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ABSTRACT

A new processing method, which we developed for the guided waves generated during
acoustic logging, accurately estimates the wavenumber when only a few seismograms
are available or when the seismograms are irregularly spaced. The estimates of the
attenuation coefficient are seemingly accurate when many seismograms are available
but are inaccurate when only a few seismograms are available. The new method does
not generate any spurious estimates as the Prony-based method does.

INTRODUCTION

The guided waves generated during acoustic logging are sometimes used to estimate
formation properties (see e.g., Cheng et al., 1987; Hornby et al., 1989; and Ellefsen et
al., 1991). Because the algorithms are often formulated in the frequency-wavenumber
domain, the seismograms must be processed to calculate the parameters of the waves
in this domain (viz., wavenumber, attenuation coefficient, and amplitude).

The most widely-known method for processing these guided waves, the Prony-based
method (Parks et al., 1983; McClellan, 1986; Lang et al., 1987; Ellefsen et al., 1989),
has four significant disadvantages. First, many spurious estimates are generated. Since
no automated method currently exists for identifying and deleting these estimates, the
task must be done manually. Second, many seismograms (i.e., at least 8) are required
to obtain reasonably accurate results. Because many existing logging tocls have only
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4 receivers, this method cannot process the data collected by these tools. Third, the
recetvers must be regularly spaced. Although all tools are built in this manner, a data set
in which one seismogram from the middle of the array is bad cannot be processed with
this method. Fourth, the estimates of the attenuation coefficient are often inaccurate
and biased. This problem is probably caused by the heterogeneity of the formation and
by mismatched receivers. Another processing method, high resolution slant stacking
{Hsu and Baggeroer, 1986; Block et al., 1986), can estimate the phase veloeity but
neither the attenuation coefficient nor amplitude.

In this paper, we describe a new processing method that overcomes many of the
disadvantages of the Prony-based method. The method designed is to determine the
parameters of only one wave, like the tube wave. First, we will explain the underlying
mathematics. Then, using fleld data, we will demonstrate its performance and will also
compare its performance to that of the Prony-based method.

METHOD

The mathematical basis of the processing method is derived from the solution to the
wave equation in the frequency-wavenumber domain:

——_1- = —tw e w e'r.kz
s(z,) = % f_ _ duet /_ kX (k,w) (1)

(see e.g., Cheng et al., 1881). s(z,t) is the response recorded by a receiver, z the distance
between the receiver and the source, ¢ the time, w the frequency, and k the wavenumber.
X (k,w) is an expression which includes information about the geometry of the model,
the source, the boundary conditions, etc., and we do not need to know its exact form
to develop the processing method. In the frequency domain, this expression is

5(z,w)=-2-1; f_o:cde(k,w)e”” - @)

This integral, when it is evaluated using contour integration in the complex wavenum-
ber domain, equals the sum of the residues enclosed by the contour (ignoring, for the
moment, any contribution from the branch cuts):

5(z,w) =1 _ Residues of X (ke,w)e**** enclosed by the contour (3)

(Peterson, 1974) where k. is the complex wavenumber. In some frequency bands, the
residue of one pole is the dominant contribution to 3(z,w). For example, between 0
and about 5 kHz, the residue of the pole associated with the tube wave is much larger
than any of the other residues, and this fact is clearly demonstrated in the frequency-
wavenumber plots by Schmitt and Bouchon (1985). In these bands, §(z,w) is well
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approximated by this one residue, which we will express as R (kp,w) e**»* where kj, is
the value of the complex wavenumber at the pole. What is important in the processing is
the distance that the wave propagates from the first receiver in the array. This distance
will be designated 2 and equals z — z; where z; is the distance from the source to the
first receiver. The receiver response due to the dominant pole is

E(z, L:J) ] [';,R (kp; UJ) ezkpzl] 6_aie"'k"£ (4)

where kr and « are the real and imaginary parts, respectively, of k,. To simplify the
expression within the brackets, let A and ¢ equal its modulus and argument, respec-
tively:

3(z,w) = Ae=*FeMéthrE) (5)

This expression has a very simple interpretation. The amplitude of the wave at the
first receiver is A, and its phase ¢. As the wave propagates along the receiver array, its
amplitude changes by e~%#, and its phase by k2. Note that these four parameters are
functions of frequency; this dependence has been omitted to simplify the notation.

The Prony-based method can be used to estimate A, ¢, o, and k-, but it has
the problems that were already discussed. The method that we propose is a type of
homomorphic signal processing (see e.g., Oppenheim and Schafer, 1975, p. 480-531): it
uses the natural logarithm of §(z,w). The real and imaginary parts of the logarithm are

Rnd(z,w)] =4 -az (6)

and
¥ [In3(z,w)] = principal value of [¢ + k2] (7)

respectively. Note that the imaginary part is based on the principal value because the
logarithm has a branch cut at = (Churchill et al., 1974, p. 62-64). Interestingly, the
transformation completely separates the information about the amplitude and phase
of the wave, putting it into equations 6 and 7, respectively. In terms of analytical
geometry, the equation for the amplitude describes a straight line: the intercept is In 4,
and the slope —a. Taking into account the effect of the principal value, the equation
for the phase also describes a straight line: the intercept is ¢, and the slope k.. These
two properties are important because the technique for fitting a line to data is well
developed (see e.g., Draper and Smith, 1966, chapters 1-3; Daniel and Wood, 1971,
chapters 2 and 3). An additional advantage of the logarithmic transformation is that
the estimation problem is formulated with real numbers instead of complex numbers
making the inversion simplier.

The inversions are based upon the difference called the residual, r, between the
observed data, d, and the predictions, Zm:

r=d-Zm . (8)
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Z contains information about the receiver offsets. For the inversion of the phase data,
m consists of k. and ¢ at one frequency; for the inversion of the amplitude data, m
consists of In A and @ at all frequencies. r can also include data from successive depths
in the borehole or from multiple sources. A detailed description of these terms is in the
Appendix.

For the inversion of the phase data, we minimize a cost function that is the sum of
the absolute values of the residuals:

(1/2)" (1e*%) ©)

This criterion for minimization, called an [y norm, has the desirable feature that it is
less affected by outliers in the data than other types of norms. The algorithm used for
the minimization is iterative reweighted least squares (Scales and Gersztenkorn, 1988).

For the inversion of the amplitude data, a more sophisticated cost function must be
minimized to obtain reasonable results:

(]r|1/2)T cpt (|r|1/2) +em’DTDm + 2 ¥TT . (10)

The first term forces the predictions to fit the data. The residuals are weighted by
Cp whose elements, which are only on the main diagonal, are the reciprocals of the
amplitude. When a wave has a low amplitude, the data tend to be noisy, and with this
weighting the cost function is only slightly affected by the corresponding residuals. The
second term forces the attenuation coefficient to vary smoothly as the frequency changes.
The smoothness is measured with the second derivatives of the attenuation coeflicients;
the derivative operator is in matrix D (Menke, 1984, p. 53). The importance given to
the smocthness is controlled by ¢;. The third term forces the attenuation coefficient to
be positive. If during the minimization of the cost function a given coefficient is positive,
then the associated element of ¥ is zero. However, if this coefficient becomes negative,
then the associated element of ¥ becomes large and positive (Bard, 1974, p. 141-145).
To decrease the cost function the minimization algorithm forces the coefficient to be
positive. The importance given to this constraint is controlled by cs.

To determine how well the predictions fits the data, the elements of the residual
vector could be examined. However, this approach is not practical when a large amount
of data is being processed. A good alternative is to examine the variance of the residuals,
which is estimated using

2 1 X,
22 =m1§17}. (11)

where N is the number of elements in the residual vector (Devore, 1982, p. 435). The
variance is valuable information when performing an inversion for formation properties
because it indicates how much confidence should be given to the estimates. That is, the
smaller the variance, the greater the confidence.

,
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RESULTS

Very accurate estimates were obtained when this new method was used to process syn-
thetic data, and these tests demonstrated that the mathematics are sound and the
computer algorithm is properly written. However, the method must work well on field
data to be useful, and consequently we will only present the tests with the field data here.
The data were collected by a tool having two sources and twelve receivers (Figure 1).
Estimates for the tube wave were obtained between ( and 4000 Hz, the frequency range
within which the amplitude of this wave is large. Since only the wavenumber, atten-
nation coefficient, and amplitude can be used in an inversion for formation properties,
only these estimates will be discussed here.

First, the complete data set was processed with the homomorphic and Prony-based
methods. The wavenumber and amplitude estimates obtained by both methods are
similar (Figure 2a, b, e, and f). However, the attenuation coeflicient estimates obtained
by the homomorphic method increase smoothly with frequency whereas those obtained
with the Prony-based method do not (Figure 2¢ and d). We believe, but cannot prove,
that these smoother estimates are a more accurate characterization of the tube wave.
The many spurious estimates generated by the Prony-based method are evident. The
estimates obtained with the homomorphic method will be used as a standard against
which the estimates from the subsequent tests will be judged.

The variances of the residuals (Figure 3) indicate that the estimates fit the data well
from about 900 Hz to 3000 Hz. The fit degrades below 900 Hz probably because the wave
has a low amplitude relative to the noise. The fit also degrades above 3000 Hz probably
because a leaky mode with a low amplitude is present. Nonetheless the estimates in
these two ranges are reasonable (Figure 2a, ¢, and e). Because the amplitude of the
wave is an indication of the signal to noise ratio, it is another qualitative measure of
the reliability of an estimate: the higher the amplitude, the greater the reliability. The
variances and amplitudes for the subsequent tests will not be discussed because their
basic features are similar to those in Figure 2e and Figure 3.

Second, to test the performance of the method when only a few receivers are avail-
able, four seismograms from the complete data set (Figure 1) were processed. The
wavenumber estimates obtained with the homomorphic method for this small data set
are like those obtained from the complete data set (Figure 4a); however, those obtained
with the Prony-based method are not (Figure 4b). The attenuation estimates obtained
with both methods are inaccurate (Figure 4¢ and d). The spurious estimates generated
by Prony-based method are again evident (Figure 4b and d).

Third, six irregularly spaced seismograms from the complete data set (Figure 1)
were processed. The wavenumber estimates from this data set are like those from the
complete data set (Figure 5a). The attenuation estimates, however, are inaccurate
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(Figure 5b).

DISCUSSION

The new processing method overcomes many, but not all, of the disadvantages of the
Prony-based method. First, no spurious estimates are generated. Second, only a few
seismograms are needed to obtain seemingly accurate wavenumber estimates. Third, the
receivers can be irregularly spaced. Fourth, the estimates for the attenuation coefficient
are apparently accurate when many seismograms are available. The only significant
problem is that this new method cannot accurately estimate the attenuation coefficient
when only a few seismograms are available. Since the amplitude of a wave is strongly
affected by formation heterogeneity and matching the receivers is difficult, this problem
will not be easily solved.

Although we have demonstrated this method with only one type of wave, the method
is general: it can be used to process any guided or surface wave when the amplitude of
that wave dominates within some frequency range. Perhaps this method could be used
to process the flexural wave generated during shear wave logging and the Rayleigh and
Love waves generated either from a surface seismic experiment or an earthquake.

An important issue is how the estimates are affected by random noise when a log-
arithmic transformation is applied to the data (Menke, 1984, p. 147). To gain some
insight into this problem, consider the response of a noisy receiver:

§(2, w) — (Ae——ai + 6) e @+krdte) (12)

where ¢ and £ are independent random variables characterizing the noise. The natural
logarithm is used to separate the amplitude and phase data. The variance of the phase
data is

Var (3 [In5 (2,w)]) = Var(e) . (13)

This variance is unaffected by the transformation, and consequently the inversion for )
and k, will also be unaffected. Using a series expansion, the variance of the amplitude
data is approximately

eai

Var (R [Iné (2,w)]) ~ Var (¢) - (14)

Because @ > 0 always, this variance increases as a function of z, and the inversion for
In A and a is adversely affected. However, we found that in field data the increase in
the variance is small. We believe that the benefits of the logarithmic transformation
(viz., the simplicity of fitting a straight line to data) outweigh this detriment.
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Another important issue is the effect that other waves with small amplitudes have
on the aceuracy of the estimates for the tube wave. To gain some intuition about this
effect, imagine that two waves are present. The response of the receiver is the sum:

§(2,w) = Are~EeHOrHhnd) | g, o= crtei(trthnd) (15)

where Ay > Agz. Index 1 refers to the tube wave, and index 2 to either a pseudo-
Rayleigh or leaky wave. Taking the natural logarithm and using a series expansion, the
real part is

A
Rns(Zw)] =4 —a12+ A—ze—(az-al)z cos{(dg — ¢1) + (kra — kr1)2] , (16}
1
and the imaginary part is
. ., A2 _tag—an)z
Snd(zZ,w)] =1 + k12 + ﬁe (az—a1)z gy (P2 — b1) + (kp2 — krr1) 2] . 17)

Both parts of the response have small oscillatory components that decay exponentially
with distance (assuming that ap > a1). Consequently the presence of an additional
wave with relatively low amplitude will have liftle effect on the estimates for the tube
wave.

CONCLUSIONS

We have developed a new processing method based upon a transformation used in
homomorphic signal processing. The method can estimate the parameters of one guided
wave when the amplitude of that wave is much larger than the amplitude of any other
waves. Although we have demonstrated this method by processing only a tube wave,
the method could be applied to other types of guided and surface waves.

With the new processing method, accurate estimates for the wavenumber were ob-
tained when only a few seismograms were available and when the seismograms were
irregularly spaced. The estimates of the attenuation coefficient were seemingly ac-
curate when many seismograms were available but were inaccurate when only a few
seismograms were available. No spurious estimates were generated as they are with the
Prony-based method. In general, the new processing method estimates the parameters
of the guided wave better than the Prony-based method does.
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APPENDIX

In this appendix the terms in the residual vector, defined in equation 8, will be explained
in detail.

For the inversion of the phase data, the residual vector is

S [In §(z1,w)] Z 1
o S‘:[In.'s'(:zz,w)] 3 5::2 1 ( ;Z;_ ) (A1)
S [In 5z, w)] v 1

where each offset is indexed by a subscript ranging from 1 to N. If we compare the
right hand side of this equation with that in equation 8, we see that the N x 1 vector
is d, the N x 2 matrix is Z, and the 2 x 1 vector is m.

When the inversion includes data from successive depths or from multiple sources,
the residual vector must be slightly modified. The modification is based upon the
assumption that k. is the same for each data set but ¢ is different. When two sets of
data are used, for example, the residual vector is

%[lnE(l)(ZDM)] \ 3 10
%1 ‘“(1)- ": L fr
oo | SEPevw)| | ey 100 ) (A.2)
S |In 52 (21, w) 2 01 @ | |
Cx "(2): \ v 01
\ \5‘[1118 (ZN:W)] /

The superscript denotes each set of data.

For the inversion of the amplitude data, the residual vector is constructed using all
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frequencies of interest:

( §R[ln§(z1,w1)} \ 21 1 .. 0 0 \
: P | —a(w)
R Ins(zn,wy)] zy 1 --- 0 O In A{w:)
r= : - P : (A.3)
R [n 3(z1,war)] g 0 .-« z 1 —a(war)
: P Do |\ Ind(ww)
Rnd(zn,war)] 0 06 --- 2y 1

where each frequency is indexed by a subscript ranging from 1 to M. If we compare
the right hand side of this equation with that in equation 8, we see that the NM x 1
vector is d, the NM x 2M matrix is Z, and the 2M x 1 vector is m. To include data
from successive depths or from multiple sources, the residual vector is modified in the
same manner that the residual -vector for the phase data is modified.
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Figure 1: Data (above and overleaf) used to test the homomorphic processing method.
The sclid rectangles indicate those seismograms used to test its performance when
only a few seismograms are available. The solid circles indicate those seismograms
used to test its performance when only irregularly spaced seismograms are available.
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Figure 2: Parameter estimates for the tube wave (solid circles) obtained with the
homomorphic and Prony-based methods using the complete data set (Figure 1).
The open circles are spurious estimates generated by the Prony-based method.
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Figure 3: Variances of the residuals for (a) the phase data and (b) the amplitude data.
The data were processed with the homomorphic method using the complete data

set (Figure 1).
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Figure 4: Parameter estimates for the tube wave (solid circles) obtained with the
homomorphic and Prony-based methods using 4 seismograms from the complete data
set (Figure 1). The lines are the estimates obtained with the homomorphic method
from the complete data set (Figure 2). The open circles are spurious estimates.
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Figure 5: Parameter estimates for the tube wave (solid circles) obtained with the
homomorphiec method using 6 irregularly spaced seismograms from the complete
data set (Figure 1). The lines are the estimates obtained with the homomorphic
method from the complete data set {(Figure 2).



