absorbing boundary condition is used. The analytical solution of a vertical force acting
along the symmetry axis of a transversely isotropic solid is given in Appendix A.

Figure 2 compares the normalized finite difference and the analytical solutions from
the vertical force. The total time is 4 ms. The vertical velocity V z is shown in the plot.
The agreement is excellent. The two solutions are plotted separately in order to show
the two waveforms. Figure 3 shows the wavefield snapshot of the vertical velocity V z
at time 1.6 ms. The 3-D image is sliced at the XZ, YZ and XY plane. The wavefield
is symmetric about the Z axis. The wavefronts are no longer spherical because of the
anisotropy. The seismogram and the snapshot show the good performance of Higdon's
absorbing boundary condition in the anisotropic medium with properly chosen velocities.

BOREHOLE WAVE PROPAGATION IN AN ORTHORHOMBIC
MEDIUM

In this section the 3-D time domain finite difference method is applied to the fluid
filled borehole wave propagation in an orthorhombic formation. The anisotropic elastic
constants used here are obtained from phenolite XX-324. The phenolite possesses a
strong anisotropy and can be described as an orthorhombic solid (Cheadle et al., 1991).
The elastic constants of phenolite are determined from the lab velocity measurements.
The monopole and dipole logs are simulated in the borehole drilled along the X, Y and
Z axis. The finite difference synthetics are compared with the ultrasonic measurements
in the scaled borehole model.

Elastic Constants of Phenolite

A cubic sample of the phenolite is used to do the property measurements (Zhu et al.,
1993). The P and S wave velocities are measured along the three principal axes by using
the compressional and shear wave transducers ( Figure 4). The three principal axes are
assigned as X, Y and Z. The velocity values are labeled with two indexes. The first is
the direction of the propagation and the second is the direction of the particle motion.
The six independent velocities can be used to determine six elastic constants along
the diagonal of the stiffness matrix. Another three velocity measurements are needed to
determine the three off-diagonal constants. The measuring is done between the opposite
edges of the phenolite cube (Z. Zhu, 1993, personal communication). The propagation
directions are at a 45 degree angle between two principal axes and perpendicular to
the third. The results are listed in Table 2. Using the body wave phase velocity
formulas given in Appendix B for the orthorhombic solid, nine elastic constants can
be determined (Cheadle et al., 1991). The values are listed in Table 3. The slowness
surfaces of phenolite can be recalculated by using these nine elastic constants. The 3-D
slowness surface is sliced at the X-Y plane, the X-Z plane and the Y-Z plane. It is
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shown in Figure 5. The anisotropy is very clear in the plot. The shear wave velocity
anisotropy is about 28% and the P wave velocity anisotropy is about 30%.

Borehole Wave Propagation: Monopole

The monopole source response in a fluid-filled borehole with the phenolite solid as
formation is calculated. The borehole fluid is water. Its velocity is 1500 mls and the
density is 1 gcrn-3• The borehole diameter is 0.24 m. It is numerically drilled along
the Y axis. A 70 x 300 x 70 grid is used for the calculations. The grid size is 1 cm
and the time step is 0.001 ms. The monopole Kelly source at center frequency 5 kHz
is located at (35,40,35) on the grid. The ten pressure receivers are located along the
borehole center. The first receiver is 0.7 m away from the source and receiver spacing
is 0.2 m.

The seismograms are plotted in Figure 6. The first P wave arrival is traveling with
velocity V yy , which is 3620 m/s. The large amplitude low frequency Stoneley wave is
travelling with phase velocity about 1220 m/s. If the formation is isotropic and the
shear wave velocity is 1390 mis, the Stoneley wave phase velocity is about 1100 m/s.
If the formation is isotropic and the shear wave velocity is 1940 mis, the Stoneley wave
phase velocity is about 1300 m/s. So the Stoneley wave velocity in the orthorhombic
formation is about the average of these two velocities. Because of the shear wave
anisotropy (velocity vyx is greater than the fluid velocity), the shear-pseudo-Rayleigh
arrival is observed between the P and Stoneley wave arrivals.

To better understand the phenomenon, the simulation of the wave propagation is
done with the borehole numerically drilled along the Z axis. A 70 x 70 x 300 grid is used.
All the other parameters are kept the same. The shear wave is transversely isotropic
along the Z axis. The seismograms are shown in Figure 7. This time the P wave is
traveling with velocity VZZ> which is 2740 kim. The low frequency Stoneley waves have
about the same velocity as in the Y borehole. But in the borehole along the Z axis there
are no shear-pseudo-Rayleigh arrivals. This is because both V zx and v zy are below the
fluid velocity.

Borehole Wave Propagation: Dipole

First the fluid-filled borehole is drilled along the Y axis. Other parameters are the same
as the monopole simulations. The waveforms of the dipole source in the X direction
are plotted in Figure 8. The seismograms are dominated by the flexural modes. Due to
the strong shear wave anisotropy, there are two widely separated shear wave arrivals.
The fast one is travelling with velocity vyx' The slow one is travelling with velocity
vyz . The dipole source is aligned with the fast velocity direction (Figure 4). But the
dipole source has a radiation pattern of cos(). So there is energy in the slow shear wave
direction too. The slow shear wave velocity means that the small stress can produce
large strain, especially when the shear wave is less than the fluid velocity. That is why
the large amplitude slow shear waves show on the seismograms. On the other hand,
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when the dipole source is aligned in the direction of the slow shear wave (Figure 10),
there is a very small fast shear arrival shown on the seismograms. The first arrivals on
the seismograms are P waves.

For the purpose of comparison the dipole waveforms are also computed in the bore
hole along the Z axis. The seismograms are plotted in Figure 11. In this case both shear
wave velocities (vxZ> v yz ) have the same value and are less than the fluid velocity. The
waveforms are dominated by the slow flexural mode.

It is very interesting to look at the wavefield snapshots. This is one of the advantages
of the finite difference method. The snapshot of the X direction dipole wavefields in the
borehole along the Y axis at time 1.1 ms is shown in Figure 9. This is the case of the fast
and the slow shear wave splitting due to the anisotropy. It is beautifully displayed in the
snapshot. The fast flexural wave is the one traveling in the first pack. The wavefields
spread Into the formation. The reason is that the faster shear wave velocity is greater
than the borehole fluid velocity. The borehole is not a very effective waveguide. The
slow flexural wave is the one trapped inside or near the borehole, because the slow shear
wave velocity is less than the borehole fluid velocity. The borehole becomes a very
effective waveguide for the slow flexural mode.

The snapshot of the X direction dipole wavefields in the borehole along the Z axis at
time 1.1 ms is shown in Figure 12. In this case the shear wave velocity Vzx and v zy are
the same, so there is no shear wave splitting. This is exactly what the snapshot shows.
The single flexural wave dominates the wavefields. The other wavefield anomaly is in
the source region. The images also show vividly the good performance of the absorbing
boundary condition.

In the previous examples, the dipole source and receiver are pointed in the same
direction (inline dipole). Here we show one example of the dipole source and receiver
that are perpendicular to each other (cross dipole). In the isotropic formation the cross
dipole should be zero. But in the anisotropic formation the cross dipole log, combined
with the inline dipole log, can provide very useful information about the orientation of
the shear wave fast and slow directions. This information can be used to estimate the
stress orientations or fluid flow directions.

For the fluid-filled borehole drilled along the Y axis, the source is pointed 45 degrees
from the X axis and the receiver is 135 degrees from the X axis. The cross dipole
waveforms are plotted in Figure 13. The waveforms clearly show the fast and slow
shear wave arrivals. Small amplitude P waves are also shown as first arrivals. The shear
wave arrivals on the cross dipole can be viewed as follows: The source dipole generates
the flexural mode, which is polarized along the two principal axes ( X and Z axis). Then
they are superposed along the receiver direction. In this case the amplitude of the cross
dipole has the same magnitude as the inline dipole. But the simulations also show that
when the cross dipole direction is aligned with the principle axis its amplitude is about
100 times less than the inline dipole.



100 Cheng et al.

COMPARISON WITH ULTRASONIC EXPERIMENTS

Finally, the finite difference synthetics are compared with the ultrasonic lab measure
ments. A block of 25 x 25 x 15 crn3 phenolite solid is used to do the lab measurements. A
1.27 cm diameter hole is drilled along the X axis (Zhu et al., 1993). The experiments are
carried out in a water tank. The borehole fluid is water. The transducer is built using a
PZT piezoelectric tube. This tube is cut in half along the diameter and four electrodes
are connected to the outer and inner sides of the two half tubes. The monopole or the
dipole source can be simulated by using the same tube. When the same electric voltage
is applied on the two halves of the tube, the monopole source is generated. When the
opposite electric voltage is applied on the two halves of the tube, the dipole source is
generated. The monopole and dipole receivers are built using the same method.

This ultrasonic model is amplified by a factor of 20 to do the finite difference simula
tions. The calculation grid is 320 x 70 x 70. The grid size is 1 em. The source is located
at grid point (40,35,35). The receivers are located along the center of the borehole.
The first receiver is 1.5 m away from the source and the receiver spacing is 0.1 m. The
monopole waveforms from the finite difference simulation are plotted in Figure 14. A
Kelly source with 5 kHz center frequency is used. Ultrasonic lab measurements of the
monopole waveforms are plotted in Figure 15. The time scale of the lab measurements
is 20 times smaller than the finite difference results. There is a 0.0072 ms time delay in
the lab measurements. The receiver spacing is 0.5 em. The finite difference results agree
well with the lab measurements. Both the synthetics and the measurements very clearly
show the arrivals of the P wave, the shear-pseudo-Rayleigh waves, and the low frequency
large amplitude Stoneley waves. The first P wave arrival is traveling with phase velocity
V xx ' The shear-pseudo-Rayleigh wave arrivals are caused by the fast shear wave, which
is faster than the water velocity. But the Stoneley wave phase velocity is sensitive to
both the fast and the slow shear waves.

The dipole waveforms from the finite difference are shown in Figure 16. The dipole
source is aligned with the Y axis in the calculation. The scaled borehole model measure
ments are plotted in Figure 17. Both plots clearly display the fast and the slow shear
wave arrivals due to the shear wave splitting in an anisotropic medium. The small P
wave arrivals in the synthetics are not shown on the lab measurements because the lab
measurements are low pass filtered to emphasize the two shear wave arrivals (Z. Zhu,
1993, personal communication). In general, the synthetics and the lab measurements
are in good agreement.

FIELD DATA EXAMPLE

In the previous section we demonstrate that the 3-D finite difference method can provide
reliable fiuid-filled borehole wave propagation modeling in anisotropic formations. The
goal of the 3-D finite difference borehole modeling is to interpret field logging data,
especially those which cannot be explained by the simple borehole model and are difficult
to process.
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Data sets used here were collected by ARCO's array full waveform acoustic logging
tool and shear wave logging tool. These data sets were processed before by Cheng and
Cheng (1992). The shear wave velocity discrepancy between Stoneley wave inversion
and the direct shear wave logging from 3720 ft to 3780 ft section is not well explained.
The 3-D finite difference simulations are used here to interpret this disagreement.

The field array data from depth 3730 ft is plotted in Figure 18. The "refracted
shear/pseudo-Rayleigh" is clearly shown in the last three traces between leaky P and
low frequency Stoneley waves. In order to do the finite difference simulations we assume
Cn = C22 = C33, C12 = C13 = C23 = Cn - 2<:06 and C44 = C55. This is similar to transverse
isotropy. The formation P wave velocity and the shear wave velocities from the shear
wave log and Stoneley wave inversion are used to estimate these elastic constants. They
are listed in Table 4. The borehole with radius 0.12 m is drilled along the Y axis. A
Kelly source of center frequency 8.5 kHz is used. A 70 x 530 x 70 grid is used in the
calculation.

The finite difference synthetics are shown in Figure 19. The three phases on the
synthetics are matched very well with the field data. The amplitude differences are due
to the fact that there are no attenuations included in the finite difference calculations.
The logging tool effect is also not considered. The synthetics are clearly demonstrated
"refracted shear/pseudo-Rayleigh" arrivals. One of the shear wave velocities used in the
simulation is greater than the borehole fluid velocity. This confirms that the "refracted
shear/pseudo-Rayleigh" arrivals are due to the fastest shear wave velocity. So the shear
wave discrepancy from the shear wave log and the Stoneley wave inversion is caused by
the anisotropy. The symmetry axis of the anisotropy is perpendicular to the borehole
axis instead of parallel to it. The shear wave anisotropy is about 10% to 20%.

CONCLUSIONS

In this paper the 3-D finite difference method is extended into an anisotropic medium.
The velocity-stress formulation is used. The scheme is second-order accuracy in time
and fourth-order accuracy in space. The Higdon's absorbing boundary condition is
extended into the anisotropic medium by properly chosen velocities.. Once again the
scheme is paralleled on the nCUBE computer.

The finite difference results agree excellently with the analytic solution of vertical
force in a homogeneous transversely isotropic solid. This comparison also shows the
good performance of Higdon's absorbing boundary condition in an anisotropic medium.

Borehole wave propagation in an orthorhombic phenolite formation is simulated.
The nine elastic constants of the phenolite solid are determined from lab measurements.
In the borehole drilled along the Z axis, the monopole log shows the P wave traveling
with velocity V zz • There are no shear-pseudo-Rayleigh wave arrivals due to the shear
wave below the borehole fluid velocity. The dipole log is dominated by the single slow
flexural mode.

In the borehole drilled along the Y axis, the monopole log shows that the P wave
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is traveling with velocity v yy . Because the shear wave velocity v yx is greater than
the borehole fluid velocity, there are shear-pseudo-Rayleigh wave arrivals shown on the
monopole log between the P wave and Stoneley wave arrivals. There is shear wave
splitting in the dipole log due to the anisotropy. Two shear wave arrivals correspond
to the fast flexural mode and the slow flexural mode. The St<;meley wave velocity is
sensitive to both the fast and the slow shear wave velocities. The cross dipole also
clearly records fast and slow shear wave arrivals.

In the borehole drilled along the X axis, the monopole log shows the P wave traveling
with velocity V xx ' The other conclusions are similar to the Y borehole. The monopole
and dipole synthetics agree well with the scaled ultrasonic lab measurements.

3-D finite difference simulation is also used to explain the shear wave velocity dis
crepancy from field logging data.
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APPENDIX A:

A POINT FORCE SOLUTION IN A TRANSVERSELY ISOTROPIC
SOLID

We consider the solution along the symmetry axis of a transversely isotropic solid.
This analytic solution is given by Payton (1983). Define the following dimensionless
parameters:

C33
a =

C44

b
Cn=
C44

d = ~(b _ C12) (A.I)
2 C44

e = I+ab- (13 +1j2
C44

V s f¥
zz = -

vst

where Cn, C12, CI3, C33 and C44 are elastic constants. p is density. z is the distance from
the source along the symmetry Z axis.

The response to the vertical force:
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l = (0,0, 1)t5(x)t5(y)t5(z)H(t)

where H(t) is the step function, is given by:

Ux = 0

u y 0

r
O<t::;tp

Uz
1 h(z), tp < t ::; ts

4'JrZv; 2h(z), ts < t ::; t1
1, t > t1

where
h(z) = ~ _ 2(1- z2) - e+ (b+ l)z2

2 2v!f5

with
z

ts
Vs

z
tp =

JC331P

t1
t s

=
Z1

The quantity D and Z1 is given by:

D(z) = [e - (b + l)z2]2 - 4b(a - z2)(1 - z2)

and
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(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(B.l)

Z1 = [e(b + 1) - 2b(a + 1) + 2Jb(1 + ab - e)(a + b - e)J~ I(b - 1) (A.7)

The above solution is valid for the solid satisfying the inequalities (e < 1 + b) and
(e2 - 4ab < 0). In our application the time step function is removed in the frequency
domain and the source time function is convolved.

APPENDIX B

PLANE WAVE SOLUTIONS OF AN ORTHORHOMBIC SOLID

The plane wave solution of an orthorhombic solid is given by Auld (1973). In the XY
plane there is a pure shear wave polarized along the Z axis,

2 C44Cos2¢ + C55sin2¢v = -::':_--'---=---'-
S P

the quasi-S wave is,

2 "66 + CllCOS2¢ + C22sin2¢ - J("66 + CllCOS2¢ + C22sin2¢)2 - 4C
v qs = 2p (B.2)



104

and the quasi-P wave is,

Cheng et aI.

where

where </J is the angle between propagation direction and X axis.

For propagation in the XZ plane the pure shear wave is polarized along the Y axis,

the quasi-S wave is

(R5)

and the quasi-P wave is,

where

In the YZ plane the pure shear wave is polarized along the X axis,

the quasi-S wave is

(B.9)

and the quasi-P wave is,

where

where e is the angle between propagation direction and X axis.

(RIO)

(Rll)

(RI2)
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Quantity Value

Cn 66.6 GPa
C12 19.7 GPa
C13 39.4 GPa
C33 39.9 GPa
C44 10.9 GPa
p 2590 kg/m3

Table 1: Properties of the transversely isotropic medium, which represents Mesaverde
clay shale.

Direction P wave velocity
(m/s)

45 degrees to Y,Z axes 3200
90 degrees to X axis

45 degrees to X,Z axes 3300
90 degrees to Y axis

45 degrees to X,Y axes 3900
90 degrees to Z axis

Table 2: The P wave velocities measured between opposite edges of the phenolite cube
(Z. Zhu, 1993, personal communication).
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Quantity Value

Cll 20.80 GPa
C12 11.47 GPa
C13 7.26 GPa
C22 17.46 GPa
C23 7.87 GPa
C33 10.06 GPa
CM 2.59 GPa
C55 2.59 GPa
e66 5.04 GPa
p 1340 kg/m3
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Table 3: Properties of the orthorhombic medium, which represents Phenolic XX-324.

Quantity Value

Cll 22.7 GPa
C12 11.7 GPa
C13 11.7 GPa
C22 22.7 GPa
C23 11.7 GPa
C33 22.7 GPa
CM 3.36 GPa
C55 3.36 GPa
G66 5.5 GPa
p 2150 kg/m3

Table 4: Elastic properties used in the simulation of field logging data
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Figure 1: Slowness surfaces of Mesaverde clay shale. There are three modes, pure shear,
quasi-P, and quasi-So
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Figure 2: Comparison of finite difference result (FD) with analytic solution of a ver
tical point force in homogeneous transversely isotropic medium. The source center
frequency is 2.5 kHz. Both amplitudes are normalized
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Figure 3: The snapshot of the velocity V z wavefield from a vertical point force in a
homogeneous transversely isotropic medium at time 1.6 rns. Source center frequency
is 2.5 kHz. The image size is 70 x 70 x 200.
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Figure 4: The P and S wave velocities measured along the three principal axes of
a phenolite cube. The velocity is given with two indexes. The first index is the
propagation direction and the second index is the particle motion direction (after
Zhu et al., 1993).
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Figure 6: Monopole seismograms of fluid-filled borehole drilled along the Y axis in
phenolite formation. Source center frequency is 5 kHz.
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Figure 7: Monopole seismograms of a fluid-filled borehole drilled along the Z axis in a
phenolite formation. Source center frequency is 5 kHz.
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Figure 8: Dipole seismograms from a fluid-filled borehole drilled along the Y axis
in a phenolite formation. Source center frequency is 5 kHz and dipole is in the X
direction.
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Figure 9: Wavefield image from a dipole source at time 1.1 ms. The fluid filled borehole
is drilled aiong the Y axis in a phenolite formation. The vertical direction is the Y
axis. Source center frequency is 5 kHz and the dipole is in the X direction.
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Figure 10: Dipole seismograms from a fluid-filled borehole drilled along the Y axis in
a phenolite formation. Source center frequency is 5 kHz and the dipole is in the Z
direction.
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Figure 11: Dipole seismograms from a fluid-filled borehole drilled along the Z axis in
a phenolite formation. Source center frequency is 5 kHz and the dipole is in the X
direction.
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Figure 12: Wavefield image from a dipole source at time 1.1 ms. The fluid filled
borehole is drilled along the Z axis. Source center frequency is 5 kHz and the dipole
is in the X direction.
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Figure 13: Cross dipole seismograms from a fluid-filled borehole drilled along the Y axis
in a phenolite formation. Source center frequency is 5 kHz. The source dipole is 45
degrees from the X axis and the receiver dipole is 135 degrees from the X axis.
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Figure 14: Finite difference monopole seismograms from the fluid-filled borehole drilled
along the X axis in a phenolite formation. Source center frequency is 5 kHz.
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Figure 15: Ultrasonic lab measurement of monopole seismograms from the fluid-filled
borehole drilled along the X axis in a phenolite solid. (After Zhu et a!., 1993)



....
Q)
III--o

2.6

2.5

2.4

2.3

2.2

2.1

2.0

1.9

1.8

1.7

1.6

1.5

3-D Finite Difference III: Anisotropic 123

o 1

TIME (ms)
2 3

Figure 16: Finite difference dipole seismograms from the fluid-filled borehole drilled
along the X axis in a phenolite formation. Source center frequency is 5 kHz.
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Figure 17: Ultrasonic lab measurement of dipole seismograms of a fluid-filled borehole
drilled along the X axis in a phenolite solid. (After Zhu et ai., 1993)
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Figure 18: Field array sonic tool data from depth 3730 ft. There are 12 traces.
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Figure 19: 3-D finite difference synthetics for array sonic logging at depth 3730 ft. The
source center frequency is 8.5 kHz.


