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ABSTRACT

Cracks in a rock mass subjected to a uniaxial stress will be preferentially closed de­
pending on the angle between the fracture normal and the direction of the applied
stress. If the prestress fracture distribution is isotropic, the effective elastic properties
of such a material are then transversely isotropic due to the preferred alignment of the
cracks. Velocity measurements in multiple directions are used to invert for the prob­
ability density function describing orientations of crack normals in such a rock. We
suggest a means of using the results on fracture distribution from the velocity inversion
to estimate the anisotropic permeability of the fracture system. This approach yields a
prediction of permeability as a function of the angle from the uniaxial stress direction.

INTRODUCTION

A common goal of seismic field experiments is to estimate rock properties such as per­
meability from the information contained in the seismic waveforms. Fractured media
provide a particularly interesting example of a permeable medium, since a material
containing an aligned system of cracks will be effectively anisotropic for elastic wave­
lengths much greater than the crack dimensions (Hudson, 1980,1981; Crampin, 1984).
While a particular rock may have a randomly oriented distribution of cracks, appli­
cation of a uniaxial stress will preferentially close fractures depending on orientation
with respect to the stress axis (Walsh, 1965; Nur,.1971). It has been suggested that
the prevailing tectonic stress regimes in the earth frequently include a maximum com­
pressive stress which is horizontal, resulting in such an alignment of vertically oriented
cracks (Crampin, 1981). A uniaxial stress is easily produced in laboratory experiments
as well (Nur and Simmons, 1969).

Analysis of the elastic anisotropy produced by crack alignment can be used to
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investigate fracture properties. Sayers (1988a,b) suggested a means of inverting for the
orientations of crack normals using these velocity measurements. This method involves
an expansion of the fracture orientation distribution function in terms of harmonics
related to the system of Euler angles describing the orientations. The coefficients in
the exoansion are subsequently related to perturbations in elastic moduli predicted by
the Hudson (1981) theory for the properties of a cracked medium, and an inversion
was performed based on an approximate expression for elastic wave velocity derived
from a variational approach (Sayers, 1988a,b).

In this paper, we apply a similar inversion for crack orientations but do not use an
approximate expression for the velocities. Instead, a nonlinear inversion is performed
by linearizing the problem about an initial estimate of crack density and a parameter
describing the distribution of crack aspect ratios. The resulting estimate of crack
orientations and the distribution of aspect ratios with respect to direction is used to
predict permeability as a function of direction with respect to the uniaxial stress axis.
The method is applied to ultrasonic velocity data for Barre granite (Nur and Simmons,
1969) and the implications of the results for permeability prediction are discussed.

THEORY

Inversion for Crack Orientations

The rock medium is assumed to contain an isotropic distribution of cracks in the
unstressed state so that the effective elastic parameters ofthe material are also isotropic
in this case. When a uniaxial stress is applied to such a material, some of the cracks
will close depending on the angle of the crack normal with respect to the stress axis
(Walsh, 1965) (Figure 1). This angle ,0 is given by

r;;E;
cos ,0 = V--;- , (1)

where'" is the crack aspect ratio, Eo is the Young's modulus of the uncracked mate­
rial, and cr is the applied uniaxial stress. The initially isotropic material will become
anisotropic after application of the stress with rotational symmetry about the stress
axis (Nur, 1971). The effective elastic properties of the stressed, cracked material will
then have a transversely isotropic symmetry.

The effective elastic moduli of the medium can be estimated by averaging the
elastic constants of the fractured material over a crack orientation distribution func­
tion N(e,'lj;,¢) , where e,'lj;, and ¢ are Euler angles of rotation specified in Figure
2. These angles define the set of rotations necessary to obtain the orientation of the
crack Cartesian coordinate system x, y, z for each crack with respect to the composite
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medium reference Cartesian coordinate system denoted by X, Y, Z. We specify the
initial orientation of the fracture prior to rotation such that the crack normal (paral­
lel to z) is parallel to Z, and the other two axes x and yare therefore in the plane
of the fracture. Note that for a circular crack, only Band ,p are necessary to fully
specify crack orientations, and ¢ can freely range from 0 to 27r. The crack orientation
distribution function N(B,,p, ¢) .is defined so that integration over the full domain is
one:

00 I

I: I:

l" l" fa" N(B,,p,¢)dB d,pd¢ = 1 .

This function can be expanded in generalized spherical harmonics (Roe, 1965)

I
~ w: Z (() -im,p -in¢L.-J lmn lmn e e .

1=0 m=-l n=-l

(2)

(3)

Here ( = cos B. The derivation of the generalized Legendre functions Z(() and some of
their properties are described by Roe (1965). Each coefficient Wlmn in the expansion
of the orientation distribution function N((,,p,¢) is obtained by integrations of the
following form:

(4)

With this expansion, the orientation distribution function can be decomposed into
harmonic components.

If a polycrystalline aggregate were considered, an estimate of the elastic properties
of the aggregate could be obtained by simply averaging the elastic constants of the
individual crystals with respect to the orientation distribution. This method, the
Voigt approach, is known to yield an upper bound on the elastic constants (Hearmon,
1961). The same procedure can be applied to the fractured medium by averaging the
effective elastic constants of fractured material over all sets of fracture orientations in
the rock (Sayers, 1988a). The averaged constants can be written (Morris, 1969)

Cijkl =

=

Tijklmnpq

(5)

The Einstein summation convention is applied. The matrix 'Tijklmnpq essentially defines
an average rotation of the elastic constants of the individual components cmnpq ' Morris
(1969) has calculated a table of values for the matrix elements Tijklmnpq in terms of
the coefficients of the expansion of the distribution function up to order I = m = n = 4
for composites of materials with orthorhombic symmetry which can also be applied
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to material with hexagonal symmetry. The orthogonality properties of the harmonics
cause terms for indices greater than 4 to disappear since the fourth order elastic tensor
cmnpq will only have coefficients for I = m = n = 4. The Morris (1969) table can easily
be used in Eq. (5) to find the overall properties.

The theory of Hudson (1980,1981) for the stiffness constants of a fractured medium
can be used to obtain values for Cijkl to use on the right hand side of Eq. (5). This
theory provides an expression for the effective elastic tensor Cijkl of a homogeneous
medium containing a single set of parallel penny shaped cracks with dimensions much
less than a wavelength. This expression is in terms of a first order correction C;jkl to
the elastic tensor of the unfractured material C?jkl:

(6)

Here € is the crack density defined by € = na3 , n is the number of cracks per unit vol­
ume, and a is the crack radius. Hudson (1980) also derived a second order term which
results in values of the stiffnesses which are quadratic functions of the concentration
of cracks, and hence the second order theory actually predicts increasing velocities for
very large crack concentrations. In order to match the observed data discussed below,
the second order correction was therefore not applied, and only the first order term
was involved in the inversion.

If we apply a stress along the z-axis, the only nonzero coefficients in the expansion
of the resulting crack distribution will be W ooo , W,oo, and W 400 due to the symmetry
around the z-axis and the circular symmetry of the cracks. For purposes of the
inversion, we follow Nur (1965) and Sayers (1988b) and take as a model for the crack
aspect ratio distribution in the unstressed state a simple linear function

a
N(a) = No(1- -),

am
o< a < am .. (7)

The parameter am sets the maximum aspect ratio present in the rock sample and is
given by am = ao/Eo, where ao is the hydrostatic pressure required to close all cracks.
To serve as a density function, Eq. (7) is normalized by the total number of cracks
present n q :

[
a a' 1 a ]

n q = No :; +. E5 lOam 3Eo (8)

Given this distribution of cracks, the crack orientation distribution function after appli­
cation of a uniaxial stress can be obtained using the closure model given by Eq. (1). At
any given angle e from the stress axis, all fractures with aspect ratio a > a cos e/Eo
are open. The resulting coefficients in the expansion of the orientation distribution
function are:

W ooo =
1

871"2 '
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W'OO 1 /[Uc 1 U)= - 5n~271"' 2" Eo :3 + "7 Eoam

W 400
1 1 ~ u

2
= 315 n' 71"' 2" E2 a

" 0 m, n" (9)n" = No

One important aspect of this particular distribution model is that the expansion up
to terms I = 4 is exact, and there is therefore no truncation error from termination of
the series. If, however, only a single crack aspect ratio were considered, the post-stress
distribution of cracks resulting from the closure model governed by Eq. (1) would be
a box car function with respect to the e (or 7)) variable, and strong Gibbs phenomena
effects would result since accurate representation of this discontinuous function will
require a large number of terms in the expansion. Truncation of the expansion series
in this case would yield unrealistic results due to strong oscillations of the predicted
distribution function.

Given the values of the elastic constants resulting from the averaging process, ve­
locities can be computed for the stressed, cracked material. The quasi-compressional
wave phase velocity vqp , vertically polarized quasi-shear wave velocity VqSV, and hor­
izontally polarized quasi-shear wave velocity VqSH in a general transversely isotropic
medium are given by (Musgrave, 1970)

PV;p = C44+~ {hcos' 13 + a sin' 13 + [(hcos'f3 + asin' (3)' - 4(ah - d')cos' 13 sin' f3]'/'}

(10)

pv;SV = C44+~ { h cos' 13 + a sin213 - [(h cos213 + a sin2 f3? - 4(ah - d') cos213 sin2 f3]'/2}

(ll)
PV;SH = C44 cos' 13 + Caa sin' 13 (12)

a =

h =
d

Cll - C44
C33 - C44

CI3 + C44

Here 13 is the angle measured from the symmetry axis, in this case the z-axis. This
expression uses the averaged elastic constants to predict the phase velocity value in a
given direction.

For a given uniaxial stress u and intrinsic Young's modulus Eo, the only unknown
parameters necessary to compute velocity from Eq. (10) are crack density € and max­
imum crack size am. Therefore, these are the natural quantities to determine through
inversion procedures. Since Eq. (10) is a nonlinear function of € and am (through
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the dependence of the elastic constants on the orientation function), an inversion is
performed by linearizing the problem about an initial estimate of model parameters:

d ~ Gmo +All.m . (13)

Here d is the data vector containing observed velocity values, G is the forward model
operator yielding velocity predictions for a given set of model parameters in starting
model vector mo, A is a matrix of partial derivatives, and ll.m is a perturbation to the
starting estimate of model values. The partial derivatives are somewhat complicated
algebraically, but can be computed analytically with no approximations. We then
perform an iterative least squares inversion for am and E, which allows an estimate of
the crack normal orientation distribution.

This inversion procedure is similar to that proposed by Sayers (1988a,b), but there
are several significant differences. For example, Sayers (1988b) considers a stress ap­
plied along the x-axis, which results in a more complicated expansion of the crack
orientation distribution function since the orientation is in that case a function of an­
gle ..p as well as e. The approach described in this paper uses the exact expression
for phase velocity, while Sayers (1988b, see also 1986) uses an approximate expression
derived from a variational method.

Permeability Prediction

The crack orientation distribution function resulting from the inversion can be used to
predict permeability values. The permeability of a single fracture is simply

L~
k1 = 12 . (14)

This cubic law permeability results from the analysis of flow through a single parallel
plane walled fracture (Snow, 1965), and gives the flow rate per unit length along the
fracture. Conventional permeability values are defined from Darcy's law relative to
flow across a unit surface element area. To make this conversion, consider as a model
a block volume containing a set of cracks which extend through the length of the
block (Figure 3). The permeability of the volume relative to the surface area of the
block is obtained by simply adding the contribution of each fracture, which amounts
to multiplying Eq. (14) by the number of cracks in the volume shown in Figure 3.
The number of cracks of interest is the number with normals perpendicular to the
direction in which permeability is to be estimated, which requires a knowledge of the
crack normal distribution function P(X, '7), X = cos 8 (Figure 4). Due to the circular
symmetry of the cracks, this function is equal to 2rrN(("..p, ¢) so that X = (, and '7 =..p.
Remembering that £ = na3 , a set of cracks of a given aspect ratio yields a permeability
k,,:

(15)
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where the product in the numerator gives nL5. Since the model considers a unit volume
(Figure 3), the value a in Eq. (15) is length squared, where the length unit will be the
same as that of the unit volume under consideration.

Integrating over the range of crack aspect ratios for cracks still open in a given
direction, from ad = cos2,o"/ Eo to am, gives permeability as a function of angle 0
measured from the stress axis:

k(O)- N(O,'Ij;)€ [a;;'-(E"ocos20)4].
- 48(am - Eo cos2 0)

(16)

While this is a rather simple approach to permeability estimation, it is related to other
studies of fluid flow through crystalline rock. Bernabe (1986) examines in detail the
applicability of the equivalent channel approach to permeability modeling for several
granites and concludes that it is a valid approach. In our case, we in essence develop
an equivalent channel for each direction of interest based on the distribution of crack
aspect ratios in that direction. This allows the model to include the effects of crack
closure with orientation. The principaJ effects which are neglected are the influence of
asperities in diminishing the mean hydraulic radius of the cracks and the tortuosity
created by the asperities and the interconnection of cracks. The simplest way to include
these effects of the equivalent channel approach is to simply normalize the permeability
predictions by some constant so that the values are of the correct order of magnitude.
This can be done easily if permeability for one direction is known or if the permeability
of the unstressed rock is known.

Another possible approach is to assume that only fractures with aspect ratio smaller
than some cut off value are involved in fluid flow, the remainder being isolated fractures.
This will clearly greatly decrease the caJculated permeabilities due to the width cubed
dependence of fracture permeability. However, this will yield vanishing permeabilities
for directions where only fractures with aspect ratio greater than the cut off are open,
which is not likely to be true for real rocks.

APPLICATION TO ULTRASONIC DATA

The inversion procedure together with the permeability model Eq. (16) provides a
method for predicting permeability values given observations of elastic wave veloci­
ties which could be obtained from either laboratory samples or field data. Nur and
Simmons (1969) made velocity measurements on samples of Barre granite as a func­
tion of direction for several magnitudes of applied uniaxial stress. Measurements were
presented for both quasi-compressional wave signals and quasi-transverse waves, SV
and SH. The Barre granite sample used by Nur and Simmons (1969) was dry, so the
Hudson (1981) formulation for dry cracks is appropriate.
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Inversion results for the qP data are presented for uniaxial stresses of 0, 10, 20, 30
and 40 MPa in Table 1. Corresponding quasi-compressional wave velocity predictions
and observations are compared in Figure 5. The theory is able to match the data
well, with a fit essentially the same as that obtained by Sayers (1988). The inversion
results become less accurate for the higher applied stresses, which suggests that the
simple physical model of crack closure becomes less adequate at these values of stress.
Only two data points are available for inversion at the stress value of 40 MPa, but
some experimentation using data from lower stress values using only the velocities
parallel and perpendicular to the applied stress axis yielded results very similar to
those using all available data. An important aspect of the approach is that for the
no stress case, the inversion is unable to obtain an estimate of a ml since the forward
model is insensitive to the aspect ratio in this case. Therefore, a value of 4.4 x 10-4

was used for permeability predictions based on the trends indicated for the results of
other stress values. The trends in crack density shown by the inversion results in Table
1 are reasonable. As stress increases, more cracks will close reducing the overall crack
density, as occurs for these results. The increase in am with stress is more difficult
to explain, however, as is the sudden decrease at 40 MPa. It may reflect changes in
aspect ratio with stress which are not included in the present physical model.

Results for the qSH and qSV data are presented in Tables II and III, respectively.
Data and velocity predictions are shown in Figures 6 and 7. While the qSH data
are similar to those in Figure 5 for the quasi-compressional waves, the qSV results
are relatively poor. A transversely isotropic medium always has equal qSV velocities
parallel and perpendicular to the symmetry axis (see Eq. (11)), but it is clear from the
data in Figure 6 that this condition is not quite true for these observations. It is possible
that the distribution of the Barre granite fracture system has some slight anisotropy
which would cause the stressed system to have some overall symmetry other than
transversely isotropic. A more likely cause of these results is that the principal source
of SV velocity variation is preferred grain orientation in the granite. Lo et al. (1986)
clearly demonstrate such a residual anisotropy after crack closure in measurements of
velocity in Chelmsford granite. If the residual anisotropy is the cause of most of the
velocity variation for the SV data, the inversion results are not significant for inference
of crack orientation since the forward model involved in the inversion includes only
anisotropy due to cracks.

The effects of this residual anisotropy seem to be evident to a smaller degree at
high pressures for the quasi-compressional and qSH wave data also (Figures 5 and 7).
Since the total velocity anisotropy is greater for the quasi-compressional and qSH data,
however, the fractures have more effect on observed velocities and the inversion results
are more significant for these cases. The values of crack density E obtained from the
two quasi-shear wave data sets are almost identical, but the quasi-compressional wave
data consistently yielded a somewhat lower estimate of crack density. The results for
all data sets are also essentially the same as those obtained by Sayers (1988b). The
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cause of the difference in results for quasi-compressional and quasi-shear wave data
is difficult to explain but may be related to the difference in interaction with crack
surfaces of dilatational and shear strains.

The inversion results for am from qP and qSH data are also comparable. Both sets
of results show a trend of increasing am with increasing stress, except for the highest
applied stress value of 40 MPa. Although the qSV results for am are quite different, it
was clear from the behavior of the inversion process that this is a poorly constrained
parameter for the qSV data.

Permeability predictions using the qP and qSH results are shown in Figures 8
and 9 respectively. The curves for 10 MPa were normalized to match a permeability
measurement for Barre granite under 10 MPa hydrostatic pressure (Bernabe, 1986).
This normalization assumes that the permeability in the direction perpendicular to
the applied uniaxial stress shows the same behavior as does isotropic permeability in
the hydrostatic case. The other permeability curves were normalized to have the same
permeability in the stress direction. Zoback and Byerlee (1975) show that there is in
fact a decrease in permeability in this direction, but this effect is not too large, on the
order of about 50 nD over a stress range of 160 MPa. The two sets of predictions from
qP and qSV inversion results compare well, especially at 20 and 30 MPa.

vVhile measurements of anisotropic permeability in the uniaxial stress case are not
available to confirm these predictions, a simple check can be made by comparison with
permeability measurements as a function of hydrostatic pressur". The permeability
values perpendicular to the stress axis from both the qP and qSH results are compared
to the measurements qy Bernabe (1986) for Barre granite in Figure 10. The match is
not perfect, but the values at least show approximately the correct degree of change
with pressure. Other examples of permeability measurements reported in the literature
for granites show a wide variation both in the absolute value of permeabilities under
pressure and in the magnitude of change in isotropic permeability with increasing
pressure (e.g., Brace et al. (1968) and Bernabe (1986)).

DISCUSSION AND CONCLUSIONS

The results of the velocity inversion suggest that the physical model for the fracture
behavior under uniaxial stress is capable of describing most of the effects of the cracks
on the elastic properties of the medium and that the model is able to match observa­
tions of velocity in the Barre granite. The aspect ratio of the dry fractures does not
affect the elastic wave velocities in the Hudson formulation. Only the density of cracks
€ is important in this case, and so the inversion results suggest that we are modeling
this aspect of the system fairly well. On the other hand, permeability critically de­
pends on the aspect ratio due to the cubic dependence on crack width in Eq. (14). The
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permeability predictions are highly sensitive to this parameter, and thus permeability
values are predicted to show fairly rapid change as a function of direction (Figures 8
and 9).

It is important that we have only included a fracture contribution to permeability
in this model. If the medium under consideration has a significant amount of a different
type of interconnected pores and tubular fluid conduits, such as is the case in some
sandstones, the effects of the crack closure must be added to the permeability due
to other porosity types. Since the equidimensional pores of a sandstone will only
be minimally affected by the applied stress, the effects of the cracks may not be so
important for overall permeability values. This crack model is most important for
low porosity rocks such as fractured limestones or granites and other crystalline and
metamorphic rocks which would be essentially impermeable except for the cracks.

The present version of this theory of permeability has a limitation in that we do not
include any change in aspect ratio for the cracks which remain open. In actuality, the
aspect ratio of the open cracks will decrease as the uniaxial stress is applied (Toksoz et
aI., 1976). This effect will tend to decrease the permeability values in directions away
from the stress axis.

The change in aspect ratio with stress will affect only the permeability predictions
as long as the cracks are dry. If, however, the cracks are assumed to be filled with a
fluid, the aspect ratio also affects the elastic constant values. The forward modeling
of velocities would then have to include the variation of aspect ratio with direction in
order to compute the velocity values. However, a relatively small amount of gas mixed
with the fluid will still cause the effective properties of the medium to be essentially
those of a gas, since the effective bulk modulus k* of a two phase medium is given by

(17)

where k f and kg are fluid and gas bulk moduli, respectively, and V is the volume
fraction of fluid (Kuster and Toksoz, 1974). The large compressibility of the gas will
tend to dominate the overall properties of the crack filling material, and it will tend to
behave as though the cracks are filled with a gas. As long as the shear modulus and
bulk modulus of the crack filling material are small, the aspect ratio of the cracks has
little impact on the elastic constants in the Hudson (1981) approach, and the present
approach will be sufficient.

This approach should at least provide a means of obtaining an initial estimate of
permeabilities for use in modeling of fluid flow in subsurface fractured media. Potential
areas of application include both hydrological studies and petroleum reservoir model­
ing. Perhaps the most important aspect of the theory is that it represents an attempt
to extend knowledge of the permeability of a subsurface feature to regions beyond the
borehole using seismic data.
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I Uniaxial stress (MPa) I E am

0 0.275
10 0.255 4.82 X 10-4

20 0.236 5.64 X 10-4

30 0.221 7.16 X 10-4

30 0.217 6.72 X 10-4

Table I. Inversion results using quasi-compressional wave velocity measurements ofNur
and Simmons (1969). A value of am for the 0 MPa uniaxial stress is not included, since
the inversion cannot determine information on aspect ratio in this case.

0 0.315
10 0.283 4.98 X 10-4

20 0.255 5.94 X 10-4

30 0.234 6.78 X 10-4

30 0.217 5.61 X 10-4

I Uniaxial stress (MPa) I E am

Table II. Inversion results using qSH velocity measurements of Nur and Simmons
(1969). As in the quasi-compressional case, the inversion cannot determine information
on aspect ratio at 0 MPa.

I Uniaxial stress (MPa) I E

0 0.314
10 0.282
20 0.256 1.103 X 10-4

20 0.230 1.708 X 10-4

Table III. Inversion results using qSV velocity measurements of Nur and Simmons
(1969). Values of am for the 0 MPa and 10 MPa uniaxial stress are not included, since
the inversion cannot determine information on aspect ratio for low pressure qSV data.
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Figure 1: Schematic diagram illustrating the behavior of a randomly fractured medium
under an applied uniaxial stress. The upper figure shows a possible random crack
system with no stress applied. The lower portion shows the same system after
application of the uniaxial stress, where cracks have closed depending on their
orientation with respect to the stress.
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Figure 2: Euler angles of rotation e,';',</> describing orientation of a given crack coor­
dinate system x, y, z (fine lines) with respect to the composite medium coordinate
system X, Y, Z (heavy lines). Dashed lines indicate intermediate orientations of the
crack coordinate system. The set of rotations is defined as follows: 1) rotate by ,;,
about Z (the same as z initially). 2) rotate by eabout the new y-axis. 3) rotate by
</> about the new z-axis. Since the cracks are assumed to have circular symmetry,
the first two rotations actually uniquely specify the orientation of a single crack.
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Figure 3: Schematic block model showing the hypothetical distribution of cracks used
to estimate permeability. The arrow indicates the direction of fluid flow and pres­
sure gradient.
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Figure 4: The angles 8 and '7 necessary to specify the orientation of a crack normal.
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Figure 5: Results of inversion for crack density € and maximum crack size "'m using
Barre granite quasi-compressional wave velocity data. The points are data collected
by Nur and Simmons (1969), and the lines indicate the inversion results. The value
of the applied uniaxial stress is indicated for each curve. Nate that only two data
points were available at 40 MPa.
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Figure 6: Results of inversion for crack density € and maximum crack size am using
Barre granite qSV velocity data. The points are data collected by Nur and Sim­
mons (1969), and the lines indicate the inversion results. The value of the applied
uniaxial stress is indicated for each curve.
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Figure 7: Results of inversion for crack density E and maximum crack size "'m using
Barre granite qSH velocity data. The points are data collected by Nur and Sim­
mons (1969), and the lines indicate the inversion results. The value of the applied
uniaxial stress is indicated for each curve.
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Figure 8: Permeability predictions as a function angle from the applied uniaxial stress
axis. The predictions use the results from the inversion of qP data. The uniaxial
stress is indicated for each curve.
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Figure 9: Permeability predictions as a function angle from the applied uniaxial stress
axis. The predictions use the results from the inversion of qSH data. The uniaxial
stress is indicated for each curve.
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Figure 10: Comparison of hydrostatic permeability measurements with theoretical
permeabilities perpendicular to the stress axis. The data, measurements on Barre
granite (Bernabe, 1986), are indicated by the line and the points are calculated
from Eq. (16). Since the permeabilities are normalized to have the same value
at 10 MPa, the data and theoretical points overlap at this value of stress. The
velocity data types used to calculate the permeability predictions are indicated in
the figure.


