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ABSTRACT

Concise and numerically feasible dynamic and static Green's functions are obtained in
dyadic form by solving the wave equation and the equilibrium equation with general
source distribution in transversely isotropic (TI) media. The wave and equilibrium
equations are solved by using an extended version of the Kupradze method originally
developed for isotropic media. The dynamic Green's function is expressed through three
scalar quantities characterizing the propagation of SH and P-SV waves in a transversely
isotropic medium. The 2-D inverse Laplacian operator contained in previous Green's
function expressions is eliminated without limiting to special cases and geometries.
The final dyadic form is similar to that of the isotropic dyadic Green's function, and
therefore lends itself to easy analytical and numerical manipulations. The static Green's
function has the same dyadic form as the dynamic function except that the three scalars
must be redefined. From the dynamic Green's function, displacements due to vertical,
horizontal, and explosive sources are explicitly given. The displacements of the explosive
source show that an explosive source in a TI medium excites not only the quasi-P wave,
but also the quasi-SV wave. The singular properties of the Green's functions are also
addressed through their surface integrals in the limit of coinciding receiver and source.
The singular contribution is shown to be -1/2 when the static stress Green's function
is integrated over a half elliptical surface.
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INTRODUCTION

Wave propagation from various seismic sources placed inside a fiuid-filled borehole em
bedded in a layered transversely isotropic medium is of great interest and importance to
geophysicists dealing with crosshole, vertical seismic profiling, and acoustic logging data.
In simulating wave propagation in this geometry, ordinary numerical techniques, such
as the finite difference method and the finite element method, encounter computational
difficulties because of the significant scale difference between the borehole diameter and
the formation extent. A technique (Bouchon, 1992; Dong et a!., 1992) perfectly suited
to this kind of geometry is the boundary element method (BEM). It is a semi-analytical
method because the only discretization occurs at the borehole boundary and the prop
agation of waves is realized through the use of the dynamic Green's function. This
technique also requires the static Green's function to regularize the boundary surface
integral when the source and the receiver coincide. These essential requirements of the
Green's functions in the BEM technique motivate this work.

Although plane wave propagation in TI media has been studied by many workers
(e.g. Fedorov, 1968; Crampin, 1985; among others), literature on the static and dynam
ic Green's functions of the TI medium are at most scarce. Among the existing ones,
most of them provided the solution in component and numerical forms. Pan and Chou
(1976) presented explicit solutions of the equilibrium equation in terms of displacement
and stress components for vertical and horizontal forces. In their solution procedure,
three displacement potentials and an assumed solution form with unknown coefficients
were used. Buchwald (1959) solved the wave equation for three strains: (~-~),

8;; and (~+~). The far-field approximation of these strains was given using a
stationary phase approximation. Other workers (White, 1984; White et a!., 1984; Man
daI and Toksoz, 1990) employed numerical method to study the radiated waveforms of
line source, vertical and horizontal point forces, and explosion source. Kazi-Aoual et a!.
(1988) devised an algorithm using the Kupradze method (Kupradze, 1979) for calcu
lating the dynamic Green's function. In Kazi-Aoual et a!. (1988), the dynamic Green's
function is expressed as the cofactor matrix of a symmetrical matrix of differential op
erators operating on a single scalar. The scalar is represented by the Hankel transform.
Ben-Menahem and Sena (1990) and Sena (1992) extended the work of Buchwald and
obtained the dynamic Green's tensor in the form of the Hankel transform by recovering
the displacement vector from the three strains. This extension is significant because
a fairly simple dynamic Green's tensor is given in terms of dyadic notation. However,
due to the presence of a 2-D inverse Laplacian operator in the expression, this Green's
function does not lend itself easily to numerical and analytical manipulations.

In this paper, we present a unified treatment of the dynamic and the static Green's
functions and show that they can be conveniently expressed by a single dyadic form,
with different meanings of the symbols for each case, of course. Unlike the previous
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studies, we solve the equilibrium and wave equations with a general source distribution
by using an extended version of the Kupradze method. This not only simplifies the
previous derivations but also enhances their rigorousness. More importantly, the final
solution does not contain the 2-D inverse Laplacian operator and is valid for the source
at an arbitrary location, which is critical for the BEM technique. We then apply the
dynamic Green's function to obtain the displacements for the vertical, horizontal and
explosive point sources. Finally, the static Green's function is used to compute the
singular contribution when integrating the dynamic stress function over a boundary
surface in the limit of the source coinciding with the receiver. These results are directly
applicable to BEM simulation of wave radiation and scattering.

THE DYNAMIC GREEN'S FUNCTION

In a Cartesian coordinate system (x,y,z) with unit vector (x,y,z), let U = (uz,uy,uz)
and F = (Fz , Fy, Fz ), respectively, be the displacement vector and external body force
of a transversely isotropic medium characterized by the five independent elastic stiffness
constants, Cn, C13, C33, C44, and C66. The frequency domain wave equation in terms of
the displacement components for a transversely isotropic medium can be written in the
following form

82uz 82uz 82uz ) 82uy ) &uz 2
cn 8x2 + C66 8y2 + C44 8z2 + (Cn - C66 8x8y + (C13 + C44 8x8z + pw Uz

82uy 82uy &uy ) &uz ) 82uz 2
cn 8y2 + C66 8x2 + C44 8z2 + (Cn - CS6 8x8y + (C13 + C44 8y8z + pw uy

&uz (&uz &uz) ( ) 8 (8Uz 8Uy ) 2
C33 8z2 + C44 8x2 + 8y2 + cI3 + C44 8z 8x + 8y + pw Uz

In the above equation, the relation CI2 = Cn - 2C66 is used. These equations can be easily
compared with those in White (1983), where Love's notation for the elastic constants
is used. Grouping the first two equations together in terms of transverse displacement,
Ut = uzx + uyy, and rewriting the third equation, we obtain

2 &Ut 8 2
CS6V't Ut+ C44 8z2 +(Cl1-CS6)V'tV't·Ut+(CI3+C44)8z V'tUz+PW Ut

2 82uz 8 2
C44V't Uz + C33 8z2 + (C13 + C44) 8z V't· Ut + pw Uz

where, Ft = Fzx + Fy'fj. Similar to solving the elastic wave equation for the isotropic
case, where the curl and divergence are taken on both sides of the equation, Eqs. (2)
and (3) can be solved by taking the transverse curl and the transverse divergence on
both sides.
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(4)

We first take the transverse curl, defined as \7t x = [\7 - ;'E] x, of Eq. (2) to obtain

2 & 2c66\7t \7, x Ut +C448z2 \7, x U, + pw \7t x Ut = -\7t x F,.

\7t x Ut = lvg(x,x/) \7; x F; dX, (5)

where x == (x, y, z) is the receiver location, and x' == (x', y'ZI) is the source location.
g(x, x') is the Green's function of the scalar wave equation

The gradient terms disappeared because \7 t X \7 ,u = O. By virtue of Green's super
position theorem, the solution of this equation in terms of the transverse curl of Ut
is

(6)

This function is readily obtained following transformation s = JC66/C44 Z and 6(az) =
1/a6(z). If e-iw' dependence is assumed for the wavefield, this Green's function is

eikoR

g(x,x) = 4 y'C44C66R'
1r C44C66

(7)

where, R = J(x - xlF + (y - yiP + Cs6!C44(Z ZI)2 is the distance from the source to
the receiver and ko = w/ J C66/ p is the wave number. In the isotropic limit, C66 = C44 =
11, and 9 reduces to the scalar shear wave Green's function.

Taking the transverse divergence of eq. (2) and the z derivative of eq. (3), we obtain
two coupled equations,

(8)

(9)

These equations can be solved using an extended version of the Kupradze method
(Kupradze, 1963) outlined for an isotropic medium. First, we rewrite the coupled equa
tion in a matrix form

where

(11)

(12)
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In the Kupradze method, the unknowns of the system are expressed in terms of the
cofactor matrix of the original symmetrical matrix operating on a single scalar. The
system is greatly simplified because the product of a sy=etrical matrix and its cofactor
matrix results in an identity matrix scaled by the determinant of the original matrix.
This method no longer applies in our case due to the loss of symmetry of the matrix in
Eq. (10). Kazi-Aoual et al. (1988) can still apply the Kupradze method because they
solve Eq. (1), which is symmetric when written in matrix form. Instead of the cofactor
matrix, the adjoint of the original matrix must be used for the nonsy=etrical system.
The adjoint of a matrix is defined as the transpose of its cofactor matrix. The product
of a matrix with its adjoint is the identity matrix scaled by its determinant. Following
this method, we assume

[
'Vt . lit ] -1 [ Lt -(CIS + C44)'Vl ] A.( ') [ 'V~ . F~ ] d Iau_ - )a2 ",X,x aF

'
x.

fu V -(CI3 + C44 a;:t Lz Cf?' z

Substituting Eq. (13) into Eq. (10), we obtain

[LtLz - (CIS + C44)2 ;;2 'VF] ¢(x, X') = -6(x - X').

(13)

(14)

(17)

The scalar Eq. (14) can be solved using the Fourier transform method. Defining the
3-D spatial Fourier transform as follows,

FT{f(x)} = 1..: dz 1..: dV1..: dx!(x)e-i1k,,(x-x')+k,,(y-y')+k.(z-z')I, (15)

and applying it to the above equation, we have

¢(kx, ky, k., w) = (cllk2 + C44 k; _ pw2)(C44 k2 +~~3k; _ pw2) _ (CIS + C44)2Pk;' (16)

where, k2 = k~ + k~ is the transverse or horizontal wavenumber. To return to the spatial
coordinates, one takes the inverse transform first, then changes the rectangular space
(x - x', V - V', z - Zl) and wavenumber (kx, ky, kz) domain into cylindrical coordinates
(D, OD, z) and (k, Ok, kz). Integration over Ok produces a zeroth order Bessel function of
the first kind, i.e., 21rJo(kD) = It" dOkeikDcos(9k-9D). The final result is

I -1 foco lco eik:(z-z')
¢(x, x, w) = (2 )2 kJo(kD)dk dkz (P 2)(P 2)'

1r C33C44 0 -co z - Va z - Vb

In this equation, D = v'(x X I )2 + (V - V' )2, and v~ and v~ represent the two roots of
the denominator in Eq. (16), corresponding to quasi-P and quasi-SV waves, respec
tively. After regrouping terms, the denominator is

CSSC44k; + [(CllCSS - cis - 2CISC44)k
2

- (css + C44)pw2]k;
+ (C44k2 - pw2)(Cll k2 - pw2) = 0, (18)
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whose roots are
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V~ =

where,

(C33 + C44)pw2 - (CnC33 - q3 - 2CI3C44)P + v'Ak4 + BP + C
2CaaC44 '

(C33 + C44)pw2 - (CnC33 - q3 - 2CI3C44)k2 - v'Ak4 + BP + C
V

2 =
a 2C33C44

A = (CnC33 - CI3)[CnC33 - (CI3 + 2C44?],

B - -2pw2(C33 - C44)[CnC33 - (CI3 + 2C44)2],

+4pw2C44 (CI3 + C44)(CI3 + 2C44 - C33)

C = (C33 - C44)2p2W4.

(19)

(20)

(21)

To calculate the kz integral properly, one should notice that the integrand has four
poles at kz = ±va and kz = ±Vb. Moreover, for a real w, these four poles lie on the real
kz axis, rendering the integral undefined. However, if a complex w is assumed, these
poles are off the real axis, and the integral is well-defined. If we assume Im[val > 0 and
1m[VbJ > 0, then for z - z' > 0, we have to close the contour in the upper half of the
kz plane. By Cauchy's theorem, the real axis integration is equivalent to 211" times the
residue of poles at kz = Va and kz = Vb. Similarly, for z - Zl < 0, the integral is equal
to the pole contribution at -Va and -Vb. The combined result valid for all z - Zl is

-i 1000 1 (eiV,lz-z'r eivarz-z'I)
¢(x,x',w) = 4 2 2 - kJo(kD)dk.

7rC33C44 a Vb - va Vb Va
(22)

Once 9 and ¢ are determined, we obtained the transverse curl, the transverse diver
gence, and the z derivative of the displacement vector, u. These quantities are

'Vt x Ut =

'Vt · Ut =
auz =az

(23)

(24)

(25)

(26)

Now, a few vector identities and integration by parts can be used to recover the total
displacement vector. Using vector identity g'Vi x f' = 'Vi X (gfl) - 'I7ig X f' in Eq. (23)
and noticing that 'Vig = -'Vtg, we have

'Vt x Ut = fv {'Vi x [g(x, x')Fi] + 'Vtg(x, x') x Fi} dx'

fv 'Vtg(x, x') x Fidx' .
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(27)

(29)

In (26), since the integrand of the first integral is in a differential form, the integral
can be evaluated at the boundary surface of the volume. This results in zero because
Ft is a body force and not supported at the boundary surface. Applying </>'Vt . f =
'Vt · (¢>f) - 'Vt</>· f and Green's theorem to the first integral of (24) by noticing that the
surface integral is zero again because F t is not supported on the surface (F is a volume
source), and using integration by parts to the second integral, we obtain

r M L "-( ') , d' ( ) r 28</>(x, x) A , ,'Vt· Ut = J
v

Vt t'l' x,x . F t x - CI3 + C44 Jv'Vt 8z z· F dx.

Similarly, for (25), we have

0;; = [:zLz</>(X,X')Z' F' dx - (CI3 + C44) [::2 'Vt</>(x,x')· F; dx. (28)

Using the identity 'VFUt = 'Vt'Vt · Ut - 'Vt x 'Vt x Ut, the total displacement vector can
be recovered as

U = Ut +uzz

= ~ ['Vt'Vt · Ut - 'Vt x 'Vt x Ut] +zJ 8:z dz
'Vt uZ

r 'Vt'Vt ( ') , _J ( ) r 8 A , ,= Jv ~Lt</> x, x . F dx - CI3 + C44 Jv 'Vt 8z </>z . F dx

-[ ~t 'Vt x ('Vtg(x,x') x FDdx

+ rLz</>(x, x)ii . F' dx - (CI3 + C44) r .!!...-z'Vt</> . F' dx'Jv Jv 8z

[[9I+ii(Lz</>-9) -(CI3+C44):z('Vtz+z'Vt)</>+ 'V~;t(Lt</>_9)] ·F'dx'.

In the above derivation, the following identities have been used:

'Vt x ('Vtg x FD = 'Vt'Vtg· F; - 'Vt9F;,

I = It + ii,

Ft It· F,
1 2

'VF'Vt l.

The last equation in the above says that the displacement field can be determined for
any kind of source by convolving the source with a certain function then integrating over
the source volume. This is exactly the statement of Green's superposition theorem, and
this certain function (the integrand) is just the Green's function for the wave equation.
Thus, The dynamic Green's function (tensor), denoted by G and expressed in dyadic
form, is

G = gI + zz(Lz</> - g) - (CI3 + C44) ~ ('Vtz + z'Vt)</> + 'Vt ~t (L t </> - g). (30)
uZ 'Vt
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The meaning of L t , L., 9 and eP in the above equation are defined in Eqs. (11), (12),
(7) and (22), respectively. The inverse Laplacian operator, ;;h, does not have simple

t
form except for fields or sources with z-axis symmetry. With the z-axis symmetry, this
operator (Ben-Menahem and Sena, 1990; Sena, 1992) is

1 0 ( au) 1 Jdr J'V~u = -;: or r or <--t 'V~ u = r rudr. (31)

Even in this special case, the inverse Laplacian incurs integration with respect to Bessel
functions which are not easily obtained. Fortunately, as it is shown later, this inverse
Laplacian operator can in fact be replaced by integration over z in the general cases.

Without further simplification, the isotropic limit can be obtained with the assis
tance of the two scaiar wave equations. In the isotropic limit, Cll = C33 = A + 2p,
CI3 = A and C44 = cas = p,

2
2 pw _ k2V -
a - A + 2p . (32)

Using the Sommerfeld representation for a point source, eP is simplified to

-1 -1 (~~R ~~R)
eP = (A + p)pw2 (gf3 - gal = (A + p)pw2 41l'R - 41l'R '

where gf3 and ga are the scalar Green's function of the scalar wave equations

(33)

These two equations can be used to simplify LteP and LzeP at any point, including the
source point. We then have

L eP - gf3 _ 1 O2(ga - g(3)
z - P pw2 OZ2 ' (35)

With these results and 9 = gf3!P from (7), the Green's function becomes

G = ~gf31 + p~2 [(:z 'VtZ+ :ZZ'Vt) +2z ::2 + 'Vt'Vt] (gr gal (36)

p~2 [k~gf31 + 'V'V(gf3 - gal] , (37)

which is exactly the dynamic Green's function for the isotropic elastic medium (Kupradze,
1963; Ben-Menahem and Singh, 1981).
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To determine the singular behavior of the dynamic Green's function when a field point
approaches the source point, the static case must be considered because it is required
to regularize the surface integrals of the dynamic Green's function (Kupradze, 1963).
Following the procedure of the previous section and set the frequency to zero (w = 0),
one finds that the static Green's function has the same form as Eq. (30) except that L t ,

Lz> 9 and ¢ must be redefined. Operators L t and Lz stay the same as in Eqs. (11) and
(12) with w = 0, while more work is reqUired in order to obtain 9 and ¢. In the static
limit, Eqs. (6) and (14) become

-t5(x - ,() (38)

-t5(x - x'). (39)

The solution of the first equation is

v 1 r-- --- - --~

9 - -g-_. Rg = /(x - X' )2 + (y - yl)2 + v~(z - ZI)2, (40)
- 47l'C66 Rg , V

where, vg = ";C66/C44' The second equation can be factorized into

where, v~ and //~ are the negative counterpart of the solutions of the equation

C33C44//4+ (CllC33 - cI3 - 2CI3C44)//2 + CllC44 = 0,

Le.,

(CllC33 - CI3 - 2C13C44) + V(CllC33 - CI3) [CllC33 - (C13 + 2C44)2]

2C33C44

In order to be a solution of Eq. (41), ¢ must satisfy

(41)

(42)

(43)

(44)

(2 1 8
2

) //a 1
(45)'Vt + //~ 8z2 ¢ 47l'C33C44//~//~ Ra'

(2 1 8
2

) lib 1
(46)'Vt+//~8Z2 ¢ 47l'C33C44//~//~ Rb'
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where,
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Ra J(x - x')2 + (y - y')2 + IIJ(z - Z')2,

Rb J(x - X')2 + (y - y')2 + 1I~(Z - z')2.

(47)

(52)

(53)

In arriving at the above equations, we employed the transformations Sa = lIa(Z - Z'),
Sb = IIb(Z - z'), and 8(s/c) = c8(s), and the Poisson's equation

2 1 ')'V - = -8(x-x
41CR '

where, R = y'(x - x')2 + (y - y'p + (z - Z')2. From Eqs. (45) and (46), we obtain

~~ - 41rC33C44~1I~ _ 1I~) [~: - ~:] , (48)

'V~</J 41CC33C44~11~ -1I~) [lIa~a - IIb~J . (49)

Assuming lIa and lib> 0 (or Re[lIaJ and Re[lIbl > 0), integration over z yields

[}</J sgn(z - z') , ,
[}z = (2 2) {In[Rb + IIblz - z IJ -In[Ra + lIalz - Z I]}, (50)

41CC33C44 lib - lIa

and

</J = 1 {Iz - z'lln[Rb + IIblz - z'lJ - ~
41rC33C44(1I~ - 1I~) -,

Iz - z'lln[Ra + lIalz -' z'll +~ }. (51)

Except for the absolute value, this expression is the same as the l!ssumed solution form
in Pan and Chou (1976, Eq. 19). The absolute value of z - z' is necessary because for
lIa or lib > 0, and z - z' = -Ra/lla or - Rb/lIb, Eq. (51) yields a finite solution, instead
of the infinity when the absolute value sign is absent.

The isotropic limit cannot be obtained from the above expression for </J. This is
because at the limit, lIa = lib = 1, and Eq. (41) reduces to

(
[}2)2

p,(>. + 2p,) 'V~ + [}Z2 </J = -8(x - x').

Using the identity 'V2 R = ~, the solution for this equation is

1
</J= R.

81rC33C44

Substitution of this </J and 9 into (30) yields the isotropic static Green's function (Love,
1944), i.e.,
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(54)

The last term in the dynamic Green's function (Eq. 30) is a simple but very abstract
expression. Its meaning is not easily defined in general. Even for special cases, numerical
calculation of the Green's function renders integration of Bessel functions with respect to
spatial coordinates. This, along with the integration over wave numbers, presents many
numerical difficulties. Moreover, this operator prevents further analytical manipulation
of the Green's function. An alternative form, therefore, is necessary. In the following,
we show that a simple and numerically feasible expression is indeed available.

Before we proceed, let's understand why ~ disappears in the isotropic case (Eq.
t

37). As seen from equation (35), L t ¢ cancels out 9 and leaves --j;;.;'ift(g", - gf3)' This
cancels out the inverse Laplacian. To obtain (35), the two independent scalar wave
equations (34) for the P and S waves are used. In the case of transverse isotropy, we
no longer have two separate scalar wave equations for the quasi-P and quasi-S waves.
Instead, we have a fourth order scalar equation (Eq. 14) for the P - SV waves and a
second order equation (Eq. 6) for the SH wave. Equation (14) indicates the inevitable
involvement of operator L z in the calculation. This suggests that we first compute
Lz(Lt<p - g) rather that (Lt<p - g) alone.

From equations (14) and (6), a simple manipulation yields

Lz(Lt<p - g) = \1; [(CI3 + C44)2~:~ - (Cll - C£6)9] .

Because Lz is a linear operator, the above result suggests that Lt<p - 9 = \1;'l/J, where
'l/J is an unknown function to be determined. Thus, we obtain

(55)

and

Lz'l/J = (C13 + C44)2:~ - (C11- C66)g. (56)

Now that we have got rid of the inverse Laplacian, what is left to do is to determine
'l/J by solving the inhomogeneous equation (56), where the differential operator L z is
defined by equation (12).

The right hand side of equation (56) has the form of Hankel transform because

f)
2

<p i roo 1 (lib eiv,lz-z'l _ lIa eivolz-z'l) kJo(kD)dk (57)
f)z2 47l'C33C44 io II; - II~

i 1000 eillclz-z/l
9 = -4- kJo(kD)dk, (58)

7rC44 0 Vc
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where, Va and Vb are defined in Eqs. (19) and (20), and Vc = ..)(p"P - C66k2)/C44' This
suggests that the solution 1/J should also be in the form of Hankel transform. i.e.,

'l/J = 4~ faco f(z, z') kJo(kD)dk. (59)

Substituting this solution form and Eqs. (57) and (58) into equation (56), we obtain the
following ordinary differential equation for f(z, z')

d2f(z z')
dZ~ + v;f(z, z') = p(z, z')

=

In arriving at the above equation, the following definitions and identities were used,

(61)

co
V'~Jo(kD) = V'~ 2:= EmJm(kro)Jm(kr) cos m(O - 00)

=0co
2:= EmJm(kro)V';[Jm(kr) cos m(O - 00 ))

m=0

(

co
= 2:= EmJm(krO) [ -k2Jm(kr)] cos m(O - 00)]

m=0

- k2Jo(kD). (62)

For the second identity, the addition theorem (Watson, 1944) of Bessel's functions was
used.

Equation (60) can be solved with the aid of the Green's function for this ordinary
differential equation. This Green's function, denoted by q(z, Zll), and satisfying the
continuity condition of q and discontinuity condition of ~ at the source level z = Zll, is

iv;:lz-z"1
( ") eq z, z = -:2'""--'

tVz

Using Green theorem on Eq. (60), we obtain

f(z, z') = i: q(z, Zll) p(Z", z')dz".

(63)

(64)
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When p(Z", z') (defined in (60)) is substituted into the above equation, there are three
integrals of the type I~", eivdz-z"leiv"lz"-z'ldz". This type of integral is readily com-

puted by dividing the integral into three sub-domain integrals: I~", = I':~ + I: + Iz'"
for z > z, and I~", = I':", + I:' + Ize;> for z < z'. The final result is

(65)

Using this result in (65), we obtain

(66)+

f(z, z') = 1 [ S2 SIV;] ivzlz-z'l
Vz v; - v; - (v; - v~)(v; _ v;) e

SIVa eivalz-z'l
(V; - V~)(V; - V~)

Slllb eiVblz-z'l _ 8 2 e'lIc jz-z'l
(v; - v~)(v; - v;) ve(v; - vn

The above seems to suggest four types of propagating waves. However, a closer exami
nation of the first term of f(z, z') shows that it vanishes altogether. This result agrees
with the physics that only three kinds of waves exist in a TI medium, Va part for the
quasi-P wave, Vb part for the quasi-SV wave, and Ve part for the SH wave. Thus, the
final result is

(67)+

f(z, z') = SIVa eivalz-z'l
(v; - v~)(v; - V~)

SIVb eiv,lz-z'l _ S2 ew,lz-z'l
(v; - V~)(V; - V;) Ve(V; - vn

Substituting this result back into (59) and using (55), we obtain a simple form for the
originally complicated term. This simplified expression can be implemented easily on
the computer.

In the isotropic limit,

then
, _ 1 (eiv"IZ-z'l eiv.lz-Z'I)

f(z, z ) - -2 - ,
{XJJ vb Va

(68)
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and, using the Sommerfeld integral, we have

1/J = 4
i roo f(z, z') kJo(kD)dk = gf3 - !"',
1r Jo pw

which agrees with the result of equation (36).

For the static case, equations (48) and (49) yield

(69)

1I~ and 1I~ are now defined by equations (43) and (44). 1/Ra, 1/Rb satisfy

[
2 1 2] 1 41r ,

V't + 20z D = --8(x - x),
Vi .LLi Vi

(71)

where, subscript i represents a, b, or g. A manipulation of Eq. (71), with the fact that
operators !fx and ~ commute in cylindrical coordinates, yields

1 1

V'lR;

(72)

In calculating ~(Lt<P - g), the second term in (72) drops out due to cancellation, and
•we obtain

(73)

It is interesting to note from the above calculations that the inverse Laplacian is
essentially removed by integration over z. The end result of z integration is basically
to introduce amplitude weighting for different waves. The computations are based on
operator manipulation and therefore the results are valid for any source geometry.
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(74)

(75)

(76)

(77)

Before we proceed to calculate the displacements, we summarize the results of the
previous sections. The dynamic and static Green's function in transversely isotropic
media can be expressed in the following single dyadic form

G = gIt + zzLzl/> - (C13 + C44)(V'tZ + zV't) ~~ +V'tV't'I/J.

For the dynamic case, L., g, 1/>, and 7/1 are defined in equations (12), (7) or (58), (22), and
(59) plus (67), respectively. For the static case, these symbols are defined in equations
(12) with w = 0, (40), (51), and (73).

Practically, we now have all the tools necessary to solve wave propagation and
scattering problems in a TI medium. As the basic applications of Green's functions, we
calculate the displacements produced by vertical, horizontal and explosive point sources.

Vertical Point Force

For a vertical point force (parallel to the symmetry axis) at the origin, F(x) = z8(x).
Using the Green theorem, we obtain

u = fv G(x, x') . F(x')dx! = zLzl/> - (C13 + C44)V't ~~.

The displacement vector does not depend on g, indicating that a point force along the
symmetry axis does not excite SH waves. Writing out in components, we have

Ur s~;Z) fO Sabk2JI(kr) [eiVblzl_ eivalzl] dk,

Uz = 4~ faoo kJo(kr) [SbeiVblzl - Saeivalzl] dk,

where,

(78)

Horizontal Point Force

For a point force at the origin and directed along an isotropic plane (say along x),
F(x) = x8(x). The displacement vector is

~ ( ) 8
2

1/> ~ ,,87/1
u = gx - Cl3 + C44 8x8z z + v t 8x .
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Now 9 is included in the final expression, indicating that a horizontal point force excites
all three waves: SH, quasi-P, and quasi-SV. In their components, the displacements
are

Ur = i c4~<P fa"" kJI(kr) [Taeivalzl_ neiv,lzl] dk + i ~o:<p fa"" f(z,O) k2JI~r)tp}})

U<p isin<p {""kJI(kr)eivalzldk+ isin<p ("" f(z,0)k2JI (kr)dk, (80)
41TC44 Jo 1/c 41T Jo r

Uz s~;z) cos<p fa"" Sabk2Jo(kr) [eivalzl_ eiv,lzl] dk. (81)

The azimuthal angle <p is measured from the x-axis in the x - y plane. Sab is the same
as defined hefore, and Ta and n are

SI1/ak2 11 SI1/bk2

Ta = (1/l- 1/5)(1/; -1/5)' b = (1/l- 1/5)(1/; - 1/l)·

The second terms in Ur and U<p represent the near-field part of the wave field. In the
far-field, only the first terms contrihute. However, in the BEM modeling of downhole
sources, these near terms are crucial in satisfying the boundary conditions. The above
simple forms allow easy computation of the near-field.

Explosive Point Source

For an explosive point source at the origin, the displacement vector is obtained by
taking the divergence of the Green's function with respect to the source coordinates.
Since \1 = -\1' for functions g, ¢, and 7/;, we have

u = -z:z (Lz¢) - \1t(Lt¢) + (CI3 + C44)(\1~z + :z \1t) ~~. (82)

In the above, L t ¢ = \1~7/; + 9 is used. The curl of u is

\1 x u = \1 t x Z:z [(CI3 + 2C44 - cll)\1f + (C33 - CI3 - 2C44) ::2] ¢. (83)

For an explosive source in a transversely isotropic medium, the curl of the displacement
field is not zero. This implies that an explosive source excites not only the quasi-P
but also the quasi-SV waves. In the isotropic limit, Cll = C33 = CI3 + 2C44, the curl
of the displacement field due to an explosive source is zero, indicating that only the
compressional wave exists. The two displacement components are

Ur = 4~ fa"" [(Sab1/a + Ta)eiValZI - (Sab1/b + Tb)eiV,lzl] k2JI(kr)dk, (84)

Uz = Sg;;z) fa"" [(SWb - Sabk2)eiV,lzl - (Sa1/a - Sabk2)eiValzl] kJo(kr)dk. (85)
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In the isotropic limit, Sahllb + n = 0 and Sb1lb - Sabk2 = O. SV wave contribution to
the displacements vanishes. The displacements reduce to the gradient of ¢.

Radiation Patterns in Two Media

We now evaluate the above displacement integrals in two particular TI media. The first
medium (Mesaverde sandstone - Ben-Menahem and Sena, 1990) has a density of 2870
kg/rn3 and the following elastic constants (in 109 Pa): Cll = 50, C33 = 45, CI3 = -8.6,
C44 = 24.6, and C6B = 26.6. The parameters of the second medium (plexiglas-aluminum
- White, 1984) are: p=1950 kg/rn3 , Cll = 51.8, C33 = 21.4, C44 = 3.65, and eBB = 14.1.
The first medium is only slightly anisotropic, while the second medium is extremely
anisotropic. The displacements are calculated at receivers placed circularly around the
sources. For the case of horizontal force, the receiver array makes a 45° azimuthal angle
with the x - z plane. The radius of the receiver array is 75 rn for the first medium and
30 rn for the second. The calculated displacements are then rotated to the spherical
coordinates. The resulting radial, tangential, and azimuthal components are plotted in
a way to show hoth the amplitudes and phase fronts.

Figure 1, Figures 2 and 3, and Figure 4, respectively, show the displacements due
to a vertical, horizontal (x), and explosive point source in the first medium. The phase
fronts of the P, SV, and SH waves are almost circular. The P and SH (azimuthal
component in Figure 3) waves travel a little faster in the horizontal direction than in
the vertical direction. The SV wave travels faster in the 45° direction. That the P
and'SV waves sustain large amplitudes in tgeh wide angle range (Figure 1) suggests
large lobes in the radiation pattern. Figure 4 shows the existence of SV waves for an
explosion in the medium. If examined carefully, this SV wave exhibits two lobes in each
quadrant. A similar pattern can also be seen for the vertical force (Figure 1). However,
this phenomenon is absent for the case of horizontal force.

Figures 5-8 show the displacements in the second medium. One immediate ob
servation is the triplication of SV waves. Although the magnitude of one branch is
significantly smaller than the other two, three branches of SV wave are clearly seen
on Figure 6, where the point force is in the isotropic plane. If the source is a point
force along the symmetry axis or explosion, one branch of the triplication disappears.
The vertical force result agrees with the calculation of White (1984) for a line source
approximated by a borehole along the symmetry axis. White (1984) also demonstrated
the difference in energy fall-off for the quasi-P and quasi-SV waves. Amplitude de
cays as -1 power of distance for the P wave, and as -0.8 for the SV waves near the
triplication. Our results support this observation.
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SURFACE INTEGRATION OF THE GREEN'S FUNCTIONS

In the boundary element method, integration of the Green's function over boundary sur
faces is a necessary calculation. However, the Green's function is singular when receiver
and source coincide. The displacement Green's function has first order singularity which
is removable when integrated over the surface. On the other hand, the stress Green's
function has a second order singularity and the surface integral is not defined. Then, its
principal value has to be used. The contribution of this second order singularity to the
integral can be evaluated analytically. When the receiver and the source approach each
other, the surface integral of the dynamic Green's function can be regularized using
the static Green's function (Kupradze, 1963). The singularity integral of the dynamic
Green's function is reduced to the integration of the static Green's function over a half
elliptical surface around the source point. The limit as the axes of the elliptical surface
go to zero is the singular contribution.

Using the static Green's function, we first calculate the displacement and stress field
for the vertical point force. We obtain

Ux

=

u y

=

Uz

&¢
-(Cl3 + C44) axaz

(Cl3 + C44)Sgn(Z - Zl) { X - xl x - x' }
47CC33C44(V; - vD Rb[Rb+ vblz - zlll - Ra[Ra + valz - ZIJ] (86)

&¢
-(Cl3 + C44) ayaz

(Cl3 + C44)Sgn(Z - Zl) { y - y' y - y' }
47CC33C44(V; - vD Rb[Rb + vblz - z/l) - Ra[Ra +valz - z/l] (87)

~¢. ~

Notice that the displacements have first order singularity only when x -> x!. The stress
along the 2 direction on the surface whose normal is x, Txz , is

[
aUz Oux]

Txz = C44 ax + az

= -1 {Cll+ Cl3 V;X-X' _ Cll+ Cl3 V;X-X
/
} (89)

47CC33(V; - V~) Va R~ Vb Rg'

The stress has second order singularity when the receiver point coincides with the source
point (Ra = 0 and Rb = 0). If this stress is integrated over a surface that includes the
source, a finite value results. This value can be obtained by integrating Txz over all
possible dydz surrounding the source. This integration can be replaced by integration
over a half ellipSOidal surface around the source point. The ellipSOidal surface is defined
by

X-X' = Rsin Bcos cp, y-y'=RsinBsincp, z-z'=!:.RcosB. (90)
V
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Using s = ZlZ, the ellipsoidal surface can be transformed into a spherical surface in
the (x, y, s) system. Then, surface mapping between dydz and a differential ellipsoidal
surface is

dydz sin () cos ep = "l-dyds sin () cos ep = "l- R2sin ()d()dep,
ZI ZI

(91)

as shown in Figure 9, where, dz = tds, ds = Rd()/sin() and dy = Rsin()dep/cosep.
Then,

JT"zdydz = -1 (cn +CI3 Z1; _ Cn + CI3Z1~) 1tr
/
2

dep [" sin ()d()
411"C33(ZI~ - ZI~) ZI~ ZI~ -tr/2)0

-cn 1
= 2C33Z1~ZI~ = -2" (92)

For a point force in the :i: direction, we have

[j2 1
uy - 8x8y 'Vi (Lt1> - g)

Sb (x - x')(y - y') Sa (x - x')(y - y') ZIg (x - x')(y - y')
Zlb D~Rb - Zla D~Ra + 411"C66 D~Rg'

82¢
Uz = -(CI3 + C44) 8x8z

(
X-X' X-X')

-Se DbRb - DaRa sgn(z - z').

(94)

(95)

In the above equations, Da = Ra + Zlalz - z'l and Db = Ra + Zlblz - z'l. The scalars Sa,
Sb and Se are

S C44 - C33 ZI~
b = 411"C33C44(ZI~ _ ZI~)'

Se = CI3 + C44

411"C33C44(ZI~ - ZI~)'
(96)

Then, the normal stress, Txx , is

Txx = (
Bu" Buy) 8uy 8uz

Cn - + - - 2C66- + CI3-
8x 8y 8y 8z

_ CnSa x - x' 2C66Sa (x - x' _ (x - x')(y - y')2 _ 2(x _ x')(y _ y')2)
Zla R3 + Zla P D2 D2R3 R2D3a .Lt.a, a a a a a
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+CllSb X - x' _ 2C66Sb (x - x' _ (x - X')(y - y')2 _ 2(x - x')(y _ y')2)
lib R 3 lib RbD2 D2R3 R2 D3b b bb bb

_ IIg (x - X _ (x - X')(y - y')2 _ 2(x - X')(y _ y')2)
27l" RgD~ D2R~ R~D2

S (
lIb(X - X) lIa (X - x'»)

+C13 c R3 - R3 .
b a

Similarly, integrating r xx over a small half ellipsoidal surface results in -1/2. This is
so because integration of the second, the fourth, the fifth and the last term is zero, as
shown in Appendix A, while integration of the first and third term is the same as in r xz

for the vertical force.

CONCLUSIONS

The dynamic and static Green's functions have been obtained by solving the wave and
equilibrium equations with general sources in a transversely isotropic elastic medium.
The use of an extended Kupradze method makes possible a simplified, yet rigorous
derivation. The two Green's functions are shown to have a single dyadic form expressed
through three scalars: 9 for the SH wave, rP for the P-SV waves, and 'l/J for P-SV-SH
waves. In deriving these functions, the 2-D inverse Laplacian operator is removed to ob
tain simplified and numerically feasible expressions for the Green's functions. The final
result is valid for arbitrary sources at arbitrary locations. This is particularly important
to BEM implementation of wave propagation and scattering problems. The dynamic
Green's function is applied to obtain simple analytical expression for the displacements
produced by three point sources. Evaluations of these displacements show agreement
with previous numerical studies. The singular contribution, when integrating stresses
over a half elliptical surface at the limit of the receiver coinciding with the source, is
shown to be negative one-half of the applied force.
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I =

=

I =

In this appendix, we prove that integrating the second term in equation (97) over a half
elliptical surface results in zero. According to Eqs. (90) and (91), we have

J (X - x' (x - x')(y - y')2 2(x - x')(y _ yl)2)
dydz R D2 - D2R3 - R2D3

au aa aa

1 fa" . 1"/2 (R~ (y - y')2 2Ra(y - y')2)= - sm BdB dcp - - - -='=~-
Va 0 -"/2 D~ D~ Dg

1 [" 1"/2 (sinB sin3 Bsin2cp 2sin3 Bsin2cp)
va)o dB -"/2 dcp (1 + Icos Bf)2 - (1 + Icos Bf)2 - (1 + Icos BIl3

= !!...- (" dB ( sin B _ sin
3

B _ sin
3

B )
Va )0 (1 + Icos Bf)2 2(1 + Icos BIl 2 (1 + Icos BIl 3 .

If we divide the B integral into two regions, 0 to 71"12 and 71"12 to 71", and combine the
first and the third term, we obtain

!!...- ["/2 sin B cos B dB _!!...- [" sin B cos B dB
Va )0 (1 + cos B)2 Va ),,/2 (1 - cos B)2

71" fa" /2 sin
3

B 71" 1" sin
3

B-- dB-- dB
2va 0 (1 + cos B)2 2va "/2 (1 - cos B)2

271" fa" /2 sin Bcos B 71" fa" /2 sin3 B
- dB-- dB
Va 0 (1 + cos B)2 Va 0 (1 + cos B)2

471" fa"/4 sin3t 271" fa"/4 (sint sin3t)-- --dt+- ----- dt
Va 0 cos t Va 0 cos t cos3 t

471" [ 2 "/4 271" [ ]"/4
-- COS tl2 -lncost]O + - -In cost 0

Va Va

271" 1 "/4
--[2 2 +lncost]O

Va COS t
o.

The same results are obtained for the fourth and fifth terms in equation (97).
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Figure 1: The radial and tangential components of the displacement produced by a point
force along the symmetry axis (vertical) in a slightly anisotropic medium: Mesaverde
sandstone. The wave amplitudes are normalized to the same scale. Receivers are 75
m away and time is in seconds.
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Figure 2: The radial and tangential components of the displacement produced by a
point force along the isotropic plane (horizontal) in Mesaverde sandstone. Receivers
are 75 m away at 45° azimuth angle from the force direction.
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Azimuthal
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Figure 3: The azimuthal (SH wave) and tangential components of the displacement
produced by a point force along the isotropic plane (horizontal) in Mesaverde sand
stone. Same receiver position as Figure 2.
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Figure 4: The radial and tangential components of the displacement produced by an
explosion in Mesaverde sandstone.
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Figure 5: The radial and tangential components of the displacement produced by a point
force along the symmetry axis (vertical) in a highly anisotropic medium: plexiglas
aluminum. Receivers are 30 m away from the source.
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Figure 6: The radial and tangential components of the displacement produced by a
point force along the isotropic plane (horizontal) in plexiglas-aluminum. Receivers
are 30 m away at 45° azimuth angle from the force direction.
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Figure 7: The azimuthal (SH wave) and tangential components of the displacement pro
duced by a point force along the isotropic plane (horizontal) in plexiglas-aluminum.
Same receiver position as Figure 6.
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Figure 8: The radial and tangential components of the displacement produced by an
explosion in plexiglas-aluminum.



278

o

Dong and Schmitt

s

__ ds

~----+---x

y

o

z

__ dz

x

__ dy

x

Figure 9: The geometry of the differential surfaces used in evaluating the singular
contrihution of surface integration of Green's functions.


