405

Estimating Phase Velocity and Attenuation of Guided
Waves in Acoustic Logging Data

by

K. J. Ellefsen, C. H. Cheng, and G. L. Duckworth

Earth Resounrces Laboratory
Department of Earth, Atmospheric, and Planetary Sciences
Massachuasetts Institute of Technology
Cambridge, MA 02139

ABSTRACT

Phase velocity and attenuation of guided waves have been estimated from multireceiver,
full waveform, acoustic logging data using the extended Prony’s method. Since a forma-
tion affects velocity and attenuation, estimating these quantities is important in evalu-
ating the formation properties. The estimation is performed using an array processing
technique which requires two steps: (1) the traces for all receivers are transformed into
the frequency domain, and (2) for each frequency the extended Prony’s method is used
to determine the presence of a guided wave propagating past the array of receivers. The
guided wave properties estimated by the Prony’s method include amplitude, attenua-
tion, and phase change which is related to phase velocity. An important assumption
in this array processing technique is that the formation, borehole fluid, and tool are
homogeneous along the receiving array. For synthetic data, the phase velocities and at-
tenuation of the tube wave and two modes of the pseudo-Rayleigh wave are accurately
estimated over many frequencies, with the exception that the low amplitude of the sec-
ond mode causes its attenuation estimate to be somewhat less accurate. For laboratory
data, very good estimates of the phase velocities of the tube wave and three modes
. of the pseudo-Rayleigh wave are obtained. Since the materials used in the laboratory
experiment had very large quality factors, the attenuation could not be estimated. For
field data, the dispersion of the tube wave and the velocity of the pseudo-Rayleigh wave
at its cutoff are very close to those predicted by another, independent method. Accurate
attenuation estimates could not be made because the data are noisy and consist of only
eight traces.
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INTRODUCTION

In acoustic logging, guided waves are generated which propagate parallel to the axis
of the borehole, and the properties of the formation partly affect the characteristics of
these waves. Because some acoustic logging tools now have eight or more receivers,
array processing methods can be used to calculate the phase velocity and attenuation
of these waves. This information is crucial when estimating formation properties like
permeability, which affects the tube wave velocity and attenuation (Burns and Cheng;
1986, Williams et al,, 1984; Staal and Robinson, 1977); anisotropy, which affects the
guided wave dispersion (White and Tongtaow, 1981); and S-wave velocity, which cannot
be directly measured in slow formations but can be estimated from the tube wave
velocity (Stevens and Day, 1986; Chen and Willen, 1984; Cheng and Toksdz, 1983).

The first array processing of acoustic logging data was done by Schoenberg et al.
(1981), who tried to estimate the frequency-wavenumber spectrum. By using fast
Fourier transforms in conjunction with the maximum-likelihood method, they were able
to identify the tube and pseudo-Rayleigh waves in the two-dimensional spectrum, but
these estimates had poor resolution. To overcome this problem, Parks et al. {1983)
and McClellan (1986) used the extended Prony’s method to obtain a high resolution
spectrum from which accurate dispersion curves for the guided waves were calculated.
Lang et al. (1985) implemented a variation of the Prony’s method to make it more
robust, but their approach is not appropriate when trying to estimate the attenuation.
Other methods of array processing like high resolution slant stacking and semblance
can be used to obtain the velocities of the refracted P and S waves and tube wave
(Block et al., 1986; Hsu and Baggeroer, 1986) but not highly dispersive waves like the
pseudo-Rayleigh wave.

The purpose of this paper is to demonstrate the applicability of the extended Prony’s
method for estimating phase velocity and attenuation of the borehole-guided waves. Al-
though determining wave attenuation is an inherent feature of this method, a meodifica-
tion which gives a more robust estimate has been developed and is presented here. The
appropriateness of the Prony’s method to modelling the guided waves is discussed in
mathematical terms and then demonstrated by estimating phase velocity and attenua-
tion from synthetic, laboratory, and field data. The accuracy of the results is verified by
comparing themn to either theoretical predictions or results from the slant stack method.

METHOD

Array processing of acoustic logging data using the extended Prony’s method requires
two steps. First is the application of the fast Fourier transform over time. Second is
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the estimation of each wave properties using the extended Prony’s method.

This method is based upon the assumption that the Fourier transform of the trace
at receiver n may be represented by a finite sum of damped exponentials:

() = 3 Ayl i) nm)AriB) ()
=1

This expression is valid for 1 < n < N, where N is the total number of receivers. The
number, p, is called the model order and must be less than or equal to N/2. The spacing
between the receivers is Az. The meaning of the other variables will be clear if only
one term in the summation for the last receiver is examined:

Aelfl-atik)z (2)

The frequency, w;, and index, {, have been omitted for convenience, and z is the length
of the array. As the guided wave passes the first receiver in the array, its amplitude is
A, and phase §. As the wave passes the last receiver, its amplitude has diminished by
e~*% and its phase changed by kz. The attenuation coefficient, which will be called
just attenuation, is «, and the phase velocity is determined via the relation ¢ = w/k.
The sum of p terms like that in equation 2 gives the value of the Fourier transform of
the last trace at frequency w;.

This approach to the estimation of the exponential parameters is similar to that
used for typical geophysical inverse problems in which an underlying model i assumed,
and the parameters, which describe the behavior of that model, are altered until they
accurately predict the observed data. For this array processing application, the model
is a sum of p damped exponentials each of which is described by its amplitude, phase,
attenuation, and wavenumber (Equation 1). These parameters are selected to make the
sum of the exponential terms closely match the data, s(w;,n). How these parameters
are estimated is discussed in the Appendix.

An important assumption underlying this representation of the guided waves is that
the formation, borehole fluid, and tool are homogeneous along the length of the array.
This method would not be suitable when, for example, the receiving array straddles a
large fracture or a wash-out.

In practice, the attenuation is calculated using the amplitude of the wave because
the estimation of this parameter is much more robust than that of &. This calculation
begins by estimating the amplitude, A, using all of the traces in the array. Next one or
more traces are deleted, and the amplitude is estimated again giving A’. Finally, the
attenuation is calculated via the relation (Aki and Richards, 1980):

AI

a=" (3)
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where z' is the distance over which the traces were deieted.

An important issue is the appropriateness of the damped exponential model to
array processing of acoustic logging data. To address this issue, consider the frequency-
wavenumber Fourier transform for the pressure at the center of the borehole (Tsang
and Rader, 1979):

sz, 1) = L Z dw X (w)e™* L c: dkB(k, w)e=7*? (4)

where X{w) is the spectrum for a point source, k the wavenumber in the z direction,
and B(k,w) the frequency wavenumber response of the borehole and formation. After
performing a Fourier transform over time, this equation becomes:

s(z,w) = X(w) f_ : dkB(k, w)e %% . (5)

The straightforward evaluation of this integral would require integration along the real
wavenumber axis. An alternative approach involves contour integration in the complex
wavenumber plane. The contributions to s(z, w) will come from the poles which are en-
closed by the contour and the branch-line integrals {Peterson, 1974). For this approach
the integral may be written:

s(z,w) = 275 »_ X(w) [ Residue of B(k,w)e’** at pole k; ] - /; , (6)
1

The notation, f,;, indicates the contributions which come from the branch-line integrals.
The discrete form of this equation is obtained by replacing z by Az(n — 1) and w by w;:

s{n,w;) = Z [277 X (w;) ( Residue of B(k, w;) at pole k)] e/®(n—1)42 _ f .M
i bi

Comparing this expression with equation 1 shows that {1) the terms within the brackets
involving the source spectrum and the residue may be identified with A;{w;)e’®{#) and
(2) the pole, &, with oq(wi) + jki(w;). These poles correspond to the guided waves, and
so the damped exponential model will represent these waves well. Lang et al. (1985)
considered the applicability of an undamped sinusocidal model which is not appropriate
when trying to estimate attenuation. The contributions from the branch-line integrals
are generally not well modeled by the extended Prony’s method.

RESULTS

Array processing using the extended Prony’s method was applied to synthetic, labora-
tory, and field data to estimate phase velocity and attenuation over a broad range of

o
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frequencies. The results are shown in the figures as solid lines and are compared to
theoretical predictions which are the dotted lines. The tube wave is labelled “T™, the
first mode of the pseudo-Rayleigh wave “R1”, the second mode “R2”, etc.

The synthetic data, which were calculated for a hard formation, consist of twelve
traces (Figure 1). The model order (Equation 1) was selected to be six, half the number
of traces. The estimated dispersion curves for the tube and pseudo-Rayleigh waves
are compared to the theoretical curves in Figure 2. With only twelve traces, the best
estimates for the Prony parameters occur either when only one wave is present or
when one wave has a very large amplitude relative to the other waves. Otherwise, the
estimates for the velocity and attenuation are noisy and must be edited. For this reason,
the dispersion curves for the different waves do not overlap. The estimated attenuation
curves are compared to the theoretical predictions in Figure 3. The estimated and
predicted curves for the tube wave and first mode of the pseudo-Rayleigh wave are
reasonably similar. However, the estimated attenuafion curve for the second mode is
notsy because this wave amplitude is relatively low. The estimates of phase velocity and
especially the attenuation would improve with more traces.

The laboratory data, which consist of twenty-two traces (Figure 4), were collected
in a water-filled borehole through an aluminum block. The estimated dispersion curves,
which were calculated using a model order {Equation 1) of ten, are shown in Figure 5.
The curves are confined to three frequency bands which result from the frequency char-
acteristics of the source. The theoretical dispersion curves were computed by assuming
that the aluminum and water are perfectly elastic (which is reasonable because they
have very large quality factors) and using a tabulated value for the aluminum S-wave
velocity. Despite these approximations the agreement between the calculated and the-
oretical curves is very good. The guided waves in this laboratory experiment were
virtually unattenuated, and consequently this parameter could not be estimated.

The field data (Figure 6), which consist of eight traces, were collected in a lime-
stone formation, in which the invaded zone is believed to have significant mechanical
damage {Blackway, 1987, personal communication). The estimated dispersion curves,
which were calculated using a model order of four, are shown in Figure 7. Despite the
poor quality of the field data and the small number of traces, apparently accurate dis-
persion curves were obtained. The dispersion of the tube wave and the velocity of the
pseudo-Rayleigh wave near its cutoff are very close to those predicted by an independent
method. Good attenuation estimates could not be made because the data are noisy and
the array has few receivers.



410 ’ Ellefsen et al.

DISCUSSION

The phase velocity estimates are very robust. Accurate dispersion curves are obtained
even when the data are noisy and the array has few receivers. The estimates can be
improved by isclating a particular guided wave using a window in the time domain
and then determining its Prony parameters. This process is done for each of the guided
waves. Experience with several data sets suggests that the minimum number of receivers
necessary for good estimates is about eight,

The accuracy of the attenuation estimates is primarily influenced by noise which
includes mismatched receivers and formation heterogeneity. The best method of amelio-
rating the noise effects is to increase the number of receivers making more data available
for determining the Prony parameters. The disadvantage of this solution is that the
receiving array will lengthen, increasing the likelihood that the formation heterogeneity
will degrade the estimates.

CONCLUSIONS

Array processing using the extended Prony’s method may be used to estimate the
guided wave phase velocity and attenuation over a broad frequency range. The phase
velocity estimates are robust, and accurate dispersion curves were obtained for all data
sets even for the short array with noisy traces. Although attenuation estimates are
less robust, moderately good results were obtained from the synthetic data. Extracting

useful attenuation estimates from field data will probably require array data with many

receivers and little noise.
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APPENDIX

The explanation of the extended Prony’s method will follow that given by Kay and
Marple (1981) and will focus on estimating the parameters for a one-dimensional se-
quence. Frequency and damping for this sequence are analogous to wavenumber and
the negative of the attenuation coefficient for the array data.

A set of N complex data samples, z(1),...,z{N) is assumed to be approximated by
a sum of p complex exponentials:

P
B(n) = Y Apelxti2nfi)(n-1T+ib (A1)
k=1
For the extended Prony’s method, the number of data samples must be greater than or

equal to 2p. The sampling interval is T, the amplitude A, the damping factor ay, the
frequency fr, and the phase §;. A more concise form for this equation would be

p
Bn)= Y hpep! (A -2)
k=1
where the complex constants are defined as
hy = Akejak (A-3)
and
zp = elaxt+i2=af )T (A . 4)

Finding the parameters which minimize the squared error,

N
p=3la(n) - &(n)? . (A -5)
n=1
is a difficult nonlinear problem.

An alternative approach to finding the parameters, h; and z, is based upon the
Prony’s method for which equation A-2 is regarded as the solution to some homogeneous,
linear, constant-coefficient, difference equation. To find this equation, a polynomial,
#(z), is defined such that the p exponents, zj, are its roots:

#(z) = [[(z - 2z) - (A —6)
k=1

After performing the multiplication, ¢(z) may be expressed as a summation:

P

é(z) = Y a(m)zF™™ . (A -T)

m=0
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where a(m) are complex coefficients with a(0) = 1. Equation A-2 has its index shifted
by —m, is multiplied by a(m)}, and is summed over the index m to give:

P P p
> a(m)z(n-m) = > A > a(m)zp~™t
m=0 $==() =0
= Zh,-z?-p Z a,(:'n);J:f'_""'“1
=0 m=0
= 0 (A"S)

which is valid for p+ 1.< n < 2p. To see that the right hand side is zero, notice ¢(z) is
zero when it is evaluated at any of its roots. The previous expression may be written
as a recursive difference equation:

P
En) = — Z a(m)z(n — m) (A-9)
m=]
The difference between the actual data, z(n), and the approximation, Z{n), is e(n}):
z(n) = z(n) + e(n) (A - 10)

which is defined for 1 < n € N. Substituting equation A-9 yields

p P
z(n) = — > a(m)z{n—m)+ > _ a(m)e(n—m) . (A - 11}
m=1 m=0
The last term 13 defined as the sum:
é(n) = Z a(m)e(n — m) (A —12)
m=0

for p+ 1 < n € N, which will then give

o

z(n) = — Y_ a(m)z(n — m) + ¢(n) . (A - 13)

m=]1

This equation expresses z(n) as an autoregressive sequence. The term ¢(n) is the differ-
ence between z(n) and its linear prediction based upon p past data samples. The terms
a(m) are linear prediction parameters and are computed by the covariance method
which minimizes the squared error Eﬁ‘;p 1 le(n)[2.

The terms a(m) are used to find the roots of the equation A-7 (i.e. ¢(z) = 0). The
exponential approximation becomes linear in the remaining unknowns, k(1),...,hA(p)
which may be expressed in matrix form as

Zh=x (A—14)
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where
L1 m 2(1)
2 Z LY Z
Z= ' : i , h= ha , and x = x(2) . (A~ 15)
V-1 zé\f—l co N1 hy z(N)

The method of least squares is used to solve this equation.

The use of the extended Prony’s method requires three steps. First, the linear
prediction parameters are computed using the covariance method (Equation A-13).
Second, these parameters are used to characterize the polynomial, ¢(z), (Equation A-
7), and the p roots of this polynomial yield the exponents, z;. Third, the complex
constants, kg, are found by the method of least squares (Equation A-14).

In the presence of significant noise, the extended Prony’s method does not perform
well, and the damping parameters are often estimated larger than they really are. Using
a model order, p, larger than the actual number of damped sinusoids helps to amelicrate
this problem.

Using the complex constants, z; and h;, the damping, frequency, amplitude, and
phase may be determined from these relationships:

[ T o In |z,-| y (A. - 16)
Im( z,-! )
fi = arctan (—EEL (A-17)
2xT ’
A;=1kyl , and (A —18)
; = arctan IEQL'—) . (A - 19)

Re(h:)
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Figure 1: Twelve traces of synthetic, open hole, acoustic logging data (after Tubman,
1984).
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Figure 2: Velocity dispersion curves calculated by the Prony’s method from the synthetic
data shown in Figure 1 and the theoretically predicted dispersion curves.
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Figure 3: Attenuation curves calculated by the Prony’s method from the synthetic data
shown in Figure 1 and the thecretically predicted attenuation curves.
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Figure 4: Twenty-two traces of laboratory, acoustic logging data collected in a wa-
ter-filled borehole through an aluminum block.
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Figure 5: Velocity dispersion curves calculated by the Prony’s method from the labo-
ratory data shown in Figure 4 and the theoretically predicted dispersion curves.



Estimation of Phase Velocity and Attenuation 419

45 L 45

w0 L 4o
w33 13
5]
[O 10 Rt
v

8 13
Q
g 20 10
ey

LS T

10 10

03 Loos

T
T T D T T T L I T D C T R NI
offset (m)

_Figure 6: Eight traces of field, acoustic logging data collected in an open borehole in a
limestone formation.
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Figure 7: Velocity dispersion curves calculated by the Prony’s method from the field
data shown in Figure 6. Using the high resclution, slant stack method, tube wave
velocities at several frequencies were estimated. These are indicated by the dots. Also,
the refracted S-wave velocity was determined to be about 3.0 km/s.
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