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ABSTRACT

The elastodynamic body-wave field outside a fluid-filled open borehole due to a monopole
source in the fluid, is reduced to the radiation-field due to a suitable equivalent force
system (EFS) in the absence of the borehole, consisting of a monopole plus a vertical
dipole. Theoretical seismograms of the EFS displacements in the solid are shown to be
in excellent agreement with those obtained from the exact solution to the fluid-filled
open borehole problem.

INTRODUCTION

One of the major contributors to the complexity of boundary-value problems pertaining
to theoretical modeling of exploration elastodynamics is the presence of both vertical and
horizontal discontinuities. It has been known for a long time that it is sometimes possible
to replace certain boundaries by a system of images, provided the extra stresses and
displacements induced by these images could indeed mimic the discontinuities caused by
the said boundaries (e.g., Ben-Menahem and Singh, 1981). In this vein, we show that
part of the field created by a monopole source acting on the axis of a fluid-filled open
borehole surrounded by a homogeneous and isotropic formation can be reconstructed
with the aid of an equivalent force system (EFS) that mimics the geometrodynamic
effects of the borehole. The advantages of the EFS are twofold. In the first place
it simplifies the physical setup and brings many seemingly different problems into a
common denominator in a sense that they are reduced to fields of known basic force
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systems. Second, and this is not less important, much computer time is saved and
numerical complexities are avoided.

The history of borehole elastodynamics goes back to Heelan (1953) who first obtained
a closed-form solution for a finite line source in an empty borehole. Cheng and Toksdz
(1981) calculated the acoustic field inside the borehole and Lee and Balch (1982) followed
with the far-field radiation in the surrounding solid. We have used this later solution to
test the validity of our model.

THEORY

The geometry of the fluid-filled borehole and the various coordinate systems are shown
in Figure 1. The source is a volume injection Vj on the axis with dimensionless time
function g{t). Lee and Balch (1982) have shown that the spherical components of the
far-field displacement in the elastic solid are given by

< P Vo oy R

.. Pr Vo ’ _E
w = LB oage-2) @)
ug = 0, (3)

where a prime ('} indicates differentiation with respect to time, & and 3 are respectively
the compressional and shear velocities in the solid, and p and pf are the densities in the
solid and fluid respectively. The amplitude coefficients are given by

_ 1 B 2
Ap = F_p (1 - 2? COs 6) f (4)
2 .,
A, = —I;—51n9c056, (5)

L3

where the quantities I'y, I's, A, €, and ¢, are defined as

T, = A(l—e?‘;cos29), - (6)
ri = A (1 — €2 cos? 8) , (7)

.
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Expanding I'; L(cos? §) and I’y }(cos? §) in power series of €2 cos?# < 1 and eZcos? § < 1
respectively, we obtain

2_2 2 0 E2 62—252/32
Ap o l_{.uﬁix_.cosze_!_ p(p )

A A A

cos*f + O(eg cos® 8), (12)

4, = 2 smicos9 {1 + €2 cos? 8 + et cos? 8 + O(e8 cos® 9)] . (13)

Substituting Eqgs. (12) and (13) into Eqs. (1) and (2) respectively, and noting that
€2 < 2f%/a? < 1 we obtain, O(e2 cos? )

- et L Ry 2,

UR = g 79 (t—a) 1——(2—-a2 5)cos 6|, (14)
_ 2u il R

ug = A Inp Rg(t_ﬁ) sin # cos 6. (15)

Consulting our catalog of source fields in the Appendix, we find by inspection that the
displacements given in (14) and (15) are induced by the following sources:

() A monopole source with moment My = Vopro®/(pf/p+ B%/a?),
(b) A dipole in the z-direction with moment M = —(28%/a® — €2) M.

This model can be successively improved by adding quadrupole terms (o< cos? §) and
higher order multipoles. It is also worthwhile mentioning that the sensitivity pattern of
a hydrophone (pressure sensing device) in a fluid-filled open borehole is also given by
the ESF, due to reciprocity. .
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NUMERICAL RESULTS

To illustrate the simple theoretical results obtained, we have computed the elastody-
namic field due to a volume injection source on the axis of a fluid-filled open borehole
and compared it to the fleld caused by the system of forces described in (a) and (b)
above. Figure 2 shows the setup in the borehole case as well as the fluid and solid
elastic parameters. The dimensionless source time-function is chosen to be the second
derivative of the Blackman-Harris window function (Harris, 1978). The duration of the
pulse is 1.35/f., where f. denotes the center frequency of the pulse taken here as 1
kHz. The displacements in the solid in the borehole case are calculated assuming a
volumme displacement source v{t) = Vog(t). Its Fourier transform is denoted as V(w).
The displacement potential corresponding to such a source is given by

1 “+oo —i;‘"};R ) .
(b{n(r,(p,z,t) = 'z';r-f ‘_V(w)e R e‘wtdw) (16)

-0

where R = (r2 + z2)1/2, In the borehole fluid, the displacement potential can be cast
as the sum of an incident and a reflected field (Kurkjian, 1986)

7 [T .
47 J_co

/ T ik [Hé”(kh) + A(ks, w)Jg(k{r)] e~k (17)

—co
where the radial wave-number in the fluid is given by kf = (w?/a? — k2)1/2. In the

solid, the displacement field can be expressed in terms of the compressional and shear
potentials as

u(r,t) = Vé(r,t) + V x [(x, t)e,] . (18)

These displacement potentials can be cast into a form similar to the one used for the
fluid potential

_ i +eo it oo (2) o —ik z
o(r, 0, 2,t) = - dw V{w)e dk; Bk, w)H;" (kZr)e , (19)
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where k& = (w?/o? — k2)1/2 and kf = (w?/B% — k2)1/2. The unknown coefficient
functions A(k,,w), B(k,,w) and C(k,,w) are found by imposing the continuity of the
normal stress and displacement, and the vanishing of the shear stress at the fluid-solid
interface (r = a). Once these coefficients are found, the displacements in the solid
can be computed from Eq. (18). The integrals in Egs. (19) and (20) are numerically
evaluated following the same procedure as in Tsang and Rader (1979). Figure 3 shows
the radial and axial components of the particle displacements at the receiver positions
shown in Figure 2 for both the monopole source on the axis of the fluid-filled borehole
(solid curves), and the EFS in an infinite homogeneous elastic medium (dotted curves).
The first arrivals in these waveforms correspond to the P-wave followed by the S-wave.
The EFS displacement waveforms were computed with the expressions given in the
Appendix. Notice the excellent agreement between the waveforms.

CONCLUSION

QOur results confirm the notion that boundaries in elastodynamical configurations can be
replaced by force systems which may reproduce with sufficient accuracy, part or parts
of the total field. Thus, our EFS excludes tube waves. To obtain these, one must add a
field of a supershear moving source for the case where the tube wave velocity is greater
than the shear wave velocity in the solid (de Bruin and Huizer, 1989; Ben-Menahem,
1990). A further extension of our results to the case where the borehole intersects a
horizontal bed boundary, separating two elastic solid media, is now underway.
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APPENDIX A: DISPLACEMENT FIELDS OF SIMPLE SOURCES

In an unbounded isotropic-homogeneous elastic medium, the far-fleld spectral Green’s-
tensor G {Ben-Menahem and Singh, 1981) has the explicit form

52 g—ikaR e—iks R
drpG(rirg;w) = 2 °ReR + 7

(egeg + egey) + O(kE2R_2), (A1)

where ko = w/a, kg = w/f are the respective P and S wave-numbers, w is the angular
frequency, p is the solid’s tigidity and (eg, es, e, ) are field unit vectors in a spherical
coordinate system (Figure 1).

In terms of the above tensor, the elastodynamic far-field displacements of some
sources are: ’

Single-force: u = F{w)G - g, (A.2)
Dipole in e-direction with moment Mo(w)a: u=-My(w)ee: VG, (A.3)
Explosion: u=-My(w)V-G, . (A.4)

where the force acts along the e-direction, its spectrum is denoted by Fy(w), and dif-
ferentiation is carried out in field-coordinates (V = —Vg).

We shall need the gradient of G, obtained by a straightforward application of the
operator V to both sides of (A.1)

. [2e~ikaR  e—iksR N
—47pVG = iky— ————eregeg + kg (eregey + egeye,) + Ok “R™“YA.5)
a2 R R
Using the matrix-relation
er sinfcosyp cosfcosy —sing en
e, | = | sinfsing cosfsing cose e |, (A.6)

e, . cos @ —sind 0 e,
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we obtain from the combined use of (A.1})-(A.8) the following far-field displacements
in time-domain, with f() = o= [T Fy(w)e™tdw, m(t) = = 0 Mo(w)e**idw, and

8/8R = —c=18/dt:

I. Single-force in the z-direction (e = e,):

up = M[ flit— )]cosf?
up = 47?“[ =ft- —)] sin

u, = 0.

II. Single-force in the x-direction (e = ez):

1 1 R.
ug = m [-éf(t - E)] sinf cos ¢,
ug = ﬁ [%f(t - -‘g)] cosf cos p,
Uy = ~ T | B [ fi- —)] sin .

IT1. Explosion with moment m(%):

o = b (L B
R = dro(X+2u) LR a’]’
ug = 0,
u, = 0,

where a prime (’) indicates differentiation with respect to time.

IV. Dipole in the z-direction (ee = e,e,), with moment m(t):

(A7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)
(A.14)

(A.15)

s,
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_ 1 1, RJ. .,
URZ ol +20) [Rm ( a)]“’s g
ug = _ﬁ [}%m’(t--g)] sinf cos 8,
U, = 0.

V. Dipole in the z-direction (ee = e,e,), with moment m(t):

_ 1 1 r R L] 2
R T ra(h+2m) [Rm - a)] S cos e,
W = g )] mocostens’,
1 1, R . .
= e |/t - = :
Uy p— [Rm { ﬁ)} sin @ sin ¢ cos @

VL. Dipole in the y-direction (ee = eye,), with moment m(t):

— 1 1, R .2, .0
up = Iralht 90) [Rm (t a)] sin” @ sin” ¢,
_ 1 1, R . L
e = drpp [Rm (t 3 ]sm&'cos@sm v,

1 1 ' R
[ P . . ‘
uﬁa 411-“6 [Rm( ﬁ)] SIIIBSln(pcos(p
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(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

VII. Dipole in the z-direction plus dipole in y-direction with same moment m(t):

1 1 ,. RJ. .,
[ — —_—— g
YR dra(\ + 2u) [Rm ¢ a)] S
101, R,
ug = pr—s {Rm(t“ﬂ)] sin & cos 8,

u, = 0.

(A.25)

(A.26)

(A27)
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Figure 1: Geometry of the primary source on the axis of the borehole (z). Sensor is
at Q(z,y, z) in cartesian coordinates, (R, 6, ¢) in spherical coordinates and (r, ¢, 2)
in cylindrical coordinates. Displacement vector at @ is (up,ug, uy). The borehole
radius is @ and py and ajy are respectively the density and compressional velocity of
the fluid. The elastic parameters of the solid medium are («, 3, p), denoting P-wave
velocity, S-wave velocity and density respectively.
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Figure 2: Source and receivers arrangement for the numerical example. Receivers mea-
sure radial (u,) and vertical (u,) particle displacements. Also shown are the fluid

and solid elastic parameters.
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Figure 3: Particle displacement waveforms in the solid. The solid curves are for the case
of a monopole source on the axis of the fluid-filled borehole, and the dots correspond
to the EFS in an infinite homogeneous elastic medium. (a) Radial component. (b)
Axial component.

o,



