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ABSTRACT

An approximate theory for the scattering of an incident plane P wave into tube waves
in a fluid-filled borehole drilled through two homogeneous half-spaces is proposed in
this paper. This theory is in excellent agreement with the zero frequency formulation
(White, 1983) for frequencies below hundreds of Hertz (in the range of conventional
crosshole or VSP experiments) and finite difference simulation at high frequencies. At
low frequency the excited tube wave is found to be independent of the borehole radius
and shows stronger sensitivity to the formation shear velocity contrast across the layer
boundary. The sensitivity towards the compressional velocity perturbation is opposite
to that of the shear wave and density such that little tube wave can be generated if the
compressional and shear velocities are both increased or decreased accordingly. Unlike
the tube wave excited in the borehole when an incident plane wave hits a fracture,
the reflected and transmitted tube waves generated at a layer boundary show opposite
polarities.

INTRODUCTION

The problem of a plane wave incident at a fluid-filled borehole has been studied by
White (1953) and Schoenberg (1986). White considered only the zero frequency limit.
Schoenberg formulated the problem using exact theory, but invoked the low frequency
approximation for numerical evaluations. Neither of these studies showed that a tube
wave would be generated inside the borehole.

There is a physical explanation for the absence of tube waves in a homogeneous
formation at long wavelengths. The tube wave would be generated if the pressure
increments inside the borehole added constructively along the borehole axis. This does
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not happen since the tube wave phase velocity is lower than the apparent vertical velocity
of the incident wave. In cross-hole field experiments, one generally observes tube waves
being generated in the receiver borehole. This commonly happens when the incident
body waves hit a “borehole washout.” It also happens at some formation boundaries.

In this paper we investigate the case of a plane P wave incident at a borehole
drilled through two homogeneous half-spaces. The borehole axis is perpendicular to
the interface between the two formations. We investigate how the formation properties,
angle of incidence and frequency affect tube wave generation.

THEORETICAL FORMULATION

The model we consider is a borehole perpendicular to the interface between two homoge-
neous half-spaces. The incident wave is a plane P wave. To deal with the discontinuity,
we use sources along the interface and inside the borehole to satisfy the boundary con-
ditions.

We formulate the problem for each half-space (referred to as medium #1 and medium
##2) separately, for using the low frequency approximation. The models of White (1953)
and Schoenberg (1986) are illustrated schematically in Figure 1. For White’s approach,
the deformation of the borehole can be calculated by Timoshenko’s theory (Timoshenko
and Goodier, 1951) in static elasticity. The pressure set up across a differential distance
dz along the borehole with medium #1 can be expressed as

dPr=p fC{wS(w)[AfDl eiferi? o AIPLPT e~ thep1 Af;iST g~ thn12) gy, (1)
assuming a P-wave incidenvr from medium #1, where A’Pl represents the contribution
from the incident P wave; AIPLPT represents the contribution from the reflected P wave,

and Afplsf is the reflected S wave; gy is the fluid density, CF is the zero-frequency tube

wave velocity in a borehole with medium #1, and S(w) is the amplitude of incident P
wave at frequency w. Details of derivation can be found in the appendix A.

For the same reason, in the portion of the borehole with medium #2, the pressure
set up by the transmitted P and S wave is

dPy = p;CfwS (W)[A%lpl gif=r2Z 4 AL%S£ ek=a2%)dz, (2)

The total pressure at any point of the borehole will be the intergation of all the
infinitesimal pressures along the borehole with appropriate phase delay. For a point in
the borehole in medium #1, the pressure is

P(H < 0,w) = pr%wS(w)[Bfgl ghepifl va_,lp

ik H 7 —ik.1 H
e iKzpl B e zsl
1 +Eps; ]
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+ pfc§w5(w)Bli(A§Dl Af;lPT Apg,) et

CHwS(w)Bia(AY —tkal 3
+  prCrwS(w)Bia( PP, Pi l)e (3)
For a point in the borehole in medium #2, the pressure is

P(H > 0, 0)) = pfcng(w) [Bglpl eikzp2H + B%lsl eik;,zH]

pfc.}ws(w)Bm(Aj,l Af;,lPT Af”ﬁST) gtk

+
+ pfc mS(w)J_fsgz(,cxplpl Apl l)e"w’f (4)

where kg = w/ CT and ke = w/CH. It is worthwhile to note that when the layer does
not exist, all the coefficients are zero except B} i) and B PPy

Application of the Negative Dislocation Theory

When the borehole goes through two media, there are different coupling effects between
the incoming wave and the borehole in the upper and lower media. To deal with the
discontinuity, a negative dislocation source can be added at the boundary to compensate
for the discontinuity. Then the problem can be divided into three parts, as shown in
Figure 1: two half-spaces, two boreholes one in each half-space, and sources along the
interface and the borehole generating the tube waves. For the generation of the tube
wave inside the borehole, the sources accounting for the discontinuity in the formation
contribute significantly less than that inside the fluid. This is because the amplitude of
the eigenfunction of tube wave displacement inside the borehole is significantly larger
than that outside (Cheng and Tokséz, 1984).

The displacement and stress discontinuity at z = 0 (layer boundary) inside the
borehole can be written as

ul(r)] = —Qyf “io iMUL (r)] cosn

n=—00
=00
[ué(r)] =05 . z'“[Uén(r)] sinng
=00
n=co
[wl(r)} = —ay Z UL (7)) cosnd
n=—oco0
n=co
oL = —psas 3 i"[Rm(r)]cosnd
n=—o¢
where [U,;fn(r)],[U'gfn(r)], [U.(r)] and [Rsa(r)] are related to the reflection and transmis-
sion coefficients and formation as well as incident wave properties.



Peng and Toks6z 340
By employing the elastic representation theory (Aki and Richards, 1980) in the

frequency domain, we can derive the contribution of the secondary sources at position
Z as (Figure 2)

un(@) = = [ [ (Gon(EDLEN — ool @)+ (D] + bl ) T2 € D)as @)

(5)
The free-space Green’s tensor in the fluid can be written as
G(7,7) = — Vgp(2,5 )V
Ind, = 47Tpf&}2—gp ) N
where
el /it I) "
gp(®,%) = —— =5 / [imHy ' (k)] e*dk,.

Integration in (5) can be evaluated exactly and the displacement due to the sec-
ondary source is equivalent to that generated by a source with potential

$s(r,0,2) = j—;/;o:o e*=2dk, Z Emi™ [ ®E, () cos mb + BZ, (r) sinmb). (6)

m=0

Again, ®F, and @7, are related to the transmission and reflection coefficients and the
formation as well as incident wave properties. Details are given in the appendix B.

Given the source potential, the classical solution (Cheng and Toksoz, 1981) can be
applied to compute the borehole excitation.

Sensitivity of the Tube Wave to the Formation Parameter

The reflection and transmission coefficient for the plane wave incident upon the layer

boundary can be expanded in terms of formation properties contrasts épﬂ, éﬁ@ and %
to the first order (Richards and Frasier, 1976; Chapman, 1976)}. For the case of P-wave
incidence, the ratio of the amplitude of pressure of the reflected tube wave to that of

the incident P wave can be written as

Pg,}be Ap AB Ag
= Rp— + Rg— + Rg,— 7
Pine Fg T Q

where Rp, Rﬁ and Rq are the sensitivity functions of the reflected tube wave to the
density, shear, and compressional velocity contrasts, respectively. Details are given in
the appendix C.
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As a function of the incident angle, we plot these sensitivity functions for the case
a = 5970m/s, B = 2880 rn/s and p = 2656 Kg/m?® (Solenhofen Limestone) as shown
in Figure 3. We see that the reflected tube wave is more sensitive to the shear velocity
contrast across the layer boundary than those of density and compressional velocities.
In addition, Re shows a negative sign to Rﬁ and Rp for this particular choice of
parameters.

NUMERICAL EXAMPLES

The first example shows that the zero frequency approximation and the negative dis-
location theory agree when the frequency is low. In this caleulation, a; = 5970 m/s,
B1 = 2880m/s, p; = 2656 K g/m? and ap = 4206m/s, By = 2664m/s, py = 2140K g/m?3,
which mimics the (Solenhofen) limestone formation embedded above the (Berea) sand-
stone. The borehole fluid is water and the radius is 10 em. The frequency of the incident
P wave is 100 Hz and the incident angle is 25°. The offset of the receiver is 100 m from
the layer boundary and the time window is 250 ms. Figure 4 shows that excellent
agreement can be found, especially when they are plotted on top of each other (Figure
5). The small artifact in the negative dislocation approach comes from the imaginary
source of the Discrete Wavenumber Method. It is interesting to note that the reflected
and transmitted tube waves generated at a layer boundary show opposite polarities,
which is different from those generated from a fracture.

If the source frequency is increased to 1000 Hz and other parameters are kept the
same, a discrepancy can be observed from these two approaches, as shown in Figure 6.
In this case the zero frequency approximation is inaccurate.

In the third example (Figure 7), we assign the same density and compressional
velocity to medium #1 and medium #2 and vary the shear velocity of medium #2. In
this calculation, all other parameters remain the same as in the first example, except
ag = 5970 m/s, B = 4320 m/s, and p, = 2656 Kg/m3 (i.e., 50% perturbation in shear
velocity). The large amplitude-reflected tube wave is generated from the layer boundary.
Irom the sensitivity analysis we might expect an even larger amplitude tube wave (0.8
times the incident wave), but we should remember that the sensitivity analysis is based
on the first-order approximation.

The fourth example (Figure 8) is the same as the third example, except ap =
8055m/s, B, = 2880m/s, and p, = 2656 Kg/m?® (i.e., 50% perturbation in compressional
velocity). In this case, the reflected tube wave has an opposite polarity compared to
the third example. Also, the reflected tube wave is nearly half the amplitude of that in
Figure 7.

In the fifth example (Figure 9), oz = 5970m/s, B, = 2880m/s, and p, = 3984 K g/m?
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(i.e., 50% perturbation in density}. The reflected tube wave is slightly less than that in
the fourth example and has the same polarity as the third example.

In the sixth example (Figure 10), as = 8955 m/s, B, = 3600 m/s, and p, =
2656 Kg/m3 (i.e., 50% perturbation in compressional velocity and 25% in shear veloc-
ity). In this case, we should expect little reflected tube wave because of the cancellation
of the tube wave contributed by shear velocity perturbation with that by compressional
velocity perturbation. This is indeed true.

COMPARISON WITH FINITE DIFFERENCE

Using the Finite difference method, it is feasible to model wave propagation in cylindrical
coordinate with azimuthal symmetry. A finite difference scheme based on a velocity-
stress formulation is developed by Cheng et al. (this issue) to study energy radiation
into the formation from a fluid-filled borehole. It can also be used to study borehole
interaction with the formation for a ring source inside the solid. In Appendix D, we
have proved that up to a constant factor, the pressure at the center of fluid excited by
a ring source is equivalent to that by an incident plane P wave, as long as the radius
of the ring source is large compared to the radius of the borehcle and the aperture of
the measurement is small. This justifies the comparison of finite difference calculations
with the results from the negative dislocation approach when the equivalence conditions
hold.

The model used for the comparison is a 20 em diameter borehole drilled through
a lucite ( a3 = 2700 m/s, B, = 1400 m/s, and p; = 2000 Kg/m®) and aluminium
(e = 6300m/s, B, = 3400m/s, and p, = 2700K g/m?) formations. The layer boundary
is at 2 = 2.56 m and 32 hydrophones are evenly distributed at the center of borehole
from z; = 1.6 m to zz = 4.7m. The source is chosen to be a Kelly wavelet with a center
frequency of 2 kHz. In the finite difference simulation, the ring source is located at
(ro = 2.0m, z = 0) which corresponds approximately to § = 37° incidence at the layer
boundary. The implememtation is acomplished on an nCUBE parallel computer with 64
nodes and takes approximately 30 minutes. In the calculation by negative dislocation
approach, an plane P wave incidence at § = 37° is assumed. The computation time
on an Vax 8800 is nearly 20 minutes. Calculations by the finite difference technique is
shown in Figure 11a, from which we can see the incident P wave and reflected S wave
in the lucite formation and transmitted S wave and strong tube wave (phase velocity
around 1426.0 m/s) in the aluminium formation. We can also see the incident S wave
and reflected S wave and the tube wave generated by the S wave incidence at a later
time, as well as some boundary reflections behind 4 ms. These waves should not exist if
perfect boundary conditions and pure volume source is achieved in the finite difference
calculation. The calculation by the negative dislocation theory is shown in Figure 11b.
Compared to the P wave incidence portion of finite difference result, we see excellent
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agreement between these two approaches.

CONCLUSIONS

Two approaches—zero frequency approximation and negative dislocation theory—are
examined for the calculation of tube wave generation at a layer boundary when a plane
compressional wave incidents upon the borehole. Excellent agreement of these two
approaches is found when the source frequency is below hundreds of Hertz and a signifi-
cant tube wave can be generated when the contrast of elastic properties across the layer
boundary is large. For frequencies up to one kilohertz, the zero frequency approximation
fails to be valid, whereas the negative dislocation approach is still a good approximation.
At a low frequency, the excited tube wave is independent of the borehole radius and
shows stronger sensitivity to the formation shear velocity contrast compared to that of
the compressional velocity and density, and the sensitivity toward the compressional
velocity is opposite those of shear velocity and density. Unlike those excited by a frac-
ture, for a plane P wave incidence the reflected and transmitted tube waves generated
at a layer boundary show opposite polarities. Examples of calculations support these
conclusions.

These methods can also be applied to the case of shear wave incidence and ecan be
generalized to the case of a stack of layers and an arbitrary source by employing the
well-known discrete wavenumber approach (Bouchon, 1977).
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Appendix A. ZERO FREQUENCY APPROXIMATION

When a plane P wave incidents upon the layer boundary from medium #1, in the case
that no borehole exists, there will be reflected plane P and S waves in medium #1
and transmitted plane P and S waves in medium #2. The displacement reflection and
transmittion coefficients can be found in many places in the literature such as Aki and
Richards {1980). We will follow the notations used by Aki and Richards in this paper.

Suppose the polarization and propagation directions are confined in the (x, z) plane.
The normal stresses oz., oy and o,, due to these plane waves can be written as

' : k2, .
o'iz = )\12'3(&)) [km gl(kmm+kzplz) 1 Plp? ket ez(kpgz—kzplz)] + 2u1iS(w) [E(P;ll_ e"{kplx'["kzplz)
2
+P5PT Ep_l_ ei(k;:m—kzplz) + PlST kslkzsl ei(kalz—kzuz)]
ko kg,
J.;y = MiS(w) [kon e¥nT+hmz) o pp; by elkma—kanz))
2
ol, = MiS(W) [k etbm=thmz) | PPy kg efbma—kam2)] 4 9)155(w) [% ikp12+kup12)
X1
2
+P1«PT % ei(kplmukz:’lz) - PlST —ksli;jSI ei(kalz—kz.slz)]

in medium #1, and

2
2 ei(kpzzr:—i-kngz)

. k
0fn = MiS(w) PPy kan 55 1 205iS(w) (PP L2
a2
—{-—PS k32k252 e’i(kﬂz'i'kzﬂz)}
Pl & 82
org,' = giS(w) PP kg eikpoethep?)
. ko
ol = XaiS(w) PiP| aa €550 1 911515 (w) (PP 22 ek ten)
an

—plSl Ef.g_.@igz ei(kszm"}'kzszz)]
k5
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in medium #2. Where

.. W o
kp1 = a“’—lsmzl = Wwp, kg1 = B:smjl = wp,
— W J— .2 1.2 — (w s 3 1.2
kzpl = o CO51 Hhal k’pli kzs1 B‘;COSJ} . H‘Gﬁl ksl’
— W . W
kon = g, kg1 =g
i g W s
kp2 = O%Sln'ﬂg = wp, k‘qg — B;Slnj? = wp,
koo = 2 cosin = 1 /k2, — k2y, ko = Hcosjo = . /k% —k
zp2 [T 2 p21 z52 B; Jo B o o
kaz = & ko =%,
Qz? 82 B,

and where p is the ray parameter, ¢ and j are defined in terms of ray direction with the
vertical axis for the plane P and S waves respectively. A; and p1 are Lamé parameters
in medium #1 and As and uo are Lamé parameters in medium #2

Under the zero frequency approximation, the size of the borehole is much smaller
than the wavelength such that the stresses generated by the incident wave are nearly
homogeneous at the vicinity around the borehole (much larger than the borehole radius,
but much smaller than the wavelength) if the borehole does not exist. Introduction of
a borehole will locally disturb the homogeneous stress field at the expense of borehole
deformation. The volume change of the borehole sets up a pressure inside the fluid in
the same way as a piston source does (White, 1983). The change of borehole radius
due to the stress field of incident elastic waves can be calculated by first computing the
axial strain in the formation

ur 1
o E[o‘,.,. —VOgg — V0] ' (A-1)
where
Ory T(l_ﬁ)_!————é———(l-}_?i— —W)COSQB
Ozz + 0 0’ Gu—0 3at

are the stress fields near the borehole (Timoshenko and Goodier, 1951) and E denotes
the Young’s modulus. Integration of {A-1) yields

a
tr = E{(Um: + oyy) + 2(02z — oyy) cos 20 — Vo] (A-2)
at r=a.

Excitation of pressure inside the fluid is only dependent on the axial symmetric
component %, of (A-2), i.e.,
1 2
Ty = — f updf.
27 Jo
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The change of borehole average radius will lead to a vertical motion of fluid. Consider
a differential section dz along the borehole, the differential vertical velocity do of fluid
motion can be related to the rate of change of borehole radius by the law of conservation
of fluid mass, i.e.,

di
2 — r
2ma"dt = —-2madz T
from which we can get
v | i,
dz = w—a—. (A-3)

In the fluid, pressure and particle velocity are related by

where p; is the fluid density and Cr is the zero frequency tube wave velocity given by
(Boit, 1952; White, 1983)

Cr=—4=2L
Prcy
14 i
pB
Following these steps, we can obtain
dP; = p;CiwS(w) [Af;l ethanz AIPLPT e AleS? e~ Hze12) gz, (A-4)
in medium #1, and
- " I ikz bi sy
dPir = psCrwS(w) [APLPL gthzpaz 3 APlS£ et=a2¥ |y (A-5)
in medium #2, where
I AL pl 4#1
Ap = {[kaa(2- g (2 2 )—— JJolkpa) — -7——=Ja(kp10)}

k 4
s (2= 2) - V(e — ;11 u1J2(kplﬂ)}P1PT

I - 2L
APlPT = {[kal( Vl) +k:

Kstzsy 2
Abs = Thgr o) — 2a(It10) + 1 Jo(kna)l} PiSy
1
I _ kpg 4,(1,2
App, = {lkoa(2~- Vz)— + ——(2 - 21/2)—— Jolkpaa) = 2222 Ty (kppa)} PPy
k 2kzs2 21”*2
I _ s
APLSl = { kg B [Jo(ksza) — 2Ja(ksoa) + vodo(ks2a)]} PiS|
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For a point at z = H(H < 0) in medium #1, the total pressure and axial velocity
are built up as

H i 0 .
PH<0w) = _/ dPr(z,w) e*Fe1tH=2) +/ dPr(z,w) et =—H)
m s
+ / dPy(z,w) ekez—kaH)
0
H . 0 .
V(H <0,w) = / dvr(z,w) gike1(H-2) _/ duy(z,w) ikl (z—H)
- H
Oom .
- j Aoy (2, w) gitkeaz—kaH)
0
where ke = w/CL and ke = w/CH.
For the same reason, for a point at z = H(H > 0) in medium #2, we have
0 . H _
P(H>0,w) = f dPr(z,w) et(—kerztkeaH) +/ dPrr(z,w) gike2(H~z)
- 0
+ / dPr(z,w) gikez(z—H)
H
0 . H '
V(H >0,w} = / dvr(z, w) ei{—ke12+kop H) _!_/ Aoy (2, w) gikea(H=2)
—0 A

m «
— / dog(z,w) eﬁkcz(Z—H) )
H

The integrations can be exactly carried out and terms associated with infinite time
delay are excluded (White, 1953). We finally come up with (3) and (4) for pressures
and the following for axial velocity:

V(H<0w) = wSw)[Dp e*n¥ +Dhp e 4 D g embmif]

2 P71
+ wS(u))D”(APl APLPT A%lST)ewikclH
+ wS(W)Dlz(APlPl APLSL) kel i (A-6)
and
V(H>0,w) = wS (w)[D” eik"’gH + nglsl gtkzeafl)
+ wS(w)Dm(Apl Aplf_jT AIPL ST) oikceH
+ C*’S(ﬁ"’)pm(Ap£pl p‘L )¢ gthaH (A-7)
where
Bf)l Qikk—k APl

zpl

o
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kcl

I — . el
Bpp, = %p— k2, Apyp
ke
I .
= 2t Al
Bps; R — kL, RISt

zsl

AL P,

Al Al
PP + PiSy

By = —i +
H (kcl + kzpl kcl - kzpl kcl - kzsl
AlL All
By = i(— D BS_
keo + kzp2 keo + kzso
ko I
BE o = 22
PP, k2 — k2, AP
ke

— 2'...._........,.....__..
BP131 k2, — k2 AP15'1

1 I
APl N Appy APs;
cl — kzpl JIﬁr:l + kzpl kcl + kzsl

By = i(k

AII AII
PP + PS5y

B = —i
2 (k'cz—kzpz koo — kas2
k
Db = 22— Al
P Ky — k2 B
Y
D = -9 ___ZE___. Al
PPy k2, PP
k
I . zs]
= —2is—s— AL
Ppg, B2 — k2, T BSt
I I I
Py — Ap, App, . Aps, )
kcl + kzpl kcl - kzpl kcl - kz.s‘l

I
APlPl n AP15'1

D = 1
S (kcz +kopo ket kzso

Dpp, = S iy APyp,

= Qe
DP15'1 k2, — k2 APS)
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I I I
APL AP1PT APLS T

kcl - kzpl kcl + kzpl kcl + kzsl

)

Dy = 4

AII AH
PP . PS5y

Doy = —i
22 (kc2 - kzp2 kc? - kzs2

Appendix B. NEGATIVE DISLOCATION THEORY

As frequency goes hipgher, the zero frequency approximation fails to be valid because it
ignores the borehole scattered wave in the formation and does not acknowledge the radial
variation of fluid motion inside the borehole. Schoenberg’s theory (Schoenberg, 1986),
on the other hand, can be applied to exactly solve the coupling of the incident plane
wave into the borehole. In so doing, when the formation is layered, the displacements
and stresses across the plane of the layer boundary will be discontinuous because of the
different coupling in the upper and lower formations. A negative dislocation source can
be added at the boundary to compensate for the discontinuity. The total field is the
summation of those due to incident waves and that generated by the dislocation source.

Following the same notation as Peng et al., (this volume), we can express the dis-
placements and stress inside the fluid, due to the incident P wave in medium =1, as

o = —a; WAl 123 Ui all cosng)
n=1

ug = —ay [Ué;l (T)Aéjl +2 i i”Uézl(r)Afl(m sin nf)]
n=1

w = —af [U£l (r)Aéjl +2 i z'"Uﬁl (’r)A,{jl cos nd)
nsl

af = —psoy [R:zl(r)Aéjl +2 i i“Rﬁ(r)Afl cos nd|

n=l

P y P P ,
where Urs' (1) = kpp1Jn(kppir), Uyt (r) = n/rdnllkppr) , Usnt (r) = ikzp1Jn(kpmr) and
P
R f,f (r) = —w?Jn(kspir). Here kpp = yw?/a% — k2, is the radial wavenumber in the
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fluid. Time and depth dependence of the form e¥*:*~%% are assumed.

For the same reason, the displacements and stress inside the fluid, due to the reflected
P wave in medium #1, can also be written as

Wl = —ap AP @A £o 3 Ul () AP Pt cosns)
ne=l

Wl = —ag I A 12 3 D () AP sinng))
2

uf = —a; WA AT £o 3 D ) APt cosmg)
n==1

of, = —pjor [RADATT 42 3 R D ) AP cosmp)

ne=]

where U0 T(r) = kg k), U&,l Yr) = n/rdn(kipir), g T(r) = —ikop1 Jn(ksp1r)
REFA(r) = w2 Tk gpr).

The displacements and stress inside the fluid due to the reflected S wave in medium
#1, cna be written as

. ufl = —oy [U;;lST (r)Agj‘lST + 2 i z’“l'frlzj'sf(’r)Ai3 151 cos nf]
n=1
wh = —ar (U MALE 42 >N UL 1 (1) LT (— sinno)
=
ul = —a 7 [Uj;lST (T‘)AéleT + 2 i i"UZP;lS? (T)Af 151 cos nf]
n=1
of, = —pas (RS ) alB1 2 S rRES 0y AP cosmp)
nw=1

PSS ' PS5 PS .
where Up” (1) = krsidn(kpair), Ugnl M) = n/rdn(ksir), Ui T(r) = —ikze1n(kpsiT)
P
and Rf,fsf (r) = —wInlkfs17).
For the transmitted P and S waves in medium #2, we have similar expressions

w = —ay [U’Pi"ul (r)APlP1 +2 Z 1" Urn i (r)AT{3 Cy cosnd|

n=1
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u) = —ay R AT l+2Z U, ) An (- sinno)]
PP PP
W = —a;U Plpl( VALV Y 12 Z Ut (1) An PP ! cosnd]
n=1
0
of, = —psoy [jt‘%l:)‘LPl(r)AéD oy +2 Z i"RﬁPL(r)Af oy cos nf
n=1
and
uwl = —as[U PlSl(r) lSi-i-2 > "Um Lr)An llcosné?]
n=i
PSy, . .PS e PiS
W = —ay Uyt ) Ay P 42 Z Up YATSL(_ sinng))
o0
W = —a,UE AP 4o S LB () AP cos o
n=1
oo
of, = —ppap [RREN WAL +2 3 R APPL o gy
n=1
where

PP : P\P PP ,

Upn® 1(r) = kppadn(kppar) , Up ¥ H(r) = nfrda(kppar) , Usi® (1) = ihapaJn(kppor) ,

PP PS ’ P\S

l 1(7') "'W2Jn(kfp27') and ("‘") = kfs2']n(kfs27') : Ugnl i(r) = n/TJn(kf.s'QT) )

S
U,ml L) = tkasadn(kssar) R O (r) = —w? T (kpar).
The coefficients Api APLPT APlST APlP‘l APlSl are obtained by matching the
fluid-solid interface boundary condltlons at the borehole wall (Peng et al., this volume).

The displacement and stress discontinuity at z = 0 (layer boundary) inside the
borehole can be written as

[l (M) = —ay { U0 +2 ii" [UZ.(r)] cosnd }
[wh(r)) = —o {{Uf()] +2 Z% [UF,(r)] (—sinnd) }

wi(r)] = —ar { L] +2 Zz [Ufn(r)] cosnd }
n=1
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(o ]
[0L.(r)] = —pray {[Ren(r)] +2 > i [Ren(r)] cosnf }. (B-1)
n=1
where
WL (r)] = UL AP L g8 P8 B g P BB (PP BiSt Py
PPPP PS; PS P, P PP; PP PS: PS
Wh (] =Up P LAY U, P At UelAﬂl“Uel AR gl 40

PPy PP PS5BS 1 AP _ Pt 4 PiSy

[Uéfn(r)] = Uzt Uz A Uz A

PP, PP,  _PS, ,PS, P ,P, PP PP _PS PS
[Rpn(r)] = By YA Y b+ RV — R AR — R FT ALY T - R PT AT

A negative dislocation (displacement or stress discontinuity) of (B-1) must be applied
at 2 = 0 to remove the discontinuity. The contribution of this secondary source can be
evaluated by the elastic representation theory, which says (Aki and Richards, 1980)

un(Z) = / f (Gin(E; E); (g‘j—u,(é)c,mnjaai"”(& ) ds(€) (B-2)

where {; is the traction and u; is the displacement on the surface.
For the isotropic case,
C,;jkz = )\6«53‘ + H(aikajl + 5i15jk)-

Substituting into (B-2), we obtain

un(E) = f f Gan(E E)ta(8) — Af n;ut(éack" (€ 2)ds(d) (B-3)

in fluid {py = 0) with § corresponding to the area inside the fluid at z = 0.
The surface traction and displacements are related to the dislocation by
ta(£) = ~[oL.(6)]
niui(€) = —[u (€)] — [wh(€)] — [uL(§)]

from which we obtain

== [ [ {Gun(E DL @) - oy (1uf @) + (&) + Wl D2 E

%)}dS(€).
(B-4)

The free-space Green’s tensor in the fluid can be written as

qu(féaﬁfl)z
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where
ciW/ QR

1 [>® .
0p(& &) = S = 5 [ i H g

where £} +k2 = w?/o?, B? = (z—2')?+(y~y )2+ (2—2)? and 7 = (z—2')2+ (y—y").

By making use of the following identities (Morse and Feshbach, 1953)
1 o Y
HO(ks7) = 3 endnlksr)HY (kyrs) cosn(d — 6)
n=0
and

1 2= ’ ' ot
;r—f cosnf cosm(fd — 0 }d0 = &, cosnbbmn,
0

where r« = min(r,r ), ¥~ = maz(r,r ) and &, = { ; 2 ; g is the Neumann's factor

and g5 = 2 m=0 is the inverse of the Neumann’s factor, we obtain from (B-4)
n I m#£0

Un(Z) = %52—” f_ o; etz g, 1rgo.:smi’"‘[<1>,‘f,,.(*r) cosmf + &7 (r) sinmd) (B-5)
where
() = ike/w fin(r) — gm(r) — gin(r)
B, (r) = gn(r)
and where

Fnlr) = HD (ke sr) fo " Tl )Ry (N A+ Tonlles) / " HO (st )[Ry )

Im(r) = H(l)(kﬂ”)_/ Ta(beg T Y UL () dr’ + Jm(ks) /Tb HD (g UL e dr’
() = HP (ks7) / Tm(kgr U, (7 ) dr' + Jm(kgr) / " H (kgr UG, () &’

@) = HO (k) / Tk UL (Y] A + T () f HO (kv UL ()]

Taking the following transforms between cylindrical coordinates and rectangular

coordinates,
—_—= f— — 9——1 —
3 cos 5 sin ~%0
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3 —sinBE +c sﬂi—a—
gy Ve TS5
we obtain
d
Ur = 'a—r'¢f
18
U = e
b5]
Uz = 5;4’;
where

oo . oo
6,(r,0,2) = %f f ekr2dk, S £ni™@S,(r) cosmb + B5,(r) sinmo)
—0o

m=0
is the equivalent displacement potential of the negative dislocation source.

Knowing the source potential, we can compute the borehole excitation by matching
the fluid-solid interface boundary conditions. The classical solution can be found in
Cheng and Toksoz (1981).
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Appendix C. SENSITIVITY ANALYSIS

Consider a plane P wave incident on the layer boundary from medium #1. Denote «,
B and p the elastic parameters in medium #1 and a4+ Aa, 8+ AS and p + Ap the
elastic parameters in medium #2. Let p be the ray parameter, i.e., siné;/a =sinj; /8 =
sinia/(@ + Aa) = singe/(8 + AB) = p, where i; and 42 are the incidence angles of the
P waves in medium #1 and #2 respectively, j; and f» are those of te S wave. Also let
i= (i1 +12)/2 and § = (41 + 72)/2. Up to the first order of Aa/a, AS/B and Ap/p,
Richards and Frasier (1976) had obtained

hh = %(1 _4622)2)%8 205822%\:‘! 46 2/_);3

PS; = _2f;j[(1_2/32p2+2ﬁ2%§coﬁsj)§_g_(4ﬁg 2 4ﬁzcoszc3053)
bR = 1_%%4_(20;3%' _1)%

PS| = 25;3'[(1_252 P2 2ﬁgc‘,oszcoﬁsy Ap — (4f%p 2+4ﬁQCOSZC()§j ‘?gﬁl-

From equation (3), without the phase term ei{m—*a1H—kzp1 ) ' the ratio of the pressure
of the reflected tube wave to that of the incident wave can be written as

n Al Al
Ptube — J""7(:1 " kzpl kcl + kzpl PJ_PT k kzpl PJ,ST
Pinc chl 2kcl AIPJ_ 2‘l\':cl (kcl - kzsl) Aﬁ:

b4 .
Cf kAR, PR of KBi-E, Abs,
cL chi(kcz +hun) Ap O 2heilker + kas2) Ap)

By expanding each individual term in the above equation up to the first order of
Acf/a, AB/B and Ap/p, and making use of Chapman’s result, we obtain

Phe

Pinc

Ap +RgSE Ra— (C-1)

:R 7
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where
1K Ky—K_ _ 1Kel ooy
Rp—QM( Bt = — Q@ +5737G —267)
INK_K, 2,2 gcoszcosg
B2p%/1 — B3p2 (1 —2p — ﬁchSZCOSj)ﬁpSIHJ]
J_cosj(1 —26%/a? + %p?) B I
1 K+ K- Kt 2 2
Rg = — R+
s M (1—2ﬁ2/o:9'cos?i ik, 9 uh?
. 2,2 2,0
_QNK‘K+,82[( 2 _ Cosicosy, Bp 1 - [Fp
M2 p a B 'J_cosji(l —26%/a? + [%p2)
_ .o, Cosicosj Bpsin j
(" +— 5 ) A ]
R, _ _1K Ki-K_ 1 o? + 6532 cos? 1Ky 1
“ T 2 M 2Ky 1-a%® " 2co8%i(a? — 28cos?i)’ | 2 M 2cos?i

where

__ K_=ayf1+pp05/p6% — apy/1 - pe?
Ky =a/1+ pfaff/pﬁZ + s/l —p2a?
J- = Byf1+pa}/pB* — apy/1 —p2B?
Ty =Byl + pped/pB® + ap/1 — p?°

R=ppa3/(pB® +ppof), Q=1-R

M = o /14 p;a2/pB% N =1+ ppol/pB°.



Peng and Toksoz 358

Appendix D. EQUIVALENCE CONDITIONS

In this appendix, we prove that, up to a constant factor, the pressure at the center of
fluid generated by a plane P wave incidence is identical to that generated by a ring of
point sources as long as the ring source is located at a great distance from the borehole
and the aperture of the measurement is small.

For a particular point source at (7o, ¥, 20), the source potential at (», 0, 2) can be
written as

eik(IR T foe (1) ikl
Fpoint = 5~ = 5 f_ _Hg (e 2(z=20) gk, (D-1)
where R = 1/r2 +rZ — 2rrgcos(d — v) + (2 — z0)2, ¥ = \/r2 4+ 18 ~ 2rrgcos(f — v) and

ky = /k2, — k2.

Following Morse and Feshbach (1953), we have

A ) - (1) ik (2—20)
Bpoint = 5 [Jolkrr)Hy ' (krro) +2 Z In{krr) HyV (kpro) cos n(8 — v)] e 2200 g,

R n=1

The potential of a ring of point sources is the integral of (D-1) with respect to v,

ie,
27

[e o] -
Bring = | Dpoinedy = im / Jo(ker) H{M (kpro)eik===20) gk,
0 []

If the ring source is far away from the observation point, we can make use of the
following asymptotic expansion

2
Wk.,-’f'o

gilkrro—%)

H{Y (o) =

so the ring source potential is

2 o Jolker) 0-+ika(z—20)
. _ A D S 7. TRz dkz_
¢Tlﬂ9 i mro ¢ /;oo \/E ‘

As rg — oo, the stationary phase method is used to evaluate the integral. The
stationary point is at
Of(k:)

5 =0 (D-2)

where f(k,) = 1/k& — k2 ro + k; (2 — z0)-
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The solution to (D-2) is
k,=kncosd

where cosé§ = (z — 20)/y/78 + (2 — z0)? is a constant if the measurement aperture is
small.

The ring source potential then can be reduced to
Pring = A(ro, 20) Jo(kasiné r) exp(iky cos § 2) (D-3)

where the constant A is given by

~1 .
A(rg, 20) = 2imry 2e7"7 sind exp(ikg sind ro — ik cos § 29).

The displacement potential for an incident plane P wave is (Schoenberg, 1986)

op = explikgsiné reos(f —v) +ikycosd z)

=]
= exp(ikocosé 2) [Jo(kasing r) +2 > i"Jn(kasind r)cosn(f — v)]

n=}l
where v is the azimuth of incident plane wave and § is the incidence angle.

All modes except n = 0 will contribute zero pressure at the center of fluid. For the
pressure at r = 0, the equivalent source potential will be

¢F = Jo(ka siné r) exp(ikg cos§ z). (D-4)

Therefore, we arrive at our conclusion that

¢ring (T’ Z) = A(TU! 30) QS?;I(T: Z).
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Formation #1

Formation #2
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Figure 1: Tube wave generation at a layer boundary for an incident compressional plane
wave and decomposition of the problem into three small problems.
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Formation #1

Formation #2 o

Elastic Representation Theory:

The elastic displacement can be
expressed in terms of a surface
integral of dislacement and tra-
ction discontinuity across the
surface.

Figure 2: Cartoon showing the elastic representation theory.
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Figure 3: Sensitivity to the formation elastic parameters of the ratio of amplitude of the
reflected tube wave to that of incident compressional wave as a function of incident
angle,
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DISLOCATION APPROACH (100HZ,7.15E+08)
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Figure 4: In this example, a3 = 5970 m/s, 8; = 2880 m/s, p; = 2656 Kg/m® and
ag = 4206 m/s, By = 2664 /s, p, = 2140 Kg/m? and frequency 100 Hz, incident
angle 25°.
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Offset = 100 m in formation #1
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Figure 5: Overlay of the first trace in both plots of Figure 4.
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DISLOCATION APPROACH(1 KHZ,8.10E+09)
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Figure 6: Same as Figure 4 except 1000 Hz.
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DISLOCATION APPROACH (100HZ,6.07E+08)
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Figure 7: In this example, ay = 5970 m/s, B; = 2880 m/s, p; = 2656 Kg/m® and
a2 = 5970 m/s, By = 4320 m/s, p, = 2656 Kg/m® and frequency 100 Hz, incident
angle 25°.
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DISLOCATION APPROACH (100HZ,1.02E +09)
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Figure 8 In this example, oy = 5970 m/s, B; = 2880 m/s, p1 = 2656 Kg/ma. and
g = 8955 m/s, B, = 2880 m/s, py = 2656 Kg/m® and frequency 100 Hz, incident

angle 25°.
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DISLOCATION APPROACH (100HZ,6.44E +08)
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Figure 9: In this example, oy = 5970 m/s, B; = 2880 m/s, p; = 2656 Kg/.ma‘ and
g = 5970 m/s, By = 2880 m/s, p, = 3984 Kg/m> and frequency 100 Hz, incident
angle 25°.
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DISLOCATION APPROACH (100HZ,7.17E+08)
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Figure 10: In this example, a; = 5970 m/s, 8, = 2880 m/s, p; = 2656 Kg/m® and

az = 8955 m/s, B, = 3600 m/s, p, = 2656 Kg/m® and frequency 100 Hz, incident
angle 25°.
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FINITE DIFFERENCE (2 KHZ)
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Figure 11: In this example, a; = 2700 m/s, 8, = 1400 m/s, p; = 2000 Kg/m3 and
ao = 6300 m/s, Bs = 3400 m/s, py = 2700 Kg/m® and frequency 2000 Hz. (a)
Finite difference calculation for a ring source at 2 m inside the formation and (b)
negative dislocation approach for an plane P wave at incident angle 37°.
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