ENERGY PARTITIONING AND ATTENUATION OF GUIDED WAVES
IN A RADIALLY LAYERED BOREHOLE

by
D.R. Burns, C.H. Cheng, and M.N. Toksdz

Earth Resources Lahoratory
Department of Earth, Atmospheric, and Planetary Sciences
Massachusetts institute of Technology
Cambridge, MA 02139

ABSTRACT

Recently published results (Tubman et al., 1984; Baker, 1984) indicate that
synthetic full waveform acoustic logs generated in cased or damaged boreholes
differ significantly from those generated in an open hole with the same farmation
parameters. In particular, the guided waves appear to be the most affected by such
radial layering. [n order to gain some understanding of these effects, the amplitude
response and energy distribution of the pseudo-Rayleigh and Stoneley waves are
studied for the cased and invaded borehole models. The expressions derived by
Cheng et al. (1982) are used to calculate partition coefficients {partial derivatives
of phase velocity with respect to body wave velocities) for the guided wave modes.
The attenuation of the guided wave can then be represented by the sum of the layer
attenuation values weighted by their respective partition coefficients. The results
indicate that the attenuation of the Stoneley wave is dominated by the fluid
attenuation at all frequencies in fast formations, both in the open hole geometry and
in the presence of casing or invaded zones. In a slow formation, the Stoneley wave
attenuation becomes more sensitive to the shear wave attenuation of the formation
at higher frequencies in both the open and cased hole situations. For the pseudo-
Rayleigh wave, the introduction of casing reduces the effect of the fluid attenuation,
while the presence of an invaded zone reduces the effect of the formation shear
attenuation. Plots of the partition coefficients indicate that the casing and invasion
layers are most important over a limited frequency range which is related to the
thickness of the layer. Radial displacement curves illustrate the depth of penetration
of the varicus frequency components of the pseudo-Rayleigh wave.

INTRODUCTION

Recent interest in the field acquisition of Full Waveform Acoustic Logs (FWALs)
has resulted in many studies of wave propagation in a cylindrical borehole (Cheng and
Toksdz, 1881; Tsang and Rader, 1879; Paillet and White, 1982). The majority of
these have addressed the simple case of a homogeneous, isotropic, infinite solid
surrounding a fluid filled cylindrical borehole. Several recent papers (Tubman et al,,
1884; Baker, 1984; Chan and Tsang, 1983; Shoenberg et al., 1981) have addressed
the more compiex problem of solid radial layers surrounding a fluid filled borehole. The
common occurrence of drilling induced formation damage or the presence of steel
casing and associated cement justify the need to treat this more complicated
gecmetry. The results of Tubman et al. (1984) indicate that synthetic FWALs
generated in cased or damaged boreholes can differ significantly from those
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generated in an open hole with the same formation parameters. In particular, the
guided wave modes, the pseudo-Rayleigh and Stoneley waves, appear to be most
affected. When casing and cement are inserted into a borghole the radius of the
fluid filled cylinder is decreased. This decrease shifts the pseudo-Rayleigh wave
dispersion curves to higher frequencies which, for a constant bandlimited source,
results in less excitation and a decrease in amplitude (Cheng and Toksdz, 1981).
The Stoneley wave amplitude increases in the same situation due to both the casing
providing a more efficient waveguide and the receiver being located closer to the
fivid-solid interface where the amplitude is at a maximum. The effects of damaged or
invaded zones in the formation are more subtle. Tubman (1984) modeiled such zones
as a constant radial thickness layer with velocity and attenuation (§™') values
different from the virgin formation. His results showed a range of waveform effects
depending on the thickness and degree of aiteration of the zone. The amplitude
variations of the pseudo-Rayleigh and Stoneley waves were much less dramatic than
the casing examples. Since the borehole size remains constant in the
damaged/invaded borehole models, any changes in the amplitudes of the guided
waves must be related to the layer parameters of the model. The amplituds
variations for the casing models, however, are due to a combination of borehole size

- and layer parameters.

In order to gain a better understanding of the effects of the layer parameters
the amplitude response and energy distribution of the pseudo-Rayleigh and Stoneiey
waves will he studied. Cheng et al. {1982) used the variational principle to
analytically derive the partition coefficients ( partial derivatives of phase velocity
with respect to body wave velocity) for any guided wave mode. The attenuation of
the guided wave can then be represented by the sum of the layer attenuation values
welghted by their respective partition coefficients. The partition coefficients are
therefore a measure of the vartitioning of the energy of the wave within the fayers
through which it propagates (Anderson and Archambeau, 1964). It shouid also be
noted that the partial derivatives of the phase wvelocity with respect to layer
parameters are used as a basic tool for interpreting dispersion curves for guided
waves in any fayered medium. By deriving expressions for these derivatives, the
effect of perturbations of layer parameters on the phase velocity dispersion curves
of the guided wave can be calculated, resulting in an efficient means of fitting a
layered modei to the observed data. Cheng et al. (1982) appiied this technique to
the simple borehole model and used the resuits to estimate the shear attenuation of
the formation. In this paper their results, together with the dispersion equation for a
layered borehole as derived by Tubman et al. (1984), are applied to the cased and
damaged/invaded borehole models to calculate displacements, partition coefficients,
and Stoneley wave attenuation (g5') and pseudo-Rayleigh wave attenuation (g}).
The comparison of guided wave attenuation factors for both the simple borehole and
jayered borehole models will give an indication of the effect of the layers on the
wave amplitudes. Plois of the partition coefficients versus frequency illustrate the
frequency range at which different layers have the largest effect on the wavefarm,

THEORY
Partition Coefficients

A common measure of attenuation is the quality factor, Q, or its inverse, Q“‘ .
the digsipation factor. The dissipation factor can he defined as:
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-1 - AF
& =5nF (1)

where : AF = strain energy disstpated per siress cycle

FE = totgl strain energy stored per cycle

For a layered medium the dissipation factor for a guided wave can be defined by a
summation over all layers (n=1,N) ( Anderson and Archambeau, 1864):

N E
=) =& (2)

The total attenuation for a layered medium can therefore be represented by a
summation of the attenuation factors for each layer weighted by the fractional strain
energy stored in that layer. For small values of g~ the attenuation of a guided
wave can be written {(Anderson and Archambeau, 1964; Aki and Richards, 1580):

Q—'fz 97_."_BCQ -—1+f£§f__ e Qﬁ -1 (3)
n=t n

e de, Cn a8,

where: N =number of layers
o,8 = body wave velocities
¢ = phase velocity

Bn:dg = body wave attenuation factors

The coefficients of the body wave attenuation values are refetred to as partition
coefficients since they are a measure of strain energy partitioning.

For a fluid-filled cylindrical borehole in an isotropic, homogeneous, infinite solid, Cheng
et al. (1982) derived an expression for the attenuation of a guided wave:

i [;\ + 2;4] Q5 rdr (4)
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where: [= .[‘p['u.r2 + uf] rdr
0

U, U, = rodiol and axial displacements
k = azial wovenumber
w = angular fregquency
A= Lame's constonts
p = density

They also derived an expression for the partial derivative of phase velocity
with respect to density :

Q..:J?_I (5)
EPS ar O[u +u ra!r

Although these expressions were derived for a simple borehole model they can be
directly applied to a radially layered borehole by simply evaluating the integrals over
specific layers. 1t should be noted that the derivations of Cheng et al. (1 982) were
far constant wavenumber (k) which vields expressicns for temporal Q‘ . To ohtain

spatial Q‘ (which is what could be measured from FWALs) the following relation can
be used (Aki and Richards, 1980):

Q.s_;aﬁu.t Qtemporu.l (8}

where: U = group velocily

LAYERED BOREHOLE

In order to evaluate the integrals in equation 8 for a layered borehole,
exprassions for the displacements and their derivatives are needed. In addition, the
dispersion equation for the layered borehole model must be derived to locate
appropriate (k,c) pairs for the propagating modes. The axisymmetric wave equation in
gylindrical coordinates is:

62‘?7& + 1 9% + az‘ipn - ang
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where: g, =scalar potenfial

Y, = azimuthal component of the vector potential

The scolutions are:

On = [An Ky (7)) + A1 I (1, 7)] etlhs —wt) (8)
Y, =[B, K (m,7) + BL L (m,,7)] gilez—wt)
02
where: I, =k 1——3-—
Gn
2
c
™My, =kj1—-—
82
An.B, = amplitudes of oulgoing waves
AT':.’B?: = emplitudes of incoming waves
I = i® order modified Fessel function of the first kind
K; =" order modified Bessel function of the second kind
Displacements in terms of potentials are;
O¢n  OYn
= - 9
'iLrn or oz (@)

Zn or T dz

The expressions for the displacements are therefore (ignoring exponential terms):

Uy = by Ky U7y + by ]y U T)AL — kI (myy 7B, ~ kI (my 7)) (10)
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The radial derivatives of the displacements are:

o L
o = AR Up ) + 2K (b )My + (I35 Upr) ~ %11 M4+ (1

e Ko (m ™) + 2K,y 7YHB = Dk by () = 1y () B

du
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The dispersion equation for a layered borehole was derived by Tubman et al. {(1584)
by using a Thomson - Haskell type propagator matrix. The borehcle geometry used in

their derivation is illustrated in Figure 1. The outer radius of layer n is defined as r,,.

Equation {11), together with expressions for normal and tangential stress, can be
combined into a motion-stress vector of the form:

U, =bD.(r) a, (12}
where: Ul=[u, —u, o, -it,]
) i
T 1 ;0 5
a, "'[An. An 'LBn 1‘En]

B, =4 X4 layer mairiz

This vector can then be propagated through alf the solid layers resulting in {Tubman
et ai., 1984):

Gan =U1(Tg) (13)

where: G= ﬁE;ﬁ(rn 1) Dylry—)
=1

En(rpitn_q) = Dn(Tn)DT:1 (a1}

Applying the boundary conditions at the fluid - solid interface yields the dispersion
equation:

3-8
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Liar)F1 + pok? e [y lgrg)F2 =0 (14)
Q

where: M =G33@41 —G31 643
F2 =G36Gy —GqGys

Ly ,To\pp = wavenumber, ouler radius, and density of the fluid loyer

Equation (14) can be solved for the (k,c) pairs of the propagating guided modes. The
Stoneiey wave corresponds to ¢c<ag and the pseudo-Rayleigh to ag <c <@y, If Sy s
less than oy no pseudo-Rayleigh wave will be generated and the formation is
referred to as a 'slow’ or 'soft' formation.

The final calculation which is needed to evaluate the integrals in equation (4)
involves the amplitude constants 4., A), B., B] . In order to calculate these valuas
without imposing a source term, the A, term is arbitrarily set equal to one {Cheng et
al.,, 1982). The remaining constants can be determined from the propagator matrix
method. The set of equations which led to the dispersion equation (14) are:

ANGyy + ByGyz = 40(~lp ; (1o 7)) (18)

ANG3q + ByGas = AJ(—pokZc? f(lgTo))

ANGgq + BpGg3 =0

Substituting 4, = 1 into equation (15) leads to expressions for 4] and By

Al = F2 / (i 1 (1o 1y )Gag) (18)
Gy
Ba = ———
N Gy

The constants for the intervening layers (layers 2 through N-1) can be found by
equating the motion - stress vectors across the interfaces between the layers (i.e,
by satisfying the boundary conditions). For example, the constants for layer N-1 can
be found by solving the following equation for a_, :

Byt {ry-1)ay_y =Dplry—)ay (17)

All the expressions needed 1o evaluate the partition coefficient integrals in equation
(4) have now been derived. The next section applies these expressions o several
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layered borehole models.

RESULTS

The calculation of partition coefficients and attenuation {(§~1) from equation (4)
was carried out for three models: fast formation with casing, fast formation with an
invaded zone, and alow formation with casing. In all three cases, calculations were
also performed for the same formation in an open hole for comparison. Casing,
cement, Invaded zone, and formation parameters generally follow Tubman (1884) and
are given in Table 1. Freguency independent Q@ was assumed for all layers. All
calculations for the pseudo-Rayleigh wave were carried out for the fundamentat mode
only. -

Fast Formation -« Cased borehole

Figures 2 and 4 illustrate the partition coefficients as a function of frequency
for the pseudo-Rayleigh and Stoneley waves in a cased borehole with a fast
formation. The casing and cement are assumed to be perfectly bonded to the
formation. Layer parameters are given in Table 1. Partition coefficients for the same
formation in an open hole are given in Figures 3 and 8. The higher cutoff frequency
of the cased hole pseudo-Rayleigh wave is evident in Figure 2. Near the cutoff
frequency the pseudo-Rayleigh wave propagates with a phase velocity approaching
that of the formation shear velocity. - Therefore, for both the open and cased hole
gecmetries, the largest fraction of the wave's energy is contained in shear motion in
the formation at these lower frequencies. In the open hole, as frequency increases
and the phase velocity of the pseudo- Rayleigh wave approaches the fluid velocity,
over 80% of the energy is propagated in the fluid (Figure 3, f>18kHz). in the cased
hole the energy partitioning is more complicated. The fluid plays a much smailer role
in this geometry, accounting for only 50% of the energy at 28kHz but increasing at
higher frequencies (Figure 2). The casing and cement layers are most important at
intermediate frequencies where 25% - 30% of the pseudo-Rayleigh wave energy is
propagated as shear motion in each layer at frequencies between 17kHz and 23kHz.
In both the open and cased holes there is very little energy contained in the
compressional modes (less than §%).

The Stoneley wave is predominantly propagated in the fluid layer for both the
ocpen and cased holes at all frequencies. In the open hole (Figure 5), over 80% of the
energy is contained in the fluid at all frequencies. The wave is poorly coupied to the
formation with only 10% - 20% of the energy propagating as shear motion and less
than 5% of the energy contained in compressional motion in the formation. In the
cased hole the situation is similar. At low frequencies an even greater fraction of the
energy is contained in the fluid (80%) with almost no coupling to the solid layers. As
the frequency increases, up to 15% - 20% of the Stoneley energy is propagated in
the casing and cement layers (as shear energy) and the fluid energy dreps to about
65%. There is a small fraction of compressional energy in the casing (6%) and the
effect of the formation is negligible.

The resulting attenuation of the pseudo -Rayleigh and Stoneley waves is seen in
Figures 6 and 7. These figures dispiay the temporal quality factor (Q) versus
frequency (increasing Q corresponds to decreasing attenuation). Due to the
negligible effect of the compressional wave attenuation, only the fluid and shear
wave attenuation are considered in these calculations. As expected, the pseudo-
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Rayleigh wave Q increases at intermediate frequencies due to the decreased effect
of the low Q fluid. The Stoneiey wave Q remains essentially constant but does
increase slightly at high frequencies as the fluid effect decreases. Figures 8 and 10
give the effect of the layer density on the phase velocity of the pseudo - Rayleigh
and Stoneley waves for the cased hole geometry. Figures 9 and 11 give the density
effects for the open hole geometry. These figures show behavior analagous to the
partition coefficient results.

Fast Formation - lnvaded zone

The results for a fast formation with an invaded zone are similar to those for a
well bonded cased hole. Figures 12 and 13 show the partition coefficients for 2 3
inch invasion zone for the pseudo-Rayleigh and Stoneley waves. Figures 14 and 15
illustrate the same quantities for a 8" invaded zone. The formation parameters are
the same as in the casing example previously given. The invaded zone is assumed to
have velocities 10% lower than the formation, and higher attenuation factors (Table
1). As in the cased hole example, for the pseudo-Rayleigh wave the invasion laver is
most important at intermediate frequencies while the fluid effect is deminant at high
frequencies and the formation shear attenuation makes the largest contribution at
low frequencies. The invasion zone is much thicker than the casing and cement
layers of the previous example and therefore is more dominant over a wider
frequency range. As the thickness of the invasion layer is increased the formation
effect shifts to lower frequencies and the invaded zone shear attenuation becomes
more dominant,

The Stoneley wave partition coefficients for the invasion zone mode! are very
similar to the cpen hole case; the energy is predominantly prepagated in the fiuid. In
this case, however, the fluid energy has decreased from about 80% - 85% in the
open hole to about 75% - 80% in the invasion model. At the same time, the effect of
the formation has become negligible over most frequencies, whiie 15% - 20% of the
energy is propagated as shear motion in the invaded zone. Again, compressional
energy is negligibie. The Stoneley wave couples with the slower invasion zone more
efficiently than it does with the faster formation (Figure 3). This trend can be bettar
ifllustrated by reducing the invasion zone velocities to 70% of the formation values
(Figure 15a). In this case 50% of the wave's energy is propagated as shear motion
in the invaded zone at frequencies greater than 10kHz and the effect of the fluid
decreases with increasing frequency. The results for this 'slower’ invasion zone are
quite similar to the results of the next section - the slow formation.

Plots of the guided wave quality factors as functions of frequency for the
invaded zone model are given in Figures 16 and 17. The pseudo-Rayleigh Q is [ower
compared to the open hole model at [ow frequencies due to the effect of the more
attenuating invasion layer. At high frequencies, however, the fluid attenuation
dominates in both models. The Stoneley Q increases slightly with an invasion layer
due to the decreasing effect of the fluid layer and the increasing effect (better
coupling) of the invasion layer. The density effects are quite similar to those given in
Figures 8 and 8 and will not be included here.

Slow Formation - Cased borehoie
In a soft formation (ﬁN <) no pseudo-Rayleigh wave is generated. The

partition coefficients for a soft formation in an open hole are given in Figure 18. In
this case the Stoneley wave is well coupled to the formation and the formation shear
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attenuation is dominant at high frequencies while the fiuid is more important at low
frequencies. The addition of casing and cement layers (Figure 19) seems to
accentuate the behavior seen in the open hole. The casing and cement layers carry
little or no enerqgy, and there is negligible compressicnal energy propagated in the
formation. The Stoneley wave Q for the open and cased hole gecmetry is shown in
Figure 20. The trend of the two curves is similar; however, the cased hole curve has
a much sharper inflection and quickly reaches the value of the formation shear Q as
frequency increases. The density of the formation affects the phase velocity more
strongly at high frequencies in an open hole (Figure 21). The density efiects are
similar for a cased hole and need not be illustrated.

DISCUSSION AND CONCLUSIONS

The results of the previcus section indicate that the partition coefficient values
are quite variable with frequency. The eifect of the casing or invaded layer is
restricted to a limited frequency range which ie related to the thickness of the layer.
The curves for the invasion layer of varying thickness (Figures 12 and 14) ilfustrate
this very clearly. For pseudo-Rayleigh waves the frequency dependence is due 1o
the depth of penetration of the spectral components of the guided wave. The range
of depth of penetration can he illustrated by the radial displacementis as a function
of radial distance for a high (39.981 kHz) and low (12.643 kHz) frequency
compenent of the pseudo-Rayleigh wave in a cased hole in Figures 22 and 23. The
low frequencies see further into the medium and hence a larger fragtion of the energy
is propagated in the formation. High frequencies on the other hand have a very
shallow penetration depth and most energy is carried in the fluid. The attenuation of
the guided waves exhibits a similar frequency dependence. The addition of casing
and cement layers reduces the attenuation of the pseudo-Rayleigh wave over the
intermediate frequencies due to the decreasing effect of the highly attenuating fluid.
The presence of an invasion layer increases the attenuation of the pseudo-Rayieigh

wave due to the more attenuating invaded zone. In both cases, however, Q;,]

approaches- Q‘1 of the formation at iow frequencies and Q;1 of the fluid at high
frequencies. These results expiain the amplitude variations of the synthetic FWALs
in invaded boreholes generated by Tubman (1884). The amplitude variations in the
cased hole synthetics, however, are mostly dominated by the reduction in the radius
of the fluid layer.

The Stoneley wave partition coefficients behave somewhat differently than the
pseudo-Rayleigh wave coefficients. In an open hole with a fast formation, the fluid
layer is dominant at all frequencies and the wave is weakly coupled to the formation.
The addition of casing reduces the fluid effect somewhat at higher frequencies and
the wave has some coupling with the casing and cement, although the fluid is
completely dominant at low frequencies. If a slower invasion layer is added, the
wave is more strongly coupled to the scolid invasion layer. As the invasion layer or
formation becomes slower, the Stoneley wave becomes more efficiently coupled to
the solid. This is especially true for a ‘'slow' formation where most energy is
propagated as shear motion in the formation at higher frequencies. The addition of
casing and cement layers to such a 'slow’ formation model does not alter this overall
energy partitioning, although it does seem to shift the frequency range over which
the fluid and formation layers dominate (Figures 18, 18). This variation in Stoneley
wave coupling between the solid and fluid layers can be illustrated by examining
plots of the radial displacement. Figure 24 shows the radial displacement for a
Stoneley wave component (2647 Hz) in an open hole with a fast formation, Figure 25
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shows the same quantity for an open hole in a slow formation (2668 Hz). The higher
amplitude and deeper penetration of the wave in the slow formation illustrates the
more efficient coupling of the wave as the velocity of the solid layer decreases. A
similar effect can be seen for a fast and slow formation in the presence of casing
{Figures 26 and 27). Figure 26 shows the radial displacement for the Stoneley wave
in a well bonded cased hole with a fast formation (1070 Hz), while Figure 27 shows
the same quantity for a slow formation in a cased hole (1073 Hz). 11 should be noted
that in all these cases (Figuras 24 through 27) the axial displacement in the fluid is
several orders of magnitude greater than the radial displacement, and the axial
displacement in the solid layers Is much less (by a factor of 10 to 100} than the
axial displacement in the fluid.
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Layer a 8 plgm/sce) | @, Qs
ft/sec | m/sec | ft/sec | m/sec
Auid 5500 | 1676 0 0 1.2 20 0
casing 20000 | B0SB | 11000 | 3353 7.5 1000 | 1000
cermnent 9260 | 2822 | .5670 | 1728 1.92 40 30
fast fm | 16000 | 4877 | 8530 | 2600 2.18 80 80
invzone | 14400 | 4389 ! 7877 | 2340 2.36 40 40
slow fm 9022 | 2750 3940 | 1200 2.1 50 50
table 1
rO=R
0=Rphole
1/2/3 N
ri
r2
r3
rN—-1

Figure 1: Geometry of a radially layered borehole.
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Figure 2: Partition coefficients for the pseudo-Rayleigh wave in a cased borehole
with a fast formation. S and P refer to shear and compressional motion, csg
indicates the casing layer, emt indicates the cement layer, and fm indicates the
formation. (these abbreviations will be used in the following figures as well)
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Figure 3: Partition coefficients for the pseudo- Ray1e1gh wave in an open
borehole with a fast formation.
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Figure 4: Partition coefficients for the Stoneley wave in a cased borehole with a
fast formation,
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Figure 5: Partition coefficients for the Stoneley wave in an open borehole with a
fast formation. -
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Figure 8: Pseudo-Rayleigh wave quality factor for open and cased hole
geometries.
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Figure 7: Stoneley wave quality factor for open and cased hole geometries.
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Figure 8: Density derivatives for the pseudo-Rayleigh wave in & cased borehole
with a fast formation
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Figure 9: Density derivatives for the pseudo-Rayleigh wave in an open borehole
with a fast formation.
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Figure 10: Density derivatives for the Stoneley wave in a cased borehole with a
fast formation. .
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Figure 11: Density derivatives for the Stoneley wave in an open borehole with a
fast formation.
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Figure 12: Partition coefficients for the pseudo-Rayleigh wave in a borehole with
a 3" invasioh zone and a fast formation. Inv indicates the invasion zone layer.

(this abbreviation will be used in the following figures as well)
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Figure 13: Partition coefficients for the pseudo-Rayleigh wave in a borehole with
a 6" invasion zone and a fast formation.
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Figure 14: Partition coefficients for the Stoneley wave in a borehole with a 3"
invasion zone and a fast formation.
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Figure 15: Partition coefficients for the Stoneley wave in a borehole with a 8"
invasion zone and a fast formation.
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Figure 15a: Partition coefficients for the Stoneley wave in a borehole with a 8"
invasion zone and a fast formation. The invasion zone in this case has velocities
30% lower than the formation velocities (compared to 10% lower in the previous

figures).
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Figure 18: Pseudo-Rayleigh wave quality factor for open and invaded zone
borehole models.
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Figure 17: Stoneley wave quality factor for open and invaded zone borehole
models {fast formation).
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Figure 1B: Partition coefficients for the Stoneley wave in an open borehole with
& slow formation.
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Figure 19: Partition coefficients for the Stonieley wave in a cased borehole with a
slow formation.
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Figure 20: Stoneley wave quality factor for the open and cased borehole models
with a slow formation.
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Figure 21: Density derivatives for the Stoneley wave in an open borehole with a
slow formation.
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Figure 22: Radial displacement of a low frequency component {12643 Hz) of the
pseudo-Rayleigh wave in a cased borehole,
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Figure 23: Radial displacement of a high frequency component {39961 Hz) of
the pseusc-Rayleigh wave in a cased borehole.
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Figure 24: Radial displacement of a component (2647 Hz) of the Stoneley wave

in an open borehole with a
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Figure 25: Radial displacement of a component {2668 Hz) of the Stoneley wave
in an open borehole with a slow formation.
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Figure 26: Radial displacement of a component (1070 Hz) of the Stoneley wave
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Figure 27: Radial displacement of a component (1073 Hz) of the Stoneley wave
in a cased borehole with a slow formation.
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