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ABSTRACT

The work of Heelan (1952, 1953a,b) was one of the first studies of wave propagation
from a cylindrical boundary. Heelan attempted to model the radiation emanating from
a ¢ylindrical shot hole filled with dynamite. To do so he applied a constant stress to
a finite length of an empty infinite cylindrical cavity embedded in an infinite elastic,
homogeneous medium. The stresses he considered were axial, torsional, and radial
stresses. The radial and axial stresses were required to be proportional to each other
and of the same duration.

To date Heelan’s work has been referenced in over 100 articles and 15 different
journals including recent works (Paulsson, 1988) . His results have also been compared
with results from the reciprocity theorem (White, 1953, 1960) and played an integral
part of important books including those by Brekhovskikh (1960, 1980) and White
(1965, 1983). His fundamental contributions were the description of shear wave lobes,
the famous four-leaved rose, generated from a radial source in a borehole and that the
radiation patterns for an axial source and a torsional source in a borehole have the
same geometries as the point axial and torsional sources in infinite media.

Despite the importance of this work, Heelan’s results have been criticized by Jordan
(1962) who dismissed the work as mathematically unsound and Abo-Zena (1977) who
devoted an appendix of his 1977 paper to criticizing Heelan’s results. The main point
of contention has been the use of contour analysis in his first paper (Heelan, 1953a).

Although Heelan’s work did not include a fluid-filled borehole which is a crucial
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omission for our purposes, his work may nonetheless be seen as a starting point for the
modelling of downhole seismic sources. For instance, Lee and Balch (1982) developed
radiation patterns for fluid boreholes which were simple extensions of Heelan’s results.
Additionally, one particular application of Heelan’s theory is in the preliminary devel-
opment of downhole seismic sources that often require dry holes until the electronics
can be properly shielded. For that reason, an exhaustive examination of the mathe-
matics and physics that went into Heelan’s first paper was undertaken to determine if
his formulation was correct.

The fundamental basis of Heelan’s work was a variant of the Sommerfeld integral,
an integral of cylindrical waves, in which he unfortunately did not specify the contour.
To overcome this obstacle of an unknown contour a parallel method suggested by
Brekhovskikh (1960, 1980) was implemented. Brekhovskikh used the Weyl integral,
an integral over plane waves, to duplicate Heelan’s results for the radial and torsional
stresses. However he does no justification of the extensive algebra or analysis involved
and does not include the effects of axial stress. Thus in this paper, we have completed
and elucidated the work that Brekhovskikh initiated and moreover indirectly verified
that Heelan’s results were correct.

Additionally, we found that Abo-Zena’s and Heelan’s initial formulations were
equivalent. The only difference was in a reversal of the separation of variables pro-
cedure necessary to replicate this work and also in Abo-Zena’s use of the Laplace
transform where Heelan used the Fourier transform. However, Abo-Zena’s results do
extend Heelan’s by allowing the source function to vary over the distance in which it
is applied. The far field results of Abo-Zena and Heelan are equivalent (White, 1983)

only if a — correction is applied to Abo-Zena’s results.
I

The first half of this paper is very involved mathematically but much of the algebra
is relegated to Appendix A. Having verified that Heelan’s results were correct we then
proceed to compare Heelan’s results with well established point source representations
known in the literature (White, 1983) and also with radiation patterns from point
sources and stress sources in a fluid-filled borehole (Lee and Balch, 1982). These com-
parisons will help us isolate the propagation effects of the fluid and the geometrical
effect of the borehole. One unique aspect to our approach will be the consideration of
radiation from boreholes surrounded by varying lithologies instead of just the Poisson
solid as is commonly done. The lithologies to be considered include a soft sediment
(Pierre shale) and two more indurated sediments, Berea sandstone and Solenhofen
limestone. By following this approach we show that the effect on the radiation magni-
tude can be substantial due to changes in lithology in addition to isolating the relative
effects of the borehole and the fluid.

o
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A DEFENSE AND ANALYSIS OF HEELAN’S RESULTS

Heelan published two papers (1953a,b) based on his thesis work (1952) which have
been very influential in the description of downhole seismic sources. His first paper
entitled “Radiation from a cylindrical source of finite length” showed the calculation
of radiation from axisymmetric radial, axial and torsional stresses applied to a short
length of an infinite cylindrical cavity embedded in an infinite elastic medium. Heelan’s
work was important because it was one of the first in geophysics to look at radiation
from cylindrical objects. Heelan believed that applying stresses to a short length of an
infinite cavity was a good model for modelling radiation from dynamite placed in cylin-
drical shot holes. However, the radius of his infinite cavity did not correspond exactly
to the radius of the shothole but instead to the radial distance at which deformation
becomes elastic following an explosion, Sharpe’s equivalent cavity {Sharpe, 1942). His
second paper was entitled “On the theory of head waves”. This paper utilized integral
expressions from the first paper to calculate head waves propagated along an interface
due to spherical waves generated from a dynamite source. However, in this second
paper Heelan only used the results for radial and torsional stresses since he surmised
that explosions would not likely generate significant axial stresses. The results from
Heelan’s first paper on radiation will be the exclusive focus of this paper.

One major limitation of Heelan’s work when discussed in the context of modelling
downhole seismic sources is that the cavity Heelan used is empty. For most practical
purposes the borehole will be under the water table so will be fluid-filled. An empty
cavity implies that the wall of the cavity can be treated as a free surface and no
continuity of displacement boundary conditions are allowed. Nonetheless, qualitatively
at least, propagation from an empty borehole is a midpoint between propagation of
point sources in infinite media and the propagation from a fluid-filled borehole so
Heelan’s results are important for our study here. Finally, there are occasions, for
instance during seismic source development, that source excitation must be performed
in dry holes (Paulsson, 1988).

Heelan’s results have been cited in over 70 references and 13 different journals since
1953 including recent works (White, 1983; Paulsson, 1988). One of his major results
was that compressional waves could be induced by an artificial source (dynamite)
although at the time many researchers believed only P waves would be generated from
such a source or that § waves observed from explosions were in fact of secondary
origin. Another major contribution Heelan made was to calculate radiation patterns
with simple geometric interpretations, the four-leaved rose for Sv radiation and the
peanut-shaped pattern for P waves both from a radial source. Finally, his work has
been used by others in further developments and research. For instance, the bulk of
Heelan’s analysis is replicated in Brekhovskikh’s book “Waves in layered media”(1960,
1980). Additionally, there are many important references to Heelan’s work by White



360 Meredith et al.

(1960, 1965, 1983) who used the reciprocity theorem and results from White’s earlier
paper (1953) to duplicate the radiation patterns from Heelan’s paper. Thus White
claimed confidence in the results from both techniques.

Almost all of the references of Heelan’s work to date have only utilized the figures
Heelan produced {Heelan, 1953a, Figures 2-4) without looking at the properties im-
plied by the formulas used to produce the figures. Some of the implications are quite
profound, especially the dependence of radiation amplitude on shear wave velocity.

Despite the importance of Heelan’s work it has come under severe and justifiable
criticism due to omissions in his papers and other matters. Another reason we feel
Heelan’s work has been criticized is due to the complexity of his algebra. The criti-
cism comes in different forms, for instance, Jordan (1962) dismissed Heelan’s work as
mathematically unsound while Hazebroek (1966) pointed out that Heelan’s analysis
was improperly entitled since the cylinder was not closed. The most severe criticism
has come from Abo-Zena who wrote a paper with a title similar to Heelan’s first which
was entitled “Radiation from a finite cylindrical explosive source” (Abo-Zena, 1977).
In this paper, Abo-Zena devotes the appendix to criticism of Heelan’s work.

White (1983) points out that the far field results of Abo-Zena (1977) are in fact
equivalent to Heelan’s results. Heelan’s and Abo-Zena’s patterns are equivalent except
for a scaling factor in the denominator which is Lame’s parameter g which does not
affect the geometric shape of the radiation patterns but has a large effect on their
amplitudes. We will demonstrate that the initial formulations of Abo-Zena and Heelan
are equivalent and will show through verifying and extending Brekhovskikh’s work that
in fact Heelan’s results are the correct results. However, despite the incorrectness of
the scaling factor in Abo-Zena’s work, it is in fact an extension of Heelan’s work in
that non-uniform stresses may be applied over the finite cylindrical cavity instead of
the uniform stress applied over a cylindrical length required by Heelan.

One major problem in answering the criticisms of Heelan’s work was that Heelan did
not specify the complex contour C used in his analysis in either his papers (1953a,b)
or thesis. Nor did he specify how the introduction of his source terms might affect
his contour. It can be seen that Heelan’s analysis is broken down into integrals of
cylindrical waves, a Sommerfeld integral type problem, but the precise definition of
the contour hampers proof of his results. There was no pictorial sketch and his verbal
description of a loop was imprecise. Another difficulty leading to some of the criticisms
was the complexity of the algebra Heelan produced and some of his unconventional
though correct mathematical manipulations.

A more concrete treatment of the problem of radiation from cylindrical sources was
initiated by Brekhovskikh (1960, 1980) referencing Heelan’s work which clearly broke
the wave propagation problem down into homogeneous and inhomogeneous plane waves
using the Weyl integral. Heelan had used cylindrical waves, the Sommerfeld integral,

P
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instead of plane waves so to substantiate that the results of Brekhovskikh and Heelan
are equivalent requires justification. Brekhovskikh’s treatment is more straightforward
and established than Heelan’s and relies on the Weyl integral and contours very well
known in electromagnetic theory (Stratton, 1941). Our contribution will be to follow up
on the technique Brekhovskikh suggested and add important additional elucidation and
analysis and confirm that Brekhovskikh’s preliminary resuits are correct. Brekhovskikh
did not calculate the effect of axial stress sources and that will be done here. This
contribution is important in view of the criticism that Heelan’s work has received and
in our opinion independent corroboration through the techniques of Brekhovskikh is
needed to answer the criticism.

Finally, a comparison will be made between the radiation patterns derived from
Heelan/Brekhovskikh for a stress applied to the short length of an infinite elastic cavity
and well known results for a point source applied in a particular direction in an infinite
medium and a vertically incident force on a free surface as presented by Miller and
Pursey (1953). This comparison of radiation behavior will allow separation of effects
of the empty borehole from effects due to wave propagation in an infinite medium.

Heelan’s Analysis

In Heelan’s model, stresses are applied over a finite length of an empty infinite cylinder
and on the boundary between the cylinder and infinite medium. The geometry is shown
in Figure 1.

Heelan calculates the radiation for two uncoupled wave propagation problems with
axisymmetric sources in axisymmetric media. The first problem he solves is the P~ Sv
axisymmetric problem where the displacement potentials ¢, are calculated. But
unlike the most common treatments for axisymmetric problems (Biot, 1952; White,
1965, 1983) Heelan does not recode 9 as was shown in Case 3 of Part 1. Therefore his
analysis corresponds to Case 3 for the P — Sv problem and Case 4 for the Sh problem
of Part I. Also, in a highly unusual manner Heelan uses —1 instead of ¢ as his Sv
displacement potential which affects the signs of his boundary conditions. Nonetheless
due to symmetry considerations this does not affect the final results. It must be pointed
out however that Pilant (1979, pg. 45) and others also used this convention and it is
perfectly legitimate.

Because axisymmetry was assumed, there is no dependence on the # component
and no summation over #. Therefore, Heelan writes his potentials ¢,4, ¥ with the
following integral transforms

¢ = Re [ooe’-kv‘E dk/ folo, k)H((}l)(ar)ez“" —*¥ do (1)
0 c
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P = Ref etV dk/;go(g’k)Hél)(o-r)eZ\/;?—_hfdd
0

X = Re f eVt dk jc no(o, k)HS (a7)eV7 ¥ 4o
0

In Heelan’s notation, V and v are the compressional and shear wave velocities, k, h
are wavenumbers and kV = hv, ¢ is an axial wavenumber, Vo? — k2 and Vo? — A2
are the radial wavenumbers, e'*V? is the positive time dependence, and r is the radius
of investigation. It is important to recognize that £V = hv can be set equal to radial
frequency w. To check that this is permissible, we divide through by velocity and
obtain the desired units for k, h, cycles over distance. This recognition of the kV
integral as a frequency integral helps in comparing the analysis derived from the above
equations with other author’s developments. However, henceforth we will use the k,h
symbolism to facilitate comparison with Heelan’s and Brekhovskikh’s results.

Heelan’s notation caused us some initial difficulty because of the unusual treat-
ment of the wavenumber term k. The wavenumber k is usually evaluated as an axial
wavenumber that varies with the inverse of phase velocity (¢) but in this development
k is evaluated as a wavenumber that is fixed under the axial wavenumber (&) integral.

The usual definition of k is E)c— and in Heelan’s paper & is evaluated as _w‘? and similarly
for h.

Another departure from conventions in describing sources from sonic well logging
purposes was that the integrals of Eq. 1 represent a Hankel function of axial wavenum-
ber multiplied by » instead of radial wavenumber multiplied by r, the common con-
vention. This was due to a reversal of the final two steps in the separation of variables
procedure Heelan used to obtain his wave functions. However, in separating his vari-
ables in this manner his results closely resemble the Sommerfeld integral which will be
shown later.

In Part 1, it was shown that the most common method to separate variables
is to first separate in t yielding a time function €™, (¢*V!) then in z yielding a
depth function e*+* (¢*°%) and then finally in r yielding a modified Bessel or Hankel
function of radial wavenumber times radius Hél)(lr),Hél)(mr), where | and m equal
2o ively or in Heelan’ ion Vo2 — k2, v/o? — h?
i SRV L ﬁ_z respectively or 1n Heelan’s notation vV o° — &%, v o° — h=.
Heelan’s separation of variables strategy (Heelan did not specifically address this
issue in his thesis or papers) was to reverse the final two steps and put the radial
wavenumber under the exponent of z, To wit, we begin having separated the variables
over frequency, but we ignore § because of axisymmetry, rewriting Eq. 1:47 (equation

S
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numbers from Part I will be designated I:)

Rﬂ' lR! 2 ZH’
R A A @)

The traditional method then further separates variables by bringing only the term
H

— over to the right hand side and setting it equal to the axial wavenumber k2 (¢2).

Heelan rearranges this separation of variables in a different manner as follows. He
brings both the Z term and the wavenumber term over to the right hand side yielding

which solutions in R are Bessel functions, modified Bessel functions or Hankel functions
of order zero as explained in Part 1. Heelan uses the radiation condition to limit his

solutions to outgoing waves governed by the Hankel {function Hél)(or).

Heelan’s separation of variables then proceeds

N

- - (62 —k*) =0
Solving for Z yields the function
7 = ezv‘az—kz (4)

An identical procedure is followed for the integrals dependent on h. Thus we can see
that the equations and the boundary conditions that Heelan solves are comparable to
the developments in Part I - the only difference is a rearrangement of the separation
of variables procedure. To obtain the general solution we must superpose all potential
solutions and thus integrate over all of the values of our parameters ¢ and w. The
displacement potential ¢ becomes

o0 (= .
¢ =] / Alo, k)Hél)(ar)ez"" —* eVt 4o dke (5)

but we must allow compiex values of the axial wavenumber o so Heelan from conception
evaluates Eq. 5 as a contour integral

b= [ [ AetyE on)eV R e dodk (6)
-0 JC

Heelan specified that ¢,%,x are real and thus he is able to use a one sided Fourier
transform operator Re[5° e’*V*dk as a shorthand notation (see the first few pages of
Brekhovskikh (1960)). Since this has been the source of some criticism a proof of
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the validity of his operator is presented in an Appendix. Heelan writes his coeffi-
cient function as f,,g,,n, and thus his integrals for the displacement potentials are
g
(Eq. 1)(Heelan, 1953a, Eq. 5)
=] - . -
6 = Re f kY f folo, YHD (or) VTR ikVi g g N
0 c
% = Re / eVt f go(0, k) HD (07)e VTR ¥ Vi 4o g
0 c

oo N -
x = Re-/(; e’kwLho(a,k)Hél)(ar)e'““ —M e Ve dke

We have used the potential symbol 7 instead of ©® which Heelan used. Heelan states
-0

in a footnote to his first er (1953a) and his thesis (1952) that if f, = ———=

in a footnote to his first paper ( a) a is thesis (1952) that if f, W

then the contour C' can be deformed onto the real axis and the resulting integral is
eikR
the classic Hertzian oscillator ——, where R = +/r? + 2?. The resulting integral upon

doing this substitution is the Sommerfeld integral as shown below.

We assume temporarily Heelan’s supposition is correct and that the unknown con-
—a

tour ¢ can be deformed onto the real axis after the substitution of f, = — e
fo 2vVo? — k2

and obtain the integral

¢ = Rej f ST sz(l)(ar)e“"“k e Vidodk (8)
T

We temporarily set aside the integral with respect to k (our integral with respect to
normalized frequency). We recall the following integral (Gradshteyn and Ryzhik, 1980,
4th edition, Eq. 6.616.3; Erdélyi et al., 1953, Eq. II-7.14.53)
oo eia\/r7+..~:5
T HMN (r/a? — 12)dt = —2i e 9
L ene Y~ ®)

with arguments restricted to the domain
0 <argVa? —12 < 7,0 < arge < © rand x are real

Putting Eq. 9 into Heelan’s notation we obtain

lk\/r§+z§
:tzH(l) B2 iNdo = — 24— 10
I (VET =)o = 2 e (10)
Now we substitute it = vo? — k2 and simplify
1) p)e VT F g = E
Rz, _
2f x/_v—HD (or)e o=— (11)
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Setting aside the integral over k& we can sece that Eq. 11 and Eq. 8 are in fact equivalent.
The range limitations on Eq. 9 are satisfied if we assume k has a positive imaginary
component which requires attenuation.

An important note is that the integral resulting from Heelan’s supposition (Eq. 11
is in fact a Sommerfeld integral. Aki and Richards (1980, Eq. 6.7) identify the Som-
merfeld integral as the following

°°0'J00’T‘B' Vol gz
f ( 0)2—L2 do (12)

which they later rewrite (Akl and Richards, 1980, Eq. 6.15)

1 % ST T

2/ ﬁ[fél)(aﬂe‘ o=k g (13)
both equations having been rewritten in Heelan’s notation. A difference in phase :
is attributed to Aki and Richards definition of radial wavenumber. The integrand is
identified as a cylindrical wave governed by axial and radial wavenumbers. Comparison
with Eq. 11 shows the equivalence. Thus Heelan’s results represent the decomposition
of a spherical wave into cylindrical plane waves.

Heelan next proceeds to match boundary conditions. His boundary conditions at
the empty cavity are vanishing of normal stress and tangential stress for the P-Sv case
and vanishing of azimuthal stress for the Sk case. Because the cylindrical boundary
is a free surface there is no continuity in normal displacement boundary condition. As
mentioned before, in an unusual manner Heelan equated his potential % to the negative
of the potential ¢ discussed in Chapter 2. Thus the stresses below are reversed in sign
for the potential ¢ from those presented in Part 1. The stresses are

8,84 %
_ 2 _— . 2T
pro= AVié+ 2 Hor\ar 37‘32) (14)
3
Prz — (2 + vg"’b 3 'ng)
_ 32 lax)
Pro = B2 " 7o

We add our stress formulae to our discontinuities in axial, radial, and torsional
stress - our stress discontinuities being our sources and requiring the sums to vanish.
Heelan mathematically formulates his sources with the following model. Stresses of
constant magnitude P,(,S are multiplied by a time varying amplitude factor G(t)
multiplied by a “boxcar” function in depth. The boxcar function is defined for a
cylindrical length ! centered at zero as F(z) =0 |z] > 1, F(z) =1 |z| <=1 The
boundary is at the radial distance r = a. We can equate our stresses to the boundary
condition as follows

PG)F(z) + pr =0 QGF(z) + pra =0 SG{)F(z) + prg =0 (15)
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This is a slight departure from Heelan’s notation. IHeelan uses the notation P(t),Q(%)
and S(¢) and specifies only in a parenthetical remark that they are proportional to
each other. What this proportionality means is that P(¢) and @Q{t) have the same
time function but different magnitudes. S5(¢) for most cases of interest would have
the same time function but because the P-Sv and Sh problems are uncoupled this is
not a requirement. By using the common time function G(t) we hope to clarify this
important relationship.

Heelan makes use of the Fourier transform of the boxcar function which is commonly
referred to as the “sinc” function

oo o .
F(z) = l/ sin lTe‘”dr
T J-co

r

and transforms it to

. . T
1 ./C'O'Slnh(lvakz k )ezmda (16)

Fz) = T a? —

using the mapping vo? —k? = ir, —7 < arg 7 < 0. This shows the general inte-
gral transform for our boundary conditions; we Fourier transform G(t¢) under k, and
transform F(z) under o. Heelan next brings the boundary conditions (Eq. 15) under
the integral and equates them. The results are algebraically complex and represent an
intermediate step which are relegated to Appendix A of this paper. Heelan uses quite
a few crafty substitutions which he did not divulge in his paper but are listed in the
appendix. His algebraic results were verified to be correct.

Heelan then suggests that in the farfield we can treat n,, f,, g, as being of small
argument and therefore can be expanded in the parameters borehole radius a and
the length of our finite cylinder I. An expansion in terms of small arguments is a
common procedure in problems of this type. Although not stated in Heelan’s work the
expansions for small arguments he used were verified to be the following

sinhz ~ (17)
) = 20

G = —

Hél)(z) = 2'11'422

The Hankel function expansions may be seen in Abramowitz and Stegun (1964, Eq.
9.1.8,9.1.9). However, Heelan never uses the Hp expansion because in his words “only

the predominant terms in the expansion were kept”. He uses the unstated justification
(1)
that as z goes to zero the limit of —[(]1) is zero and thus Hél) terms are discarded. A
Hy

v,
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similar argument was used by Abo-Zena (1977) with modified Bessel functions instead
of Hankel functions.

Using these expansions for small arguments, Heelan develops the following for
for9os o
GlkYAes  20? 2v? G(k)Ao
= p_2\V07 Z\R)AG
f 8mruvo? — k2( h? Vi 8rmyh? (18)
g = PG(k)A; " G(k)Ao
4mph 8rpvo? —
S G(k)Ao
n - —
¢ 8nuva? — h?
where A equals 2ma®! the volume of the equivalent cavity and A equals 4wal the area

of the equivalent cylindrical cavity. The extra factor of two in area and volume arise
from the fact that the length of the cavity is 2L

Heelan uses Eq. 18 to evaluate radial, vertical and tangential displacements and
places the results under the o integral. The formula for the displacements can be seen
from cases 3 and 4 in Part I, (Eq. I:32, Eq. I:36). However, again we remind you of
the sign change on the term .

99 9%
v, = r ~ Ordz (19)
3¢
U. = 8z rar(
_ 9x
Uy = B

Heelan then substitutes the asymptotic expansions for large arguments for the
Hankel functions into Eq. 19. At first glance this sequence of transformations may
seem confusing. It’s important to realize that Heelan uses the expansions for small
arguments of the Hankel functions at the boundary r = a (r is fixed) HM(ca) and the

asymptotic expansions in the far field where r is a variable going to infinity H;(,l)(ar).
The principal asymptotic expansions for large argument (Abramowitz and Stegun,

1964, 9.2.3) are
i T m/)
/ (——+or— —
H,Sl)(ar) = — 4 2 _ (20)

There is a misprint in Heelan’s paper (1953a) just before Equation 9 where a factor
of 20 should be %, the misprint was printed in its proper form in Heelan’s thesis
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(1952) and does not affect the final result. Upon substituting in the expansions for
. large arguments Heelan uses the method of steepest descent to evaluate the resulting
displacement integrals and obtain the far field displacements. The result for U, is

2k ; 2:h? cos? ;
U,- = ———-~———cos¢fo(0'1)e*:kR -_— —'-'_--"'"'z ool stgo(O'z)emlhR (21)
R R
The value 01,07 represent saddle points of the analysis 6y = —ksin¢ o7 = —hcos¢.

tan ¢ = T and R= Ve 4 22,
z

Heelan then uses the expressions for f,, go,n, evaluated at o;,0; and applies a
one-sided Fourier transform operator to the above equation. In applying his operator
Heelan utilizes the following relationships.

ct-2y = Re ]mefk"(f--"%‘)dk (22)
|4 ()

o .
%[G(t-gn = Re f ik VeV (=) gk (23)
1]

The difference between the two equations is the factor tkV. As seen in Eq. 21 a factor.

of & was introduced in the first term of the right hand side. This k in conjunction with
the ikV factor in Eq. 23 produces the derivative of the stress applied over time.

Having completed that analysis, the resulting far field radial and vertical displace-
ments for the P-Sv case and azimuthal displacements for the Sk case are then set up
as follows.

Uf = Urp+ UsrSu (24)
Uz = Uzp + Uz5v
Ug = wugsh

where Heelan uses the matrix representation for P of

Up |_| F(#)d Gr(¢) _E\ sing | _
U.p _| R q ot )}+ R S0 || Ceesg |70 )
and for the Sv case
AT TRPY P I
and for Sh
K d
Uesh (4{)) {SG(f _ .,,_} (27)

R dt

i
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where the factors Fy, F3,G2, Gy, K are Heelan’s radiation pattern formulas. Heelan
(1953a, eq. 12)

AL - 2icos
R(#) = e (28)
G = =t (29)
R(#) = S (30)
Ga(#) = St (31)
K(¢) = if:f (32)

Now the matrix formulation represented by Eq. 25 and Eq. 26 is slightly confusing.
At first glance the middle matrix in these equations looks like a 1 X2 matrix multiplying
the rightmost 2 x 1 matrix. However the middle matrix instead is in fact a 1 x1 matrix,
a scaling factor. We will therefore multiply out these terms to remove the ambiguity
and to facilitate comparison with Brekhovskikh’s results to be shown later. Writing

out the radial and vertical displacement components along with the contribution from
Ue, U, we have

g, = Hid)singd 1(“‘%5‘“ ¢ d (PGt - )} + ——G1(¢) sind g - & ) (33)
Fl(cf);zcosqb 4 pogs - R)} Gl(qS)cosqéQG(t E,
U, = ﬁﬁgfﬁfd{PGa 15} Eﬂﬂﬁffeaa =)
R )}+——iﬁ$ﬁgaa )
where the individual displacement components of Eq. 25 and Eq. 26 are
Up = DG L ipg - Ty DB og
v = DD L g Ly - GO g0 ﬁ)
Ups, = d®)coséd 2("’5}{“’5"5 < part - f)} 4 Gald)cosé °°S¢QG(«¢ f)
Usse = W(éésm‘i’ : (PG(t - R)} + ———(‘t’)s‘“%au f)

As can be seen from this system of equations, the P-wave components include contri-
butions from both the dilatational potential ¢ and equivoluminal potential 7 due to
the boundary conditions.
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The behavior of Heelan’s radiation patterns with variations in lithology are dis-
cussed later in this paper in comparison with well established point source represen-
tations and comparisons of related results for a fluid-filled borehole {Lee and Balch,
1982). Dimensionality analysis indicates that displacements calculated with these for-
mulas, including the stress term and ﬁ term yield displacements in terms of distance
units which is the proper representation.

The geometric shape of these patterns can be viewed in a qualitative manner in
Figure 2. It can be seen that F} which governs P wave propagation from a radial
source is peanut-shaped, Fy which governs Sv propagation from a radial source is a
four-leaved rose, (G1 which governs P wave propagation from an axial source is circular,
(G2 which governs Sv propagation from an axial source is also circular but inclined
perpendicularly to G, and finally K is also circular but similar to Gy. G1,G4, K are
qualitatively similar to what would be seen with a point source in an infinite medium.

Criticisms of Heelan’s Results

Although Jordan (1962), Hazebroek (1966), and Abo-Zena (1977) have criticized Hee-
lan’s work, Abo-Zena's criticism is the most comprehensive, he devoted a whole ap-
pendix of his paper to criticism of Heelan’s paper (1953a). Abo-Zena’s criticisms, some
of which are justifiable, will be answered here.

Abo-Zena has four principal criticisms. The first criticism is shared with Hazebroek
and is primarily an issue of semantics. Abo-Zena (1977) and Hazebroek {1966) point
out that Heelan’s work is not for a cylinder of finite length since contributions from the
ends of the cylinder are not considered. Thus Heelan’s results are not for an isolated
cavity but instead for a stress applied over a finite length of an infinite cavity which is
true.

The second objection Abo-Zena has is due to a typographical error in Heelan’s first
paper that is not present in Heelan’s thesis (1952). On page 687, Heelan describes
the functionals fy(o, k), go{(c, k), no{c, k) with k being a wavenumber. On page 688 the
lowercase k is mistakenly converted to a lower case r in the typesetting of the heading
- the heading displaying f.(o,7), go{0, 1), n0(o,7) and his thesis displaying the correct
folo, k), etc. (Heelan, 1952, pg. 19). Abo-Zena mistakenly interprets this heading as
requiring Heelan to evaluate f,, go, 7, as © goes to infinity thus yielding a point source
approximation. In fact, the dependence is not on r as a variable but = at the boundary
a which is a parameter. The far field expansion is done in the parameter a using an
expansion for small arguments. An example of the expansion for small arguments is
the approximation sina = a. Heelan does not evaluate his functionals in terms of r
thus due to a misprint this particular criticism is unjustified.

A third criticism of Heelan’s paper by Abo-Zena (1977) was related to Heelan’s

o

Ay

e
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use of a particular type of Fourier transform. Abo-Zena recognized Heelan’s operator
as a Fourier transform but stated that the boundary conditions could not he equated
under the integrand. It is shown in one of the appendices through the use of the Fourier
integral theorem that Heelan’s use of his Fourier transform was valid and just a short
hand notation for the more conventional Fourier trans{form operator.

A final criticism of Abo-Zena concerns Heelan’s contour integral analysis although
Abo-Zena does not show what the unknown contour is either. The issue of the unspec-
ified contour is the principal reason for this examination of Heelan’s work. Abo-Zena
states that the contour C from Heelan’s papers cannot be equivalent for each integral
and thus boundary conditions cannot be placed under the integral sign. However,
Abo-Zena does not prove this assertion but it is justified since Heelan’s contour was
not specified. We believe that Heelan did in fact use the same contour but without a
precise definition of what Heelan’s contour was we cannot verify his steepest descent’s
analysis nor his final results. Heelan did not specify his contour any more concretely in
his thesis (1952) than in his papers. For this reason a parallel development using the
Weyl integral (Brekhovskikh, 1960, 1980; Stratton 1941) as suggested by Brekhovskikh
(1960, 1980) will unambiguously demonstrate the correctness of Heelan’s results.

Abo-Zena’s Results

Abo-Zena (1977) also addressed the problem of wave propagation from a stress ap-
plied to a finite length of an infinite cylindrical cavity but approached the problem
in a slightly different manner. To begin with Abo-Zena only considered an applied
axisymmetric radial stress and neglected torsional and axial stresses. One important
extension of Heelan’s work that Abo-Zena made was to allow a longitudinally varying
stress F(f,2) to be applied at the boundary r = a whereas Heelan’s was required to
be a constant along the length of the cylinder. Abo-Zena chose to use the common
convention of recoding the potential ¢ to 1’ as explained in Chapter 2. This yields
reformulated boundary conditions but of course does not change the physics. Abo-
Zena uses modified Bessel functions Ky for ¢ and Ky for 4/ as in Chapter 2. Finally,
Abo-Zena’s work is different in that the integral transforms he used were first a Laplace
transform on the time variable and then a Fourier transform over z.

Abo-Zena’s transformed integrals over z are of the following form

o« .
] ocA(k,0)Ko(ryr)e?Zdo (34)
—O0

where 7L = vo? — k% slightly modified to conform with Heelan’s notation introduced
earlier. We can readily see that Eq. 34 is an integral over axial wavenumber and the
modified Bessel function is evaluated as a function of radial wavenumber. Remember,
that Heelan’s integrals have Hankel functions, an analogous Bessel function, evaluated
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as a function of axial wavenumber instead of radial wavenumber. Thus Abo-Zena’s
result is also a type of Sommerfeld integral.

Abo-Zena then solves the same boundary conditions as Heelan, vanishing of tan-
gential stress and vanishing of normal stress at the free surface by bringing them under
the transforms. Abo-Zena also uses the method of steepest descent to yield his far field
radial and tangential displacements. These equations are {Abo-Zena, 1977, Eq. 60,
61)

A 2'v e aF(to, 2)
YR T LEv T q”f TS A (33)

sin ¢/ BF—(toli).Et_%dto

Yo = T4rRIv

where these equations have been rewritten in Heelan’s notation. An important differ-
ence in these equations is that they are magnitudes of spherical coordinates instead
of cylindrical coordinates. If we assume that a factor ! will emerge from the last inte-
gral in these two equations we can rewrite Abo-Zena’s formulas in terms of the F1, F;
symbolism of Heelan as follows

R = 411'V(1 5 €08 24) (36)
A
s = ~ TR Sin 26

In comparing Eq. 36 with Eq. 28, Eq. 30 we can see that they alie very similar. In
fact, White (1983) labelled them equivalent, but as we can see a — factor present in

Heelan’s results is not present in Abo-Zena’s. This dependence onliamé parameter u
does not affect the geometry of the radiation patterns but will affect their magnitude
substantially. Dimensionality analysis shows that Abo-Zena’s formulae will not yield
function that have units of distance as displacements should. Additionally, in checking
the algebra in Abo-Zena's paper we found that in the calculations from Eq. 30 to Eq.

54 (Abo-Zena, 1977) a factor of 1 was inadvertently left off. We were unable to derive
H
Eq. 35 of Abo-Zena. Dimensionality analysis also shows that Heelans’ results were

potentially correct but completion of the work initiated by Brekhovskikh is needed to
clear up any final ambiguity.

Brekhiovskikh’s Treatment

Having shown that Heelan’s (1952, 1953a) and Abo-Zena’s (1977) results for radiation
patterns differ its important to check Heelan’s results carefully. Unfortunately, the
contour Heelan used in his integrals can only be guessed at. Contours for Sommerfeld
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integral type problems can be extremely complex (Aki and Richards, 1980, Chapter
6) so random guessing is ill advised. Therefore, through work building on Heelan’s
results initiated by Brekhovskikh (1960) who expands the fields in plane waves instead
of cylindrical waves, we will show in fact that Heelan’s results are correct.

Because the two editions of Brekhovskikh’s book (1960, 1980) have slightly different
section numbers it’s wise to note that the following analysis will exclusively reference
his second edition (1980). Brekhovskikh’s integral, fundamentally the Weyl integral, is
well known from both electromagnetic and acoustic theory and similar developments
are present in Stratton (1941). The steepest descent paths and contours are known
and published so can be easily followed.

Some preliminary background material must be presented first related to the plane
wave decomposition of a scalar field. In this background material it will be seen that
the Hertzian oscillator in Brekhovskikh’s treatment is introduced from concepticn.

Consider a spherical wave radiated at the origin and its decomposition into plane
waves. Brekhovskikh (1980, Eq. 26.15) introduces the following form for the Hertzian

oscillator
eilkazthyy)

SRR o0
= f /“ T dkzdk, (37)

Eq. 37 is a decomposition in plane waves in the z-y plane where z =0 exclusively.
It is necessary to downward and upward continue Eq. 37 to include all of 2. To
perform this continuation we integrate over z by introducing a third component to the
exponential ik,z where k; = ,/k? — k2 — k; for z > 0 and —k; = /k? — k2 — k? for
z < 0. Thus we have the integrals (Brekhovskikh, 1980, Eq. 26.17; Aki and Richards,
1980, Eq. 6.4)

kR i . oo gilkzzthyy+kz) db-dbdb
220 & "EE//_OO % sARyPz (38)

eikR i oo ei(k:x—{-kyy—-kzz) o dbd
L i e

Eq. 38 represents the expansion of a spherical wave into plane waves with the wavenum-
ber vector of the plane wave having components kz, ky, k.. A difference in phase 7 be-
tween Aki and Richards and Brekhovskikh’s treatment is attributable to Brekhovskikh’s
k. equalling Aki and Richards k;.

From this point the treatment in Aki and Richards leads to expansion in cylindrical
waves, the Sommerfeld integral, whereas Brekhovskikh and also Stratton (1941, pg.
573-578) maintain plane waves but express the normal coordinate vector & in terms of
polar angles ¢,8. ¢ is not to be confused with the potential ¢. Stratton terms this



374 Meredith et al.

expansion the Weyl solution or Weyl integral (Stratton, 1941, Sec. 9.29). In order to
reconstruct our spherical source or for that matter any source a finite distance away us-
ing a superposition of plane waves procedure we need to consider both inhomogeneous
and homogeneous plane waves (Stratton, 1941). Homogeneous waves are waves for
which planes of constant phase have constant amplitude whereas for inhomogeneous
plane waves planes of constant phase have variable amplitudes. By allowing imagi-
nary values for components of our wavenumber vector we will describe inhomogeneous
waves.

We will now perform a transform of the coordinate systems under an integral. To
do so we have to use the Jacobian of the transformation. For a general integral in
coordinates (kz, ky, k.) to be transformed to variables (k, ¢,0) we have

Nz, ky, k)
a(k,¢,8)

/ / Flkas Ky, ks )k pdky di, = / Flko(ky ,0), by (k, 6,0), ka(k,,0))

Okgy by, k=)
ok, ,6)

where the term | | is the absolute value of the Jacobian of the transforma-

tion.

The proper transformations f(kz(k,#,8),...) etc. for the plane wave components
are

kr = ksinfcos¢ k, =ksinfsing k, =kcost (40)

and the absolute value of the Jacobian for our transformation equals £?sin 8. The ge-
ometric relationship between the polar angles and the wavenumber vector components
can be seen from Figure 3 {Brekhovskikh, 1980, Figure 26.1).

The absolute value of the Jacobian for our transformation equals k% sin 8. Solutions
for both homogeneous as well as inhomogeneous plane waves must be allowed and thus
it is required to allow complex values for the angle #. The range of # is from zero

to — —ico. As will be discussed later, the contour is deformable among these limits

(Stratton, 1941). This leads to the following form for the integral

ikR - Z_feo 2 ilkeztkyy+k:=z)
€ k f" f e T sinodé (41)
1) 1)

220 =5 S

eikR ik Z—ico 2 ei(k,x+kyy+k,z) )
f f ——————sin 8d¢
0 0

S0 =5 %

A particular contour can be seen in Figure 26.2 (Brekhovskikh, 1980).

In comparison, the substitutions leading to the Sommerfeld integral are

kr =kcos¢ ky=ksing k,=k, (42)

dkdpdd

o,
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and the magnitude of the determinant of the Jacobian of the transformation equals k.
This leads to precursors of the Sommerfeld integral {Aki and Richards, 1980, Eq. 6.6,
rewritten to this notation)

tkR 2r
e 1 = ko »
>0 —_ dk o t(krc05q5+k,z)d 4
f= R 27 /0 jo kz ¢ ¢ (43)
eikR 1 oo Ir b,
< - = o l(krcosd:—k,z)d
z<0 & 271_/0 dk'/(; kze fo

The Sommerfeld integral (Eq. 12) is obtained from Eq. 43 using a suitably tranformed
form of the Poisson's integral. The Poisson’s integral form used is

1 2
Jo(kr) = ;2—;]0 e ety (44)

which can be derived from Watson {1944, pg. 25, Eq. 2.3.2).

The integration over ¢ in Eq. 41 spans from 0 to 27 but the integration over @
includes homogeneous waves and ranges in the compliex # plane from 0 to T oo

Now would be a good point to state that there is a misprint present in the second
edition of Brekhovskikh’s book (1980) but not in the first (Brekhovskikh, 1960) and it
is not carried through in the analysis. This misprint is that the term dkzdkydk, should

zdky . . .
read dkkd Y just prior to Eq. 26.19 (Brekhovskikh, 1980).

z

tkR
We have the integral -——— approximated as a superposition of plane waves, the
Weyl integral Eq. 41. Our need is to approximate any scalar field in terms of these
plane waves. To accomplish this we introduce a function V{(#) to multiply times our
integrand to achieve any arbitrary scalar field. Brekhovskikh treats the function V/(8)
as a reflection coefficient function but it can be thought of in more general terms. Upon
so doing we have an arbitrary scalar field ¥
ik Z—ifoco 2n . )
9= / P g [ v(0)eitksm vtk gin 6dgs (45)
27w Jo 0
Expanded in terms of the full expansions for kg, ky, k. (Eq. 40) we obtain (Brekhovskikh,
1980, Eq. 26.24)
§ = itb_ F—i00 " ]Qﬂ‘ V(o)eik((xcos $+ysin @) sinf+z cos ) sin fd¢ (46)
™ Jo g
and now performing a transformation to polar coordinates under the integral in terms
of ¢, x = rcos ¢,y = rsin ¢; we yield
g = }_]f:_ f‘i‘-—ioo 8 /211' V(g)eikrsinﬂcos(¢—¢1)+:’kz cos 8 sin Gdd) (47)
27 Jo 0
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where we have used the transformation

T cos ¢ cos ¢y + rsingsing) = rcos(p — @) (48)

and use the Poisson integral transformation {Eq. 44) to obtain
9= ik f 7 V(8)Jo(kr sin 0) sin 6™ 5% g (49)
0

If V(#) equals 1 Eq. 49 is another expression for a Hertzian oscillator.

We now use a Bessel function identity (Abramowitz and Stegun, 1964, Eqs. 9.1.3-4)
1
Jo(z) = S1H (=) + Hy (=) (50)

Upon substituting this value for Jp, splitting the integral into two integrals, using the
formula Hél)(e"'“"z) = —H[(Jl)(z) (Abramowitz and Stegun, 1964, Eq. 9.1.6), and then
reversing the sign of integration we obtain

9 =ik j 2T V(0 EM (kr sin 0) sin 0t <0s8dg (51)
—-%+t'oo

Brekhovskikh calls the contour from ST + {00 to § — 00, “I'1”, a notation we shall use
subsequently. The contour is shown diagramatically in Figure 4.

The contour I'y is a member of a family of contours originally described by Som-
merfeld. An excellent discussion of the properties of this contour family is provided by
Stratton (Pg. 367-368, 1941). The basic properties of the family are a form of radiation
condition in that the contributions from the end points must vanish. The dominant
behavior is under the exponential of the form €'¢°**? where ¢ is some constant or a
function that is constant under the particular variable of integration. We define 8 in
terms of real and imaginary parts, § = ¢’ + 18" so we can write

ipcos® = psin 6 sinh 8" + ipcos & cosh ¢” (52)

Terms of the form e~2% will vanish which require (8',6") values of (3F, 00) and (, —o0)
respectively since sin(5F)sinh(oco) and sin(%)sinh(—o0) equal =2 (—o0). Thus our
vanishing endpoint contributions coupled with our desire to span all values of imaginary
wavenumber dictate that our path begin at (5, c0) and terminate at (5, o0). In fact we
can choose any pair of an infinite choice of endpoint pairs beginning and terminating
at opposite imaginary infinities separated by 7 but our choice of the principal pair
is usually sufficient., Within these endpoint limits, and of course strongly dependent
on the singularities of the integrand, the contour is deformable throughout although
a crossing of the real axis at 45 degrees at the origin often advantageously provides
a saddle point for consideration. In the method of steepest descent used with the
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stationary phase approximation which we will apply later, we in fact shift the endpoints
and the location of the saddlepoint to the right by an amount 8. For the particular
member of the family provided by I'; we can break down the integral into segments
consisting of an integral over inhomogeneous waves, a segment integrating over the
real # axis consisting of homogeneous waves and another segment integrating over
inhomogeneous waves. We again refer you to Figure 4.

Eq. 51 represents Eq. 26.27 from Brekhovskikh (1980). The background for
Brekhovskikh'’s treatment is now complete and we reintroduce Heelan’s integrals. Brekhovskikh
uses Eq. 51 for the scalar fields ¢,1), x and writes the Heelan integrals as follows with

foagm To.

o] X .

¢ = Ref e—*“""f £,(8, k)Y HSY (krsin 0)e =208 in 9dodk (53)
0 Iy .

b = Re f itV j; 90(8, k) HSD (kr sin 0)e=#<=%57 sin 9dbdk
0 1

5] . E
x = Re f e~V f no(8, B)HY (kr sin 0)e ™= %7 sin 9dfdk
0 1]

Brekhovskikh uses a negative time dependence e~**V* and uses the notation b for »

(shear wave velocity), ¢ for V' (compressional wave velocity), « for h shear radial
wavenumber. We will maintain Brekhovskikh’s use of the negative time dependence
but use Heelan’s notations for velocities. Brekhovskikh as Heelan did specifies that
kb = kc or in Heelan’s notation ¥V = hv and also that ksind = ksin+vy a condition
arising from his separation of variables procedure. Brekhovskikh also uses the symbol
h, for the coefficient function instead of Heelan’s n, as used above.

It is not obvious that Brekhovskikh’s treatment in terms of the Weyl integral will
yield the same results as Heelan’s. Moreover, Heelan’s treatment can’t be verifed be-
cause of the lack of knowledge about Heelan’s contour. And finally, Brekhovskikh
only considers the case for a radial stress and a torsional stress since he used Heelan’s
work as a basis for the calculation of head waves, the same treatment adopted in Hee-
lan’s second paper (1953b). Therefore the laborious procedure of duplicating Heelan’s
results using Brekhovskikh’s integrals will be demonstrated here.

The boundary conditions are set up with the same mathematical model as before
(Eq. 15)

PGYF(z)+p, =0 SG(t)F(z)+prs=0 {54)
but Brekhovskikh did not consider @, axial stress.

QG(t)F(z) + prz =0
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The Fourier transform of the boxcar function is the sinc function

2 sin{lt) ;

F(z) = l] sin(lt) isegy (55)
T Jeoo t

We believe that Brekhovskikh makes the following change of variable, t = —kcos#, in

transforming the boxcar function to

_ 1 oo sin(lkcos®) _irrcoss -
F(z)= ﬂ_/_w —7 ¢ sin #d6 (56)

Brekhovskikh (1960, 1980, first few pages) explains his usage of the same Fourier
transform operator that Heelan had used. As mentioned before, an appendix to
this paper thoroughly explains the origins of this operator. In using this operator,
Brekhovskikh leaves to an exercise that the following relationships are equivalent for
F(v) being real.

F(vy = Re Am@(w)eiw”dw (57)
S(w) = % f_ip(u)e-"wdy

F(v) = %L‘:‘I’(w)eiwdw

Having completed our discussion of the Fourier transform operator we can bring
our boundary conditions and sources under the integral as did Heelan. Our boundary
conditions are vanishing of normal and tangential stress with our stresses displayed in
Eq. 14,

In doing so we obtain a 2 x 2 system of equations for f,,g, (the P-Sv case). For
convenience the argument of the Hankel function is not specified in the equation below
but is ka sin @ throughout. Additionally, a sin # term that cancels has been left off both
sides of these equations

sin{lk cos 8)3""’“ cos 6 N

- k
Q&( ) wcosd
fo(2ipk? sin @ cos G)HI(I)()e‘ikz cos

(58)

2 .

sin(lk cos )e~tkzcosf

Tcosf

~PG(k)

kasin8

(1) ,
fo (-Ak?Hé”() — 2uk?sin? 0 [H},‘)() _H0 D g~ ikzcost
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ZE0)

—go(2iuk? sin? 6k cos ) [H((,l)() tasing

:i —1iKZ COS~y

and a simple algebraic equation for n,

sm(lk: cos f)e ~ikzcosd

7 cosé

pnok? sin HH( )(kasm 0)e= 87 = _SG(k) (59)

with a sin@ term being left off of both sides in Eq. 58 and Eq. 59. We next solve for
this system and expand for small arguments using Eq. 17, the details of which are left
to Appendix A.

AvZcosd
BruV?

2
f iPG(k) (2(%) cos? § — 1) (:—A) — QG(k) (60)

v? 1Av? cos @

9o = PG(k)cosb(7—0s) + QOR)g—wm—

Akv cos@

o = SG(k)Sﬂ'i,uV cos =y

where A equals the volume of the cylindrical cavity. These equations may be proﬁtably
compared to Eq. 18 of Heelan’s paper.

In Brekhovskikh’s book, solutions were given for radial and torsional stresses only
which were Eq. 60 (Brekhovskikh, 1980, Eq. 33.6)

kA
fo = iPG(k) (2( —5)cos? 0 — )(ﬁ) (61)
v2A
9 = PG(k)Coss(W)
Akvcos b
Mo = SG(k)tl,ui?eros*y

The equivalence becomes readily apparent if §) is set equal to zero in Eq. 60. There
is however a discrepancy is in the denominator for n, where we found a facior of 8
and Brekhovskikh a factor of 4. The factor of 8 we found is consistent with Heelan’s
results. We believe this difference is due to a typographical error in Brekhovskikh’s
book in that the error is corrected through the process of steepest descent analysis.

Method of steepest descent analysis

Once fo,90,M0 are known for small arguments, displacements are calculated using
Eq. 19. There will be two components of the radial displacement, one travelling at the
P wave velocity and one at the S and similarly {for the vertical component. We will
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designate these components as U,p,Ursu, U.p, U.s,. We consider the integrals below
having already carried out differentiation with the ‘% operator.

Av® cos 6
_ —ikVt _ _
Up = Re / / (22 kG(k) (2( _Ycos? 8 1) QO Gt
%Ho Y(krsin 8)e ™% %% sin 8dodk : (62)
— o —ikVt iPA'Uz 6 — QATJ
Usy = Re/o e f(41r#V2ncos7G(k)cos Sp G(k)cosﬁ)
a

B_Hg”(kr sin 0)e %% <% sin pdfdk
T
_ * ikvi 2 _ iQAv%k cos? @
Up = Re./c; e [‘1(877 k“*G(k)cos b (2( )cos 6 1) + ST e )
Hc(,l)(kr sin #)e %7 5in 0dodk

= Pv?A 1AQu? cos #
—ikVt
= R Gk ¢+ ———-=_G(k
Uzso ef ¢ ,/1-1(417;1[/2 (k) cos 8ruV %k cosy (k))

( -~——H () (kr sin 0))e™"2 <% sin 9d0dk

ra'r‘

Av kcos@ 9
— -tkVi k H( ) k 9 —inzcosy 0dodk
Upsn = Re/o e /f‘z SG( )Smp “cosy Br {krsinf)e sin

2
drdz’

We now perform a series of manipulations to get the integrals into the proper form
for steepest descent analysis. We first apply the principal asymptotic expansion of
Hankel functions for large arguments Eq. 20. (Abramowitz and Stegun, 1964). For

instance 5
(1) . ~ (72T ikrsing
Hgy '(krsin 6) \’""_—-wkrsinﬂe ‘e (63)

Next we use the relations

Remembering the U, g, term is — the minus sign being particularly important.

—z = Rcosfy r = Rsinfy (64)

which can be seen from Figure 6 and a double angle formula to yield

% tPA Av? cos 8
Up = Rej(; e—-:kVt/I:‘l (4 ka(k) (2( )cos 9—1) QG(L) ng )

k

et [ L cikRcos(0-80) gin 0+ /5in 6d0dk (85)

2mr

oo ; 2 2
_ —ikV iPAv . QA'U
Ursy = Ref0 e ‘/1:1 _(211_#1/2 G(k)cosfk cosy — py—

G(k) cos 9)

~
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e:‘?_" -‘k—e£”R°°s('T_8°) sin 8v/sin 8d0dk
Up = Re/w —*Wf/ (B2 LGy cost [ 2oy cos?o — 1) + 224V oy
P = A e py cos Jz)cos” 0 — T

== [ K ikReos(0-00), [T apdk

2

® Pv?A Q'EA'U2 cos @
ikVi
— - k g Jiin e ————— ] g
U.5v Rev/0 € Ll (+2 V2G( )cos + T oo G(k))

e% sin 6‘1«:\/ :rkrr inRcos(v=bo)\/sin 8d0dk

oo . 8 —isx .
Ussnh = Re f e~V / —-SG(k) 4tp1rV 2227 == Q%e“m“(‘f-"o)sine\/sin 8dodk
1)

Examining our equations we see that we have functions of # in the integrand and
under the exponent. We aiso have R which grows exponentially large as r goes to
infinity. Since we wish to evaluate the radiation asymptotically for large values of
these integrals are perfect candidates for the method of steepest descent analysis.

We now apply the method of steepest descent analysis and the stationary phase
approximation to evaluate the radiation in the far field. Good discussions about steep-
est descent analysis can be found in Aki and Richards and Brekhovskikh. We will use
the notation of Brekhovskikh (1980). For the method of steepest descent we define two
functions, one under the exponent f(#) and one under the integrand F(6) and also a
parameter under the exponent p which dominates as our variable of integration goes
to infinity. For the first integral (Eq. 65) we define

F(e) = (g:rA kG(k) (2( )cos g — 1) QG(L)A; C‘c:ig) =2 e 0vsin 0 /%
f(g) = iCOS(g — 90) (66)
p = kR

The strategy is to first find a saddle point. A saddle point is determined by solving

the equation ..,i = (0 which for our purposes is on the real # axis at § = 63. From a

saddle point the integral will rapidly decrease in two directions and rapidly increase in
two directions. We transform f(6) into a new function s which we will only integrate
along the real axis from —oo to co. A property of the decomposition is that lines
of steepest descent of the real part of s have constant values for the imaginary part
of s and thus can be ignored. Since the increase and decrease will be symmetric we
approximate it with hyperbolas of the form

F(8) = f(8o) - 5* (67)
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To apply this technique to our problem we first set (Brekhovskikh, Eq. 28.4, 1980)
f(0) = icos(d — Bp) = f(6o) — &* (68)

or equivalently
cos(§ — 8) = f(Bo) + is? (69)

We take the real and imaginary parts of both sides of this equation first defining
¢ =68+ 10"

cos(8' + 16" — 8g) =1 + is? = cos(8' — 8p) cosh " — isin &' sinh 8" (70)
which yields for the saddle path

cos(f' —fg)coshd” = 1 (71)
s2 = sin(#' — 6p)sinh §”

The endpoints of the saddle path are at § = 5F + fp + io0 (s = —o0) and 8 =
T — g + ico (s = o0). Furthermore the saddle path crosses the origin at 8y at an
incidence of 45 degrees. We can see that this path is just a shift of 8y of a member of
the contour family described by Stratton (1941). This path is presented graphically in
Figure 5 and will be entitled T'. It can be seen that in the deformation of T'; to ' we
just stretched I'y at both ends. We have a branch point at 0 due to terms of the form
v/sin#. The branch cut emanating from zero can be cut along any direction. If we
take the negative imaginary axis as our branch cut for instance we will not cross this
branch cut in the deformation of I'y into I'. This same procedure is used for reflection
problems and more general waveguide problems but a much more rigorous treatment
of the singularities in the complex plane is required. We are fortunate here in only

having one singularity which can be bypassed. So we can now rewrite our integral as
g) [ 2
¢?! (60) / =7 &(s)ds (72)
—00

Because f(#) includes the imaginary i, the potential for rapid oscillation about the
6" = 0 axis far away from our saddle point exists. By and large this rapid oscillation
will cancel itself in area and thus in the integration so we can use the stationary phase
approximation. The stationary phase approximation can be applied to our integral
which is for our particular case

[ 2« =it ik Rcos(0)
kR|cos”(O)|e te F(?D) (73)
2T T GRR (g (74)
kR

after simplifying

oy
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Formulating our first integral (Eq. 65) in this form we yield

Av? cos 30)
4TV

let -
sin 90\/;;_11? Vsin fpdk (75)

Up = Re/(; _.kw(zpé‘kg(k)( ( 22)cos2 0y — 1) - QG(k)

which we simplify by reintroducing our identity » = Rsin g or for our purposes /r =

+/H sin A, finally yielding

Up = Re f (’P AkG(k)(Z( )603230—1) QG(k)A:wC?ij) (76)
sin Be_"kwiffdk
R

For carrying out the integration with respect to k we can place a time derivative
operator under the integral in the following manner

szRe/ G(k)e™*VE=Fgk = —d—Ref Glk)e™*V =) g); = ——G(t - ~) (77)

which yields for our resulting integral

R Av® cos by 1 R
2 _ _ 2y seeru s = i
Up = TV ( (575 ) cos* fo 1) smﬂngtG(t ) Q@ pr—7 smHRG(t V)

(78)

Heelans’ Eq. 13 for comparison is
_ PA Av?cosfp | 1 R
Up = gV ( ( )cos 80) smBo G(t V) QG(A)—w—m nBRG(t——v)
(79)

and the equivalence is readily seen.

Although the procedure is cumbersome, the method of steepest descent with the
stationary phase approximation substantially simplified our resulting integrands. Ex-
cept for a factor of two that was divided into our development there is no change in
the boundary condition equations in the integrand. This is a remarkably simple result
from integral expressions as complicated as those in Eq. 62.

Proceeding with the same integration procedure with our other integrands we ob-
tain results equivalent to Heelan’s Eq. 13 (Eq. 33)

PA R, QAv?

1d
Up = T (2( 2)cos 9—1)51119Rd G(tTV) ypm Vzcos&‘smﬂ G(t——)
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Upsy = 4L[zR51n29cosﬁRdtG(t—-——)¢ Q‘i sinecosoia(t_—?) (80)
Up = ;fv (2( )eos? 6 - 1) cosa—-—c:(t )+ QA;’N OSQO%G(t—%)
Upsy = 4‘:;? sin20sin8—1—iG(t-——i—z)-%-f—ﬂ%sinQG—éG(t—-;R)

Ugsn = %@;i (——*)

One notational note is that we have dropped the subscript on 8y and that the symbol
# has been used for the polar angle instead of ¢.

In performing the steepest descent analysis with the terms e**(¥=%) of Eq. 65 we
used a change in variables of the integrals to « and the relations

ksiné = ksiny kcos@#dd = kcosydy H( )(krsmﬁ) H(gl)(n'rsinﬂy) (81)

For reference integrals in «y were evaluated in the following form

Use = j —:kth (—==—G(k)x cos* 7+Q~G(k)ncos 1)
e:?—x,/2 gixRcos(r- "’°)sin ~~/sin vydydk

Vs = Be [ e® [ (-5oG(k)cosy - 12 G(K))

ke sin? 84/ 2—-—e“‘R°°’("’""°) v/ sin ydvydk
r

—l'll' k
Uss. = Re ] e~V ===
27r

einRcos(y=0) i ~+/sin ydédk

Thus indirectly we have verified Heelan’s results with the much more rigorous
contour integration strategy initiated by Brekhovskikh but elucidated and expanded
upon here. We will now shift emphasis and begin examining the consequences of these
radiation pattern formulas. Specifically, a comparative study of radiation from an
empty borehole, (the Heelan/Brekhovskikh results), a fluid-filled borehole and a point
source in infinite media will be undertaken.

Comparison of Radiation Pattern Formulas

We now compare Heelan’s radiation pattern formula with well known formulas for
point sources in infinite media so that we can isolate the effect of stresses applied to
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the borehole. Additionally we will compare the formula of Heelan to those of Lee and
Balch (1982) for a volume source in a fluid-filled borehole and a radial stress source
applied to the wall of a fluid-filled borehole. This last comparison should allow us to
differentiate the radiation behavior in an empty borehole versus a borehole containing
a fluid, an important comparison both mathematically and physically.

To provide a range of parameters from which to test, we will evaluate the radiation
pattern formula using density and velocity parameters from three different lithology
types. Since sandstone, limestone and shale are the three most common sedimentary
lithologies we chose a representative from each group. The velocities we have chosen
to use are laboratory-determined velocites of the Solenhofen limestone from Bavaria
(Press, 1986 after Hughes and Cross, 1951) and the Berea sandstone (Thomsen, 1986
after King, 1964) and in-situ determinations of properties of the Pierre shale (Thomsen,
1986 after White, 1982). The velocities and densities for these lithologies are presented
in Table 1. All velocities are assumed to be isotropic velocities although it is known
that Pierre shale especially is anisotropic. Additionally you will notice that the Berea
sandstone has a very small Poisson’s ratio of .16 compared to the Solenhofen’s limestone
308, a fact which will help demonstrate effects due to Poisson’s ratio.

This examination of radiation patterns for velocity and density parameters other
than a Poisson solid is somewhat of a unique aspect to this work. When viewed in
terms of lithology information the radiation pattern behavior can be quite surprising,.

Radiation from a point source in an infinite medium

It ts worthwhile to compare Heelan’s results to established results for radiation from
point sources that are not in boreholes. This will help us to separate the properties of
the borehole from the properties of the infinite media.

The first treatment to be addressed will be the solution for radiation from a point
force in the far field in an infinite elastic medium. This is a well established result but
for reference we will use the formulas from White (Eq. 6-5, 1983) who presents

cos @ r
= P ot — e 9
Ur 47rpV2rg( V) (82)
sin # T
= e gt — -
Us 41rpv2rg( v)

This far field behavior is displayed in Figure 7 for a horizontally directed point force.
The components Ug and U, are measured in spherical coordinates so that Up measures
the amplitude of the longitudinally polarized or P wave and Uy represents the ampli-
tude of the transverse or Sv wave. As can be seen from the equations, the independent
factor governing these equations was the inverse velocity squared term. Excluding at-
tenuation, these formulas show that since the shear wave velocity is always less than
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the compressional wave velocity the shear wave radiation will be greater. It can also
be seen readily that U, the P wave radiation is symmetric with respect to the axis
longitudinally directed and Uy to the axis orthogonal to the longitudinal axis,

Heelan’s results — radiation from stresses on the wall of an empty borehole

Let A equal the volume of the source 2ma®l. Let A equal 4wal area of vertical walls.
An extra factor of two in volume and area is due to the length of the cavity being 2[.
V is compressional wave velocity, v is shear wave velocity. Heelan’s radiation pattern
equations are presented first in Heelan’s notation and then simplified. For a radial
source we have I

A 202 cos? ¢

A= 5 -2 ) (83)
21 ) 2 2
Fi(#) = 5ol — )

Figure 8 shows the behavior of F. It is characterized by a peanut shape - the dimpling
of the peanut shape along the axis of the borehole. This dimpling is due to reduced
amplitude along this axis. The Pierre shale radiation pattern is very large because of
its low shear wave velocity contributing to the inverse velocity squared factor in Eq. 84.
Also for a radial source we have Fp

A

Fi$) = g sin2¢ (84)
a?l .

Fy(¢) = 5703 i1 2¢

which is shown in Figure 9 and represents the classic four-leaved rose radiation pattern.
Pierre shale, because of the inverse shear wave velocity cubed dependence, does not
plot on the page.

For an axial source applied to the walls of an empty borehole we have G

Gi(¢) = %}’; cosg (85)
G1(6) = Sz cosé
and G5
Ga(#) = 1 sin 6 (86)

Ga(9) = pa—;sinqﬁ

o
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(G1 and G; are shown in Figure 10 and Figure 11 and are geomtrically what one would
expect for a vertically directed point force. To visualize a vertically direcied point
force we turn White’s patterns Figure 7 for a horizontally directed force 90 degrees on
its axis.In fact, geometrically, the Vlg,alg dependence displayed in Eq. 86 and Eq. 87,
is exactly equivalent to the form for a point source. The only difference is a factor due
to the volume of the axial source. Thus a major conclusion shall be that if only an
axial stress is applied to a borehole wall, a vertical point source radiation is effectively
achieved barring a scaling factor equal to half the displaced volume. Because the
velocity dependence for an exclusively axial source is just inverse velocity squared
instead of ¢ubed the variations due to differences in shear wave velocities between the
Pierre shale and Solenhofen limestone are considerably reduced.

For a torsional source we have K

K(¢) =

A
p—s sin ¢ (87)
2

a
2pv°

K(¢) = sin ¢
which is shown in Figure 12. Again the inverse velocity cubed behavior is apparent so
the Pierre shale radiation pattern again does not fit on the page.

We have to be careful when using these patterns. First off the Fy factors multiply
the derivatives of our stresses. Depending on the formulation of our stresses, this can
radically raise or lower amplitudes. Secondly, an inverse radial dependence has been
left off of these equations and should be taken into account.

There is a complicated relationship between the magnitudes of our radiation pattern
formulas and the radial and vertical displacement components we wish to calculate,
Eq. 33. The figures for F, F2,G1, G only represent magnitudes of P and Sv compo-
nents if we restrict ourselves to radial stress or axial stress at the exclusion of the other.
In other words, if we apply only a radial stress F; and F; represent the magnitude of
the P and Sv waves whereas if we apply only an axial stress G; and G5 represent these
same magnitudes. If we apply a combination of radial and axial stresses then we have
to use the complication represented by Eq. 33. Finally, attenuation is not considered.
With those caveats in mind we can nonetheless state that the effects of the dry borehole
are negligible on the axial stresses and substantial on the radial and torsional stresses.
The effects on the radial and torsional stresses are extremely dependent on the type of
stress that is applied due to its derivative nature. Finally, because of inverse velocity
dependences to the third and second power, soft sediments should show more radiation
into the formation itself. This inverse velocity dependence is especially true with the
shear wave velocity. The only term that is not affected by the shear wave velocity is
the axial (.

Because soft sediments with low shear wave velocities transmit energy into the
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formation well the converse requires either that a) the high velocity materials dissipate
more energy in the near field and/or b) high velocity sediments set up more energetic
modes inside the borehole.

Radiation from a point source in a fluid-filled borehole

Lee and Balch (1982) solved equations identical to those presented in paper 1 of this
series but with a different notation. They then proceeded to calculate the far field
radiation pattern by using the expansions in small argument for the Hankel functions
and discarding of terms that do not predominate in the far field similar to the technique
Heelan used. Lee and Balch found surprisingly simple modifications to Heelan’s results
due to the presence of a fluid in the borehole. Lee and Balch’s equations for a volume
source in the middle of the borehole in terms of Heelan’s parameters are for P and Sv
radiation

1 Pt 20% cos? ¢
Frye = - 88
i
! Ps_ .
Fauot(@) = sin 2 89
wO S g e e )
!
Fly0t differing from Eq. 28 by the factor
2]
2 ﬂ iz p .uz 2 (90)
Ao (p +V!§——?};cos ¢)
and Fy,, differing from Eq. 30 by the factor
27
il (91)

4#(%{- + %;-:5- — cos? ¢)

You will notice an interesting result from Fq. 88 and Eq. 89 that for a volume source
in the middle of a fluid-filled borehole there is no dependence on the radius of the
borehole in the far field.

For a radial source applied to the borehole wall, no axial stress, Lee and Balch
found the following radiation pattern formula for the P waves

(%’% - —;17} cos” ¢) a?l 2v% cos? ¢
Flf(¢) = ] o2 2 2 ( - 12 ) (92)
(< + VT ~ v cos $) 2pv*V
and for the Sv waves
(& —co?d)
For(4) = =2 7 sin20 (93)

(% + -{}E: — cos? ¢) 2pv°
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Fi, differing from Eq. 28 by

2 2
(7 — &x cos? ¢)
i i
el (94)
+ sz‘ — vz COs qb)

(

R

I3, differing from Eq. 30 by
(%:5 — cos? )

(-p;t + %} — cos? ¢)

(95)

from Heelan’s results.

Figure 13 through Figure 16 show radiation patterns calculated using Lee and
Balch’s formula with the same three lithologies used to calculate the radiation for the
point source and the radiation for a radial source in an empty borehole (Heelan’s re-
sults). The differences between the F'1 components for a volume source in a fluid-filled
borehole Figure 13 and a radial source in a fluid-filled borehole Figure 14 is primarily
in the Pierre shale. It can be seen that with the Pierre shale and a radial source more
energy is radiated radially and less in a vertical direction causing a dimpling or an
increase in the peanut-like shape of the radial source Figure 14, Especially strange
behavior is seen with the Lee and Balch radiation patterns for the Sv wave radiation
Figure 15 and Figure 16. The Lee and Balch equations have introduced new poles
related to the tube wave velocity into the radiation patterns that have a dominant
infiuence on the radiation patterns in soft low velocity sediments (Pierre Shale). In
soft low velocity sediments the denominator term (5’;[ + %2,- - %—25 cos® ¢) common to

both Fiyo and Fy, goes to zero and thus the quotient goes to infinity at certain ¢. For
Pierre Shale surrounding the borehole, assuming the fluid velocity is 1500 e and the

density of the fluid is 1—:1:—3- we see an angle near 62 degrees from horizontal will cause

[
the quotient to blow up.

Lee and Balch only showed radiation patterns for a Poisson solid so the treatment
of the three different lithologies given here is different from their approach. We can
thus echo Lee and Balch’s conclusion that for soft sediments the effect of the fluid
is substantial and also add that radiation pattern analyses for soft sediments have
limitations.

Comparison of source representations

In viewing the radiation patterns presented thus far it is obvious that there is a substan-
" tial difference due to the following factors: the presence of the borehole, the presence of
a fluid in the borehole and less difference due to volume source versus a radial source.
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In comparing the fluid-filled versus the empty borehole results we can see that there
is more relative peanut shape in the radial source in the fluid-filled borehole. This
implies in a gross sense that the presence of the fluid is impeding or causing a drag
against energy propagating in the vertical direction. The presence of a fluid in a soft
sediment introduces poles which are not present in the dry case and thus negate radi-
ation pattern analysis used for this purpose in soft sediments. Shear wave velocity has
an important effect on radiation magnitude in both fiuid-filled and empty boreholes.
Poisson ratio variations have a much smaller effect on the amplitude radiation than
shear wave effects.

CONCLUSIONS

Heelan’s algebraic results have been directly verified and explained in this chapter in
addition to the correction of typographical errors. The results of Heelan’s contour
integration have been indirectly verified through extensions of Brekhovskikh’s work in
this paper. Brekhovskikh’s method uses a contour widely used in electromagnetics and
acoustics whereas Heelan’s contour is essentially unknown. Having indirectly verified
Heelan’s results are correct they nonetheless are surprising. A very strong dependence
of radiation amplitude on shear wave velocity is seen in the far field results of Heelan.

Lee and Balch’s results (1982) for studying source radiation which incorporate a
fluid into the borehole have been compared to those of Heelan and the result for a
point force. The presence of a fluid has an especially proncunced effect on the Sv
wave radiation pattern as Lee and Balch have shown. Additionally, radiation pattern
analysis from a fluid-filled borehole surrounded by a soft low velocity sediment breaks
down at certain azimuths because of the presence of an additional pole. Shear wave
velocity because of an inverse velocity squared and cubed dependence is the dominating
factor on theoretically calculated radiation patterns. These conclusions point cut the
inherent strengths and weaknesses of radiation pattern analyses.

.
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Velocities and Densities of Three Common Lithologies and Steel

Lithology /Property Vo Ve o p
Solenhofen Limestone 5,970 (19,582) 2,880 ( 9,446) .308 2.656
Berea Sandstone 4,206 (13,796) 2,664 ( 8,738) .165 2.140
Pierre Shale 2,074 ( 6,803) 869 { 2,850) .394 2.25

Table 1: Velocities and densities of three common lithologies. Velocities in m/sec
(ft/sec), densities in g/cm?, o is Poisson's ratio.
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Figure 1: Geometry of Heelan’s sources (1953a). An empty infinite cylinder is em-
bedded in an infinite medium. Uniform axisymmetric axial and radial P — Sv and
torsional Sh sources are applied to a finite length of this cylinder at the cylinder-
infinite medium boundary.
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Typical Heelan Patterns

Axisymmetric Radial Source Axisymmetric Axial Source

P (Y)
(A

Axisymmetric Torsional Source
Sh z
'[__.’

Figure 2: Pictorial description of Heelan’s radiation patterns, not to scale, for axial,
radial and torsional sources. Notice four leaved rose pattern with radial source Sv
and peanut shape for radial source P.
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Decomposition of Wavenumber Vector into
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Figure 3: Decomposition of plane wave vector into polar angles (Brekhovskikh, 1960,

Figure 26.1)
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Brekhovskikh's Initial Contour
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Figure 4: Contour I'y used by Brekhovskikh (1960, 2nd Edition, Figure 28.1) for the
Weyl integral. A member of a family of contours described by Stratton (1941,
Figure 67, contour C1). Includes all homogeneous and inhomogeneous plane waves
and is conditionally deformable at will as long as it terminates at the endpoints
(75, 00) and 0, 7. Often advantageous to cross the origin to achieve a saddle point.
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Brekhovskikh Steepest Descent Path
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Figure 5: Deformed steepest descent path IT' incorporating stationary phase approxi-
mation used by Brekhovskikh (1960, 2nd Edition, Figure 28.1) along with original
contour T';.
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Heelan and Brekhovskikh
Geometric Relation

Source

-z=R cos 80 -

Receiver

(?" :‘z)

r=R sin 90

Figure 6: Geometry in the far field from Heelan and Brekhovskikh, The relationships
between R, r,8g are very important in the steepest descent analysis.
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Point Source
Infinite Medium

Pierre Shale
Berea Solenhofen
Sandstone Limestone

(1,
(o

Figure 7: Radiation pattern for a point source in an infinite elastic medium in the
far field from White (1965, Eq. 5-5, 1983, Eq. 6-5) for three different lithologies.
Velocities and densities may be found in Table 1. Notice shape is very similar to
that for an axial source of Heelan.
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Pierre Shale \

"Clipped” Heelan
Rad@ation Patterns
Radial Source
F1 - P* Wave Component
Berea
Sandstone
Solenhofen
Limestons

Figure 8: Magnitudes of F; ( P*) for three different lithologies, Radial Stress - Empty
Borehole. Notice extreme differences in amplitudes and peanut shape for P. Origin
of peanut shape is reduced amplitude along the axis of the borehole. Pierre shale
exceeds limits of page. *Can be considered magnitude of P if a radial source is
applied exclusively. If axial source applied also, P is more complicated
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|

Heelan

Radiation Patterns

Radial Source

F2 - Sv Wave* Component

Berea Sandstone Pierre Shale
: ——
\

Solenhofen Limestone

Figure 9: Magnitudes of F; (Sv)or three different lithologies, Radial Stress - Empty
Borehole. Notice extreme differences in amplitudes. and four leaved rose pattern
for Sv. Plerre Shale exceeds limits of page. *Can be considered magnitude of Sv if
a radial source is only applied. If axial source applied also, Sv is more complicated
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Heelan

Radiation Patterns

Axial Source

G1 - P wave* Component

Pierre
Shale

Solenhofen
Limestone

Figure 10; Magnitudes of Gy {P) for three different lithologies, Axial stress - Empty
Borehole. Notice differences in amplitudes but not as severe as for radial stress.
Also notice circular geometry for patterns - the geometry unchanged from that of a
point source. *Can be considered magnitude of P if an axial source is only applied.

If radial source applied also, P is more complicated
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Heelan

Radiation Patterns

Axial Source

G2 - Sv wave® Component

Pierre Shale

Solenhofen
Limestone

Berea
Sandstone

Figure 11: Heelan’s Formula, Magnitudes of G2 (Sv) for three different lithologies,
Axial stress - Empty Borehole. Notice differences in amplitudes but not as severe
as for radial stress. Also notice circular geometry for patterns - the geometry
unchanged from that of a point source.

oo,
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Heelan

Radiation Patterns
Torsional Source
K - Sh Waves

Solenhofen
Limestone

Berea
Sandstone

Pierre
Shaie
"Clipped"

Figure 12: Heelan’s Formula, Magnitudes of X' (Sh) for three different lithologies,
Torsional Stress - Empty Borehole. Notice differences in amplitudes but not as
severe as case for radial stress. For this case geometry is same as point source
representation. *Can be considered magnitude of Sv if an axial source is only
applied. If radial source applied also, Sv is more complicated.
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Lee and Balch
Radiation Patterns
Volume Source

F1 P-Wave* Component

Soienhofen Limestone

(o),

Berea Sandstone

Pierre Shale

Figure 13: Lee and Balch (1982) Formula, Magnitudes of Flyo (P) for three differ-
ent lithologies, Volume Source - Fluid-Filled Borehole. Notice reduced difference
between Pierre shale and other lithologies compared to Heelan’s Fj.
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Lee and Balch

Radiation Patterns
Radial Source

F1 - P Wave* Component

Pierre Shale

Solenhofen

z Eimestone
Berea

Sandstone

Figure 14: Lee and Balch {1982) Formula, Magnitudes of Fy, (P) for three different
lithologies, Radial stress - Fluid-Filled Borehole. Notice reduced difference between

Pierre shale and other lithologies compared to Heelan’s F;. *Can be considered
magnitude of P if a radial source is applied exclusively. If axial source applied also,

P is more complicated.
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Lee and Balch

Radiation Patterns
Volume Source

F2 - Sv Wave® Component

Solenhofen
Lime =

Pierre Shale
=1000
"Clipped”

Figure 15: Lee and Balch (1982) Formula, Magnitudes of Fp,, (Sv) for three different
lithologies, Volume Source - Fluid-Filled Borehole. Notice effect of tube wave pole
causes radical behavior in Pierre shale radiation pattern. Hard lithologies compare
favorably to Fi.
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Lee and Balch

Radiation Patterns

Radial Source

F2 - Sv Wave* Component

Berea
Sandstone

Pierre Shale

+1000
Clipped

Figure 16: Lee and Balch {1982) Formula, Magnitudes of Fy, (Sv) for three different
lithologies, Radial Source - Fluid-Filled Borehole. Notice effect of tube wave pole
causes radical behavior in Pierre shale radiation pattern. Hard lithologies compare
favorably to F;. *Can be considered magnitude of Sv if a radial source is only

" applied. If axial source applied also, Sv is more complicated.
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Appendix A. HEELAN’S AND BREKHOVSKIKH’S ALGEBRA

The purpose of this appendix is to verify and fully disclose the algebra Heelan{1952,
1953a, 1953b) and Brekhovskikh (1960, 1980) used in their derivations and to elucidate
some of the unstated procedures they used in solving their algebra which has caused
difficulty for geophysicists trying to profitably analyze their work. This difficulty has
caused some to dismiss this work as unsound. This appendix does not however address
whether Heelan’s contour integration is valid only that his and Brekhovskikh’s algebra
are correct.

One caveat is in order, since this appendix exclusively deals with algebraic manip-
ulation it is equation oriented so please have a thorough understanding of the issues
presented in chapter three before attempting to wade through it.

We have an empty borehole with a stress radiating into the surrounding forma-
tion. Since the empty borehole represents a free surface we do not have any continuity
of displacement boundary conditions. Our possible boundary conditions are the van-
ishing of normal stress, azimuthal stress, and tangential stress. For the Sh case, the
boundary condition is vanishing of azimuthal stress and for P-5v the vanishing of axial
(tangential) and normal (radial) stress. When stress from a source is added the total
stress must still vanish. In Heelan’s first paper (1953a), a radial and an axial stress
were applied and in Heelan’s second paper (1953b) and Brekhovskikh’s work (1960,
1980} only a radial stress was applied.

We are fortunate in that the P-Sv and Sh problems are decoupled which leaves
us with a 2 x 2 system of boundary condition equations and stresses for P-S5v and a
simple equation to solve for Sh.

P-5v case

We will begin with the most general case with having both radial and axial stresses
applied. The second case where only a radial stress is constructed by setting the axial
coefficient to 0. Our boundary conditions are vanishing of radial and axial stress. As
mentioned earlier, Heelan uses an unusual convention in that his ¥ equals the -1 of
the derivations of Part I. This does not affect the physics of the problem though. These
stresses are written (Eq. 14).

R 3,86 &% _
o= AV 2 (5 - c3,,,32) (A-1)
6 a
DPrz = ( ¢ v2,¢ 2 )
32x 13x

pro = MG =I5,

Faa
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Where ¢ and i are defined to be Eq. 1
¢
o -
¥ = Re / e'FVt dk/ go(0, ic)Hél)(crr)ez”"2"22 do
0 C

x = Re/ etkV dk] na(a,k)H((JI)(o'r)ez“" - do
s} C

Ref eVt dlc/cfo(a,k)Hél)(ar)ez“”z_k do (A-2)
0

We add the stresses (Eq. A-1) plus our discontinuities in normal stress, PG(k), and
axial stress, QG{k) to yield a sum of zero. The transformed values of PG(k) and
QG (k) are the following from Eq. 16

io sinh(ly/o? — k%) Ve

PG(o,k) = PG(k) (0% — k2) (A-3)
QG(o,k) = QG(k)iUSi:a(ri‘/_”;;kz)ez\/m“z‘

It’s required to solve for the coefficient functions f, and g,. From our system of
equations written below it is straightforward to see our Cramer’s rule solution.

fo
Jo

Prz1l DPrz2

Qo) | _, "
Pr1 Pr2

PG(k)

We have now equated the boundary conditions to the discontinuities in stress. Qur
Cramer’s rule solutions for f, and g, are the following

—QG(k)pra + PGk )py»
f(ok) = QG(k)pr2 (k)prza (A-5)
Prz1Pr2 = Pr22Pr1

—PG(k)przl + QG(k)Prl
Prz1Pr2 — Pr22Pr1

golov k) =

and for the case where no axial source stress is applied we set ) equal to zero and our
boundary conditions remain equivalent. In this case, we solve for f,, g, yielding

PG(k)'Prz2
ooy k) = A-6
f ( ) Prz1Pr2 — Prz2Pr1 ( )
—PG(k)p,s
go(o., k) - ( )P 1

Prz1Pr2 — Prz2Prl

We calculate our stresses using Eq. 14. Before doing so we remember Heelan’s use of
—1 for v and the relationship.

Vi = —k?¢ Vi = —h¥y (A-T)
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We write our system of equations

io sinh(lv/o? — kz)ez\/ﬂ_ka
“QG(I{T) 7r(0‘2 o kz)

fo —2u0vo? — ic:2)l'{1(1)(a'a)ez otk
+go(po(h? +20% — 262) HN(0a)e*V™ "

= (A-8)

to sinh(lvo? — k2)62\/02_k2 _
m(o? — k2)

(1)
fo ((—/\kz - 2;10“2)H{gl)(cm) + QpUM) o2V T~k
a

—PG(k)

(1)
+go(2,ucrz [a2 — k?) [H(gl)(da) _ H; UE:"G)] ez\/ai-h’-?

An algebraic difficulty arises because in Eq. A-8 we have potentials with two different
exponential factors, e*Vo % and e*V7 —H,

To ease this algebraic burden, Heelan implements a very complex transformation.
First Heelan substitutes a factor g% equal to (o® + h% — k%) into the % potential under
the radical, although this crucial interim step was not defined in his papers and only
very loosely defined in his thesis. In the final solution, for the f,(o, %) potential, all
terms cancel so there is no reverse tranformation. However we calculate the solution
for go{0, k) and in order to transform it back to g,(0, k) we set o2 equal to (o2 —hZ+k2).

We thus rewrite our potentials temporarily setting aside the integrations as

¢ = folo,k)HD (or)e?V R (A-9)
v = go(o,k)H{(or)eV" T

and the change in ¢ from Eq. A-2 is evident. So now we rewrite our Eq. A-8 in the
following form.

o sinh(Iveo? — k?) , oo
_QG(k)wSITr:(EEz jkz) )eb\/ TORT _ (A-10)

fol~2p0Vo? — K)H{D (ga)e”
+9o(no(h? + 207 — 2k?)) H{Y (ga)e™ ™ ¥

iosinh(lveo? - k2) _ oozpr
—PG(k) {02 — k%) € -

(1
fo ((—/\kz - 2#02)1‘1({)1)(0(1) + 2#0--——H1 a(aa)) eV -k
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(1)
+go(2#92 Vol — k?) H(gl)(ga) - Hy(ea) (ea) VR

oda

Our denominator for the Cramer’s rule solution is pr.1pr2 — prz2prt which after
some simplification equals

Pr21Pr2 — Pr22Pr1 =

~4op’0*(0? ~ k) H{(00) H{(0a) (A-11)

Fuo(h? + 207 — 2kD)(Mk? + 2N H VY (o) B (0a) (A-12)
) )

_zﬂ'pzhngl (Qa)fl (O'C!-) (A-13)

where we have discarded the exponential factors because of their cancellation througout
the system of equations.

Heelan uses the expression “only predominant terms are kept in the expansion”.
. . . .. . H2)
hat th t the | t th
What this means is that in the limit as z goes to zero, the ratio E?—IT(:_) also goes to

zero. Thus we can ignore factors in the denominator and numerator which have the
Hankel function of order 0 (Eq. A-11, Eq. A-12). The only term that survives in the
denominator is therefore Eq. A-13. Isolating Eq. A-13 we have for the denominator

B (0a)HM(0a)
a

The numerator for the calculation of f, is the following (—QG(k)p,2 + PG(k)prz2)

— 20u%h?p

(A-14)

{1)
- QO(k)20 /T = 2 [Hé‘)(ea) - H—E’—)] (A-15)

fed
+ PGk po(h? + 20% — 261) HM (0a)
1

And the numerator for g,(2, k) (- PG{(k)prz1 + QG(k)pr1) the following

PG(k)20u\/a? — k2H{(0a) + QG(k) (=24 — 2uc?) BV (00) + 2uc HY (0a))
(A-16)

We evaluate f, first. We substitute the values of PG(k), QG(k) into Eq. A-15 and
. ) .
discard Hy ' terms to obtain

L — U oa
QG(k)w'm:?iiv_dkg) kz)Q,ugm li.f%g_).} (A-17)

o sinh(Iv/o? — k?)

w(o? - k)

+PG(k) po(h? + 20 — 2k YHY (0a)
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- Dividing through by the denominator Eq. A-14 we obtain

isinh(lv/o? — k?) ]
—-QG(k) whip(o? — kz) [H(l)(aa)]
isinh(lve? — k?) 2k2 a
PO S - [

Substituting in the following expansion for small arguments Eq. 17

sinhz ~ =x

W ~ 2
Hi7(z) = itz
We finally obtain (Heelan, 1953a, Eq. 8a)
PG(k)o 02 2k?
fo(ask) \/—kz(l Y )A +Q (k )8 hz

(A-18)

(A-19)

(A-20)

where A equals the volume of the source 2ma®l and A equals the surface area of the
finite length cylinder 4mal, where the factor of two arises due to the cavity length being

21,

And following the same procedures for go(g, k) we obtain

— PG(k) aio sinh(lve? — k2) io sinh(Ive? — k?)

- QG(k
waT — Ko H™ (0a) ( )muh?(a? — k2)oH{) (o)

Applying our expansions for small arguments we obtain g,(g, k)

ralle ralo

gmant T R
Which we tranform to g,{c, k) by replacing v/o? — k? with v/o? — h?

PG(k)

Ta lo- alom
PG(k) QG(k) h:’m

and finally yielding (Heelan, 1953a, Eq. 8b) analagous to Eq. A-20

(0,k) = PG(k)Ao QG(k)Ac
Go\d, B ) = dmph? Sﬂﬂhzm

(A-21)

(A-22)

(A-23)

(A-24)
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Sh case

The calculation of n,(k) is particularly simple because the Sh problem is uncoupled.
No transformation is needed and just one equation is generated. The only boundary
condition is to match our discontinuity in stress S(k) with our continuity of azimuthal
stress (Eq. 14) boundary condition. We thus write

.. 7 52 Ny
wsx:?o(ri\/_ahz) h )ez\/a’—h’ = no(k)po? HYD (0a)e”Vo P (A-25)

— 5G(k)

Since this Sk problem is uncoupled it is not necessary that G(k) for the Sh problem be
equivalent to G(k) for the P-Sv problem though the physics of the problem would lead
this to be the most obvious application. For small arguments we make the substitutions
for sinh and the additional substitution

HNz) ~

(A-26)

imrze

to yield
SG(k)Ac
Bruvo? — h?

with the previous definition of A applying.

no(k) = (A'27)

If we set () equal to zero then we have the solutions for the cases given in Heelan’s
second paper (1953b) and Brekhovskikh’s book (1960, 1980) where there is no axial
stress applied.

Brekhovskikh’s Algebra

P-5v case

Brekhovskikh (1960, 1980) writes down Heelan’s results for radial stress in his own
notation (Eq. 33.4, 1980) but doesn’t justify any of the algebraic steps. In light of the
criticism Heelan’s work we feel this is necessary. Although Heelan’s algebra has been
shown to be correct his choice of contour since it is unknown is not beyond reproach.
The Weyl integral and the contour Brekhovskikh uses is well known and the algebra
will be fully discussed here.

We begin with the same boundary conditions Eq. A-1 and we have our poteniials
in Brekhovskikh’s notation setting aside the integrals with respect to k as

& = folk,0)H (krsin §)e=ikzcos? (A-28
]
P = go(lc,B)Hél)(krsiné')e"“"“m”
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Our sources are expressed as follows

F-ico gin(lk .
PGy =L f 27 sin(lk 05 0) —ikrcons i g (A-29)
T J=Ftico cos @
F-ico gin(ik -
QG = & (277 sinlkcosf)s _izcost 1 pap
T J_Ztico cos d
F-ico gin(lk .
SG(k) = 2 / 7 sin(lk c0s6) —ikscond i1 ggg
T J-Ztioo cos #

where £V = kv,ksind = &sinvy.

As with Heelan’s work we make a substitution ¢ into % to obtain

¢
P

Folle, 0) H (krsin 0)etk=cosd (A-30)
go(g, k‘, B)Hél)(gr)e—»ikz cos §

One will notice that derivatives with respect to z have changed sign from Heelan’s
to Brekhovskikh’s treatment from being terms in v/o? — k? to —ik cos . We set up our
reformulated boundary condition matrix with the substitution of the potentials from

Eq. A-30 as

sin(lk cos 8)e~*** 89 5in ¢ _

—QG(k) T cosd
fo(2iuk? sin @ cos B)Hl(l)(ka sin §)e~ k=8 5in g

(A-31)

2
~do (2,1191::2 cos? @ — pgkz%—) Hl(l)(ga)e"‘kz <086 sin ¢

sin{lk cos #)e~ %2020 5in 9

mTeosl =

_PG(k)

(W .
fo ((—Ak2 — 2pk? sin? 0) HS (ka sin 0) + 2uk sin 9_1‘_1’1__(_’%&11_@) e~ ikzcosf g g

: W,y H12000)] ks coss
—go{2ipk cos 80%) | Hy '(0a) — ;‘W—'—u e % sin @
The e~**2%8 5in @ terms will be discarded henceforth.
Our denominator pr;1Prz — Prz2Pr1 is after some simplification

Prz1Pr2 = Prz2Pr1 =
(4p%k® cos? fsin Bgz)Hé,l)(ga)Hfl)(ka sin ) (A-32)

. & .
~(=Xk? = 2uk?sin® 9)(—2pok® cos? 0 + pgkz-v—z)H{l)(ga)Hél)(ka sin 8JA-33)
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~2u?k3sin V2
via

oHW (00) H (ka sin 0) (A-34)
where %29 tarmg have been left off. We again find that for f, our transformation
in p can be neglected and that our H((, ) terms (Eq. A-32,Eq. A-33) can be discarded

So our denominator (Eq. A-34) can be written

2u%k3 sin 8V?

—; gHil)(ga)Hl(l)(ka sin &) (A-35)

and for our numerators for the solution of f, (—QG(k)pr2 + PG(k)p,.2) we have

lkcos @ V2
PG(!c)EL:SO—g—)[ 2;1,914:2(:0520+pk2-;2—g]H1(1)(ga)+ (A-36)
sin{lk cos 8) , 2iuk cos 8
~QG(k) Sk cos ) Zik cos 09, yiay o

Tcosf

and for our numerators for the solution of g, (—PG(k)prz1 + @G{k)p,1) we have

—PG(k)E‘f-rI-I%Egi@(%pkzsinﬂcos Q)Hl(l)(ka sin 9) (A-37)
sin(lk cos 8} (2,uk sin @

mcos @

+QG(k) )H(l)(kasm )

where again terms in Hg have been neglected. As with the results in Heelan, we solve
for f, by dividing through with the denominator Eq. A-35 to obtain

sin(lk cos §) .2 2 a
PG(k)—————=(—cos* 8 — 1)} A-38
7 cos § V2 2uk sin GH{I)(ka sin 8) ( )
in(lk cos 8 v? cos 0 :
+QG’(k)Sm( cos @) 1w CCE) (A-39)
T cosf pV2kZsin0H; ' (ka sin 8)
Using the following expansions for small arguments
sinz ~ =2 (A-40)
HO(G) = 2
(2) = —
we then obtain
Acos# v?
fo= +2PG("°)[( )C 579 — 1] (_) QG(k) (A-41)

8ru v?

where A, A have been previocusly deﬁned as voiume and length of the emptz' cavity of
length 2{. In Heelan’s work the term (2 cos?@ — 1) is presented as (1 — 27 cos?6).
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For g, we divide through by the denominator to obtain

Zcost

sin(lkcos@)  iav
7 cos @ uszng(l)(ga)
sin(lk cos #) v?

T cos @ ,qukng}l)(ga)

+PG(k)

—QG(k)

We perform the same expansions for small argument to obtain

ma?lv? cos @
2muV?
iralv?
2wuV3ik

~PG(k)

—-QG(k)

Terms in g have dropped out leaving

Av?cost
_PG(k)_41rpV2

1Av? cos 8
—QGk) 8muV2k cost

Now making the inverse transformation for p, k cos 8 = k cos vy we write for ¢,

Av?cosf
4rpV2
1Av? cos 8

8ruV2ikcosy

~PG(k)

~QG(k)

(A-42)

(A-43)

(A-44)

(A-45)

The terms in PG(k) were given by Brekhovskikh (Eq. 33.6, 1980) and the terms
in QG(k) are presented here for the first time. There is a sign change in our results
for g, which is as yet unresolved. Steepest descent analysis verifies that th achieve
Heelan’s results the sign used by Brekhovskikh is necessary. However, this is no cause

for concern because of symmetry in both the horizontal and vertical axes

Sh case

The solution for Sh radiation, purely torsional motion is particularly simple - we write

the equation without transformation and some simplification as

. p ‘ .
— SG(.’C)M_OS_)Q“’”C“‘V = ‘nopkz sin? gﬂél)(ka sin e)e-lk‘zcosﬂ

rcosl

(A-46)
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(1)
where we have used the derivative operator for HP)(z) = —-Hél)(z) + -{I—l-;@ We

now apply our expansions for small argument with another expansion, namely e* can
be expanded in the Taylor series and for small argument we only keep the first term
z. Thus we write as in Brekhovskikh (1960, 1980, Eq. 33.6)

cosl ., vkA
X

cosy’ 8miuV

no = SG(k)( ) (A-47)

The number 8 in the numerator of Eq. A-47 is given as the number 4 in Brekhovskikh’s
work but we believe this is a misprint. The number 8 abides by Heelan’s development
bearing in mind the different algebraic formulation. The number is self correcting in
subsequent steepest descent analysis leading us to believe it is only typographical in
nature.

Appendix B. TRANSFORMATION OF A FOURIER INTEGRAL
OPERATOR

This short appendix will show the transformation of the Fourier integral operator used
in Heelan’s paper (1953a) and also used by other authors (Brekhovskikh, 1960, 1980;
Pilant, 1978; Gilbert, 1964} to a well-recognized standard form. Issues of integrability,
differentiability and continuity can be found in books on Fourier integrals {Wiener,
1933) and will not be addressed here. Heelan uses the operator Re [5° F(w)e'®Vtduw.
Keep in mind that for this analysis the time dependence, the sign of i, is irrelevant.
Also since kV can be thought of in terms of frequency I will use the more common w
notation.

The Fourier integral theorem (Spiegel, Eq. 8.3, 1971; Bracewell, 1978) can be
written in the following forms

flz) = %/::0 /_o:o f(u) cosw(z — u)dudw (B-1)

@) = 5o [ [T rwetedud
flz) = %foo eiwzfo:o F(w)e ™" dudw

W=—00 -

Let’s consider the integral

},/m _/c: F(u)e* T dudw = -l-foo '[j:o Flu)cos w(xuu)dudw—}-i% foo

T Jw=0/= T Jw=0 W=l

f:; flu)sinw(z—u)a
(B-2)
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Now for f(u) defined real the two integrals on the right hand side will be real and
imaginary respectively. If we take the real part of Eq. B-2 we obtain

%foo ./_o:o flu) cosw(z — u)dudw - (B-3)

w=0

which is just equal to Eq. B-1. We can rewrite this as
1 [ :
Re= [ Flw)e? du (B-4)
T Jw=0
where F(omega) is defined to be

f Z flu)e W du (B-5)

Thus we have proved that if f(x) is real it can be represented by the following operator

Rel / ¥ Plw)eFdu (B-6)
T Jw=0

showing Heelan’s use of it was valid.



