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ABSTRACT

A model for attenuation of acoustic waves in suspensions is proposed which includes
an energy loss due to viscous fluid flow around spherical particles. The expression
for the complex wavenumber is developed by considering the partial pressures acting
on the solid and fluid phases of the suspension. This is shown to be equivalent to
the results of the Biot theory for porous media in the limiting case where the frame
moduli vanish. Unlike earlier applications of the limiting case Biot theory, however,
a value for the attenuation coefficient is developed from the Stokes flow drag force
on a sphere instead of attempting to apply a permeability value to a suspension. If
the fluid and solid particle velocities have harmonic time dependence with angular
frequency w, the attenuation in this model is proportional to w2 at low frequencies and
approaches a constant value at high frequencies. The predicted attenuation is very
sensitive to the radius and density of the spherical particles. Accurate modeling of
observed phase velocities from suspensions of spherical polystyrene particles in water
and oil and successful inversion for kaolinite properties using attenuation and velocity
data from kaolinite suspensions at 100 kHz show that this viscous dissipation model
is a good representation of the effects controlling the propagation of acoustic waves in
these suspensions. Attenuation predictions are also compared to amplitude ratio data
from an oil-polystyrene suspension. The viscous effects are shown to be significant for
only a limited range of solid concentration and frequency by the reduced accuracy of
the model for attenuation in a kaolinite suspension at 1 MHz.

INTRODUCTION

Acoustic waves are attenuated by a variety of mechanisms in an inhomogeneous medium.
The study of wave propagation in a fluid containing suspended solid particles is of in-
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terest to both acoustic well logging, where the borehole is filled with a liquid with
suspended clays, and ocean acoustic investigations. Full waveform acoustic modeling
typically assumes a linear variation of attenuation with frequency with little or no
theoretical basis (Burns, 1988). It would be of value to obtain a better understanding
of this assumption in order to apply more rigorous values in synthesis of acoustic logs.
"Geoacoustic models" for acoustic wave propagation through ocean bottom sediments
must also include information on attenuation in order to properly interpret observa
tions (Hamilton, 1980). The problem of attenuation in suspensions is directly relevant
since the sediments of the sea floor can have porosities up to at least 80% to 90%
(Akal, 1974; Hamilton, 1976).

Several theories for attenuation in suspensions have been formulated from scatter
ing theory. One of the earliest applications of the scattering formulation for spherical
particles was by Urick and Ament (1949), who used the zero and first-order scattering
terms to estimate phase velocity and attenuation. The existence of shear waves in
the scattering particles was incorporated into scattering theory by Faran, Jr. (1951).
Ahuja (1972a) included the effect of particle viscosity in a study of suspensions and
emulsions, while other workers have included thermal loss effects (Allegra and Haw
ley, 1972). Further studies of bulk properties of two-phase materials have analyzed
the attenuation mechanisms and velocity dispersion predicted by scattering theories
(for example, Kuster and Toksoz, 1974a,b; Hay and Burling, 1982; Lin and Raptis,
1983; and Hay and Mercer, 1985). These theories lead to solutions for the scattered
waves in terms of Bessel or Hankel functions. The coefficients for the various wave
types are determined by solution of complicated simultaneous equations, and therefore
typically only the zero and first-order coefficients are examined to derive simplified
expressions for attenuation. This leads to an attenuation coefficient which is linear in
solid concentration, but examination of attenuation data for suspensions shows that
this linearity is at best true only for very dilute concentrations of particles. In con
trast, Davis (1979) showed that a theory including multiple scattering resulted in an
attenuation coefficient with a second order correction term.

A different approach to the study of suspensions is to consider a representative
volume of composite material and to examine the effective values of quantities such as
density, compressibility and forces acting on the different components of a suspension.
Urick (1947) attempted to estimate the acoustic phase velocity of suspensions of kaoli
nite by calculating effective bulk density and compressibility, and later (Urick, 1948)
derived an attenuation coefficient equivalent to that predicted by zero and first-order
scattering theory by looking at the Stokes drag force on a sphere. Ament (1953) es
timated an effective density parameter for a suspension based on balancing the forces
acting on solid and fluid components of a filter undergoing oscillatory motion. This
was applied to suspensions by computing a filter permeability for the medium using
Stokes drag force on spherical particles, and a linear approximation to attenuation was
developed. Ahuja (1972b, 1973) employed a similar approach which included thermal
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effects but also gave only a linear attenuation estimate.
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More recently, the possible extension of the Biot (1956a,b) theory for porous media
to suspensions by examining the limiting case where solid frame bulk and shear moduli
vanish has been considered (Hovem, 1980a,b; Ogushwitz, 1985). The Biot theory
includes attenuation due to flow of a viscous fluid through the pore structure of a solid
matrix (Biot, 1956a,b; 1962). Although the modified Biot theory results are able to
match data well, it is not obvious that this theory derived from a model containing a
solid matrix framework can reasonably be assumed to apply to the suspension where a
continuum consists of the liquid phase with solid particles as inclusions. In this paper,
we consider a balance of the forces acting on the solid and fluid components instead of
the modified Biot theory. Hovem (1980a, 1980b) and Ogushwitz (1985) both employ
a permeability estimate based on concepts derived for porous media, but the present
work instead includes attenuation due to Stokes flow drag on spherical particles. An
analytic correction to the drag force compensating for the presence of multiple spheres
(Hasimoto, 1959) is included in the derivation. This correction has not been included in
previous theories utilizing the Stokes drag force approach. The resulting predictions are
compared to laboratory measurements of velocity for spherical polystyrene particles,
and the dispersion relationship is used to invert for the properties of kaolinite clays
using velocity and attenuation data. The theory will apply to a limited range of
concentrations and frequencies due to the assumption of Stokes flow and neglect of
scattering and particle interaction, and the range suggested by the theoretical results
is discussed along with some comparisons to other attenuation models.

MODEL FOR ATTENUATION IN SUSPENSIONS

Equations of Motion

The medium consists of two phases, a fluid continuum with suspended solid particles.
The fluid is assumed to be a Newtonian viscous liquid, and the solid particles are taken
to be spherical. An acoustic plane wave is assumed to propagate through the medium
with a wavelength much greater than the dimension of the particles so that the fluid
flow will behave as a simple Stokes flow with respect to the suspended particles. Finally,
the distribution of the solid spheres is assumed to be statistically homogeneous so that
the effective properties of the medium are isotropic. Then the same volume fraction of
solids is found in any given volume and the same area fraction in any cross-section of
the medium, and the suspended material will have the same effect on the plane wave
in any given direction of propagation.

The equation describing motion of a simple fluid medium during propagation of an



158

acoustic wave is

Gibson and Toksoz

(1)

where p is pressure, Pf is fluid density and v f is the velocity vector for the fluid particles.
This expression results from neglecting inertial and viscous terms in the Navier-Stokes
equations, which is valid for examination of pressure fluctuations due to acoustic waves
(Clay and Medwin, 1977). The pressure will be altered by the introduction of solid
spheres to a new value p*. Considering the pressure gradient as a measure of the force
applied to a unit volume of the composite material, when a volume fraction </> of solids
is present a fraction </> of the pressure gradient will act on the solids in the suspension.
Likewise, a fraction 1- </> of the pressure gradient will act on the fluid component. The
equations of motion for the fluid and solid particles are then

(2)

-</>\7p* =

The solid particle velocity is v., and P. is the density of the solids. The variable I is
a dissipation coefficient which is a function of </> and fluid dynamic viscosity 1] relating
dissipation of energy to the relative motion of fluid and solid, a viscous coupling effect.
An explicit form for this coefficient will be considered below.

The effective bulk modulus [(* of a two-phase medium is given by (see, for example,
Kuster and ToksDz, 1974a)

([(*)-1 = </>IC;1 + (1 - </»[("t, (3)

where [(. and [(f are the solid and fluid bulk moduli, or incompressibilities. For a
homogeneous fluid medium with bulk modulus [(,

- a,p = [(\7. vf, (4)

but for the suspension a contribution to the pressure p* will come from the motion
of both fluid and solid particles. Both components will contribute to the pressure
with the bulk modulus [(*, and considering the volume fractions of the materials, the
effective pressure can be written

-a,p* = [(*[(1- </»\7. vf + </>\7. v.]. (5)

This can be used with equations (2) to fully describe the acoustic wave propagation in
the composite medium.

The Biot theory for propagation of acoustic waves in porous media was originally
obtained by considering the stress tensor in a solid framework and the pressure in
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a pore-filling fluid (Biot, 1956a,b). Hovem (1980a,b) and Ogushwitz (1985) applied
this theory to suspensions by allowing the bulk moduli describing the solid frame
of the composite material to vanish. It is important to examine theoretically the
consequences of the vanishing frame bulk moduli. This theoretical examination is both
simple and enlightening. Begin with the equations for compressional wave propagation
in the porous medium (Biot, 1962), with some notational change to correspond to the
presentation in this paper:

(6)

where

(7)

p* = </>ps+ (1 - </> )Pf.

The parameter B is permeability, Us and uf are solid and fluid displacement vec
tors, and H, C, and M are elastic coefficients relating stress and strain in the porous
medium. The parameter m is related to mass coupling between solid and fluid (Biot,
1962) and to the tortuosity of the porous medium (Stoll, 1974), and is given by

a'pm= __f_.
I-</>

(8)

Here a' :::: 1, and increases with the tortuosity of the medium. Stoll (1974) showed
that the elastic moduli can be expressed in terms of the fluid and solid bulk moduli
and the solid frame bulk modulus ](b and shear modulus !J- by

H =
(](s - ](b)2 ]( 4!J-

D -](b + b+"3

C
](s(](s - ](b)

- D -](b

](2
M = s

D -](b

D [ )( ](s )] K'; (9)= ](s 1 + (1 - </> ](f - 1 = ](*'

The first of equations (6) gives the divergence of the total stress tensor acting on the
composite medium, while the second gives the divergence of the fluid pressure gradient
only.
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For a pore structure oriented parallel to the pressure gradient, a' = 1 in equation (8)
(Stoll, 1974). It is reasonable to take a' = 1 for a suspension also, since, except for
very near the spherical particles, the fluid motion will be entirely parallel to the acting
pressure gradient. This has the same effect on the resulting equations of motion as
neglecting mass coupling. When the frame bulk and shear moduli vanish, it is simple
to show that H = C = M = J(*, which in turn causes the terms on the left hand sides
of equations (6) to reduce to the p* defined in equation (5). Setting the frame moduli
to 0 and multiplying the first of equations (6) by -1 and the second by -(1 - <p) gives
after some algebra

(10)

Here the form of the dissipation coefficient 7 has been temporarily ignored. Equa
tion (10) is simply the sum of the divergence of equations (2), while equation (11) is
simply the divergence of the first of equations (2). The total force per unit volume
of the suspension is reflected in equation (10), and equation (11) indicates the force
acting on the fluid component only.

This confirms that the approach of Hovem (1980a,b) and Ogushwitz (1985) is in
fact reasonable. It should be noted that neglecting parameters describing a solid
continuum is not a valid procedure in all cases. Kuster and Toksoz (1974a) note that
in the scattering formulation it is not possible to derive relations for a fluid matrix
with solid inclusions from those derived for the solid matrix by allowing the matrix
rigidity to vanish. This is because the solid matrix case will have no relative motion
between matrix and inclusions, while a fluid medium with suspended solid particles
will allow for significant relative motion, particularly when the densities of the two
components are significantly different. The reason it is possible to allow frame moduli
to vanish in the Biot approach is because the original theory does in fact consider the
relative motion of the solids and fluids as the primary viscous attenuation mechanism.
Although it might seem that the porous medium is a case of a solid matrix with
fluid inclusions, this is not true. In fact, both the fluid and solid components form
continua which oscillate asynchronously during the passage of an acoustic wave. The
suspension presents the same situation, except that it is not possible for a signal to
propagate continuously through a solid component, and the resistance to fluid flow is
a case of flow around obstacles instead of through a tortuous pore structure.

Dispersion Relationship

To develop a dispersion relationship from equations (2) and (5), consider a plane wave
propagating in the X3 direction of a Cartesian coordinate system with axes denoted by
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Xl, x2, and X3. The equations reduce to

(1 - ¢ )fhp' + (1 - ¢)Pf8t vf + ,(vf-vs) = 0

¢fhp' + ¢Ps8tvs ,(vf-vs) = 0

8,p' + (1- ¢)J('fhvf + ¢J('83Vs O.

161

(12)

The components of solid and fluid velocities in the X3 direction are represented by Vs

and vf respectively. Assuming a solution of the form Aei(wHlx3 ) for each of the un
knowns and substituting in equations (12) gives a matrix equation with a determinant
that must equal 0 for a non-trivial solution:

il(l-¢) iw(l-¢)PJ+, -,

il¢ =0. (13)

,w il(l - ¢ )J(' il¢J('

The resulting dispersion relationship between wavenumber 1 and angular frequency w

IS

¢(1- ¢)PfPs _ i'
p* p* w

J(' ¢(1- ¢)p' _ i' '
w

p' = (1 - ¢)Ps +¢Pf'

(14)

(15)

The imaginary part of 1from equation (14) gives the attenuation coefficient 0: in units
of inverse length, and the phase velocity c is obtained from the real part ~{I}:

0: = 8'{I}, (16)

(17)
w

c = ~{Ir

The dimensionless parameter Q, defined as the ratio of the maximum stored energy to
the energy loss per cycle, is related to the attenuation 0: by (see, for example, Johnston
et a!., 1979)

Q-l = 20:c.
W

(18)

Attenuation values cited below will be given in units of decibels per meter, which is
related to attenuation in units of inverse length by 8.6860: [l/m) = 0: [dB/m].
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Expressions for the Dissipation Coefficient

To this point, no explicit form for the coefficient / has been assumed. Biot (1962)
showed that it is given by

(19)

where R is a measure of resistance to fluid flow. The factor of (1 - </»2 results from
considerations of volume flow rates. In the original formulations, the value used for
R was the reciprocal of permeability, B-1 • For applications to porous media, this is
useful and valid, although the permeability B is at best difficult to predict theoretically
and must in general be measured for a particular rock sample. Hovem (1980a,b) and
Ogushwitz (1985) also used the permeability concept for suspension theory, estimating
values from the Kozeny-Carman relationship for permeability in terms of particle radius
r and concentration </>: _(.c) (1-</>?

B - 2 '9ko </>
(20)

where ko is a free parameter related to the local shape of the medium. This is usu
ally assumed to be 5, which is the theoretical value for a circular tube pore. It has
been shown that this equation is frequently observed to be inaccurate even for true
porous media, and that a posteriori adjustment of parameters is necessary to match
observations (Scheidegger, 1974).

Because of the ambiguity inherent in the Kozeny-Carman equation and its free
parameter ko, the drag coefficient / in this paper is derived from Stokes flow drag
force. For a single sphere this is (see, for example, Landau and Lifschitz, 1959)

/1 = 61rTJr. (21)

The application of the Stokes flow drag force to suspension dissipation is not new
(for example, Urick, 1948; Ahuja, 1973) and it has also been applied in terms of the
permeability concept (Ament, 1953). These previous applications have all attempted to
account for the presence of multiple spheres simply by multiplying /1 by the number of
spheres per unit volume, n. Some analytic approximations for the effects of the presence
of more than one sphere exist. For a periodic array of spheres in a body centered
packing, the drag force on an individual sphere to second order in </> is (Hasimoto,
1959)

(

/1 = 61rTJkr,

k- l = 1-1.791</>1/3 + </> - 0.329</>2.

(22)

(23)

Numerical studies indicate that this expansion is accurate to concentrations of about
20%, and is fairly close for values approaching 40% (Zick and Homsy, 1982). Both the
analytic (Hasimoto, 1959) and numerical results (Zick and Homsy, 1982) show that the
values for k are approximately the same as those shown above for simple cubic packings
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(24)

and face centered packings. Solid particles in a suspension will certainly not have a
periodic distribution in space, but on the average the distribution will at least be fairly
uniform, and the deviation from the results for these packings should not be extreme.
Equation (22) should be a valid approximation to the drag force in this case, and at
least has a more rigorous theoretical basis than the Kozeny-Carman permeability for
suspensions.

Multiplying the drag coefficient by the number of spheres per unit volume n, where

411"r3

¢=n-
3
-,

gIves
91]k¢(1 - ¢ )2 (25)

1 = 2r2

An equivalent permeability can be defined for the Stokes flow result of equation (25) for
comparison to the predictions of the Kozeny-Carman relationship (20). The dissipation

coefficient 1 from Darcy's Law would be simply 1 = "(lEi")'. Noting this form for I'
the permeability implied by (25) is

(26)

The results from the Kozeny-Carman equation (20) and from equation (26) are com
pared in Figure 1, where the values for ko = 5 and ko = 10 are presented. Noting that
values from the Kozeny-Carman equation when ko = 10 are very close to the Stokes
drag computations, it is not surprising that the Biot theory applications obtained best
matches to observed data for this value of ko (Hovem, 1980a). This figure also shows
that when solid concentration ¢ approaches 0.48, the results using the Hasimoto mod
ification to drag force rapidly depart from the Kozeny-Carman predictions, indicating
a strict upper limit on application of this approximation for the effects of an array of
spheres on fluid flow.

Using the result for 1 in equation (25), the dispersion relationship (14) becomes

PIPs . 91]k-,--
p* (1 - ¢)p* 2r2w
J(* pi . 91]k---,--

1- ¢ 2r2w

(27)

This equation should be a good approximation to attenuation and velocity for low
concentrations. Due to the upper limit on the accuracy of the drag force function by
Hasimoto (1959), the concentration should not be much greater than ¢ = 0.20. A
significant aspect of this result is that it involves no free parameters like the shape
factor used in the Kozeny-Carman equation.
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\'\Then ¢ = 0, equation (27) reduces to the real wavenumber

(28)

which therefore has no attenuation and a velocity 0: = (KJ/pJ)1/2, the velocity of
acoustic waves in the pure fluid. This shows that equation (27) has the correct limit
as the concentration of solids goes to zero.

Frequency Behavior of Attenuation

Assuming a harmonic time dependence, the inertial terms in both the equations for
partial pressures in equation (2) vary as w, while the viscous coupling terms are fre
quency independent. At low frequencies the inertial terms will be negligible, but at
high frequencies the attenuation and velocity will be controlled by the inertial effects.
Following the analysis of Schmitt (1986) in a summary of Biot theory applied to porous
media, a characteristic frequency of the supension can be obtained by considering the
case where the solids are motionless. Inertial terms in equation (2) can be neglected
when

(29)

The characteristic frequency is then defined as that value for which the equality holds:

Substituting for I yields

IWe = 27rIe = -;-:--'-,.,.-
(l-¢)pJ

(30)

j,_91)¢(1-¢)k (31)
e - 47rr2pJ .

The value for k at ¢ = 0.05 is 2.3 (Hasimoto, 1959), and for water with density
1.0 g/cm3 and viscosity 1 cP, a 5% suspension of particles with radius 140 pm gives
Ie = 4.46 hz. When the particle radius is 8 pm, the critical frequency increases to
1366 hz, a reasonable result since a larger radius makes forces related to volumes, the
inertial forces, relatively more important than those related to surface area, viscous
drag. When the particle is smaller, the viscous effects will dominate for a larger
frequency range.

At low frequencies,.the attenuation coefficient 0: is given approximately by

If; 2 ( )2 P r PJPs I

O:"'W k*91)k(1-¢) p:;--P . (32)

The Biot theory also predicts an attenuation proportional to w 2 at low frequencies
(Hovem, 1980). Given the above characteristic frequency analysis, this result is not
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surprising since the viscous effects dominate the inertial terms at low frequencies, and
viscous attenuation is proportional to W 2 •

The predicted attenuation at high frequencies for this model approaches

Vf;* JPsPf 9l)k (1 P*)a,," - --- - - -- 1 - ¢
k* p'p* 4r2 P' PsPf ( ).

(33)

In this case, the Biot theory differs, because a frequency correction term which varies as
w1/ 2 at high frequencies was applied to the fluid viscosity to account for the departure
from Poiseuille flow (Biot, 1956b). However, the form of this correction utilized by
both Hovem (1980) and Ogushwitz (1985) is only an analytical result for flow in a
tube of circular cross-section. A frequency correction for the oscillatory motion of the
spheres could be applied for the drag force on the spheres, but the results discussed
below indicate that this is not necessary.

COMPARISONS TO LABORATORY DATA

Polystyrene Spheres

Kuster and Toksoz (1974b) conducted a series of laboratory experiments to test their
theory developed from expressions for displacement fields caused by scattering obsta
cles (Kuster and Toksoz, 1974a). The data are well suited for theoretical tests, because
the measurements were taken on suspensions of spherical particles of polystyrene in oil
and water, and the bulk properties of all of these materials were known (Table 1). In
addition, the solid material was chosen to have a density similar to that of the fluids
to allow the suspension to be maintained longer without settling. Of the parameters
listed in Table 1, the least well defined is the radius of the spheres. Kuster and Toksoz
(1974b) determined that the grain size distribution was approximately Gaussian with
a mean of 140 JIm and standard deviation of 30 JIm.

A detailed and significant comparison can be made to the ratios of measured veloc
ities to pure fluid velocity, which were explicitly tabulated (Kuster, 1972). The data
were obtained by measuring the travel times of pulses composed of many frequencies
(Kuster and Toksoz, 1974b). Although the dispersion relation (27) requires a single
frequency value, there is no difficulty in this case since the velocity is essentially con
stant with frequency for the two suspensions considered. This is because the densities
of the fluids and polystyrene (see Table 1) are almost the same, and the relative motion
which usually has a significant effect on velocity dispersion and attenuation is minimal
here. Therefore the change in relative motion with frequency which will occur in a
suspension composed of components of highly contrasting densities will be negligible,
and the velocity will not vary with frequency. Data are presented for concentrations
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(34)

greater than 0.50 by Kuster and Toksiiz (1974b), but comparisons are only applied to
velocities for </> < 0.40 due to the limitation on the accuracy of the Hasimoto correction
factor.

The predictions for the polystyrene suspension in water (WPS) are very accurate
to </> '" 0.30, and then begin to increasingly overestimate the normalized velocity (Fig
ure 2). The results for the oil-polystyrene suspension (OPS) were less satisfactory,
and tend to systematically overestimate the normalized velocities by a small value
(Figure 3). The estimated uncertainty in the velocities is 0.2%, and when errors in
measured model parameters are considered, this estimate increases to 0.5% (Kuster
and Toksiiz, 1974b). The relative error in the theoretical predictions for OPS is less
than 0.5% to concentrations of </> = 0.146, but increases to 0.6% at </> = 0.198 and 1.1%
at </> = 0.30.

Unfortunately, detailed attenuation data were not presented by Kuster and Toksiiz
(1974b). Instead, the results of the measurements are presented as the ratio of ampli
tude As of the signal in the suspension to the amplitude Af of the signal in the pure
fluid. This logarithm of this ratio has the form (Kuster and Toksiiz , 1974b)

In I~;I = x(-Y! -i),

where if is the attenuation coefficient of the fluid, i is the attenuation coefficient
produced by the dispersion relationship (27), and x is the separation of source and
receiver. Because the offset x is not specified by Kuster and Toksiiz (1974b) and the
amplitude ratio data is presented with an arbitrary, unspecified shift ofthe ratio values,
it is difficult to compare the attenuation data to theoretical predictions. However, if
the theoretical attenuation values are multiplied by a factor of 100, and 39 is subtracted
from the product, this scaled attenuation value is very similar to the observations for
solid concentration </> = 0.05 (Figure 4). The viscous attenuation model does reflect the
increase in attenuation at lower frequencies, although the mat.ch is not perfect. Kuster
and Toksiiz (1974b) concluded that anelasticity of the polystyrene spheres made a
significant contribution to the attenuation in the suspensions, and it is possible that
the neglect of this factor does cause some of the error in the theoretical predictions.

Kaolinite Suspensions

Hampton (1967) presented a summary of a fairly large amount of data from laboratory
measurements in sediments containing water. Included was a set of measurements of
velocity and attenuation in suspensions of kaolinite clays of varying concentration at
100 kHz. There is a fair amount of scatter in the attenuation data, which Hampton
(1967) attributes to varying concentrations. This might have been a consequence of
flocculation or settling, or both. The measured attenuations increase to about 10%
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concentration, when they level off and then begin to decrease, and thus it is inferred by
Hampton (1967) that particle interactions begin to be significant at ¢ = 0.10. Urick
(1947,1948) presented similar measurements of velocity and attenuation for a kaolinite
suspension at a frequency of 1 MHz, and the attenuation and velocity display the same
variations as a function of concentration as the 100 kHz data.

The availability of both velocity and attenuation data allows the parameters of the
solids to be estimated by inversion, and a successful inversion yielding realistic param
eter values helps to confirm that the theory models the data well. An indication of
the need for both types of data is shown by Figure 5, where plots of the attenuation
coefficient and velocity are given as functions of ps and r for ¢ = 0.125. Figure 5A
shows that a fairly wide range of reasonable radius and density values will give the
observed value for attenuation, but if the velocity predictions are considered as well
(Figure 5B), a unique combination is determined. Although the predictions are com
paratively weakly sensitive to solid bulk modulus, especially for attenuation, numerical
study of the problem demonstrated the same sort of behavior in inversion for all three
parameters. Inversions based only on attenuation data yielded very unrealistic results.
See the Appendix for details of the damped least squares inversion procedure.

The parameter estimates for the 100 kHz data (see Tables 2 and 3) yielded a good
fit to the data, especially the velocity data (Figure 6). The results of Ogushwitz
(1985) are presented for comparison, and it appears that they match the data equally
well, although the attenuation and velocity results may be slightly better and poorer,
respectively, than those of the present investigation. A shape factor value ko = 10
was utilized for the Kozeny-Carman permeability estimates. This value gave results
equivalent to the curves presented by Hovem (1980a) for ko = 10, but Ogushwitz (1985)
obtained the same results with ko = 5. The source of the disagreement is unclear. A
true estimate of the radius parameter is difficult to estimate, although Hampton (1967)
presents a grain size cumulative distribution function by weight which gives a mode of
approximately l/-Lm. The effective radius value determined by inversion will reflect not
only the volume distribution with respect to radius, but also the strong dependence of
attenuation on radius. For clays, the problem is made even more difficult by the plate
like particle shape. In any case, the result used here, 1.13 /-Lm is probably reasonable.
The velocity ratio predictions match the observed decrease in velocity accurately. This
decrease occurs in suspensions where solid and fluid densities differ significantly because
the effective density of the medium increases more rapidly than does the effective bulk
modulus (Kuster and Toksaz, 1974b).

The inversion result for solid density Ps is only about 10% less than the value used
by Ogushwitz (1985), but the bulk modulus J(s result is quite different. An inversion
for radius only using the same solid density and bulk modulus as Ogushwitz (1985)
yielded r = 0.952/-Lm, which is reasonable, but was unable to match the velocity data
(Figure 7). It is apparent that in order for the dispersion relationship presented in
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this paper to model the data, all three solid parameters must be allowed to vary in the
inversion. The validity of the bulk modulus solution is difficult to determine. It was
not possible to find a laboratory measurement of a bulk modulus for kaolinite, and
values used by other workers for clays vary from 43.7 GPa (Ogushwitz, 1985) to 4.4
GPa (Wilkens et aI., 1985). The result of the inversion, 12.5 GPa, is at least within
this range.

The dependence of attenuation on radius r and particle density Ps at 1 MHZ is
much the same as at 100 kHz, except that the maximum is shifted to a lower value of
r (Figure 8). Likewise, the trends of the velocity predictions also shift to lower radius
values. Observations indicate that velocity increases frequency for kaolinite suspensions
(Hampton, 1967), and Figures 5 and 8 show that this effect is modeled by the dispersion
relationship (27). The results of the inversion for the 1 MHz data were, however, much
less satisfactory (Tables 2 and 4, Figure 9). Ogushwitz (1985) had an equal degree
of difficulty matching observations using the Kozeny-Carman permeability approach
(Figure 9). Urick (1948) cited a typical particle radius of about 0.5 pm, which is not
too far from the inversion result, 0.415 pm. The value for Ps obtained by the inversion
at this frequency, 2.38 gjcm3 , is almost the same as the result from 100 kHz, and
the bulk modulus is also comparatively close to that obtained from the low frequency
data. Some variation in parameters is expected, since two different clay samples were
used in the experiments. Urick (1947) attempted to estimate the ratio of kaolinite
compressibility to water compressibility on a single sample of kaolinite using velocity
measurements, and the results ranged from 0.016 to 0.028, demonstrating the difficulty
of this type of measurement.

The results of the inversions seem to be realistic and fairly consistent for two data
sets, although the model predictions for the high frequency data are less satisfactory
than for the low frequency measurements. Since the velocity data at 1 MHz is still very
well predicted, the error in the model must be in the aspects related to attenuation.
The inability of the model to predict the observations better than it does is likely due
to an increased contribution of scattering to the attenuation.

DISCUSSION

Although the present model is one which should be restricted to fairly low concentra
tions and low frequencies in order to fulfill the assumptions regarding simple Stokes
flow drag on particles and lack of particle interactions, it can predict some observa
tions fairly well. It was shown above that the WPS normalized velocity calculations
are accurate to concentrations of 40%, especially from 0 to 30%, and that attenuation
and velocities in a kaolinite suspension could be predicted at 100 kHz. Although the
data included an ambiguous scaling, at least some of the trends of attenuation in the
OPS suspension were modeled. In contrast, the velocity in the OPS medium is con-
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sistently overestimated by a small amount, and attenuation predictions for a kaolinite
suspension at 1 MHz are poor. The results of calculations suggest that the maximum
concentration for which the model is valid is about 30%.

The theory presented in this paper is closely related to some earlier developments.
Urick (1947) attempted to model velocity in kaolinite suspensions by using effective

density and bulk modulus for ideal mixtures, c = ~. It is simple to show that

this results from setting v f = v s in equations (2), thereby implying that there is no
relative motion of the fluids and solids, and hence, no attenuation. The correction to
this velocity expression which is present in the dispersion relationship in equation (27),
although close to one in magnitude, is an important consequence of the behavior of a
medium with a fluid matrix.

Although Ahuja (1973) did allow for the relative motion of spheres and fluid, the
approximate expression for viscous attenuation was truncated at the first power of
¢, and it is clear from the data that a linear dependence on ¢ is not satisfactory.
In addition, there was no dependence of attenuation on the solid bulk modulus or
density, and the lack of the Hasimoto (1959) correction term in the Stokes drag force
expressions implies that the predicted resistance to fluid flow will have significant errors
for concentrations over a few percent.

In order to match observed values of attenuation in the study of polystyrene spheres,
Kuster and Toksoz (1974b) had to include significant contributions from viscous losses
and anelasticity of grains as well as scattering. The anelasticity in fact accounted for
the largest part of attenuation according to their analysis. Since this is not considered
in the present model, the effect of particle anelasticity is probably not important in
the kaolinite suspensions. This conclusion is supported by the observation of Urick
(1947) that the elastic properties of water, specifically the high compressibility relative
to kaolinites, tend to dominate the effective elastic properties of the suspension.

In the course of developing the dispersion relationship (27), mass coupling and
frequency corrections for oscillatory motion were ignored. Biot (1956a) included mass
coupling in the theory of acoustic propagation in porous media, and showed that there
results a parameter relating the effects of the motion of the solids to induced forces in
the fluid component. This accounts for a small change in the fluid and solid densities
which cannot be theoretically predicted so that it introduces ambiguities in modeling.
In any case, the present theory produces satisfactory results without consideration of
the minor impact of the mass coupling.

A frequency correction could be introduced by using an expression for the drag
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force on an oscillating sphere (Landau and Lifshitz, 1959):

6 =

(35)

The depth of penetration of the disturbance created by the sphere in the fluid is given
by 6. The second term in the drag force is a contribution to inertial forces, and only
the first term contributes to dissipation. This dissipation term amounts to a scaling
of the original steady-state Stokes flow drag force by a factor 1 + i, and so the effect
of using the frequency correction amounts to scaling the radius at each frequency of
observation and does not change the form of the dissipation curve as a function of ¢.
In addition, the drag force expression is derived by assuming 6 ~ r. The depth of
penetration at 100 kHz and 1 MHz in water is 1.8 pm and 0.56 pm respectively. In
both cases, this is larger than the size of the particle in the kaolinite samples. Hence it
would actually be invalid to apply this drag expression for the two sets of observations
from kaolinite suspensions, and it is appropriate to use the simple Stokes flow result.

Because the 1 MHz kaolinite attenuation data could not be adequately modeled by
any radius value, the equations of motion used to derive the dispersion relationship
must not provide an accurate description of the attenuation at high frequency. The
equations of motion (2) have inertial terms which vary as w, given harmonic time
dependence, while the viscous coupling terms are independent of w. The model itself
does therefore include the reduced significance of the viscous coupling. Scattering
theory also predicts that the viscous effects diminish at high frequencies for spherical
obstacles (Lin and Raptis, 1983). For the higher frequency range, other attenuation
mechanisms such as scattering and thermal loss probably become dominant. The
viscous dissipation model proposed here therefore should not be expected to fully
account for the processes occurring during the propagation of an acoustic wave in a
suspension, because it gives only an indication of the dominant effects occurring within
a limited range of applicability. This is also true of the version of the theory applied by
Hovem (1980a) and Ogushwitz (1985), since permeability still produces only viscous
attenuation.

CONCLUSIONS

A theory for attenuation of acoustic wave propagation in suspensions was developed
from a consideration of the partial pressures acting on the solid and fluid components
of a suspension. It was shown that the resulting dispersion relationship is the same as
that predicted by the Biot theory for acoustic wave propagation in porous media when
the solid frame bulk modulus and rigidity vanish. However, instead of attempting
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to estimate permeability values for a dilute suspension, dissipation of energy in the
model is given by a Stokes flow drag on all spheres present in a given volume, with
a modification factor to account for the effects due to the presence of more than one
sphere. This approximate correction for the presence of multiple solid particles assumes
a regular array of spheres, but in relatively dilute suspensions deviation from this
assumed configuration should not be a significant problem. This form of dissipation
allows an estimate of attenuation and velocity which has no arbitrary free parameters
like previous applications of Biot theory to suspensions (Hovem, 1980a,b; Ogushwitz,
1985).

Results of application of this theory to suspensions of polystyrene spheres in water
are quite accurate to concentrations of at least 30% for calculation of velocities, while
the same calculations applied to polystyrene spherical particles suspended in oil are
consistently slightly high. A damped least squares inversion for the properties of
kaolinite yields a very good match to observed data for attenuation and velocity at
a frequency of 100 kHz, but the results for 1 MHz attenuation data are poor, an
indication of the reduced significance of viscous attenuation at higher frequencies.
The results of the modeling of the acoustic properties of the different suspensions
lead to the cone!usion that the viscous effects are the dominant mechanism for a
range of concentrations of solids to about 30% and for frequencies up to at least 100
kHz. Outside this range of concentration and frequency other effects become more
significant, and a new theory which includes these effects must be applied.
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APPENDIX

A damped least squares inversion was used for this paper. Because the functional
relationship of attenuation and velocity to the various solid parameters in the dispersion
relationship equation (27) is nonlinear, it was necessary to first linearize the inversion
by assuming a starting model vector rna which is close to the desired solution. The
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components of this vector are

r

rno= Ps (A - 1)

where the various parameters are defined in the text. The data vector is modeled by

y=Yo+AAm, (A - 2)

where Yo is the prediction of the starting model, each entry being an estimated atten
uation or velocity. The matrix of first partial derivatives is A, and the elements of A
are defined by

(A- 3)

.Am = (ATA+,2I)-lATAy. (A-4)

The damping parameter ,2 proved to be necessary only when the starting model was
unusually far from the final result. Inversion results are assumed to be fairly unique,
because different starting models yielded the same solution.

aYi
Aij=-a.

mj

Values for the partial derivatives were estimated numerically. Each iteration of the
inversion will give an estimate of the change in the model vector Am. The damped
least squares result for Am is obtained from the error in predictions Ay = y - Yo by
(Hatton et aI., 1985)

There were several practical problems unique to this particular inversion problem.
Since no value of the acoustic velocity of the water used for suspension preparation
was given by Hampton (1967) or Urick (1948), it was necessary to assume a value.
This was calculated by using the same values for water density and bulk modulus as
were applied by Ogushwitz (1985).

Hampton (1967) presented velocity ratio data at 50 and 200 kHz for each value of
solid concentration. The velocity always increases with frequency, so the values for 100
kHz were obtained by linear interpolation. Any errors introduced by this procedure
should be comparatively insignificant, considering that the scatter in the data is fairly
large to begin with.

l

The velocity ratio data also presented a problem because the ratios were all less
than one and attenuation values were 2 to 3 orders of magnitude larger, and so the
rows of A corresponding to attenuation results were also several orders of magnitude
larger than those corresponding to velocity ratios. This had the effect of causing the
inversion to essentially ignore the velocity data. The problem was solved by rescaling
the ratios by an arbitrary factor, typically about 1000, which caused the inversion to
be equally sensitive to velocity and attenuation data.
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Oil IPolystyrene II Water I

Density (g/cm3 ) 0.9982 0.8794 1.045

Incompressibility (GPa) 2.137 1.863 3.808

Viscosity (Poise) 0.01 1.8

I Parameter

Table 1. Physical constants of materials used in model calculations for the water
polystyrene and oil-polystyrene suspensions (Kuster and Toks6z, 1974b).

I Parameter

Fluid density (g/cm3 ) 1.00

Fluid incompressibility (GPa) 2.15

Fluid viscosity (Poise) 0.01
(

Table 2. Fluid parameters used in modeling attenuation and velocity in kaolinite
suspensions. These are the values used by Ogushwitz (1985).
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Parameter Ogushwitz (1985) Inversion results for

Hampton data (Figure 6)

Particle radius (microns) l. 1.13

Solid density (gjcm 3 ) 2.61 2.36

Solid incompressibility (GPa) 43.7 12.5

Table 3. Solid parameters used in modeling the Hampton (1967) data for kaolinite at
100 kHz. The solid parameters used in equation (27) were obtained by inversion, and
the values used by Ogushwitz (1985) are given.

Parameter Ogushwitz (1985) Inversion results for

Urick data (Figure 9)

Particle radius (microns) 0.5 0.415

Solid density (gjcm3 ) 2.61 2.38

Solid incompressibility (GPa) 43.7 16.4

Table 4. Solid parameters used in modeling the Urick (1947, 1948) data for kaolinite
at 1 MHz. The solid parameters used in equation (27) were obtained by inversion, and
the values used by Ogushwitz (1985) are given.
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Figure 1: Predicted permeability versus solid volume fraction. The solid lines indicate
values from the Kozeny-Carman equation with the indicated values of the param
eter ko, and the dashed line is the result from the Stokes drag force calculation.
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Figure 2: Water-polystyrene (WPS) suspension normalized velocities versus solid vol
ume fraction. The points are laboratory data from Kuster (1972). The solid curve
is the theoretical prediction of this paper. Model parameters are given in Table 1.
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Figure 3: Oil-polystyrene (OPS) suspension normalized velocities versus solid volume
fraction. The points are laboratory data from Kuster (1972). The solid curve is
the viscous dissipation model prediction. Model parameters are given in Table 1.



Viscous Attenuation

3,---,--,.----,.----,.------,

181

z
02-~p
~
Eo< 1
~

+

+ ++++++
++ +.-'-_--:+~:!:+:l=:+;::+j

00 100 200 300 400 500
FREQUENCY (kHZ)

Figure 4: Oil-polystyrene (OPS) suspension attenuation versus frequency. The points
are laboratory data in the form of amplitude ratios for concentration <p = 0.05
from Kuster and Toksoz (1974b). The solid curve is the theoretical attenuation
prediction of this paper calculated using the parameters in Table 1. The theoretical
attenuation values", were scaled by 100", - 39 to produce this graph. This scaling
was performed because the ratio data presented by Kuster and Toksoz (1974b)
include an unspecified multiplicative factor and an arbitrary origin on the amplitude
ratio, or attenuation, axis.



182

(A)

Gibson and Toksoz

SOLID DENSITY (g/cm')
1.8 2.0 2.2 2.4 2.6 2.8
t--~:::..::::__.::"'"--.....l_~::::::=,. 10I _-.-'.-.--

(B)

SOLID DENSITY (g/cm')
1.8 2.0 2.2 2.4 2.6· 2.8

10

8 :=
>
t::l

6 -d
00
~

4 §.
"..

2
~
~

Figure 5: Dependence of attenuation and velocity on density (Ps) and radius (r) of
solid inclusions at 100 kHz. The solid concentration for these calculations was
<P = 0.125, and other parameter values are given in Tables 2 and 3. (A) Ratio
of predicted attenuation to the observed value, 18.7 dB/m Hampton (1967). The
contour interval is 0.5. The contour corresponding to the observed value is dashed.
(B) Ratio of predicted velocity to the observed value, 1466 m/s. This value is
calculated from the normalized velocity ratio obtained by Hampton (1967) and
the fluid parameters in Table 2. The contour interval is 0.005, and the contour
corresponding to the observed normalized velocity is dashed.
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Figure 6: Attenuation and normalized velocity in a kaolinite suspension at 100 kHz.
The solid line gives the predictions of the dispersion relation equation (27), and the
dashed line is the prediction of the permeability approach of Hovem (1980a) and
Ogushwitz (1985). An inversion based on the attenuation and velocity data yielded
the solid parameters used for equation (27). The parameters used to calculate both
curves are given in Tables 2 and 3, and the data are taken from Hampton (1967).
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Figure 7: Attenuation and normalized velocity in a kaolinite suspension at 100 kHz
where only the radius of solid particles is determined by inversion. The inversion
result for radius r was 0.952 J.lm. The values for solid density Ps and solid in
compressibility J(s were those used by Ogushiwitz (1985) (see Table 3), and fluid
parameter values are given in Table 2. The solid line corresponds to the predic
tions of the dispersion relation equation (27), and the dashed line is the result of
the permeabilty approach of Hovem (1980a) and Ogushwitz (1985).
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Figure 8: Dependence of attenuation and velocity on density (Ps) and radius (r) of
solid inclusions at 1 MHz. The parameter values are the same as those used for
Figure 5 and the results are presented as ratios to the same values as in Figure 5
so that the effect of increasing frequency is apparent. No observations were made
by Urick (1947, 1948) at this value of </>. (A) Ratio of predicted attenuation to 18.7
dB/m. The contour interval is 5. (B) Ratio of predicted velocity to 1466 m/s. The
contour interval is 0.005.
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Figure 9: Attenuation and normalized velocity in a kaolinite suspension at 1 MHz.
The solid line gives the predictions of the dispersion relation equation (27), and the
dashed line is the prediction using the permeability approach of Hovem (1980a) and
Ogushwitz (1985). The values used for the solid parameters used in equation (27)
were obtained by inversion (Table 4). Fluid parameter values are given in Table 2,
and the data values are taken from Urick (1947, 1948).


