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ABSTRACT

Approximate and exact formulations are presented for the interaction of an incident
wave with a cased borehole. In the approximate method, the borehole coupling theory
is used to compute pressure in the fluid at a low frequency. The results are simple
and explicit. They are useful in the study of cased borehole coupling and as well
as borehole radiation. In the exact method, elastic potentials in each annulus are
represented as a superposition of fundamental solutions to the Helmholtz equations.
Continuity of displacements and stresses across layer boundaries are used to determine
unknown coefficients. The global matrix method is employed to simultaneously compute
these coefficients in individual layers. This method is advantageous over the Thomson-
Haskell propagator matrix method in handling evanescent waves. Our results show that,
in a cased borehole, the borehole effects on downhole seismic measurements are more
significant than those in an open borehole, especially when the formation is soft and
the casing is steel. For hard formations and frequency below 1 kHz, cased borehole
influence on downhole geophone measurement is minimal, while at high frequencies,
large discrepancies occur, especially at grazing incidence. For soft formations, both
the pressure in the fluid and the solid displacement on the borehole wall show strong
dependence on frequency and incidence angle, even at very low frequencies. Strong
resonance occurs in the fluid for an SV incidence at angle § = cos~!3/Cr where Cr is
the tube wave velocity in a cased borehole. This resonance is prominent even at a very
high frequency and large incidence angle because the tube wave velocity is raised well
above the formation shear velocity by the steel pipe. This behavior is very different
from that in an open borehole. At a particular angle of incidence of a plane P wave,
the pressure in the fiuid is near zero at low frequencies. This angle is dependent on
the casing thickness and can be computed exactly. In general the casing behaves like a
shield in such a way that the amplitude of both pressure in the fluid and solid motion
on the borehole wall are reduced compared to those in an open borehole.
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INTRODUCTION

In VSP and crosshole surveys, measurements are made with geophones/hydrophones
placed inside a fluid-filled borehole. Borehole coupling signifies the manner in which
incident elastic waves are distorted by the fluid-filled cylinder, in both amplitude and
phase as well as the properties of polarization. The coupling theory in an open borehole
is extensively studied in the literature, especially in the low frequency limits (White,
1953, 1983; Schoenberg, 1986; Peng et al., 1992). White (1953) proposed a theory of
borehole coupling at very long wavelength assumption. Schoenberg (1986) developed a
complete theory for the interaction of a plane elastic wave with a fluid-filled borehole
and gave explicit formulations at the low-frequency limit. It turns out that the formu-
lation given by Schoenberg (1986) reduces to that of White (1953) as the frequency of
an incident wave approaches to zero. Lee (1987} also-independently derived the low fre-
quency formulation of borehole coupling by applying the reciprocity relationships with
respect to the borehole radiation. Results that are valid at high frequency are recently
given by Blair (1984) and Lovell and Hornby (1990). They are applicable to the pressure
measurement at the center of the borehole. Peng et al. (1992) presented a complete
theory for all frequency and all azimuthally symmetric and nonsymmetric components.

However, the majority of boreholes drilled in industry are cased either by cements
or by steel pipes or both, besides the mudcakes that are more or less always present.
Borehole coupling in such a complicated environment is rarely studied. The distortion of
the incident wave by the presence of radially layered casing and cement around a fluid-
filled borehole is less understood. This paper is devoted to the cased borehole effect on
a downhole seismic experiment by approximately and exactly solving the problem of an
elastic wave impinging on a radially layered borehole.

This paper is organized into seven sections: The first section presents a general so-
lution to the problem in terms of superposition of fundamental modes in a cylindrical
coordinate. The second section gives a leading order analysis to the exact solution at a
low frequency asymptotic approximation, where explicit expressions for the tube wave
velocity and pressure in the cased borehole are derived. This analysis yields correct es-
timation of pressure in the fluid only at a normal incidence of a plane P wave incidence.
In the third section, we develop a quasi-static approach to the borehole coupling in a
cased borehole at a low frequency, where simple, explicit and accurate expressions are
obtained. In the fourth section, the global matrix method is employed to exactly solve
the general formulation developed in the first section. The fifth and sixth sections are
devoted to high frequency behaviors of pressure in the fluid and solid displacement on
the borehole wall, respectively, which have applications in many downhole experiments
where data are collected for waves of higher and higher frequency (Albright and John-
son, 1990; Pratt et al., 1992). In the seventh section, a laboratory experiment is carried
out to study the fluid resonance in a cased borehole due to a plane SV incidence in a
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glass-cased soil borehole model.

GENERAL SOLUTION

Problems

Consider the case of an elastic plane wave incident on a radially layered borehole, as
shown in Figure 1. In each radial layer, the formation is a homogeneous elastic medium
with density p,,, compressional wave speed o, and shear wave speed 8,,, where m
denotes the layer number with 1 < m < M + 1. M is the number of annuli between the
borehole fluid and formation. The borehole is filled with a fluid that has density p; and
compressional wave speed ay. The inner radius of the borehole is r, where a downhole
geophone is placed. The primary goal of this paper is to investigate the pressure in the
fluid and the solid motion on the borehole wall due to an incident plane wave from the
formation.

The fluid displacement U ; inside the borehole and the solid displacement T, in
the m-th layer satisfy the elastic wave equations, which, in terms of the corresponding
potentials (Tubman et al., 1984; Schoenberg et al., 1981}, are
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General Solutions

When an incident wave hits the outermost radial layer from the formation, some energy
is reflected back and some is transmitted into the casing and cements. The general
solution to the problem, in a cylindrical coordinate {r, 8, z) with # the angle with respect
to the azimuth of the incident wave, is
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where the z and time dependence ¢¥22=w! is assumed. In these expressions, k ;=
Jw?/ad — k22, k™ = yJw?/a2, — k% and k&™) = Jw?/B2, — k.2, and signs of ks, k™, k™
are chosen such that Im(k,™, k™, k;) > 0. V(w) denotes the source function at a giv-
en frequency w. Hp { }(m) is the Hankel function of the first kind, representing energy
traveling outward. HE (m) is the Hankel function of the second kind, representing en-
ergy traveling inward. E{™, P Fim) QFm G and R™ are dimensionless, unknown

constants in the m-th layer. A, is that in the fluid. They are determined by satisfying
boundary conditions.

s
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Given the potentials in Eq. (2), the displacement and stress components are com-
puted by equations in Eq. (1). Let u{™, for an example, denote the n-th harmonic
component {mode n) in the complete expansion Eq. (2) in layer m (the borehole fiuid
column corresponds to m=0 ). The radial, tangential and vertical displacements ™,
u(g‘ ) and U are
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and the stresses on the surface where r is a constant are
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where the details are given in Appendix A.
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The boundary conditions for determining An, B/™, P, Fi (X, G and K™
are the continuities of radial displacement and normal stress, and vanishing of tan-
gential stresses at the fluid-solid interface, and the continuities of displacements and
tractions at the solid-solid interfaces. In the outermost layer M + 1, i.e., the forma-
tion, Pf(;MJ"l), Qg& D and R D are zero because of the radiation boundary condition
at infinity. After the coefficients A,, B\, P, Fi), (¥, G5 and R§™ are known, the
displacement on the borehole wall and pressure in the fluid can be easily computed from
Eq. (3) and Eq. (4).

LOW FREQUENCY REGIME: A LEADING ORDER ANALYSIS

Pressure in the Fluid

At a low frequency, the mathematically involved expressions in the previous section
can be greatly simplified. The pressure in the fluid is homogeneous across the borehole
section and is related to the axial fluid motion v and the radial solid motion u, by the
equations of conservation of vertical momentum and the constitutive law (White, 1983)

8P

OP _ o
52 pf(.lJ v, (5)

and

P —Kf(gg + 2ur(ry, z))

Oz 5 (6)

where Ky = pfa)% is the fluid bulk modulus and ry the borehole radius.

Eliminating v in Eq. (5) and Eq. (6) results in, written in the time domain, the
following equation
32P 2 sz 2 6261-(7'1),2)
57 T B = 2P T 5 (7)

where ¢,(7p, 2) = ur(ry, 2)/7s is the change of borehole radius, which acts like a source
for pressure in the fluid-filled borehole.

Leading Order Analysis

Since only the symmetric mode n = 0 in Eq. (2) will contribute to pressure in the fluid
at a low frequency (noting Jo(z) — 1 and Jp(z) — 0 as x — 0). Assuming only one
annulus is presented, we use the following approximation to the displacements in the
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casing and the scattered displacements in the formation:

ul® = Ci/r+ Carlogkgr

C
() _— X3
Uy T og k 57
in the casing with rp < » < r. where r. is the outer radius of the casing, and
w™ = Difr
w®) = 0

in the formation with » > r,. These expressions come directly from Eq. (3), where only
the first two most singular terms in the asymptotic expansions of the Hanke] functions
H’él’z)(-) and Hfl’z}(-) for a very small argument are kept. Here ks is maintained to
make the argument of the log function dimensionless. The log kﬁ r term in the formation
is excluded because it diverges at oo, which is an assumption we make in this leading
order analysis.

The stresses are directly determined from the constitutive relationship between stress
and strain and the geometric relationship between strain and displacement, yielding

C
o9 = _2,%-;51 +[2(Ac + 1c)Ca + ACs Jlog kg
Lk, )
0'1(-? = g z_T“(Cl - :'g) + ik, Tlogkﬁ rCa ]
in the casing, and
oo D
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in the formation.

Boundary Conditions

The boundary conditions to determine the unknown coefficients Cy, Cs, C3 and D; are
assumed to be

(i) o) =-pP
Gi) Q07) =) + o)

(i) o\2(r) = ) + )
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where the superscript (inc) denotes a quantity associated with the incident wave. P is
the pressure in the fluid-filled borehole. The continuity of u, at 7 = 7, and vanishing
of ¢'% at r = 7 are not imposed since they are less singular compared to the others as
w — 0, assuming C # 0.

Pressure in the Borehole

The pressure in the fluid-filled borehole due to an incident wave in the formation, by
solving the four equations associated with the boundary conditions above, is found to

be .
(inc) (inc)

w(Ae + 2ue) [ 28 ur " (Te) [Te + o8 (1) ] ()

P: 2
(.u - .U‘c)()\c + pe+ 'lU);g' + (/-"c - 'w)()‘c + te +/—L)

where w = pro?/(ak.?/w? — 1). w/k. is the vertical phase velocity. It is interesting
to note that, under the assumptions made in this section, 052,”") does not contribute to
the pressure in the borehole. In general, the terms o, and u, are decoupled from o~
and u; in the limit w — 0 (Winbow, 1991). As will be shown later, Eq. (8) is accurate
only at a normal incidence for an incident P wave, where osn':”c) = 0 and u(;"c> = 0, i.e.,
the assumptions are well justified.

Zero Frequency Tube Wave Velocity

The zero frequency tube wave velocity in a cased borehole is computed by letting the
denominator in Eq. (8) vanish, which yields

ay

Or = F——"— ’
T eeyW .

where b
W=#0u+(uc—ﬂ)(1“'fc)(l"?§) (10)

e — (fe — p)7:(1 — ;g)

is the effective modulus of a cased borehole. Here v, = 82/a2. This expression is
identical with those of Marzzeta and Shoenberg (1985) and Norris (1990). It turns
out that Eq. {9) is extremely accurate in estimating the tube wave velocity in a cased
borehole. Table 1 shows a comparison of the tube wave velocities computed by Eq. (8)
and by the exact formulation given in the latter section at 1 Hz.
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Table 1: Tube wave velocity in cased and open boreholes (the inner radius is 10.16 em,
the outer radius is 12.09 ¢m; the fluid is water with compressional velocity 1500 m/s
and density 1000 kg/m?; the casing is steel with a. = 6100 m/s, 8, = 3350 m/s and
pe = 7500 kg/m® )

C7r in an open borehole Cr in a cased borehole
Lithology o’ 8 D by (9) exact at 1 Hz | by (9) exact at 1 Hz
Pierre Shale 2074 | 869 | 2000 | 950.634 | 950.636 1425.701 | 1425.706
Berea Sandstone | 4206 | 2664 | 2140 | 1399.884 | 1399.885 1450.390 | 1450.392
Limestone 5970 | 2880 | 2656 | 1428.808 | 1428.809 1457.314 | 1457.317
Soil 1670 | 170 | 1280 | 191.503 | 191.499 1421.411 | 1421.401
Plane P wave Incidence
For an incident compressional plane wave, we have (Peng et al., 1992)
uP = —a kp Jilkpr)
ulP) = a ik, Jo(kyr)
1
o) = —pal (W° — 26°k:")Jo(kpr) — 26°kp~ T1 (kpr) |
and —
o) = —pal 267 iks kp Ji(ker) ]
Therefore, it is easy to show that
20 ul™) (re)/re + 0N ) = Po (1 —28%/a? cos? 6 )
where Py = —paw? is proportional to the pressure of the incident P wave if no borehole

exists. Substituting this expression in Eq. (8) yields the pressure in the fluid, scaled by
Pg, as
P 1-C%/a% 1-28%/0”cos?§
P 2 2 2 1-—C%/a%cos?é
© -G a- T
c

(11)

where, as a reminder, Cr is the tube wave velocity, 6 is the angle of incidence. Com-
paring with the result given by White (1983) for an open borehole, we find that, in a
cased borehole, the dependence of the fiuid pressure on angle of incidence has the same
form as that in an open borehole. The existence of casing modifies the amplitude and
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the tube wave velocity. Actually, when o, = ¢, §. = § and p, = p, or 1 = 7, i.e, the
casing diminishes, Eq. (11) reduces to

P psCE: 1 -26%/a?cos? 6
Ry~ pf® 1-C%/a%cos?$’

(12)

the pressure in an open borehole caused by an incident compressional plane wave (White,
1953, 1983; Lovell and Hornby, 1990).

Figure 2a plots the pressure in the fluid as a function of the incident angle for a plane
P wave. The pressures are computed both by Eq. (11) (referred to as approzimation
in the figure) and by the exact solution given in the latter sections (referred to as
eract in the figure). The exact solution is computed for a frequency at 1 Hz. The
formation is Berea sandstone (hard). The parameters are listed on the top of the figure.
Only pressures in a cased borehole are shown, since, in an open borehole, the pressure
computed by Eq. (11) agrees exactly with that by the complete solution. It is obvious
that, in a cased borehole, agreement between the approximation and the exact only
prevails at a normal incidence where k; = 0. This has been pointed out previously.
Generally in a cased borehole, Eq. (11) overestimates the pressure in the fluid.

Figure 2b plots the pressure in the fluid for the soft formation (Pierre shale). In
this case, the discrepancy between Eq. (11) and the exact solution is significant. An
exception occurs at a normal incidence where, again, the approzimation agrees with the
exact.

In a borehole with steel casing, the pressure in the fluid is significantly affected by
the casing. At a particular angle of incidence, there will be no pressure in the fluid for
an incident P wave, as is shown by the exact solution. This is because, in this case,
there is no net change of the borehole cross section and the fluid is not squeezed at all.
The particular incidence angle can be exactly estimated by the analysis given in the
next section.

Plane SV wave Incidence

For an incident plane SV wave, we have (Peng et al., 1992)
ul™) = Bk, Ji(ksr)
ul™) = § ik, Jo(ksr)

1
ot = 2p B° kaks [Jo(ker) = 7 J1(kr) ]

=

aten
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and
ol = —i pf® (k2 — k%) 1 (ks) |

. Then, simple substitution into Eq. (8) leads to
26 w9 (o) /e + oM (r,) = Py sinécoss
where Py = pf. In this case, the pressure in the fluid, scaled by F,, is found to be
P _ 1 —C%/o} sin 26
Py 1_(%__%_&%)(1_%) 1—C2/B%cos? 6
which has the same amplitude factor as Eq. (11} and exhibits a familiar dependence on

the angle of incidence. When the casing ceases to exist, i.e., either a. =, 8, = 8 and
P, = p Or 15 = 1o, EqQ. (13) reduces to

(13)

P psC3 sin 28

o p° 1-CZ/Fcos?d (14)

the pressure in an open borehole caused by an incident plane SV wave (White, 1953,
1983; Lovell and Hornby, 1990).

In Figure 3, we plot the pressure in a cased borehole computed by both Eq. (13)
and the exact solution (at 1 Hz). The incident wave is a plane SV wave. The formation
is either hard (Berea sandstone) or soft (Pierre shale). The difference between the
approzimation and the exact is evident, especially in a soft formation. At both the
normal and grazing incidences, the approzimation and ezact turn out to be the same
and are zero. We find that Eq. (13) underestimates the pressure in the fluid by a
constant factor independent of the angle of incidence. Also evidently, there is a fluid
resonance at incidence angle § = cos™! 8/Cr in the soft formation, where the tube wave
is excited in the fluid.

Summary

The leading order analysis presented in this section yields correct estimation of pressure
in the fluid in an open borehole. In a cased borehole, the estimation of pressure is only
accurate for a P wave at a normal incidence and an S wave at both normal and grazing
incidences. This analysis also leads to an accurate estimation of low frequency tube
wave velocity in both open and cased boreholes. Yet, the approach is not accurate for
both the P wave and the S wave at an oblique incidence. This is because the continuities
of vertical displacement u, and shear stress o,; across the casing-formation boundary
are not satisfied.
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LOW FREQUENCY REGIME: A QUASI-STATIC APPROACH

In this section, we give a quasi-static approach to the theory of borehole coupling in a
cased borehole. Superior to the previous analysis, this approach has a profound physical
insight to the interaction of a fluid-filled borehole with the formation. Furthermore,
it yields simple and explicit formula for the pressure in the cased borehole at a low
frequency, where analytical solutions are of little use and the numerical solution is too
cumbersome. The results given in this section can be as well applied to study the
radiation of an air gun source in a cased borehole, using the reciprocity relationships.

Borehole Coupling Equation

The €-(ry, z) in Eq. (7) can be decomposed into two parts:
Tr(rs, 2) yime) _ £
Ty 2w

where the first term on the right-hand side is the deformation of an empty borehole due
to an incident wave from the formation, the second term is the fluid resistance against
borehole deformation (White, 1983). W is the effective modulus of a cased borehole
given in Eq. (10). The 4, in the above equation is the azimuthal average of the radial
displacement on the borehole wall, representing net change of the borehole cross section.
An alternative form of Eq. (7) will be

1 8P 2P 82¢8m) ()
CIE R M T am

ér(Tb, Z) = (

(15)

where €™ (z) = (H(ro, z)/75)(*) is called the borehole squeeze strain. The definition
is different from that of Marzetta (1992) by a factor of 2. Eq. (15) is also referred to
as the borehole coupling equation. It should be pointed out that the borehole squeeze
strain is different from the radial strain du,/8r on the borehole wall, rather it is the
average change of cross section when an incident wave impinges on an empty borehole.

If eiim) is known, the pressure in the fluid can be determined by

oo . ; . ,
Pz, w) = _pfw2 f Eg.tnc)(zf)ie—zk'rh—z lds
_ kr
where kr = w/Cr is the wavenumber of a tube wave. For an incident plane wave, the z
dependence can be assumed to be €'2% where k, is the vertical wavenumber. Then the

above equation, neglecting terms associated with energy coming from infinity, yields

2 ES-iM)(Z
Z T
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Borehole Squeeze Strain

The borehole squeeze strain is the azimuthally averaged radial displacement on the wali
divided by the radius, i.e.,

(inc) 1 27
g = ﬁ./o Ur(ry, 8,2)d0 [/ 1y .

It depends only on the net change of borehole section, not the details of deformation.
In the case where the borehole deformation is equivoluminal, i.e., ™ = 0, Eq. (16)
implies that no pressure will be set up in the fluid-filled borehole.

To determine the borehole squeeze strain, we need to compute the average change
in borehole radius for an empty borehole. A quasi-static approach will be adopted here,
which is in line with the method used by White (1983) for an open borehole.

As the frequency w -+ 0, the wavelength becomes much larger than the size of
the borehole. In a vicinity around the borehole that is much larger than the borehole
radius and at the same time much smaller than the wavelength, the stresses are nearly
homogeneous and equal to those of the incident wave. Introduction of a cased borehole
only locally disturbs the stress field at the expense of borehole deformation. The volume
change of the borehole sets up a pressure inside the fluid in the same way as a piston
source does. In an open borehole, the change of borehole radius due to an-incident wave
is easily calculated by the known results (White, 1983). In a cased borehole, extra work
is needed to derive the effective moduli in a radially layered setting. In Appendix C,
we give a derivation of the borehole squeeze strain by using the Airy function method
in static elasticity, and the result is

) _ Jaz T Oy YOz
EIE E_{_

E’(n:nc

1)

where 0z, oyy and o, are the principal stresses of an incident wave. E) is the effective
modulus of the cased borehole against horizontal deformation, and is given by

2
E" )I/ {1"}'(%—1)(1_712)(1_%)]

_ E
C14(¢ -1

and £ is the effective modulus of the cased borehole against vertical deformation, and

is given by 5 \
He T
Fl = = _ — -8

where

Ve Ee ?"123
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In these equations, E and v are the Young’s modulus and the Poisson ratio in the
formation; F. and v are the Young’s modulus and the Poisson ratio in the casing. As
a reminder, v, = 2/aZ, 7 is the inner radius of the casing and r¢ is the outer radius
of the casing. In the case ry = rc or E. = E and v, = v, Ej and E, reduce to E, the
Young’s modulus in the formation. In this case, Eq. (17) is identical with that given by
White (1983).

Figures 4 and 5 show the effective moduli of a cased borehole as a function of the
casing thickness (r. — 7s)/7s for the hard and soft formations, respectively. Evidently,
E) < Ej when the casing is harder than the formation. This implies that the cased
borehole is stronger horizontally than vertically. £ increases rapidly with the increase
of casing thickness, while E| decreases slowly in the hard formation and increases slowly
in the soft formation.

Figure 6 shows the effective moduli of a cased borehole as a function of the formation
rigidity u. The formation is assumed to be the Poisson’s solid. As the formation becomes
harder, F) decreases rapidly, while E is almost unchanged.

Plane P Wave Incidence

From Eq. (16) and Eq. (17), using the principal stresses oz, oyy and o, given by White
(1983), we obtain, for an incident compressional plane wave,

P psC3 E 71-(1-2v)cos?8])—v] v+ (1—2v)cos?6 ]

P p32 (1-vDEL 1 —CZ/o?cos? 6 (18)

where P is the pressure in a cased borehole. 7 = E, /B is the ratio of the horizontal and
vertical effective moduli. When the casing thickness vanishes or its physical properties
are the same as the formation, this equation reduces exactly to Eq. (12}, the pressure
in an open borehole.

A particular angle of incidence exists where the pressure in the fluid vanishes if

and this angle g is given by

1 n — 12

) =) (19)

b0 = cos™

at which there is no change of borehole cross section due to the passage of an incident
P wave. In this case, the casing acts like a shield such that a hydrophone cannot see
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the incident compressional wave. For the hard formation (Berea sandstone) with steel
casing, this angle occurs at 6¢ = 8.64°%; for the soft formation (Pierre shale), it is at
6o = 35.67°, where 1y = 0.1016 m and 7. == 0.1219 m are used. These estimations agree
with the exact solutions shown in Figure 2.

The critical thickness h. = r. — 13 is given by

Tb/T'c= \/1 2”(1_1”6) Y

T vl -2 pre— p

below which the shielding effect disappears. If h < 7, the above equation can be
simplified as

vi-v) p
el = Ve(l = 20) fte — b’

As examples, taking the formation to be Berea sandstone and casing to be steel with
the same geometry as in Figure 2, the above analysis yields a critical casing thickness
he = 0.1731 3, beyond which there is an angle §p given by Eq. (19) where the pressure
in the fluid vanishes for an incident P wave. In the case where the formation is Pierre
shale, the critical thickness is k. = 0.0978 5. These estimations have been confirmed by
solving the exact equations given in the next section. It is interesting to note that the
critical thickness is smaller in the soft formation than in the hard formation, implying
the shielding effect occurs easily in a cased borehole with a soft formation.

The following two examples are to show that Eq. (18) agrees with the exact solution
at a low frequency at all angles of incidence. Figure 7 shows two calculations for the
hard formation and the P wave incidence: the left one is by the exact method at 1 Hg,
the tight one is by Eq. (18). These two calculations are indistinguishable. They both
show a zero of pressure in the fluid at 8.6°. Figure 8 is the same as that in Figure 7
except for the soft formation. Again, one cannot tell the difference between the exact
solution and the quasi-static approximation. They both show a zero at § = 35.7°.

Plane S Wave Incidence

The pressure in a cased borehole due to an incidence plane SV wave will be
P pCt (n+V)E sin 26
Po pB° (14v)EL 1-CZ/B%cos?$
where P is the pressure in the fluid. When the casing diminishes, Eq. (20) reduces to
the Eq. (13) in an open borehole.

(20)

Figures 9 and 10 show the pressures in the fluid for both the hard and the soft
formations. The incident wave is a2 plane SV wave. The plot on the left is calculated
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by the exact solution at 1 Hz. The plot on the right is computed by Eq. (20). No
discrepancies can be identified, as expected. For the hard formation, the pressure has
a lobe around 45°. For the soft formation, strong fluid resonance occurs at 54° for the
SV incidence.

Summary

The quasi-static approach given in this section yields correct estimation of pressure
in the fluid-filled borehole due to a source in the formation, both for cased and open
boreholes. The resulting equations are simple and explicit. They can be used in the
study of cased borehole coupling and radiation. Yet, the approach is accurate only at
low frequencies. At high frequencies, complete solution must be sought and is given in
the following section.

EXACT SOLUTION BY THE GLOBAL MATRIX METHOD

Displacement-Stress Vector

For a fixed harmonic component or mode n in Eq. (2), the displacement-stress vector
—{m) - . . m
b, (r) in layer m and at position r is related to the unknown coefficient vector ¢ by

B (r) =D () & (21)

where

(m) abm?

b, ()

I
§
——

-~
S

and

()

O
Il

The coefficient matrix D' (r) is given in Appendix A. As a reminder, the superscript
(m) is the layer index and the subscript n is the harmonic mode number.
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Boundary Conditions

The boundary conditions at the interface between radial layer ¢ and 1 + 1 require that
the displacements and stresses be continuous, i.e.,

o (i (i1
bn)(Tz‘+1) = bi )(Ti+1) (22)

when both sides are solids, or the normal stresses and displacements are continuous and
the tangential stresses vanish when either side is a fluid, e.g., at r = 73,

o, (7s)
— — f -—
SB (m) = | JP) | =fa, (23)
0

where u,{:_ and pf are the radial displacement and pressure inside the fluid, respectively.
S is an index matrix defined as

[T o B o T S
[ I e Y e S ]
o O OO
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[ I e I e N e
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and f = (asksd, (ksrs), —prasw?Ja(kery), 0,007, In Eq. (23), A, is the unknown coef-
ficient in the fluid displacement potential.

At the outermost layer { = M 41, radiation conditions must be satisfied for a source

free problem, i.e.,
PYD = QWD = RIHD = 0

such that no energy comes from infinity.

Propagator Matrix Method

Let

pline)
(inc)
w ﬂ(r) = {ine) (7‘)
Jrrﬂ
otine)

ing
a 1(—2,; )
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be the displacement-stress vector of an incident plane wave from the formation (i.e.,
7 > nwt1). For a plane wave of either P, SV, or SV type, this vector is explicitly given
in Appendix B.

The boundary condition at r = ny1 can be written as
D 8D (na)THFY + W aner) = DI ()T (24)

While at an interior interface r = r;, assuming the casing layers are well-bonded to each
other, we have

DP(ra)e = DYV (el (25)
for 2 <i< M.

By recursively applying Eq. (24) and Eq. (25), we obtain
DPr)E) = Ga [DEFD (ner1)0FY + 7 ()| (26)

which relates the wave fields at the borehole wall {r = r,} with those in the formation
T = w1, Where

Gn=TEDP()D P i)™
is a matrix that propagates energy across boundaries.

The coupling of energy into the borehole fluid is accomplished by substituting E-
q. (26) into the fluid-solid boundary condition Eq. (23) at r = 7y, yielding

SGn D (ne1)E5H) + 9 alngr) | = 4n

from which, in addition to the radiation condition in the outermost layer, the coefficients

Ap, ,({”‘F 1), FD ang g Y can be solved. This equation can be further simplified as

fE E’(lMi'l) - Fp F,SM-'_I) + fG G%I) +fw = FAn (27)

where
(Gr)1i (Wa)i
f’ = (G n)4i (W’ n)-:'
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(G a)us (D)

(G n)ai (DY, (
(G ) (DB, | (1)
(G n)ei (D &),

!
ny
[

and

(G n)ui (D&
(G n)as (DB
(G n)si (DY
(G n)ei (D8 DY

?G = (Mar1) -

In the intermediate layers, a solution can be obtained by recursively applying Eq. (24)
and Eq. (25) in a backward matching fashion.

As in any integral transform method to solve the elastic wave equation in a layered
medium, instability and loss of accuracy are problematic when the vertical number k.
exceeds the medium wavenumbers such that the radial wavenumbers become imaginary.
In this case, the wave field is evanescent. The matrix equation involves both negative and
positive exponentials. Theoretically terms having positive exponentials exactly cancel
each other, but numerically this never happens {Dunkin, 1965). The Thomson-Haskell
type propagator matrix method described here has a block bidiagonal form in nature
and is a two-point shooting algorithm (Chin et al., 1984). This technique is difficult
to handle this type of instability (Schmidt and Tango, 1986). On the other hand, the
global matrix method proposed by Chin et al. (1984) is well suited to this problem.

Global Matrix Method

We adopt a special kind of the global matrix method to solve A,, E,(f), 19), o) : Q'S‘Ll) ) G
and Rg,l , which are coefficients needed to compute pressure in the fluid and wall displace-
ment in the casing. The pressure yields a hydrophone output, and the wall displacement
is measured by a downhole geophone.

The starting equations for this method are
BoD V()8 = BoGnBg" [Bo D&V (ness) 88T + Bo ®alnerr)]  (28)

and

boSD V()W = bof A (29)
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where Eq. (23) and Eq. (26) have been used, and where
(Bo)u
bO — (B 0)44
(Bo)ss
(Bodes / 4.4
and
1
A
1
e 1
Bo = Ay
A 1
P
T6 6x6

with A\; = max;gpn g [(D ,(f))gjl being the absolute maximum in the i-th row. The
matrices Bg and b are introduced to precondition the propagator matrix equations.

Let us define a coefficient vector that has ten elements as
% = (An, BLY, B3V, Y, QR G, B, BYY, FYD, GRAED)T

where the first entry is the coefficient of potential in the fluid, the next six entries are
those in the first casing layer and the last three are those in the formation. Using

Eq. (28) and Eq. (29), we can solve this vector by the following set of linear equations
(30)

—
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where .
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and where .
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D; = GaBo DV(nu)
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The advantage of the global matrix method is that, after &Y and E;{HMH) are known,
the & in the i-th annulus can be determined by either a backward matching from
the outermost layer or a forward matching from the innermost layer. In terms of the
matrix structure, as is shown in Chin et al. (1984), L, has a block tridiagonal form
and its inversion can be adequately computed by the Gaussian elimination method with
partial pivoting (Schmidt and Tango, 1986). This method tends to yield great accuracy
compared to the Thompson-Haskell propagator matrix algorithm.

Dispersion Equation

The dispersion equation in a cased borehole is given by
i.e., the determinant of the 10 x 10 matrix L, is zero.

Suppose L, = L - U is the LU decomposition of the matrix L, by the Crout’s
algorithm (Press et al., 1989), and let v;; be the diagonal elements of the upper triangle
matrix U, then Eq. (31} is equivalent to

F(k,) = Hilgl T =0.

We are concerned with possible excitation of surface and trapped modes due to com-
plication of casing. A fluid resonance occurs whenever the vertical wavenumber of the
incident wave is equal to the wavenumber of a particular mode whose pole is located
on or near the real axis. Instead of solving the above nonlinear equation for its roots,
we contour the amplitude of F'(k,} on a logarithmic scale in the complex k. plane for a
frequency up to 2 kHz. The purpose of this analysis is to identify all singularities along
the path of k, = w/a cos &, for example, as § varies from 0° — 90°.

Figure 11 shows contour plots of F(k;) for the monopole mode n = 0 for the hard
formation (Berea sandstone). The formation and casing properties as well as the bore-
hole geometry are listed on the top of this figure. The horizontal axis is Re(k.), the
real part of k,. The vertical axis is Im(k;), the imaginary part of k.. For a frequency
at 100 Hz (top), singularities are associated with the tube wave pole k7 and the for-
mation and casing branch cuts kg, k:ﬁ, ke, and kﬁ No other type of pole or branch
cut can be identified. As the frequency increases to 2 kHz (bottom), evidently a pole
(pseudo-Rayleigh mode) comes close to the real axis from the first quadrant. This pole
is of less concern because it stays above the real axis for frequency below a cutoff value
that is usually greater than 2 kHz.

Figure 12 shows contour plots of F(k,) for the dipole mode n = 1 for the hard
formation (Berea sandstone). Different from those of the monopole mode, the tube
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wave pole is replaced by the fluid branch cut ky. There is no such fluid branch cut in
the monopole mode as is shown by Kurkjian (1985). At a frequency equal to 2 kilz
(bottom), a complex dipole pole appears in the first quadrant, which moves toward the
formation shear branch cut at its cutoff frequency (greater than 2 kHz).

Figure 13 shows contour plots of F(k,) for the monopole mode n = 0 for the soft
formation (Pierre shale). Different from that in the hard formation, in this case, the
tube wave wavenumber kr is in between the compressional branch cut ky and the shear
wavenumber branch cut kg. As is shown by Peng et al. (1992), a significant fluid
resonance occurs for an SV wave incidence at

§ = cos™! B/Crr(w) (32)

where the tube wave wavelength is equal to the vertical wavelength of the incident
shear wave. In the soft formation with steel casing, the surface modes associated with
the existence of the casing are evident at 2 kHz (bottom). They are dispersive and
attenuative, and lie above the real axis.

Figure 14 shows contour plots of F(k;) for the dipole mode n = 1 for the soft for-
mation (Pierre shale). In this case, the fluid branch cut is in between the compressional
branch cut ko and the shear wavenumber branch cut kg. At a low frequency (100 Hz),
no surface or trapped mode is evident in this plot. At a high frequency (2 kHz), the
complex dipole pole appears in the first quadrant with a small phase velocity, which
also moves toward the formation shear branch cut at its cutoff frequency that is greater
than 2 kHaz.

The above analyses show that, for a frequency up to 2 kHz, no mode other than
the tube wave has potential impact on the fluid-solid motion in a cased borehole for
both the hard and soft formations. The Stoneley wave dispersion in a cased borehole is
extensively studied previously (Tubman, 1984; Tubman et al., 1984). Figure 15 shows
the dispersion of a tube wave in an open and a cased borehole, computed by solving
the above dispersion equation using a root finding algorithm (Press et al., 1989). This
figure clearly shows that the tube wave in a cased borehole is less dispersive than in an
open borehole. The casing significantly increases the tube wave phase velocity, implying
the fluid resonance phenomenon associated with an SV incidence in a soft formation is
more easily observable in a cased borehole than in an open borehole.

CASED BOREHOLE EFFECT ON DOWNHOLE HYDROPHONE
MEASUREMENTS

At a low frequency, the pressure in a cased borehole due to a source in the forma-
tion is studied in the previous sections, where explicit and close form expressions have

.

o
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been given. However, at high frequencies, no such expressions can be easily obtained.
Numerical investigation by the global matrix method is needed to study how and by
how much the cased borehole can influence a downhole hydrophone measurement. In
this and the following sections, calculations are made with the benchmark formations
Berea sandstone (fast, & = 4206 m/s, § = 2664 m/s and p = 2140 kg/m?®) and Pierre
shale (slow, a = 2074 m/s, § = 869 m/s and p = 2000 kg/m®). The casing is steel
(a = 6100 m/s, B = 3350 m/s and p = 7500 kg/m?) with thickness 2.03 ¢cm. The inner
radius of the borehole is assumed to be 10.16 ern.

Plane P Wave Incidence

Figure 16 shows the pressure at the center of the fluid as a function of angle of incidence
at frequencies 100 Hz, 500 Hz, 1000 Hz and 2000 Hz. The incident wave is a plane
P wave. The casing is steel, and the formation is Berea sandstone. The physical
parameters are listed on the top of the figure. The pressure is scaled by the Fp, the
pressure of the incident P wave when the borehole is absent (Lovell and Hornby, 1990).
Evidently, the pressure in the fluid has a main lobe at the normal incidence § = 90°. At
a low frequency (< 500 Hz), there is a particular angle of incidence where the pressure
in the cased borehole is nearly zero. This angle can be well predicted by eguation
Eq. {19). The frequency dependence is very small, although the pressure increases with
the increase of frequency.

For the soft formation (Pierre shale), as is shown in Figure 17, the pressure in
the fluid shows strong dependence on both frequency and incidence angle. At a low
frequency, it has two lobes at normal incidence and grazing incidence. A minimum
occurs at 35, which is in fair agreement with the angle predicted by equation Eq. (19).
This minimum disappears as the frequency increases. It is interesting to note that,
near the normal incidence, the pressure shows a similar behavior as that for the hard
formation, while away from the normal incidence, it is strongly dependent on both
frequency and angle of incidence.

Plane S Wave Incidence

Figure 18 shows the pressure at the center of the fluid as a function of angle of incidence
at frequencies 100 Hz, 500 Hz, 1000 Hz and 2000 Hz for a plane SV wave incidence. The
casing is steel and the formation is Berea sandstone. In this case, the pressure in the
fluid shows a main lobe at § ~ 40° incidence and is almost independent of frequency.

When it comes to the soft formation with a plane SV wave incidence, a significant
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fluid resonance occurs at § = cos™! 8/Cp(w) ~ 52.4°, as is shown in Figure 19. Different
from the case with an open borehole (Peng et al., 1992), in the steel cased borehole the
resonance is at a large angle of incidence and is prominent at very high frequency. This
is because the tube wave velocity is raised well above the formation shear velocity. The
kink at § = 65° and at 2 kHz is associated with the critical reflection of the P wave at
the formation-casing interface.

Summary

Two phenomena are of interest for the pressure in a cased borehole: one is the vanishing
of pressure at a particular angle of incidence for an incident plane P wave; the other
is the fluid resonance in a soft formation for an incident plane SV wave. The former
occurs at a low frequency when the casing thickness exceeds the critical thickness. The
latter is prominent at all frequencies and is associated with excitation of the tube wave
in the fluid. The critical angles for both of them can be well estimated by the simple
and explicit relationships in Eq. (19) and Eq. (32).

CASED BOREHOLE EFFECT ON DOWNHOLE GEOPHONE
MEASUREMENTS

This section is devoted to the study of the cased borehole effect on the downhole geo-
phone measurements. Three aspects are of interest: the borehole reception pattern
which signifies the influence of a fluid-filled borehole on the solid displacement as a
function of angle of incidence; the borehole effect on particle motion which is important
for horizontal component rotation from data itself; and the effect of geophone orientation
since, generally, the exact location of the geophone at the borehole wall is unknown.

Borehole Reception Pattern

The borehole reception pattern is defined as the dependence of pressure in the fluid
and solid displacement in the formation on the angle of incidence. Calculations in the
following examples are made with a geophone at the forward direction (r = 7,6 = 0°).

Plane P Wave Incidence

Figure 20 shows the borehole reception pattern for the radial component of solid dis-
placement at the borehole wall. The incident wave is a plane P wave. The formation
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is Berea sandstone (hard). As expected, the radial component is zero at the grazing
incidence and is maximum at the normal incidence. It increases with the increase of
frequency, especially at the normal incidence.

Figure 21 shows the borehole reception pattern for the vertical component of solid
displacement at the borehole wall. In this case, the vertical component is zero at
the normal incidence and possesses a lobe at the grazing incidence. Unexpectedly, it
decreases with the increase of frequency, especially at the grazing incidence.

Figure 22 shows the borehole reception pattern for the radial component of solid
displacement at the borehole wall for the soft formation (Pierre shale). Different from
that in Figure 20, the radial component increases with the increase of frequency up to
1 kHz. Beyond 1 kHz, it evidently decreases, especially at the normal incidence.

Figure 23 shows the borehole reception pattern for the vertical component of solid
displacement at the borehole wall. The formation is also Pierre shale (soft). Evidently,
the low frequency behavior is the same as that in Figure 21. However, at a high
frequency, the vertical component becomes significantly smaller than the incident wave,
decreasing with the increase of frequency. The transition zone is between the angles of
critical P—8 refraction and P—P refraction in the casing-formation interface.

Plane S Wave Incidence

Shown in Figure 24 is the borehole reception pattern for the radial component of solid
displacement at the borehole wall for the hard formation. The incident wave is a plane
shear wave of SV type. As expected, at a low frequency, the reception pattern has a
lobe at the grazing incidence. Increase of frequency will increase the radial component
of solid displacement, especially at the grazing incidence.

Figure 25 shows the borehole reception pattern for the vertical component of solid
displacement at the borehole wall for the hard formation and SV incidence. In this case,
the lobe is at the normal incidence. The reception pattern shows little dependence on
frequency.

For a soft formation and a plane SV wave incidence, the solid displacement on the
borehole wall is also strongly affected by the excitation of the tube wave in the fluid.
Away from the resonance angle, at low frequencies, the borehole reception patterns are
similar to those for the hard formation. Figures 26 and 27 show the radial and vertical
components of solid displacement at the borehole wall. The arrows mark the place
where the fluid resonance occurs. Evidently, the impact of the tube wave is strong on
the vertical component at low frequencies. However, at a high frequency, the influence
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on the radial component becomes significant. At high frequencies and away from the
fluid resonance regime, the radial and vertical components of solid displacement both
decrease rapidly with the increase of frequency. The solid displacement on the borehole
wall is significantly less than the incident wave.

Borehole Effect on Particle Motion

The borehole distorts not only the magnitude of solid displacement on the borehole
wall but also its polarization, including the direction of particle motion and rectilinearity
(Peng et al., 1992; Esmersoy, 1984). We are interested in the deviation of particle motion
direction of the geophone measurement from that of the incident wave. The following
examples show, in a polar coordinate, the solid displacement vector on the borehole wall
for plane P wave and SV wave incidence. Calculations are made at (r = rp, 8 = 0°).

Plane P Wave Incidence

Figure 28 shows the solid displacement on the borehole wall for a plane P wave incidence.
The formation is Berea sandstone (hard); the casing is steel. Shown in these figures are
the displacement vector as a function of angle of incidence for frequencies at 100 Hz,
500 Hz, 1000 Hz and 2000 Hz. The dashed lines radiating from the origin are the
directions of the incident plane P wave. The angle of incidence is labeled along the
circle. Since the P wave is polarized along the direction of propagation, the dashed lines
also represent the polarization directions of the incident energy. The displacement vector
on the borehole wall, which is the output of 2 downhole geophone, is represented by a
solid arrow. Its length is the amplitude of the displacement vector, and its direction
is the particle motion direction. The deviation of the arrow from the corresponding
dashed line is the inclination deviation of 3-component measurements from that of the
incident wave at the presence of a cased borehole. Evidently, the borehole effect on
particle motion is minimal for a frequency below 1 kHz for the hard formation. At 2
kHz, noticeable inclination deviation can be found around 40° incidence. Also, in this
case, the amplitude of solid displacement is smaller than unity at grazing incidence,
while at normal incidence the measurement is less affected by the cased borehole.

For the soft formation (Pierre shale), as is shown in Figure 29, the effect of the cased
borehole on the downhole geophone measurement is more prominent except at a very
low frequency { ~ 100 Hz). For a frequency above 500 Hz, significant deviations of both
the amplitude and particle motion direction are obvious. The inclination deviation
can reach 25 round § = 45° incidence at 2 kHz. The measurement is significantly
smaller than the incident wave in amplitude especially at a grazing incidence and at
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high frequencies. Since the geophone is at & = 0°, i.e., the forward scattering direction
where the borehole scattered energy is out of phase with the incident wave, especially
at a high frequency, the behaviors shown in this figure are not unexpected at all.

Plane S Wave Incidence

Unlike a plane P wave, the S wave is polarized perpendicular to the incident ray di-
rection. For the sake of graphic presentation, we rotate the direction by 90° so that
it is in line with the direction of incidence. Figure 30 shows the solid displacement on
the borehole wall for a plane SV wave incidence at 100 Hz, 500 Hz, 1000 Hz and 2000
Hz. The formation is Berea sandstone (hard). In this case, the dashed lines are the ray
direction of the incident plane SV wave; the arrows are the displacement vectors at the
solid side of the borehole wall after a 90° rotation. It is easy to show that the deviation
of the arrow from the corresponding dashed line represents the inclination deviation
of measurement particle motion direction from that of incident wave. As is shown in
the figure, for the hard formation, the borehole effect on particle motion is small for a
frequency below 1 kHz. At 2 kHz, large inclination deviation by as much as 12° can be
found around 40° incidence. Different from the case of the P wave, at a high frequency,
the amplitude tends to be larger than unity at grazing incidence and smaller than unity
at normal incidence.

Figure 31 shows the solid displacement on the borehole wall for the soft formation
(Pierre shale) for a plane SV wave incidence. In this case, the amplitude of solid dis-
placement is significantly smaller than the incidence wave, even at a low frequency. This
is because the geophone is in the shadow zone of the fluid-filled borehole. Calculations
show that, if the geophone is at the backward scattering direction, i.e., § = 180° the
amplitude of solid displacement is much larger than that with € = 0° as it is in this
example. Nevertheless, the deviation of particle motion direction is prominent, reaching
70° for a frequency above 1 kHz except at the normal and the grazing incidences.

Effect of Geophone Orientation

Borehole coupling is nonsymmetric in nature. Measurements are dependent on the
position of a geophone around the borehole wall. This position is generally unknown.
The following examples are used to study the variations of solid displacement as the
geophone moves azimuthally around the borehole wall.
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Plane P Wave Incidence

Figure 32 shows the solid displacement on the borehole wall as a function of the az-
imuthal orientation of the geophone for the hard formation. The incident wave is a
plane P wave at a fixed angle of incidence § = 45°. The frequency of the incident wave
is chosen to be 1 kHz. Five plots are shown here: the middle one is a 3D presentation
of the borehole deformation when a plane P wave impinges on the cased borehole; the
one on the upper-left corner shows the magnitude of solid displacement as a function
of geophone orientation; the upper-right one is the polarization characteristics — recti-
linearity — as a function of the geophone orientation; the lower-left and lower-right ones
show the azimuthal and inclination deviations between the solid displacement and the
incident wave, respectively. Evidently, for the hard formation at 1 kHz, the geophone
measurement is almost identical to that of the incident wave. The azimuthal deviation
is negligible. The inclination deviation is less than 2°. The solid motion is dominantly
linear.

When it comes to the soft formation, the story is quite different. Figure 33 shows the
solid displacement on the borehole wall as a function of the geophone orientation for the
soft formation. Again, the incident wave is a plane P wave at a fixed angle of incidence
& = 45° In this case, obviously, the solid displacement vector deflects horizontally.
The deviation in inclination reaches 26° to 30° depending on the exact location of
the geophone. The polarization in the forward scattering direction becomes elliptic
with rectilinearity being 0.65 at # = 0°, while in the backward scattering direction,
the particle motion is linear. It is interesting to note that the azimuthal deviation is
negligibly small.

Plane 8 Wave Incidence

Figure 34 shows the solid displacement on the borehole wall as a function of the az-
imuthal orientation of the geophone for the hard formation at 1 kHz. The incident wave
is a plane SV wave at a fixed angle of incidence & = 45°. In this case, the solid motion
is linear and perpendicular to the direction of incidence. The maximum inclination
deviation is about 4° in the forward scattering direction. The borehole corruption to
the geophone measurement is minimal.

Figure 35 shows the solid displacement on the borehole wall for a plane SV incidence
at 1 kHz. The formation is Pierre shale (soft). As in the case of P incidence, the solid
motion is dominantly horizontal, and the inclination deviation reaches more than 32°.
Unlike the previous examples, in this case the azimuthal deviation is also significant
and is about 219 at § = 90° where the solid motion is no longer linear (see the drop
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in rectilinearity in the upper-right plot). The amplitude of solid displacement is much
smaller in the forward scattering direction than in the backward scattering direction.

Summary

The examples in this section show that: (1) the cased borehole effect on downhole geo-
phone measurements is minimal for frequency below 1 kHz for the hard formation and
500 Hz for the soft formation; (2) the fluid resonance in the borehole for the soft forma-
tion and the SV incidence also affects the solid displacement on the borehole wall; (3)
for the soft formation and at high frequencies, significant deviations of particle motion
direction exist for both the P wave and S wave incidences, the solid motion deflects to
the horizontal plane; (4) generally, the steel casing reduces the solid displacement on
the borehole wall, especially at a high frequency and in the soft formation.

A LABORATORY EXPERIMENT

To verify the phenomenon of fluid resonance in a cased borehole due to a plane SV
incidence, we carry out a laboratory experiment to measure the pressure in the fluid
due to a shear source in the formation. Figure 36 shows the laboratory setup. The
model is a glass tube buried in a dry soil. The inner diameter of the glass tube is 0.95
cm, the outer radius is 1.20 cm. The overall size of the model is 19.0 cm (diameter)
x 34.0 cm (height). The model is cut to form two steps in the upper-right corner. A
shear transducer (v152) is used as a source, which vibrates in the vertical direction.
Its operating frequency is between 50-100 kHz. The two steps are at 3.1 c¢cm and 4.9
cm offsets from the center of the borehole. We measured the compressional and shear
velocities in the soil. They are 180010 m/s and 11404 40m/s respectively. The shear
velocity is less accurate because of the size of the model and the interference of the P
wave. The Stoneley wave velocity is measured from the recorded logging seismograms
as is shown in Figure 37. This data is obtained with the source and the receiver inside
the borehole. The estimated Stoneley velocity is 1190 £ 20 m/s. We also measured the
attenuation of S waves in the soil by the method described by Tokstz and Johnston
(1979), and the result is 15.7 m~! at 100 kHz. Theoretically, using these parameters,
we predicted that the measured pressure in the fluid due to an S wave incidence has a
peak at

§=cos ! B/Cr ~16° £5°.

The goal of this experiment is to compare the theoretical prediction with experimental
results.
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Shown in Figures 38 and 39 are the measured pressures in the fluid for a shear
source at horizontal offset 4.9 cm and 3.1 ¢m, respectively. The center frequency is 50
kHz in the first measurement and 100 kHz in the second one. The traces are sampled
at 5 mm intervals. A total of 40 traces are shown in each plot. The P and S arrivals
are identified using their travel times and are marked on the seismograms. When the
source frequency is high (Figure 39), the casing P and S waves are excited and they
are clearly shown in the seismograms. However, at a low frequency (Figure 38), these
waves are hardly seen.

We are interested in the region where §, the incident angle with respect to the
borehole axis, is small (< 35°). We measure the amplitude of the shear wave directly
from the individual seismogram. The results are plotted in Figure 40 (solid circle, also
referred to as raw data in this figure) as a function of angle of incidence.

Since traces with smaller incidence angle travel longer distances, a geometrical cor-
rection (multiplying the source-receiver distance R} must be applied. Also attenuation
compensation for energy traveling in the soil must be applied by multiplying the raw
data by e7F where « is the attenuation coefficient. The most difficult correction is the
source radiation pattern. The shear transducer will radiate most shear energy in the
direction where § is large. Tang et al. (1992) studied the radiation of a shear transducer
at the surface of an elastic half space. Their results show that, at least, a sin § correction
should be applied to compensate loss of amplitude due to shear source radiation.

The attenuation, geometrical spreading and radiation correction by sin é are made to
the raw data with a reference at the trace having the shortest source-receiver distance.
The shear wave amplitude after these corrections is shown in Figure 40 with an open
circle. To the extreme, we also show the open triangles, which are the shear wave
amplitude after an additional sin § correction, since we believe a sine correction alone
may not be adequate at a regime where § is small. Nevertheless, in the experiment with
4.9¢em offset, a peak at 18° is evident; and in the experiment with 3.1cm offset, the peak
is at 12°. Within the accuracy of this experiment, these results are in fair agreement
with the theoretical prediction.

DISCUSSIONS AND CONCLUSIONS

In this paper, approximate and exact formulations have been presented for borehole
coupling in a cased borehole. The approximate solutions are simple, explicit, and ac-
curate at a low frequency. They tend to yield more physical insights into the coupling
of energy into the borehole fluid. The approximate solutions can be as well applied to
the study of cased borehole radiation by using the reciprocity principle. This statement

s
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is justified by a comparison with the generalized stationary phase approximation for a
volume source in the cased borehole (Gibson, 1993). Winbow (1991) gave an explicit
low frequency formulation for the cased borehole radiation problem, and it turns out
his formulation is erroneous except at the direction normal to the borehole axis.

On the other hand, the exact solution is valid for all frequency and azimuthally
symmetric and nonsymmetric components. It can handle many radial layers such as
casing and cements. It is useful to study numerically the dependence of downhole
seismic measurements on frequency, angle of incidence, polarization of incident wave,
and geophone orientation.

In summary, we found

¢ For the hard formation and plane P wave incidence, the cased borehole effect
on downhole geophone measurements is minimal for a frequency below 1 kHz.
Above 1 kHz, the radial component becomes larger in magnitude than. that of
the incident wave and the vertical component becomes smaller. The deviation of
particle motion direction can reach several degrees at 2 kHz.

e For the hard formation and plane SV wave incidence, the downhole geophone
measurements are almost not affected by the presence of a fluid-filled borehole for
a frequency below 1 kHz. Above 1 kHz, the radial component increases with the
increase of frequency and the vertical component is less dependent on frequency.
The particle motion direction may differ from that of the incident wave by as
much as 12° at 2 kHz.

» For the soft formation and plane P wave incidence, the cased borehole effect on
downhole geophone measurements is significant for a frequency above hundreds
of hertz ( < 500 Hz). The radial and vertical components are much smaller
than those of the incident wave at high frequencies. The inclination deviation
can reach 25° at around 45° incidence at 2 kIHz. The solid displacement vector
deflects horizontally. The measurements show strong dependence on the geophone
orientation. The polarization becomes elliptic in the forward scattering direction
and remains linear in the backward scattering direction.

o For the soft formation and plane SV wave incidence, the fluid resonance inside
the borehole at § = cos™! 3/Cr exerts strong influence on the solid displacement
at the borehole wall, even at very low frequencies. Away from the resonance
angle, the radial and vertical components of solid displacement decrease rapidly
with the increase of frequency. The deviation of particle motion direction from
that of the incident wave is large. It reaches 70° at 2 kHz. The solid motion
becomes dominantly horizontal at high frequency. The azimuthal dev1atlon is also
significant, reaching 21° at § = 90° at 1 kHz.
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e The pressure in the fluid shows two interesting behaviors, depending on the type
of the incident wave. For a plane SV incidence in the soft formation, a significant
fluid resonance occurs in the borehole where the pressure can be significantly large.
This phenomenon is prominent at all frequencies. For a plane P wave incidence at
a low frequency, the pressure in the fluid vanishes at a particular angle of incidence
if the casing thickness exceeds a critical value. This behavior prevails in both the
hard and soft formations.

o The fluid resonance due to an SV incidence in the soft formation is verified by the
laboratory experiment with the glass-soil borehole model.
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APPENDIX A
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where «, § and p are compressional velocxty, shear velocity and density in the each

layer respectively. ko = %’i, kﬁ = %, kp = Vka® —ks2%, ks = 1”"ﬁ2 — k.2 and kr =

%}% — k.2, k. is the vertical Wa.ve_number which should be preserved upon reflection

or refraction according to the Snell’s law, and k; = kqn4)cosd for a plane P wave
incidence and k, = kﬁN+1 cosé for a plane shear wave incidence. § is the incidence

angle with respect to the borehole axis (i.e., § = 90° corresponds to normal incidence
on the borehole).
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APPENDIX B

The displacement-stress vector W {r) due to the incident waves can be easily comput-
ed from the displacement potentials given in Schoenberg (1986). The n-th harmonic
component can be written as

(1) = [UB(r), UG, (r), UER(r), R (1), Ton(r), Zpa(r)]

for a plane P wave incidence, and
# (r) = [USY (), U (r) USY (), Rsva(r), Tsva(r), Zsva(r)]

for a plane SV wave incidence and

& () = [USH (1), U5E (r), LS (r), Rspra(r), Tssn(r), Zspnlr)]

for a plane SH wave incidence.
The coefficients are given below
P(r) = akpdy(kpr),  UE (1) = a%n‘]ﬂ(kpr), UP. (1) = aik, Jn(kyr)
USY (r) = —Bles Ty(Rsr), USY(r) = —BEEnTa(ker), USY (r) = Bikydn(ker)

USH(r) = ﬁ;:g—n.]n(ksr), U (r) = —Bkglnlker), U (r) =0
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APPENDIX C

In this appendix, we outline the methods we used in deriving the effective moduli &)
and E, of a cased borehole. First consider an empty cased borehole subject to a stress
state at infinity: or = ogg = 00 and oz, = 2voo. The radial displacement on the
borehole wall can be obtained by using the Airy function method (Love, 1927), yielding

2(1 —v?) oo
E Be i
LA (5 = 11 — 7)1 — 3%

u,./rb =

Next consider a stress state at infinity: o, = ogg = 0 and o,, = ¢o. In this case, the
radial displacement on the borehole wall is found to be

vos i Lo (B-DE-200-1)
E gl _)1-7)0-3) 2Pre(-1)0-)0-5%)

Up /Ty = —

Comparison with Eq. (17) leads to the expressions for Ey and E, given in the text.

£
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Casing # Rydrophone
Cement or fluid annulus

Foermation
Geophone

Incident plane wave

Figure 1: A fluid-filled borehole in a radially layered formation. An elastic wave impinges
on the cased and cemented borehole with an angle of incidence § (with respect to
the borehole axis). A hydrophone measures pressure at the center of the borehole.
A geophone measures the three component displacement at (r = ry, 8), where 7 is
the borehole radius. The direction with —90° < 8 < 907 is referred to as the forward
scattering direction and 90° < # < 270° the backward scattering direction.
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Figure 2: Pressure at the borehole fiuid for an incident plane P wave at a low frequency.
The approzimation is obtained by the leading order analysis. The ezact is from
numerical calculation by the global matrix method. The top one is for the hard
formation; the bottom one is for the soft formation. By comparison, one can see
that the leading order approximation is accurate only around normal incidence of
the plane P wave.
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Figure 3: Same as those in Figure 2 except, in this case, the incident wave is a plane
SV wave. The fluid resonance in the soft formation is evident.
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Radius(cm) VP{km/s} YS{km/s) RHO{(g/cm3)
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Figure 4: Effective moduli of a cased borehole as a function of casing thickness. The
formation is Berea sandstone {hard).
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Figure 5: Effective moduli of a cased borehole as a function of casing thickness. The
formation is Pierre shale (soft).
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Figure 6: Effective moduli of a cased borehole as a function of formation rigidity.
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Figure 7: Comparison between the exact solution and the quasi-static approximation.
The formation is Berea sandstone (hard). The incident wave is a plane P wave. The
exact solution is computed by the global matrix method at 1 Hz.
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Figure 8: Same as that in Figure 7 except the formation is Pierre shale (soft).
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Figure 9: Same as that in Figure 7 except the incident wave is a plane SV wave.
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Figure 10: Same as that in Figure 8 except the incident wave is a plane SV wave.
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Figure 12: Same as Figure 11 except for the dipole mode n = 1.
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13: Same as Figure 11 except for the soft formation.
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Figure 14: Same as Figure 13 except for the dipole mode n = 1.

P



Phase Velocity (km/s)

Cased Borehole Effect 189

Badins{cm) ¥ P(lon's} ¥3(ow's) A O(y/anl} Radine(cm) VF(ow's} V3{ow's} REO(g/om)
1018 150 0.0 L0 10.18 150 a0 Log
1209 &10 a5 1L® 1209 610 135 1%

izfidty 4208 26684 214 infielty 1074 0255 100

Stonaley wave dispersion (mode =C)

Btonsley wave dispersion {moda =0)

1.50 1.50
1.48 1.40
1.46 1.30
—
. Ll
L s 1.20
1.4z 1.50
b 3
8
1.40 t b 2 1.00
epan bdrshola ()
1.39 1= > r.50
Q
1.16 E 0.6
-y
1.34 Q.70
1.32 0.60
PP I S S N S S S S oo b o
0.00 0.20 Q.40 0.0 0.B0 1,00 1.20 1.40 1.60 .80 2.00 0.0 0.20 0.40 0.60 9,80 L.00 1.20 1.40 1.60 1.80 2.0
Frequency (kHz) Frequency (kHz)

Figure 15: Dispersion of the Stoneley wave in a cased or an open borehole. The left
panel is for the hard formation. The right panel is for the soft formation.
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Figure 16: Pressure in a cased borehole as a function of incidence angle. The formation
is Berea sandstone (hard). The incident wave is a plane P wave. Calculations are
made at frequencies 106 Hz, 500 Hz, 1000 Hz, and 2000 Hz.
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Figure 17: Same as Figure 16 except for the soft formation (Pierre shale}.
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Figure 18: Same as Figure 16 except for a plane SV wave incidence.
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Figure 19: Same as Figure 17 except for a plane SV wave incidence.
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Figure 20: Radial component of solid displacement on the borehole wall for an incident
plane P wave. The formation is Berea sandstone (hard). Calculations are made at
frequencies 100 Hz, 500 Hz, 1000 Hz, and 2000 Hz.
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Figure 21: Vertical component of solid displacement on the borehole wall for an incident

plane P wave. Others are the same as Figure 20.
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Figure 22: Radial component of solid displacement on the borehole wall for an incident
plane P wave. The formation is Pierre shale (soft).
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Figure 23: Vertical component of solid displacement on the borehole wall for an incident
plane P wave. The formation is Pierre shale (soft).
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Figure 24: Same as Figure 20 except for an incident plane SV wave.
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Figure 25: Same as Figure 21 except for an incident plane SV wave.
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Figure 26: Same as Figure 22 except for an incident plane SV wave.
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Figure 27: Same as Figure 23 except for an incident plane SV wave.
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Figure 28: Particle motion on the borehole wall as a function of angle of incidence for
an incident plane P wave. The formation is Berea sandstone (hard). Calculations
are made at frequencies 100 Hz, 500 Hz, 1000 Hz, and 2000 Hz. ¢
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Figure 29: Same as Figure 28 except for the soft formation (Pierre shale).
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Figure 30: Same as Figure 28 except for an incident plane SV wave.
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Figure 31: Same as Figure 30 except for the soft formation (Pierre shale).
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Figure 32: Solid displacement on the borehole wall as a function of the azimuthal

orientation of the geophone for an incident plane P wave. The formation is Berea
sandstone (hard). Calculation is made with 6 = 45° and frequency 1000 Hz.
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Figure 33: Same as Figure 32 except for the soft formation (Pierre shale).
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Figure 34: Same as Figure 32 except for an incident plane SV wave.
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Figure 35: Same as Figure 34 except for the soft formation (Pierre shale).
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Figure 36: A laboratory setup for measuring the pressure in the fluid borehole due to
s shear source in the formation. The glass pipe is buried in the soil and is dried for
years.
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Stoneley wave in a glass-cased soil model
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Figure 37: Stoneley waves in the glass-cased soil model.
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Source-borehole offset 4.9 cm
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Figure 38: Measured pressure in the borehole fluid with the source-borehole offset 4.9
cm. The source frequency is centered at 50 kHz. The P and S waves are marked on
the seismograms.
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Source-borehole offset 3.1 cm
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Figure 39: Measured pressure in the borehole fluid with the source-borehole offset 3.1
cm. The source frequency is centered at 100 kHz. The P and S waves, as well as
the casing P and S waves, are marked on the seismograms.
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—O0— after attenuation_geometry_sin correction
—&— raw data

—a— additional sin correction
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Figure 40: Shear wave amplitude versus the angle of incidence. The solid circle repre-
sents the raw data from the experiment. The open circle is that after attenuation,
geometrical spreading, and radiation pattern (siné) correction. The open triangle
is that after an additional sin § correction.
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