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ABSTRACT

Stationary phase solutions for the radiation patterns of borehole sources are commonly
used to study the far-field seismic wavefields produced in crosshole or reverse VSP
experiments, but they break down when the formation shear wave velocity is less than
the tube wave velocity in the source borehole. This is because the tube wave, not the
primary source, radiates the dominant shear wave signal in the form of large amplitude
conical waves, which are also called Mach waves. I model this effect by considering the
tube wave to be a moving secondary point source generated by the primary source of
acoustic energy. A discretization of the source well allows a numerical solution of the
integral equation which yields the displacement field by a general source distributed in
space and time. The time at which each point source in the discretization emits energy is
determined by the group velocity of the tube wave, while the radiation of the individual
sources is characterized by the stress field induced by the tube wave at the borehole wall.
An integration along the borehole of these point sources then yields the observed Mach
wave arrivals. Since this method involves the summation of shear wave ray arrivals from
the many point sources along the borehole, the method is called the Ray Summation
Method (RSM). Comparison of RSM results with full waveform synthetic seismograms
computed with the discrete wavenumber method confirms the accuracy of this method.
Unlike the discrete wavenumber method, however, the use of ray tracing in the RSM
allows computation of the Mach wave arrivals for inhomogeneous layered media as well
as homogeneous models, including the waves generated by reflections of the Mach waves
at interfaces and from the reflections of the tube wave itself. The interactions of the
conical waves with interfaces can show unusual patterns of arrivals which would not be
predicted from ordinary point source behavior.
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INTRODUCTION

Data observed in crosshole seismic experiments often contain arrivals which are difficult
to interpret, and the effects of the borehole on radiation of energy from down hole
sources can be one important cause of these difficulties. In order to use the data from
these experiments to infer properties of a petroleum reservoir, an improved knowledge
of the effects of the borehole on the waves propagating in these experiments is therefore
very useful. One difficulty which occurs during experiments conducted in some more
shallow areas is the interpretation of the energy radiated from tube waves propagating in
the source well. White and Sengbush (1963) noted this effect and suggested that large
amplitude shear wave arrivals generated by an explosive source were the shear wave
signals radiated from the tube wave propagating within the borehole. More recently,
de Bruin and Huizer (1989) and Meredith {1990) confirmed that this effect can occur,
and that the large amplitude and linear moveout of the shear signal in a receiver well is
a feature typical of a Mach wave. Rutledge et al. (1992) also observed Mach waves in
crosshole experiments conducted in the McKittrick oil field in California. These analyses
and observations have shown that in slow formations, those where the tube wave velocity
is larger than the formation shear wave velocity, the signals generated by the tube wave
interfere constructively and build up a conical wavefront which has different geometrical
spreading and travel time properties than the more typically observed spherical wave
fronts propagating directly from source to receiver (Figure 1). In contrast, the energy
from a tube wave in a fast formation does not interfere constructively and hence the
tube wave signal is not observed at significant distances from the source well.

While standard discrete wavenumber and propagator matrix methods can be used
to model these conical Mach waves in homogeneous formations where the source is in
a cased or uncased well (Meredith, 1990), the problem becomes more difficult for a
general layered medium such as is likely to be encountered in typical experiments. One
approach to this general situation is to consider the tube wave to be a moving point
source and then to compute the wavefields generated by that source by superposing
the wavefields generated at each point along the well. Kurkjian et al. (1992) used this
approach by developing an expression for the effective source at each point along the well
using the equivalent source representation of Ben-Menahem and Kostek (1991) for an
uncased well. A frequency-wavenumber domain algorithm was then used to compute the
far-field waveforms. Simultaneously, Gibson (1992) developed a similar approach using
ray methods to propagate the waves from the source well to receiver positions using a
description of the moving source which allows a consideration of cased and cemented
borehole models. Because numerous ray arrivals from each point along the source well
were superposed, the method is called the Ray Summation Method (RSM). In this
paper, I describe in detail the implementation of the RSM, which consists of several
major steps. First, the group velocity of the tube wave is computed at each point in
a discretized representation of the source well by differentiating the dispersion curve
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of the tube wave. Secondly, the radiation properties of each individual point source
are computed from the stress field generated by the propagating tube wave. Backus
and Mulcahy (1977) have shown that such a stress field will act as a moment tensor
source. Finally, rays are traced from receivers to each source point, which by applying
the principal of reciprocity also yields the displacement fields corresponding to the waves
propagating in the opposite directions. Summation of the wave flelds from each source
point, applying the appropriate delay times and source properties for the tube wave, then
gives the shear and compressional wave fields generated by the tube wave. Following the
description of this method, its accuracy is confirmed by a comparisen to full waveform
discrete wavenumber solutions for a homogeneous slow formation. Application of the
RSM to a layered medium containing several slow formations shows complicated effects
related to the reflection and refraction of Mach waves at interfaces. Since the RSM can
be applied to any earth model which can be modelled using ray tracing, it is a tool
" which can be very useful in understanding wave propagation when there are significant
complications from the source borehole.

METHOD

The borehole model consists of a system of concentric cylindrical layers representing
the borehole fluid, casing, cement, formation and possibly other layers (Figure 2). This
is the same model which is generally applied in full waveform acoustic logging studies
and the properties of waves propagating within the borehole and the adjacent formation
have been frequently studied (e.g., Cheng and Toksdz, 1981; White, 1983; Tubman et al.,
1984; Schmitt and Bouchon, 1985; Paillet and Cheng, 1991). Stationary phase radiation
patterns for sources located in this borehole model can be computed using propagator
matrix methods to solve the boundary condition equations at each of the interfaces
(Gibson, 1993). However, these solutions are not applicable to a slow formation where
the shear wave velocity is slower than the tube wave velocity (de Bruin and Huizer,
1989; Meredith, 1990). In this situation, the far-field amplitudes predicted by the
approximate solutions become unrealistically large due to a vanishingly small term in
the denominator of the radiation pattern equations (Lee and Balch, 1982; Meredith,
1990). The mathematical analysis breaks down because the tube wave pole approaches
the stationary phase wavenumber in the complex plane, and the assumptions made in
applying the stationary phase solution are no longer valid.

de Bruin and Huizer (1989} and Meredith (1990) showed that the influence of the
tube wave can be understood physically as the generation of large amplitude conical
waves due to constructive interference of the shear waves emitted by the tube wave as
it propagates up and down the source well (Figure 1). This is directly analogous to the
case of super-shear rupture in earthquake seismology (Ben-Menahem and Singh, 1981).
While these waves are directly modeled by methods such as the discrete wavenumber
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technique in a homogeneous formation, the solution in an inhomogeneous medium is
more difficult. A numerical solution for these media can be obtained by discretizing
the source borehole along its length so that each point in the borehole becomes a point
source which radiates energy when encountered by the tube wave (Figure 1). Ray tracing
then yields the Green’s tensor for wave propagation from each point in the source well
to each receiver. The method is a discretized implementation of the following integral
(Backus and Mulcahy, 1977; Ben-Menahem and Singh, 1981):

u(r, 1) = f av(r') f &' BCii(r, bt V) Mulr, ) (1)

where Gi;(r,t;r’,t') is a component of the Green’s tensor yielding the ith component of
the displacement field at point r and time ¢ due to a source acting along the jth coordi-
nate direction at v’ and ¢’ (Aki and Richards, 1980). A moment tensor source component
is indicated by Mj;i(r’,?’). Similar methods have been applied to earthquake problems
to simulate the displacement fields generated by complex source models (Cormier and
Beroza, 1987; Spudich and Frazer, 1984). The fault is modeled as a two-dimensional
surface of source points each of which emits energy at a given rupture time with a given
slip mechanism. Hence, the borehole problem is actually somewhat easier in that only
a line of source points need be considered. At the same time, it is complicated by the
fact that the tube wave source will reflect up and down the borehole and each source
point can emit energy several times.

Once a discretized representation of the source well is defined, the arrival time of
the tube wave (the emission time of the source point) and the radiation pattern of the
individual source points must be known in order to model the Mach waves. In order to
compute the arrival time of the tube wave at a given source point, the group velocity of
the tube wave must be known, and the stress field generated in the formation by the tube
wave is required to compute the source radiation patterns. Backus and Mulcahy (1977)
showed that a stress fleld acts as a moment tensor source such as M;; in Eq. 1. Since
the tube wave, or Stoneley wave, has also been analyzed in some detail (e.g., White,
1983; Kurkjian, 1985; Chang et al., 1988; Cheng et al., 1987; Norris, 1989; Paillet and
Cheng, 1991), many of its properties are known and can be described analytically or
numerically. These results -can then be used to compute the necessary quantities as
described below.

Source Time

Kurkjian (1985) presented a method to study individually the contributions of the var-
ious waves in a borehole, including the tube wave. This approach is ideally suited to
computation of the group velocity of the tube wave. The reflected pressure field in the
borehole, the pressure field not including the direct arrivals from the source, can be
written in the following form (Tsang and Rader, 197%; Cheng and Toksdz, 1981; and
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others):

iR Ry [ —iwt 7 ikz
= L ~ X()edu f_ Ak 0)o(kr)e ™ dk, @)

P(T,Z,t) =

where Py Ry is the amplitude of the source, w is angular frequency, X (w) is the ampli-
tude spectrum of the source, Jy is the zeroth order Bessel function, k& is the vertical
wavenumber and k. = w?/a% — k? is the radial wavenumber. Acoustic wave velocity in

the fluid is oy, and A7 (k,w) is a boundary condition coefficient.
This coefficient A/ has the general form

N(k,w)

Al (k,w) = Dlh.2)

(3)
and the denominator term is zero at the frequency-wavenumber pair corresponding to
the tube wave pole. Kurkjian (1985) showed that the wavenumber at a given frequency
can be found by locating the zeros of D(k,w) using the Newton-Raphson method. This
method uses the partial derivative of D(k,w) with respect to k& to perform an iterative
search for the value giving D(k,w) = 0. By locating the zeros corresponding to the
pole k7% for specified values of w, phase velocity ¢ can be computed as a function of
frequency using ¢ = w/k (Cheng and Toks6z, 1981}, Then, the group velocity v is
estimated from v = ¢+ k de/dk. This procedure is performed for all formations in the
earth model. In general, A/(k,w)} and D{k,w) are computed using propagator matrix
methods to take into account the layers of cement and casing between the borehole fiuid
and the formation (Tubman et al., 1984). Therefore, the group velocity found using this
numerical approach will be the velocity appropriate for the well conditions of interest.

Radiation Properties

Backus and Mulcahy (1977) demonstrated that a stress anomaly oi; acting in an inho-
mogeneous, elastic medium will act as a general moment tensor type source M;;. In

other words,
o= M) (4)

where o is the anomalous stress tensor and M is the equivalent moment tensor source.
The stress fleld generated by the tube wave propagating up and down the borehole
creates a local stress anomaly, and this stress anomaly relates the moving point source to
a moving moment tensor. Kurkjian et al. (1992) make use of a similar idea in describing
the tube wave in an uncased well as a sum of a moving isotropic, explosion-like moment
tensor plus a vertical dipole.

Since in general the source borehole is likely to be cased and cemented, a more general
description of the source is useful. This can be obtained numerically by computing the
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stress field generated by the tube wave. First note that the displacement fields in the
formation outside the borehole in terms of potentials ¢ and 1 are (Paillet and Cheng,
1991):

u(r,t) = u,(r,t)ér + uz(r,t)éz, (5)
15 7,
'u,,.(l',t) = a_f - El;/’)'
8 16
Ug(r,t) = a—f + -;—g—g (6)

The radial and vertical components of displacement are u(r,t) and v(r, 1), respectively,
and the unit basis vectors in the r and z directions are &, and &z. The general solutions
for these potentials in the formation can be written (T'sang and Rader, 1979; Cheng
and Tokséz, 1981; Paillet and Cheng, 1991)

¢ = [AnKo(lar)] etz
Y = [BﬂKl(mn?”)] ei(kz--wt). (7)

Solution of the boundary condition equations at each of the interfaces between the
formation and the fluid yields the coefficients A, and B,. These equations are solved
easily and accurately using propagator matrix methods, the same procedure used to
compute displacement fields in acoustic logging (Tubman et al., 1984; Schmitt and
Bouchon, 1985).

These components of the displacement field also describe the stress field. In cylindri-
cal coordinates, assuming symmetry about the vertical axis, the stress tensor is written
(Ben-Menahem and Singh, 1981)

. 1 9(ru,) 6uz} [. . Bu,
= Al [r or + Oz T a 288 or
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The Lamé parameters of the formation are given by A and y, and the basis vector for the
8 coordinate is &g, Individual components T;; of the stress tensor are straightforwardly
derived using Eq. 8 and are presented in Appendix A.

In order to have a moment tensor source which is useful for the ray tracing, however,
several additional operations must be performed on the tensor T to produce the desired
moment tensor M. First, it must be converted to the Cartesian coordinates used for

e
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the ray tracing algorithm. For a given value of r, 8, z, the basis vectors can be expressed
in terms of the Cartesian basis vectors &x, &y, é; (Ben-Menahem and Singh, 1981):

89 = —&xsinf+&ycosd (9)
éz == éz.

For example, the component T,(6), corresponding to a given direction 8, is simply all
terms multiplying the dyadic éxéx:

Tez(8) = Trpcos® 6 + Ty sin’ § (10)

Once each of the tensor components is obtained in Cartesian coordinates, it must be
integrated around the borehole surface in order to take into account the fact that the
tube wave is radiating energy in all directions simultaneously. Since half of the borehole
surface is “hidden” from the receiver and only radiates energy away from the receiver, the
integration extends only over the other half of the borehole (Figure 3). The integration
is also multiplied by the discretization interval Az to take into account the extent of
the source element along the borehole, and the result gives a component of the moment
tensor M:

iy
M., = Az / T... cos? 8 -+ Tpe sin® 60
0
= Azg—(Tﬂ-+T99). (11)

The total stress tensor M is derived by applying this procedure to all components of
the stress tensor:

Az5 (T + Tos) 0 0
M(k,w) = 0 AzE (T + Top) 0 . (12)
0 0 AzrTy,,

This moment tensor has the same general form as the explicit result obtained by Ben-
Menahem and Kostek (1991) for a volume injection source in an uncased well. Kurkjian
et al. (1992) applied this result to model the propagating tube wave as a moving volume
source. Eg. 12 is more general in that it allows consideration of cased and cemented
wells.

This moment tensor result is still a function of frequency and wavenumber, including
the effects of all borehole waves, and the contribution of the tube wave must be isolated
for application to the RSM. Just as the contribution to the displacement field by the tube
wave can be isolated (Kurkjian, 1985), the stress field generated by the tube wave can
be computed using the calculus of residues. Since the coefficients A, and B, appearing
in the displacement and stress equations have the same denominator as does A, the



222 Gibson

appropriate tube wave pole kP%¢ is located during the velocity estimation procedure.
This approach locates the complez value of the pole, so that the imaginary part of this
wavenumber can be used to estimate the attenuation of the tube wave as it propagates
along the borehole via the term e~ /™*¥**}2_ The resulting stress fields at frequency wo
are

Tyr = 2rie*RA | pk?(28% — D) Ko(lr) +2pﬁ2£‘-K1(lr)]

+ 27ie™t RBn [ikm2p62(1{0 (mr) + %K I(mr))J g~ Im{kric}z

. r 1
Tee = omiet RAn —/\%Kg(h‘) - 2[,&%}{1“7‘)]

+ 2miett RBn [—i2pﬁQ§K 1(mr)] (13)
s iwt pAn | 1.2 & 2
T,z = 2mie™" R |k*Kp(lr) | AM(1 - ;) - peY
+ 27ie™t RBn [-2z'kmpﬁ2Ko (mr)] g~ Imik)z

where the residues corresponding to the coefficients A, and B,, R4» and RB respec-
tively, are

pAn = |1 NA» giksz
2w 8D(k,w)/Ok

BB — 1 N Bn giks2
27 8Dk, o)/ Ok

The terms N#4» and NBn are the numerators in the expressions for the two coefficient
terms. They can be determined using the propagator matrix algorithm outlined by
Tubman et al. (1984) Egs. 13 are substituted into Egs. 12 for each point along the
discretized well.

k=kpole

(14)

k=kpele

Ray Tracing

The travel times, amplitudes and polarizations corresponding to waves propagating from
each source point to each receiver location are calculated using the dynamic ray tracing
method (Cerveny, 1985). For a broad class of media conforming to the assumptions of
ray theory, the high frequency asymptotic Green’s tensor is completely determined by
these quantities. The most important aspect of these assumptions is that the character-
istic scale length of the medium is much longer than the wavelength of the propagating
signal (Ben-Menahem and Beydoun, 1985). This allows the possibility of considering

o,
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the propagation of Mach waves in very general types of media, including layered earth
models as well as models containing lateral heterogeneity (Ben-Menahem et al., 1991;
Cerveny et al., 1987). Once the Green’s tensor G(r,t;r',t') representing displacement
fields observed at r and time ¢ due to a source operating at r’ at source time ¢’ is known,
the displacement field generated by a moment tensor source is easily computed using
Eq. 1. It is therefore straightforward to include the effects of the moment tensor of
FEq. 12 in the simulation.

When the dynamic ray tracing is implemented for the RSM, the computational
speed can be greatly increased by applying the paraxial method to extrapolate travel
time and amplitude information from a given traced ray to nearby observation points
(Cerveny, 1985). This method is advantageous because it eliminates the need to find
individual rays exactly connecting every source/receiver pair. As another practical
matter, it is more efficient to trace rays from receiver positions to the source positions
than to trace them from sources to receivers, since there are in general fewer receivers
than source points. The reciprocity of seismic wave propagation then can be used to
relate the Green’s tensors to the tensors for the reversed direction of propagation (Aki
and Richards, 1980).

Summary of the Method

The implementation of the method can be summarized as follows:

1. Specify the earth model and the discretization of the source borehole.

2. For each point the source borehole, locate the tube wave pole for the dominant
frequency of the source signal. Use this pole to compute the group velocity of the
tube wave and arrival time at each point in the source hole.

3. Use the tube wave pole to compute the stress amplitudes at the source points
using Egs. 12 and 13. Include the attenuation of the tube wave.

4. Compute Green’s tensors for waves propagating from each source point to the
receivers. Sum the arrivals from all sources to each receiver with the appropriate
time delays for the tube wave propagation, applying the moment tensors to the
results. This is equivalent to evaluating the integral 1 via a discretization.

Each step of this method is relatively straightforward and all are relatively rapid compu-
tational procedures. Some experimentation and comparison with full waveform solutions
shows that the discretization interval Az applied to the source well must be small e-
nough to include at least five source points per shear wavelength. As long as the interval
is this small or smaller, the discrete approximation to Eq. 1 will be accurate.
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Note also that the effects of the reflection and transmission of the tube wave can be
incorporated into the calculations. For example, a reflection of a tube wave from the
free surface can be modeled by repeating step 2 in the procedure above to recompute
the travel times of a tube wave originating at the free surface instead of at the actual
borehole source location. Since the amplitude of the reflected tube wave will include a
reflection coefficient of -1, all amplitudes of the Mach wave arrivals must be multiplied
by this factor. The reflections from other interfaces can be included in a similar fashion.
An estimate of the appropriate refiection coefficients can be obtained from the low
frequency expressions derived by White (1983). The transmission coefficients can also
be obtained from these equations, allowing an approximate inclusion of the reduction
in amplitude of the tube wave when it traverses an interface.

NUMERICAL RESULTS

Homogeneous Medium

In order to demonstrate the validity and accuracy of the RSM, consider first a homoge-
neous model with the velocities and density of the Pierre shale (White and Sengbush,
1963). These parameters are a = 2074 m/s, 8 = 869 m/s and p = 2.25 g/cm®. Fluid
velocity was set to 1500 m/s, with density 1.0 g/em?, and the borehole model included
casing and cement. The dimensions of this borehole model and velocities of the steel
casing and cement are shown in Table 1.

Calculations were performed using the discrete wavenumber method (Bouchon and
Aki, 1977; Bouchon, 1980; Tubman et al., 1984; Meredith, 1990) and the RSM for a
model with boreholes separated by 50 m, a source at depth 500 m and 26 receivers
located every 10 m in depth from 500 m to 250 m (Figure 4). Since the modeling
methods considered here do not consider the effects of the receiver borehole on synthetic
seismograms, the computational results are for an idealized experiment with receivers
perfectly coupled to the formation. A volume point source was applied, and a 200 Hz
Ricker wavelet was used as a source wavelet. Since the group velocity of the tube wave
at 200 Hz in a cased well, 1384 m/s, is faster than the shear velocity, a borehole source
will generate a Mach wave in this medium. In Figure 5, the radial component RSM
synthetic seismograms are shown for this configuration. The Mach wave dominates the
seismograms and displays a very large amplitude signal with a linear moveout velocity for
receivers above about 440 m in depth. In contrast, the P wave generated by the primary
volume injection source is almost undetectable on the scale of this figure, arriving at
about 0.025 s for the receiver at 500 m. The generation of the Mach wave is easily
understood by examining the shear wavefronts generated by the propagating tube wave.
Figure 6 displays the wavefronts generated by a subset of the point sources at a time
of 0.30 sec after the volume source was activated. These spherical wavefronts interfere
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constructively along conical wavefronts above and below the primary source location,
and the angle between this conical wavefront and the vertical is controlled by the velocity
difference between the tube wave and the shear waves in the medium (Ben-Menahem and
Singh, 1981; Meredith, 1990). This angle (7 in Figure 1) is given by siny = §/V}, where
3 is the formation S-wave velocity and V; is the tube wave velocity. A faster shear wave
velocity would therefore yield a Mach wavefront propagating closer to perpendicular to
the borehole.

The discrete wavenumber and RSM results are compared in Figure 7. A P-wave ra-
diation pattern was computed using the generalized stationary phase solution (Gibson,
1993), and the ray results, both P and S-wave, were normalized so that the P-wave sig-
nals at the 500 m receiver had the same amplitude as the discrete wavenumber synthetic
seismogram. The normalization factor is required due to some differences in the way
the two computer routines scale FFT computations. It is clear from these results that
the RSM synthetic seismograms are very close to the full waveform discrete wavenum-
ber solution, and that the RSM algorithm is able to accurately compute the wavefield
generated by the tube wave. There are some subtle differences in the predictions of the
two methods, but the RSM yields the same travel time and the same general wavelet
shapes as the discrete wavenumber method.

Comparison of the results for an individual trace helps to clarify these comments.
In Figure 8, the synthetic selsmograms for the receiver at 380 m are displayed for
a time window containing the Mach wave arrival. It can be seen that though the
RSM result is slightly low in overall amplitude, it predicts the shape of the Mach
wavelet very well. For both results, the first positive peak is slightly larger than the
second. In addition, this display makes obvious a second arrival arriving at about
0.15 sec. A close examination of the complete synthetic seismogram in Figure 5 shows
this weaker signal trailing the Mach wave by increasingly large time lags. This second
event is easily explained by examining shear wavefront plots. In Figure 6, the spherical
wavefronts emanating from each individual point source are very densely spaced in a
roughly triangular region between the leading edge Mach wave front, which is conical
in the complete three-dimensional picture, and a trailing wavefront which is slightly
curved. A close examination of wavefront plots at the arrival times of the two signals in
Figure 8 shows the relationship of the waves to the dense energy band. At the arrival
time of the Mach wave, 0.132 sec, the conical wavefront has traveled to the receiver
(Figure 9A). In contrast, at 0.15 sec, the trailing edge of the closely spaced wavefronts
is at the receiver location (Figure 9B). Between the conical front edge of the energy
packet and this trailing edge, the arrivals at the receiver tend to cancel out since peaks
overlay troughs. However, there are nonzero contributions to the total wavefield from
both the leading and trailing edges of the energy packet. It can also be shown that
the last wavefront in the energy band, the trailing edge, corresponds to the wavefront
originating from the primary source at time t = 0, and thus this second shear wave is
arriving at the normal shear wave time. In this case, the RSM solution helps to interpret
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an arrival which would be difficult to understand given only the discrete wavenumber
results.

It is important that the RSM is able to predict the wavelet shape for both of the shear
wave arrivals, since both display phase shifts relative to the normal far field radiation
from a borehole source. In particular, the P and S-wave signals in the typical fast
formation have a time response proportional to the time derivative of the source pulse
(Lee and Balch, 1982; Meredith, 1990). Here we see, however, that the Mach wave
arrival is approximately proportional to the source Ricker wavelet multiplied by -1. The
integration of the many shear wavefronts emitted by the individual point sources results
in another change in phase of the far-field Mach wave signal. The S-wave at 0.15 sec in
Figure 8 is proportional to the time derivative of the Ricker wavelet multiplied by -1.

The presence of casing in the source well has a large effect on the Mach waves
signals. First of all, the tube velocity is significantly larger in a cased well. When the
10 cm radius borehole in the Pierre shale is uncased, the tube wave group velocity at
200 Hz is 962 m/s, instead of the 1384 m/s velocity for the cased well model. This will
change the moveout velocity of the Mach wave also, as well as its angle of propagation
(Meredith, 1990). Just as important as this velocity effect, however, is the dispersion of
the tube wave, which is negligible over the frequency range of importance for a 200 Hz
Ricker wavelet in the cased well, but is significant in the uncased well. The synthetic
seismograms for the uncased well in Figure 10 demonstrate this effect. Whereas the
RSM solution predicts the waveform of the Mach wave at all depths for the cased well
model (Figure 7), there are significant differences in waveforms between the RSM and
discrete wavenumber results at depths far from the source when the well is uncased.
This is because the dispersion of the tube wave causes a difference in the shape of
the source wavelet at each point along the discretized source well. In essence, each
frequency arrives at the individual point sources at slightly different times. Another
important effect of the casing is that it reduces the amplitude of the Mach waves by a
factor of about 2 so that the gain applied to the synthetic seismograms for the cased
well (Figure 7) is twice the gain applied to the results from the uncased well (Figure 10).
The amplitude of the P-wave radiated by the source will also be significantly reduced
by the casing in slow formations such as the Pierre shale (Gibson, 1993). In principle,
the RSM could be formulated to take the dispersion into account by recomputing the
summations of ray theoretical wavefields for each frequency, since the ray paths, travel
times and amplitudes are independent of frequency. Only the point source times and
amplitudes would change. Since most wells in shallow, soft formations will be cased,
however, this effect is not likely to be important in most practical cases.

s



Mach Wave Radiation 227
Layered Medium

Figure 11 shows a simple, three layer model with a source and receiver well which are
100 m apart. The source is located at a depth of 225 m, and receivers are located
every 10 m from 10 to 400 m in depth. All three layers have low velocities, so that
Mach waves can be expected to be generated in each layer. Shear wavefronts from the
source at an elapsed time of 0.3 sec show the complications introduced by the different
layers (Figure 12). In the top layer, there are two Mach waves present, one generated
by the tube wave in this layer, and another which was generated in the middle layer
and which has been transmitted into the first layer. Each wavefront contributing to
this composite figure will obey Snell’s law at the interface and so will the conical wave.
Since the velocity in the top layer is lower than the velocities in the middle layer, the
angle between the two Mach waves creates a sharp corner. There are also two Mach
waves in the bottom layer, but in this case the velocity increase across the interface
has resulted in a rounded corner between the conical waves. This is because the Mach
wavefront refracts to travel closer to a horizontal direction as it crosses the interface.
The homogeneous Pierre shale model shows that two far-field shear wave signals were
generated in the slow formation due to the edges of dense energy bands in the wavefront
pictures. In Figure 12, there are several such energy bands created by the different layers,
suggesting that in the presence of inhomogeneity, several different S-wave arrivals can
be generated by the source, even neglecting the contributions of reflected energy.

A 100 Hz Ricker wavelet was used as a source wavelet to compute synthetic seismo-
grams for this model using a volume injection source. Reflections of the P-waves and
the tube waves at each interface and at the free surface were included in the modeling.
The radial component synthetic'seismogram shows the complications resulting from the
layering (Figure 13). Several conclusions can be drawn from this result. First of all,
because the top layer has very slow S and P-wave velocities, both P and § Mach waves
are generated there, so that very strong P and S-wave signals are seen in the top few
receivers. The P Mach wave is also reflected, and the reflected tube wave generates a
down-going Mach wave in the first layer. Therefore, a late arriving, relatively strong
P-wave can be seen arriving at around 0.45 sec. It can also be seen that the shear Mach
wave is reflected, and the down-going reflected tube wave generates the largest signals.
In contrast, the effects of the intermediate interfaces are relatively weak.

CONCLUSIONS

The Ray Summation Method provides a useful means of studying the radiation by
tube waves of both shear and compressional wave energy into formations surrounding
the borehole. By modeling the tube wave as a moving point source, it is possible
to synthesize the far-field conical Mach waves which are observed in formations of slow
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velocity (e.g., de Bruin and Huizer, 1989). Because the tube wave velocity and the stress
anomaly which determines the moment tensors at each point source are determined
numerically using a concentrically layered model of the borehole, it is possible to consider
both open and cased, cemented boreholes with the RSM. The use of ray tracing to
compute the far-field shear or compressional waves arriving at the receiver locations
from each point source also allows the consideration of inhomogeneous, laterally varying
earth models. The accuracy of the RSM was demonstrated by a comparison with discrete
wavenumber results for a homogeneous, slow formation. In addition, this comparison
confirmed that the RSM accurately predicts the presence of two shear waves in slow
formations: the Mach wave and a weaker S-wave arriving at the normal body wave
travel time.

Synthetic seismograms for a layered earth model illustrate the complications in seis-
mic wave observations which can be caused by inhomogeneity in combination with the
radiation of energy by the tube wave. Each time the tube traverses an interface with
a significant velocity contrast, the conical wave generated in the formation containing
the incident tube wave is refracted across the interface according to Snell’s law. In
addition, a new Mach wave, oriented at a different angle with respect to the vertical,
is generated in the formation containing the transmitted tube wave. Because the tube
wave is completely reflected at the free surface, there are also large amplitude Mach
waves associated with the down-going energy. This will create large amplitude signals
later in the seismic section. Since one layer, the most shallow, had a very slow compres-
sional wave velocity as well as a low shear wave velocity, a compressional Mach wave
was generated in addition to the more typical shear conical wave.

A by product of the use of ray tracing in computing the RSM synthetic seismograms
is the ability to compute wavefront plots at different points in time after the tube wave
is created by the primary source. In a homogeneous formation, these figures show
clearly how a conical wave forms. More importantly, in an inhomogeneous medium,
the wavefront plots help to betier understand the many arrivals which are present in
the synthetic seismograms. With the aid of these figures, the relative geometry of the
different conical wavefronts is explained. By combining a simple, intuitive model of the
tube wave, the moving point source, with the flexible and rapid dynamic ray tracing
algorithm, the RSM is a means of both simulating and better understanding borehole
source behavior in slow formations.

e,

B
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APPENDIX A

THE STRESS TENSOR INDUCED BY BOREHOLE WAVE
PROPAGATION

A complete characterization of the stress field in the formation associated with the
propagation of borehole waves requires a specification of four different components of
the stress tensor in the cylindrically symmetric system (Eq. 8). Derivation of these
components using Eqgs. 6, 7, and 8 is straightforward, and the results are:

2
Trr(k,w) = An [pnk2(2ﬁ§ -~ A Ko(ir) + gp—’:’aﬁKl(zr)J

+B,, [ikmzpnﬁg (Ko(mr) + al;—K 1(m7“))}
Too(k,w) = An|—i20,82klK;(Ir)] + Ba[ok® (262 — ) K1 (mr))

— 2 i 2
Tﬂe(k,ﬂd) = An [-—J:I;J—KO(Z?") _— 2i:n£K1(£T)J + B-n, [_%TL‘%KI(MT)J

Too(k,w) = An {H [An (1 - g—) - pnaﬁJ Ko(lr)}

+Bu|~ikm2 0.7 Ko(mr)]. (A1)

A common factor e*(2~) has been suppressed in each of these equations. In each of
the terms involved in these stress tensor components, the suffix n indicates that the
quantity is evaluated in the formation, the nth layer of the borehole model (Figure 2).
The B, an, and p, are S-wave velocity, P-wave velocity and density, respectively, and

1/2
c2

62 1/2

In addition, k is the vertical wavenumber, k = w/c, and Ko(z) and K;(z) are modified
Bessel functions. Derivation of the stress component equations is simplified by using the

expressions given by Abramowitz and Stegun (1964) for the derivatives of the modified
Bessel functions.

In order to completely evaluate the stress field, the boundary condition constants
Ap and B, must also be known. They can be determined by the same procedure which
Tubman et al. (1984) apply to the computation of analogous constant for the borehole
fluid. Using propagator matrices to solve the boundary conditions at each interface in
the borehole model (Figure 2) between fiuid and formation is a fast and accurate way
to determine these constants (Schmitt and Bouchon, 1985).

o
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| Layer | Outer radius (cm) | P-wave velocity | S-wave velocity | Density |
Fluid 7.6 1500 m/s 0 m/s 1.0 g/em?®
Casing 39 5840 3228 6.268
Cement 10.0 3175 1833 1.92

233

Table 1. Physical properties of the borehole model. The borehole model considers a
typical 20 cm (7 7/8 in) borehole, with a casing of outer diameter 17.8 em (7 in)
and inner diameter 15.2 ¢m (6.004 in). Water was used as the borehole fluid for
all computations. Velocities of the Solenhofen limestone and steel and the density
of the limestone are from Press (1966), and the density of steel is obtained from
Austin (1983).
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FAST FORMATION
VS > VT

SLOW FORMATION
VS < VT

Figure 1: Schematic diagram of radiation from propagating tube waves. A) Fast
formation. No Mach wave is generated. B) Slow formation. Constructive interference
of shear wave fronts in the formation creates a conical Mach wave. The size of the angle
+ between the conical wavefront and the vertical is determined by the contrast between
formation shear wave velocity and tube velocity. This angle is given by siny = 8/W,
where 3 is the formation shear wave velocity and V; is the tube wave velocity.
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Figure 2: Cross section of a borehole model. The layers are numbered 1 to n, where
1 is the borehole fluid and n is the formation. Interfaces between the concentric layers
are labeled as indicated.
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Figure 3: Schematic diagram illustrating the discretized borehole model and the
region of the borehole wall over which the stresses are integrated to compute the ef-
fective moment tensor sources {equation eq:momten). The region shaded is the region
appropriate for a receiver located in the z — z plane, where z > 0.

e
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Figure 4: Source and receiver configurations for @ homogeneous Pierre shale model.
There are 25 receivers between 250 m and 500 m in depth. The formation properties are
described in the text, and properties of the cased borehole model are given in Table 1.
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Figure 5: Radial component RSM synthetic seismogram for the homogeneous Pierre
shale model with a cased well (Figure 4). The P wave is barely visible at depth 500 m,
time 0.25 sec. The strongest signal is the Mach wave.
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Figure 6: Shear wavefront diagram at time 0.30 sec, when the source is located in
a cased borehole. This figure shows only the wavefronts propagating towards the right
for clarity, and the complete figure is symmetric about the source borehole.
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Figure 7: Overlay of the radial component RSM synthetic selsmograms {bold line)
and the discrete wavenumber results (fine line) in the homogeneous Pierre shale model
with a cased well. The seismograms were plotted with a reduction velocity equal to the
tube wave group velocity in order to emphasize this waveform. The two solutions are
very similar, confirming the accuracy of the RSM approach.
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Figure 8: Overlay of the traces corresponding to the receiver at depth 380 m (Fig-
ure 4). These seismograms were computed using a cased source well model. Note
especially the smaller shear wave arrival at about 0.15 sec.
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in the computation of the RSM synthetic seismograms.

200

Figure 9: Shear wavefront diagrams explaining the origin of the two arrivals seen in
the traces in Figure 8 (A) This diagram is for time 0.132 sec, and shows the arrival of
the conical wave at the receiver. (B) This diagram, for time 0.15 sec, shows the origin
of the secondary shear wave. At this time, the wavefront by the point source coincident
with the primary volume injection source is at the receiver. The wavelets from the other
closely spaced wavefronts in the region between the conical wavefront and this latter
wavefront cancel out in the summation since peaks tend to overlay troughs. Note that
for clarity this figure shows only a subset of the wavefronts that were actually summed
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Figure 10: Overlay of the RSM (bold line) and discrete wavenumber (fine line).
synthetic seismograms in the homogeneous Pierre shale model when the source well is
uncased. This figure shows the radial component of displacement. Now the dispersion
of the tube wave in the source hole causes a dispersive effect of the Mach wave as
well which is not correctly modeled by the RSM. This could be taken into account by
applying a frequency varying form of the algorithm.
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Figure 11: Layered earth model with source and receiver wells 100 m apart. The
P and S-wave velocities of each layer are indicated in the figure. There are a total of

40 receivers at an interval of 10 m.
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Figure 12: Shear wavefront diagram at 0.30 sec. This figure demonstrates some of
the complications in conical wave propagation which will occur in layered media. The
conical waves are refracted on traversing each interface.
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Figure 13: Radial component RSM synthetic seismnogram for the layered earth model
(Figure 11). The letters “P” and “S” show the upgoing Mach waves arriving at the

most shallow receiver. Likewise, at the bottom of the figure, the letters identify the
corresponding downgoing conical waves.



