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ABSTRACT

The propagation of borehole Stoneley waves is strongly correlated with permeability
of the formation. Previous studies primarily focused on the situation where the per-
meability is homogeneously distributed in the formation. In many in-situ situations,
however, the permeability distribution of the formation is heterogeneous, due to effects
such as a damaged zone around the borehole, random variation of the formation perme-
ability, and layering, etc. This study investigates the effects of formation permeability
heterogeneity on Stoneley wave propagation. Using the theory of dynamic permeability
and a finite difference technique in cylindrical coordinates, dynamic pore fluid flow in
an arbitrarily heterogeneous porous medium surrounding the borehole is modeled. The
effects of the flow on the borehole Stoneley waves are calculated. The calculations were
performed on various types of permeability heterogeneities. For a formation having ran-
dom permeability variation with various heterogeneity scale lengths (smaller than the
scale of the borehole), the Stoneley wave attenuation and dispersion are only slightly
higher than those calculated with a constant permeability (mean value of the random
distributions). For a formation with permeability linearly increasing or decreasing away
from the borehole, the Stoneley wave behaviors are also similar to those calculated with
a constant permeability. Significant effects are found for a damaged zone case where the
zone has much higher permeability than the virgin formation. The attenuation exhibits
a peak and the Stoneley wave velocity is significantly decreased in the frequency range
from 0 to 3 kHz. These features, if measured from the data, can be used as a diagnostic
of the borehole condition.
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INTRODUCTION

Stoneley waves in porous boreholes are sensitive to formation permeability. Intensive
research has been carried out to study the effects of permeability on Stoneley waves
(Rosenbaum, 1974; Schmitt et al., 1988; Cheng et al., 1987;, Chang et al., 1988; Tang et
al., 1991a). In most of the previous studies, permeability distribution in the formation
was assumed homogeneous. In many situations, however, permeability changes in the
formation. For example, the damaged borehole wall due to drilling results in higher per-
meability of the immediate surrounding formation than the virgin formation. Schmitt
et al. (1988), have studied the effects of a damaged zone, where the permeability of the
damaged zone is moderately different from that of the virgin formation. Mud filtration
into the formation may also change the formation flow property along the radial direc-
tion. The random variation of the porous formation is also an example of heterogeneous
permeability. Because of the heterogeneous formation flow properties, the propagation
of borehole Stoneley waves will be modified compared to the homogeneous case. There-
fore, the study of Stoneley wave propagation in the presence of heterogeneous formation
permeability will help develop methods for characterizing these heterogeneities.

The effective technique to handle medium heterogeneities is the finite difference
method. However, the application of this technique with Biot poroelastic theory (Biot,
1956a,b) to model acoustic wave propagation in porous boreholes is still a topic of
research. The difficulty lies in the coupling of the pore fluid motion (i.e., the Biot
slow wave) with the motion of the elastic solid and the strong dispersive nature of
the slow wave. Recent study by Tang et al. (1991b) has shown that the interaction
of the borehole Stoneley wave with the porous formation can be decomposed into two
parts. One is the interaction with the motion of the formation elastic solid (equivalent
elastic formation) and the other is with the pore fluid flow. The advantage of this
decomposition is that, given the solution of the elastic problem, one can solve the pore
fluid flow problem for the heterogeneous porous formation independent of the elastic
problem. The combination of the two situations will give the solution for Stoneley wave
propagation in the formation with heterogeneous permeability.

The behavior of dynamic fluid flow in heterogeneous porous media has been modeled
by Zhao et al. (1992) for the Cartesian coordinates. Because of the dispersive nature of
the flow motion, an iterative finite difference technique was developed to compute the
flow field in the frequency domain. For the present borehole geometry, we need to solve
the dynamic fluid flow problem for the cylindrical coordinate system. The iterative
finite difference technique for the cylindrical system will be developed in this study.
With this technique, the borehole Stoneley wave propagation in the presence of various
formation permeability heterogeneities will be studied.
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THEORY OF STONELEY WAVE PROPAGATION IN
PERMEABLE BOREHOLES

For a Stoneley wave propagating in a permeable porous borehole, the interaction of the
Stoneley wave with the formation can be decomposed into two parts (Tang et al., 1991b).
The first is the interaction with an equivalent elastic formation, and the second is the
interaction with the dynamic fluid flow into the formation. Tang and Cheng (1993)
have shown that the Stoneley wave can be described by the following one-dimensional
wave equation:
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where
P = borehole pressure associated with Stoneley wave

= radial elastic displacement of borehole wall
R = borehole radius

~
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vy = acoustic speed of borehole fluid
ps = density of borehole fluid
w = angular frequency
¢ = formation porosity
Vs = average pore fluid flow velocity at borehole wall.

If the radial flow velocity Vy changes with azimuthal direction 8, V' is given by
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Eq. (1) shows that the Stoneley wave has a wavenumber given by
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This equation indicates that the Stoneley wave propagation in a porous borehole is
affected by formation elastic displacement U, and the pore fluid flow V. If the borehole
wall is impermeable, i.e., Vy = 0, then the Stoneley wavenumber becomes
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This wavenumber is the Stoneley wavenumber for the equivalent elastic formation. The
elastic properties of the formation are those of the fluid-saturated rocks (Tang et al.,
1991b). The objective of the present study is, given the solution of the elastic problem,
compute the formation flow ¥V due to heterogeneous permeability and study its effects
on the Stoneley wave propagation using the following equation

/g2 g 2P0V d
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That is, if we can compute the flow per unit pressure V /P into the formation of given
permeability distribution, then we can substitute the V;/P value and the given k. into
(5) to obtain the Stoneley wavenumber for the heterogeneous permeability formation.
From this wavenumber, the Stoneley wave attenuation (expressed as 1/@Q) and phase
velocity are computed using
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DYNAMIC FLUID FLOW IN CYLINDRICAL COORDINATES

The dynarmic fluid flow in heterogeneous permeability media is described by the following
equation (Zhao et al., 1992)

V- [ow, £)Vp] +iwp =0 , (M)
where p is dynamic pressure associated with pore fluid motion,
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(8)

is dynamic pore fluid diffusivity, Ky = fluid incompressibility, ¢ = porosity, 4 = fluid
viscosity, and £ is a correction for solid matrix compressibility (Norris, 1989). In this
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study, we neglect the effect of solid compressibility (i.e., £ = 0). This effect is minor
if the fluid is much more compressible than the rock. The fluid diffusivity a(w,Z) is
a function of both frequency and the spatial position Z. This happens if the dynamic
permeability (Johnson et al., 1987)

50(5:‘) (9)
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is a function of the spatial position when the static permeability xo(Z) varies with Z.
In Eq. (9), 7 is tortuosity of the porous medium, pp the pore fluid density.

For the borehole configuration, the cylindrical coordinates are most convenient to
use. In this study, we investigate a two-dimensional {2-D) case where the permeability
variation is in the radial (r) and azimuthal () directions, i.e.,

ko(Z) = Ko(r, 0} . (10)

In the cylindrical system, Eq. (7) becomes
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Due to the excitation of a propagating borehole Stoneley wave €*%? (as first order
perturbation, e**? can be replaced by e*¢*, see Tang et al., 1991b), the pore fluid
pressure can be written as

o(r, 8, z) = p(r, 9)6“‘"’ . (12)

By substituting Eq. (12) into Eq. (11), Eq. (11) becomes
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Eq.(13) is the 2-D partial differential equation of dynamic flow for the heterogeneous
permeability distribution xo(r,#). Because Eq. (13) is a Helmholtz type equation, an
iterative method (Zhao and Toks6z, 1992) based on the Alternating Direction Implicit
(ADI) finite difference algorithm (Ferziger, 1981) is used to solve the equation. The
boundary conditions for the problem are
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p(r,8)|,—g = P (pressure continuity) (14)
p(r,8)|r=cc =0 (radiation condition) - (15)

The detailed finite difference solution procedure of Eq. (13) is described in the Appendix.

From the finite difference solution, we can compute the pressure distribution p(r, §;w)
over the (r, ) grid. The fluid flow at the borehole wall is computed using the modified
Darcy’s law (Tang et al., 1991a)

— 1 2 (g(r,6;w) dp(r,6)

where dpg;: 9 is numerically evaluated from the calculated pressure field at the borehole

wall. Because V is proportional to the borehole pressure P, the ratio V/plrmg =
V¢/P is independent of the magnitude of P. Substituting Vy/P into Eq. (5), the
Stoneley wavenumber can be calculated. From the wavenumber, the Stoneley wave
attenuation and phase velocity can be calculated using Eq. (6).

NUMERICAL SIMULATION RESULTS

In this section, we present the finite difference simulation results for various permeability
distributions surrounding the borehole. For all the calculations below, we first calculate
the elastic problem using the saturated rock properties: v, = 4000 m/s, vs = 2300 m/s,
and p = 2.65 g/cm®. The Stoneley wavenumber k. for the equivalent elastic formation
is calculated using the borehole dispersion equation (Cheng and Tokstz, 1981). The
borehole fluid density and velocity are p; = 1 g/em® and vy = 1500 m/s, respectively.
The borehole radius is 0.1 m. For simplicity, we assume that elastic properties for
the various heterogeneous permeability distributions are the same, so that the same k.
is used for the following cases. In all the cases below, the pore fluid properties are:
Ky =225 GPa, pp = 1 g/cm®, u = 1.14 cp, porosity ¢ = 0.3, and tortuosity 7 = 3.

Homogeneous Permeability — A Test of the Numerical Algorithm

We first present the simulation result for a homogeneous permeability surrounding the
borehole. This example, together with the existing analytical solution, offers a test of
the validity and accuracy of the finite difference simulation algorithm.

o
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For homogeneous permeability, the solution to Eq. (13) becomes

Ko(ry/—% + k2)

: (17)
Ko(Ry/—% +k2)
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and the Stoneley wavenumber for the permeable formation is (Tang et al., 1991b)
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where o is given by Egs. (8) and (9), in which the static permeability %o is a constant.
In Egs. (17) and (18), K, (n = 0,1) is the second kind Modified Bessel function. The
Stoneley wave velocity and attenuation calculated using Eq. (6) agree with the results
calculated with the full Biot theory.very well (Tang et al., 1991b), although in this
much simplified theory, the coupling between the motion of the solid matrix and the
dynamic flow (i.e., the coupling between the fast (compressional and shear) waves and
the slow wave) is not fully considered. This tells us that if the dynamic fluid flow in
heterogeneous permeability porous media can be accurately modeled using the finite
difference technique, then the effects of the heterogeneous permeability on the Stoneley
wave propagation can be calculated using the simple formula given in Eq. (5).

Figure 1a shows the comparison between the Stoneley wave phase velocity (a) and at-
tenuation (b) calculated using the analytical solution (Eq. 18) and those using the finite
difference method. These results are calculated for the frequency range of 0 ~ 5 kHz,
in which most Stoneley wave measurements are made. The formation permeability is
1 Darcy. For simplicity, the effect due to solid matrix compressibility is neglected (i.e.,
¢ = 0 in Eq. 8) when calculating both the analytical and finite difference results. The
results for the two difference approaches are in excellent agreement. This comparison
demonstrates the validity and accuracy of the finite difference technique. In the case of a
heterogeneous permeability distribution where an analytical solution is difficult to find,
we can rely on the finite difference method to calculate the Stoneley wave propagation.

Random Permeability Distributions

In a geological porous medium, the permeability of the medium may fluctuate from
place to place. These fluctuations can be modeled by describing the medium as having
a random permeability distribution. Zhao et al. (1992} have modeled the dynamic pore
fluid flow in such a random medium. It is interesting to investigate how this random
variation of formation permeability affects the borehole Stoneley wave propagation and
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how the random permeability heterogeneities can best be characterized using Stoneley
wave measurements,

The method of generating 2-D random variations in Cartesian coordinates were
descibed in Zhao and Toksdz (1991). A 2-D random field is first generated by Gaussian
distribution. Then the 2-D field is convolved with a chosen correlation function of given
correlation length, yielding a random field with clustered structures. Figure 2 shows an
example of the random permeability distribution with a borehole of 0.2 m diameter at
the center. The distribution is generated with a Gaussian correlation function having a
correlation length of 0.08 m. The standard deviation of the random field is 38% of the
mean value {average of the random field). It can be seen that the permeability varies
significantly in the formation surrounding the borehole. It is interesting to see how this
permeability fluctuation affects the Stoneley wave propagation in the borehole and how
the results compare with those calculated with the constant permeability distribution.

For calculating the dynamic pore fluid flow in the cylindrical coordinates, the per-
meability distribution in Cartesian coordinates is mapped into c¢ylindrical coordinates
using

Ko(z,y) *= LTI o, 6) (19)

For the distribution xo(z,y) in the equally-spaced grids («, y), its mapping into the (r, )
coordinates is distributed over a (r,#) grid that is not equally-spaced. But the finite
difference grid requires the equally-spaced grid. This problem is solved by interpolating
the mapped values of kg(r, ) to the finite difference grids.

Figure 3 shows the finite difference simulation of pore fluid presure amplitude distri-
bution at 100 Hz for the permeability distribution in Figure 2. The correlation length
of this distribution is 0.08 m, and the mean permeability is 1 Darcy. For a constan-
t permeability distribution, the pressure contours should be circular in shape. The
non-circular shape of the pressure contours in Figure 3 demonstrates the effects of the
heterogeneous permeability. The Stoneley wave phase velocity and attenuation for the
heterogeneous permeability in Figure 2 are shown in Figure 4. For the fixed correlation
length and mean permeability, the calculation is performed for two fluctuation values,
one is 20% (dashed line 1}, the other is 38% (dashed line 2). The results are plotted
versus those calculated with a constant permeability that is equal to the mean value
of the random permeability distribution (solid line). To our suprise, both the Stoneley
phase velocity and attenuation for the random permeability are only slightly different
from those for the constant permeability case. The 20% curves are very close to the
constant permeability curve, while the 38% case shows more attenuation and dispersion
than the constant permeability case.

These results are not difficult to understand because the Stoneley wave tends to

e,
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average out the azimuthal permeability variation {see Eq. 16), such that the random
permeability medium behaves like a constant permeability medium. The important
implication of this is that, for Stoneley waves measured in formations with randomly
fluctuating permeability, the analytical result for the constant permeability medium
(Eq. 17) is a very good description, if we regard the constant permeability xp as the
mean permeability of the random medium. To account for the increased attenuation and
dispersion, we can interpret the medium as a homogeneous medium having a slightly
higher permeability than the mean permeability of the actual random medium.

Layered Model

‘We next discuss an interesting situation in which the permeability distribution has a
layered structure and the borehole axis is parallel to the layering. We will encounter
this situation in a horizontal well drilled through horizontal bedding layers.

We first study the case where the permeability varies smoothly across the layers.
We model this by generating the random permeability distributions using a flat-ellipse-
shaped Gaussian correlation function, in which the correlation length in the semi-major
direction is much greater than the correlation length along the semi-minor direction.
The procedure is described in detail in Zhao and Toks6z (1991). Figure 5 shows the
configuration of the borehole in the smoothly varying layered media (a). The correlation
length in the elongated direction is 0.23 m, where that in the direction normal to the
layering is 0.05 m. The standard deviation of permeability is 38%. The mean perme-
ability is 1 Darcy. The calculated Stoneley wave velocity and attenuation are shown in
Figure 6(a) and (b) (solid curves), respectively. The results calculated using the con-
stant permeability {1 Darcy) are also plotted. As for the isotropic random-permeability
distribution cases (Figure 4), the results for the layered permeability distribution are
not much different from those of the constant permeability.

Next we study the case in which the layers have strong permeability contrast, such
as the sand-shale sequences. We generate this model using a random repetition of layers
with low and high permeabilities (they are 0.01 and 2 Darcy, respectively). The thickness
of the layers obey a Poisson distribution (Kerner, 1992). The average thickness of the
layers is 0.1 m. Figure 7 shows the configuration of the borehole in the layered medium
with alternating permeabilities. The calculated Stoneley wave velocity and attenuation
are shown in Figure 8(a) and (b) (solid curves), respectively. The results for the average
permeability (1 Darcy) are also shown (dashed curves). Again, the layered model results
are very similar to the constant permeability results.

The simulation for the layered permeability models shows that the Stoneley wave
propagation is not sensitive to the anisotropy in the permeability distribution. This can
be expected since the Stoneley wave sums the effects of pore fluid flow at the borehole
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wall in all azimuthal directions (see Eq. 2). If the high and low permeability regions
alternate around the borehole wall, as is the case for the above two examples, then the
effects of the heterogeneous permeability formation affects the borehole Stoneley wave in
much the same way as does a homogeneous formation having the average permeability
of the heterogeneous formation.

Mud Filtration Model

In a mud-filled borehole, the filtration (or invasion) of mud into the porous formation
may result in the replacement or mixing of mud with formation saturant fluid, resulting
in the change of fluid flow properties in the radial direction. For example, if the viscosity
of mud is different from that of the virgin saturant fluid, the fluid mobility (expressed
as ko/ it} may decrease or increase away from the borehole, assuming that u equals mud
viscosity at the borehole wall and formation saturant fiuid viscosity far from borehole.
Alternatively, this change of fluid mobility may also be modeled as a change of the
permeability, if we fix viscosity 4 as a constant and vary permeability. Therefore, we
can model the mud filtration effects using the variable permeability model.

We consider two simple cases. One is that the permeability linearly increases from
0.1 Darcy at the borehole wall to a value of 1 Darcy at R = 1m (viscosity decreases in
the radial direction). The other case is that the permeability linearly decreases from a
value of 1 Darcy at the borehole wall (Rg = 0.1m) to 0.1 Darcy at R = 1m (viscosity
increases). Figure 9 shows the modeled Stoneley wave dispersion (a) and attenuation (b)
as a function of frequency. For comparison, the results for constant permeabilities 0.1
and 1 Darcy are also plotted. In general, the behaviors of the velocity and attenuation for
the linear permeability model are similar to that of the constant permeability case, the
dispersion and attenuation all increasing with decreasing frequency. Because the depth
of penetration of fluid flow is very small, the attenuation and dispersion of the variable
permeability model are very close to those calculated with the constant permeability
having a value equal to that of the borehole wall. For the increasing permeability
(0.1 — 1) model, the results are almost the same as those calculated with the constant
permeability of 0.1 Darcy. For the decreasing permeability (1 — 0.1) model, the results
only slightly differ from the constant permeability (1 Darcy) model at higher frequencies.
These results suggest that for permeability decreasing or increasing smoothly from the
borehole, the Stoneley wave is mainly sensitive to the permeability of the immediate
surrounding borehole.

Damaged Zone Model

During the drilling of a borehole, the drilling process can change the physical properties
of the formation close to the borehole wall. For example, due to the drilling damage,
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vertical micro fractures and fissures may exist at the borehole wall, resulting in the
immediate surrounding formation having much higher permeability than the virgin for-
mation. An example is illustrated in Figure 10. As will be shown below, this high
permeability contrast produces significant effects on the Stoneley wave propagation.

The first example considered is a case in which the permeability decreases away from
the borehole wall. The damaged zone is modeled as a porous layer of 5 cm thick. The
zone and the formation are assumed to have the same porosity and are water saturated.
The permeability for the layer and the formation are 1.0 and 0.3 Darcy, respective-
ly. Figure 11 shows the calculated dispersion and attenuation curves, in comparison
with the results calculated for the constant permeability of 1.0 and 0.3 Darcy. At low
frequencies, the velocity and attenuation are sensitive to the virgin formation perme-
ability. Particularly for the attenuation, the attenuation value tends to approach that
calculated for the virgin permeability at very low frequencies. As frequency increases,
the results approach those for the damaged zone, becoming representative of the inner
layer properties. These resuits are similar to those obtained by Schmitt et al. (1988)
using the full Biot theory. For the case of moderate permeability contrast, the behavior
of Stoneley wave propagation is not significantly different from Stoneley wave behavior
in a formation of constant permeability, except at very low frequencies.

The next example corresponds to a strong permeability contrast case in which the
inner layer permeability is very high {10 Darcy). This high permeability could result
from vertical micro fractures surrounding the borehole wall, when the wall is intensely
damaged. The zone thickness is assumed to be 0.11 m. The results are calculated with
virgin formation permeability equal to 1 and 0.1 Darcy, respectively. Figure 12 shows
the dispersion (a) and attenuation (b) curves for the first case (virgin permeability =
1 Darcy). For comparison, the results for the constant permeabilities (1 and 10 Darcy,
respectively) are also plotted. Figure 13 shows the results for the second case (virgin
permeability = 0.1 Darcy). The results for the two very different virgin permeability
cases have similar behavior. At very low frequencies, the Stoneley wave attenuation is
very close to those due to the virgin formation. As frequency increases, the attenuation
significantly increases, and then decreases to approach the attenuation due to the inner
layer, showing a well defined peak in the frequency range between 0 ~ 3 kHz. More
interesting, in the 1 ~ 2 kHz frequency range the Stoneley velocity does not increase
with frequency as fast as homogeneous permeability results do. As a result, the Stoneley
velocity in this frequency range exhibits a very significant velocity decrease (around
1 kHz, this dispersion is about 20%, relative to the nonpermeable case). As frequency
further increases, the velocity crosses the elastic formation velocity curves, and then
approaches the velocity calculated with the inner layer permeability (the attenuation
also shows the same trend), indicating the inner layer properties control the Stoneley
wave propagation at high frequencies.

To further demonstrate the relative importance of the inner layer and virgin forma-
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tion properties, we plot the dynamic pressure field as the function of radial distance for
two extreme frequencies, 100 Hz and 5 kHz. Figure 14 shows the real and imaginary
parts of the complex pressure fields for the 100 Hz (&) and 5 kHz (b) cases. For the
very low frequencies, the dynamic fluid flow pressure can penetrate the inner layer to
the depth of about 0.7 m into the formation. This explains why the results at very low
frequencies are sensitive to the virgin formation. At high frequencies, the dynamic flow
is effective only close to the borehole wall. This shows that the Stoneley wave propaga-
tion will primarily be controlled by the inner layer properties at high frequencies. The
significant Stoneley wave velocity dispersion (velocity decrease or travel time delay) and
attenuation peak in the frequency range of common Stoneley wave measurements can
be easily measured. Therefore, the dispersion and attenuation characteristics can be
used as a diagnostic of near borehole wall damage or fractures.

CONCLUSIONS

For the first time, the effects of various types of heterogeneous formation permeability
on the borehole Stoneley waves have been investigated. The approach was based on
an iterative finite difference technique developed for cylindrical coordinates. Because
the dynamic fluid flow effects are most effective in the region around the borehole,
the Stoneley wave samples the effective (or average) permeability of the immediate
surrounding formation (see our modeling of random permeability formation). Because
the Stoneley wave sums the effects of pore fluid flow in all azimuthal directions, the
Stoneley wave is not sensitive to the permeability anisotropy (or azimuthal variation
of pore fluid flow in the formation). This has been evidenced by our modeling of
Stoneley wave propagation in layered porous media. In most cases, the behavior of
Stoneley waves in a variable permeability formation is very similar to the behavior in
a homogeneous permeability formation. This demonstrates that the analytical solution
for the homogeneous permeability formation (Eq. 18) provides a very useful method for
calculating the effective permeability of the heterogeneous formation surrounding the
borehole, although the calculated permeability may be (slightly or moderately) higher
than the average permeability of the formation depending on the degree of variation of
the heterogeneity (see Figure 4).

The most likely case in which the formation permeability heterogeneities will have
significant effects on the Stoneley wave propagation is the damaged zone case where
the damaged borehole has much higher permeability than the virgin formation, due to
fissures or micro-fractures existing at the borehole wall. As predicted by our modeling,
this damaged, highly permeable wall can be detected by the significant delay in Stoneley
wave arrival (up to 20% relative to the non-permeable formation) and attenuation peak
in the frequency range of common Stoneley wave measurements.

o
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APPENDIX

Iterative Finite Difference Solution of Dynamic Flow in Cylindrical
Coordinates

In this appendix, we describe the finite difference solution of dynamic fluid flow in
a heterogeneous permeability medium in the cylindrical coordinate system. This flow
is described by Eq. (13). In the cylindrical coordinates, the flow occurs in the region

Ry< r <R
0< 8 <2n ,

where Rjp is the borehole radius and R is the outer radius of the region at which the
flow effectively vanishes because of the radiation condition. It is convenient to non-
dimensionalize the governing equation (Eq. 13). We use the dimensionless variables
7 (0 < <1)and & (0 < § < 1) and the transformation

r = Rp+ (R — Ro)r'
{ 8 =278 (A-1)
The spatially varying dynamic fluid diffusivity a(r, 8;w) may also be non-dimensionalized
using ( )
a&(r, 0, w) Ky R
= = =y - (T, W) A2
where K
Kmaz il f
a . A3
T T e (A.2)
and
an’ o 7(?": 9) (A.4)

; w 2

where Kmaz is the maximum permeability in the model, y(r, 8) = %@ﬁ is the dimen-
marT

sionless permeability distribution. o/(r, #;w) is now the dimensionless diffusivity that is
a function of both frequency and spatial position. The non-dimensionalized governing
equation becomes

, Op R — Ry ,6p (R — Ro)? o op
or’ ( 87"’)+Ro TR - Ry or' * 4x°[Bo + (R — Fo)r']? 0 ( 69!)”15““ k=0,
(A.5)
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where 8 = %(R — Rp)? is the dimensionless frequency.

Using the following notations, Eq. (A.5) can be written as
A1p + Azp + A3p + A4p =0 (Aﬁ)
where the operators 4; (i =1, 2, 3, 4) are

(, 8 /(.,08
AI_W(GW)

_ R"“‘RO ,3
R R P § gy T (A7)

= (R — Ro)® 9 o
As = 47%[Ro + (R — Ro)r'|2 06 (a!'a_a’)
\ A4 = 2,6 - Cl/kg

Because the straightforward center difference solution of Eq. (A.6) is unstable {Zhao et
al., 1992), we instead solve Eq. (A.6) using an iterative finite difference technique (Zhao
et al., 1992). We find the solution for the following equation

op

A1P+A2P+A3P+A4P='ét—, )

(A.8)

where ¥ is a dimensionless time. The solution of Eq. (A.8) can be computed iteratively
with increasing ¢’ to approach the steady state, at which the solution of Eq. (A.8) will
be the solution of (A.6) (Zhao et al., 1992). Eq. (A.8) can be solved using the ADI (Al-
ternating Direction Implicit) method which is unconditionally stable for Eq. (A.8) type
equations (Ferziger, 1981; Zhao et al., 1992). Using the ADI finite difference method,
we discretize the dimensionless variables 7, # and t’ using

v =iAr" i=0,1,2,---,1 Ar=1/1
¢ =il §=0,1,2,---,0 A& =1/ (A.9)
t =nAf n=0,1,2,---,N.

For practical purposes At' can be chosen to be Ar'/2. To use the ADI method, we
rewrite Eq. (A.8) as
7
Asp+ Agp = 2 (A.10)
where

Asp = A1p + Aop + Asp. (A.11)

Eq. (A.10) can be solved using the Peaceman-Rachford algorithm (Ferziger, 1981).
This algorithm consists of splitting Eq. (A.10) into two separate equations by using an
intermediate function p™+1/2:

o,
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(I - ATtIASh) pn+1/2 = (I + ATt,Ash) pﬂ' (A12)
/
(I - ATtAsh) = (I+ %—tiASh) 2, (A.13)

where I is unit matrix; Asp and Asp are finite difference operators, which, when operated
on p, can be written as:

1
Asnp = v [(Bi,j = Dy )pi-1,5 ~ (B ;i + Bitl,j D( )
_ %% — Ai,jkez)(R - Ro)zA’r’z) Pij+ B,-+1,jp;+1jj] (A.14)

1
Aspp = D(2)A—2'[Ct,_7pz.1— —(Cij + Cij—1)pi,; + Cij1bij+1]

where
([ Aij = oy
B;; = 4 ‘+2Ai_l .
C:s = —M + Ai =1
< 1,7 2 ’ (A"]'s)
i [Ro + (B — Jf?o)('r,J +?‘,_ 1,11/2]
L) 47*[Ro + (R Royr ;1*

Therefore, the finite difference form of Eq. (A.10) is

—m(Bi; = DA + [1+ pa(Big + Bisas — DY
1/2
—(i ~ A k) Ar(R — Ro)®)| o7 ? — By ,Jp:iqlﬁ? (A.16)

= #2D( )Pu 1+ [1 —(Cij + G ,J+1)JU'2D§,_7‘)] Pl + oD i,j 2 Cii 4107541

—p2D (2)01,31’?;_11 + [1 + #2D§,2j)(c',j + G',J‘+1)] p?;H #2D(2)Ci 3+lpfj_-|§1
= m(Bs; — Dl + [1 — (Bu + Biyr; — D) (A.17)
(12 — AuskD(R — Ro*Ar?) ] i 4y By o2
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The ADI method introduces an intermediate function p"+3 between p™ and p™+l.
The advantage of the using p""'% can be seen from Eqgs. (A.16) and (A.17). The solution
procedure begins at ¢ = 0, at which the initial condition p™=0 is given. Because we
are only interested in the steady state solution, the initial condition can be arbitrarily
chosen, e.g., p°(',8') = 1. Suppose that the procedure iterates from ¢ = 0 to ' = nAt'
to produce the solution p* for all ¥ = iAr' and & = jA#. At this stage, all the
terms on the right-hand side of Eq. (A.16) are known. Eqg. (A.16) now becomes an
one-dimensional (1-D) difference equation for p"‘*‘?li in the 7' direction, which can be
solved to find ;o"+% with the given boundary condition at ' = 0 and 7 = 1. Once p"'*“%
is found, the terms on the right-hand side of Eq. (A.17) are known, and Eq. (A.17) is
now another 1-D difference equation for p™*! in the ¢ direction, and can be solved with
the given boundary condition at ' = 0 and &' = 1.

‘We now describe the solution procedure that incorporates the boundary conditions.
The continuity boundary condition at the borehole wall and the radiation condition at
R (>> Ryp) are given by

p(0,j)=F and p(I,j)=0. (A.18)
Eq. (A.16) can be simplified into

PP 4 bipP TR 4 ep MR = v §=1,2, I —1, (A.19)

where rf* is the right-hand side terms of Eq. (A.16) and a;, b;, and ¢; are the coefficients

of p?fﬁ?, pzj’l/ %, and p?i'll,ég in the left-hand side of the equation. Eq. (A.19) is a

tridiagonal system, which, together with appropriate boundary conditions of pnt1/2,
can be solved using the Thomas algorithm (Ferziger, 1981).

To get the boundary conditions for p™t1/2, we start from Eqgs. (A.12) and (A.13).
From Eq. (A.12), we have

! !
'%E'Ashpﬂ+l/2 = /2 (I 1 %‘A:Sh) pn . (A.QO)
Substituting Eq. (A.20) into (A.13), we get

n At/ At/
P +1/2 = (I - —Ash) T (I + TAah) P (A21)

Subsituting Eq. (A.14) into (A.21) results in

o
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2 2 71
pﬁ}q/ ’= {—usz,j) Cigptfl + [1 + #2175,21) (Cij+ C,-,,—H)] Pt - M2D£,j) Ci i th

2 2
+#2D§,j)P2j-1 + {1 - #2D§,j)(ci,j + Ci,jﬂ)] i+ #2D§3)Ci,j+1pzj+1} /2.
(A.22)
Ati=0and i=I, p§;, p}; p5t, and p7+! are all given by the boundary conditions
(Eq. (A.18)). Therefore pgj-l/ % and p}‘,}_l/ ? can be obtained as
n+1/2

Pog " =bo (A.23)

{ TR = gy

where By and By are the values of the right-hand side of Eq. (A.22) evaluated at i =0
and i = I, respectively. Now the problem is to solve Eq. (A.18) for boundary conditions
{(A.23).

By using Gaussian elimination, we want to replace Eq. (A.19) by a relationship of
the form

+1/2 1/2 .
Pi; /2 = si+1p?$,§ +¢+1 i=12---,1 -1, (A.24)
where 8;4+1 and ¢i+1 are to be determined.

Substituting Eq. {A.24) into (A.19) for p?_"'ll,éz, we have

ai(s:p7 Y% + ) + bipP TP 4 e = (A.25)
IJ ,J
or
ntl/2 _ _ G n+1/2 | T Qi A26
Pij aisi + b; Pit1,j ais: +bi (A.26)

. Comparing (A.26) with (A.24), we must have

S‘+1 == —_a

! aisi+ b; (A.27)
Gir1 = Ti — Qi

T g 1 b
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for consistency of the formulas. Thus if we know s; and ¢1, then we can calculate s;
and g; for ¢ greater than 1. The values of s; and ¢; are obtained from the boundary
conditions (Eq. A.23). At i = 0, we have

nglfg = Slpzjlfz +q1=fo. (A.28)

These conditions are consistent if s; = 0 and q; = f. Then 3; and ¢; can be computed

using Eq. (A.27). To get the value of p; ;-H/ ?, we use (A.24) starting with p}:',.'l/ 2 = 3
Eq.(A.23).

To solve Eq. (A.17) for p™*t! using the obtained p™*+1/2, the boundary conditions at
& =0 and #' = 1 are needed, which are periodic conditions in our cylindrical geometry.
That is

Pi0 = Pi,J . (A.29)

Again, Eq. (A.17) can be written as

apP i + oot ke = §=1,2,--,J. (A.30)

The boundary conditions are

by a1 (A.31)

nt+l _ _n4l
Pip =DPig
Pigr1 = Fi1

This periodic system can be solved by solving three systems as for the non-periodic
case,eachfori=1,2,---, J:

;%51 + b;T5 + 5T =15
Lg = 0 (A.32)
i1 =0

a;¥i—1 + 0¥ + ¢i¥yi41 =0
Yo =1 (A.33)

Yyip1 =10

and

e

s
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a;jzj—1 + bjz; -+ cjziq1 =0
z=0 (A.34)
zjp1=1.

Systems (A.32), (A.33), and (A.34) can be solved using the approach we have described

earlier while solving for p»*+%/2 (Eqs. A.24 through A.28). The solution to the periodic
system can be constructed as

'p:jl =x; + gy; + hz; . (A.35)

We choose g and h to guarantee the periodicity. For p}f{," 1= p}’:’}l, we have

To+gyo+hzo =g=2x5+gys+ hzs. (A.36)

n+l _ . ntl
For Pirv1 =Di1 » We have

Tip+ gy +hzypa =h=x 4+ gy1 + hzy . (A.37)

These are two equations with two unknowns g and h. The solution is

_zy(l—2)+ 2127
9= D
(A.38)

b Btz (1 —yg)
D
where D = {1 —y75)(1 — z1) —y127.
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(a) Stoneley velocity, (b) Stoneley attenuation.

s



Stoneley Wave in Heterogeneous Formations

0.060 2.000

Figure 2: Random permeability variation around the borehole.
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variation. For comparison, the results for the constant permeability are also plotted.
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Figure 6: Stoneley wave velocity (a) and attenuation (b) due to the lineated permeability
variation of Figure 6 (solid curves). The results for the constant permeability are
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Figure 7: Laminated high- and low-permeability layers around the borehole.
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Figure 11: Stoneley wave velocity (a) and attenuation (b) for the damaged zone model.
The inner layer permeability is 1 Darcy and the virgin formation is 0.3 Darcy.
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Figure 12: Stoneley wave velocity (a) and attenuation (b) for the damaged zone model.
The inner layer permeability is 10 Darcy and the virgin formation permeability is

1 Darcy.
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Figure 13: Stoneley wave velocity (a) and attenuation (b) for the damaged zone model.
The zone permeability is 10 Darcy and the virgin formation permeability is 0.1 Darcy.
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Figure 14: Amplitude of formation dynamic pore fluid pressure for the damaged zone

borehole model as a function of radial distance.

frequency = 5 kHaz.
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