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ABSTRACT

In Vertical Seismic Profiling surveys tube waves are generated by
compressional waves impinging en subsurface fractures or permeable zones.
The problem of generation of these waves by a non-normal incident P wave for
an inclined borehole intersecting a tilted parallel wall fracture is formulated
theoretically. The amplitude of tube waves depends on the permeability, the
length of the fracture, and on the frequency. The relative effects of these
parameters are studied individually. The problem is also formulated for a thin
oblate ellipsoidal (penny-shaped) fracture. The results for the two fracture
models are compared and contrasted. Field data from Tyngsboro,
Massachusetts are shown for open fractures in granite. From tube wave
amplitudes normalized to P wave amplitudes, calculated permeabilities are on
the order of one hundred millidarcys.

NOMENCLATURE

K u~! 7!, pressure diffusivity in fracture

tube wave phase velocity

effective length of fracture

F wave cor tube wave frequency

gravitational acceleration constant

(z), K (z) modified Bessel function of the i-th order

w/ ¢, tube wave vertical wavenumber

fracture permeability (1 darcy = 107'* m?)
fracture hydraulic conductivity {107 em. / sec)
fracture width

static fracture width

k{1-c?/ a®%, tube wave radial wavenumber
from F wave contribution

k(1—c?/ 8%)%, tube wave radial wavenumber
frorm S wave contribution

k(1-c?/ aZ)¥ tube wave radial wavenumber
from fluid P wave contribution

unit vector normal to the fracture walls
generated tube wave pressure amplitude in borehole fluid in
the vicinity of the {racture

pressure amplitude in the borehole fluid of the first
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262 _ Beydoun et al.

P wave arrival, in the vicinity of the fracture

p{z.t) fluid pressure distribution in the fracture

Py equilibrium berehole pressure at fracture depth

g(z.t) rate of fluid flow in the fracture

Q{t) pressure source function (inhomogeneous term) in PDE (A.2)

T ellipsoidal fracture radius

E borehole radius

F axis running aleng the center of the fracture, oriented away from
the borehole

T 1/t, P wave or tube wave period

u displacement amplitude along & in the formation

of the first P wave arrival, in the vicinity of the fracture

ul generated tube wave vertical displacement amplitude
along 2z, in the formation, in the vicinity of the fracture
Vep two-dimensional volume of 2uid ejected

by the fracture in T/ 2

three-dimensional extrapolation of Vap

total volume of fluid ejected by the ellipsoidal fracture
unit vector oriented Z x §

unit vector along the borehole axis oriented downwards
vertical unit vector oriented downwards

compressional (P) wave velocity of the formation
compressional {P) wave velocity of the fluid

shear (S) wave velocity of the formation

fAluid compressibility

Lo/ 2r, aspect ratio of ellipsoidal fracture

2¢g/ Lg, maximum volumetric strain (or dilatation)

of ellipsoidal fracture

tube wave volumetric strain in the fluid

maximurmn strain vector of the fracture

maXximurn strain vector of incident P wave

maximum normal fracture displacement

cos™{& - &), angle between P wavenumber and fracture norrmal
F wavenumber unit vector

dynamic fluid viscosity

formation density

fluid density

Poisson's ratio of the formaticn

cos™HA + Z, ), angle between borehole axis and fracture normal
tube wave potential in the borehole fluid

geometrical factor

2nf, P wave or tube wave angular frequency

L
ex.ﬁ;@ ax ‘ca)&gmﬁm‘_‘z Do.qn.‘?nmw)gq,sq

INTRODUCTION

Vertical Seismic Profiling (VSP) surveys have become a very valuable
diagnostic tool in the evaluation of the formation properties surrounding the
borehole. In fleld experiments with compressional wave V3Ps, Huang and
Hunter (1981a,b)} had observed that tube waves are generated at fractures
intersecting the borehole. In a similar set of experiments in Tyngsboro and in
Hamilton, Massachusetts, we have observed the same phenomena. Examples of

- tube waves originating at fractures and propagating up and down the borehole
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Fractures in YSP's 263

from the data collected at Tyngsboro and Hamilton are shown in a V3P section
in Figures 1. and 2. The widely accepted mechanism for the generation of tube
waves is that the incident P waves compress the fracture and inject a fluid
pulse into the borehele. Figure 3 schematically illustrates this efficient
mechanism for the generation of tube waves.

The fluid pulse mechanism for the generation of tube waves has been
formulated mathematically by Beydoun et al. (1983). The geometrical model
used in that study is that of a parallel-wailed open fracture intersecting a
borehole. A compressional plane wave Impinges on the fracture. First, the
volume of fluid ejected from the fracture into the borehole is calculated. Then,
the tube wave amplitudes generated in the borehole Auid and in the formaticn
are evaluated. Using this model, the in sifu fracture permeability can then be
estimated from the ratio of the tube wave amplitude to the P wave amplitude
measured in the formation or in the fluid. The meodel used in Beydoun et al.
(1983) assumed a vertical borehole, a horizontal fracture perpendicular to the
borehole, and a vertical incident P wave normal to the fracture. In this paper
we have extend this model to include random orientations of the borehole,
fracture and the incident P wave. In addition, we have examined a fracture
model based on a thin ellipsoidal (penny-shaped) crack. We will compare the
theoretical predictions of the two models and the strengths and weaknesses of
each., Finally, we will apply our parallel wall fracture model to the data from

Tyngsboro.

THE PARALLFEL WALL FRACTURE MODEL

The theory for the parallel wall fracture model has been discussed in some
detail in Beydoun ef al. (1983) for the vertical borehole, horizontal fracture
and vertical incident P wave. In the following section, we will present the
corresponding theory for the angle dependent model. The development is
closely parallel to the original model, and we are presenting here the essential
results that are different from the previous model. The reader is referred to
Beydoun et al. {1983) for the more basic details.

Theory of Fluid Flow in the Fracture

Consider a parallel-walled, fluid-filled open fracture imbedded in a
homogeneous isotropic elastic medium. The fracture is intersected by an
uncased borehole. Let Z be the vertical unit vector, let £, be the unit vector in
the direction of the borehole axis, let # be the unit vector normal the the
fracture wall, and let § be the axis normal to # {parallel to the fracture walls
and oriented away from the borehole) situated at the center of the fracture.
These vectors and their origins are shown in Figure ¢. The fluid in the fracture
is in equilibrium with the fluid in the borehole. A plane P wave with
wavenumber unit vector & impinges on the fracture. For very small strains, the
fracture width is assumed to oscillate about the static shape L; as

L{t) = Lg — o cos(wt) (1)

where 2¢y is the maximum nermal fracture displacement.
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264 Beydoun et al.

To simplify the calculations of the fluid injection from the fracture inte the
borehole, the following assumptions are made: (1) {<&Ly , {8) one-dimensional
linear laminar regime of flow occurs within the fracture (Stokes' law satisfied) ,
(3) the fluid compressibility is small, (4} the fluid injected into the borehole
from the fracture dees not significantly perturb the borehole pressure Py at
the fracture lecation and the fracture pressure is equal to Py when the
fracture velocity is zero, (5) low frequency approximation with frequency
dependence (aT>»R,L), (6) the fracture intrinsic permeability, X, does not vary
with time, (7) the fracture inclination with respect to the borehole axis
¢ = cos™}(Z, R ) is small, and (B) if u is the maximum amplitude of the P wave
particle displacernent (along £) in the vicinity of the fracture and 4 = cos™}{&-R)
the angle between the incident wave and the normal to the fracture, then for a
thin fracture with large surface area and small fluid compressibility,
{g ®u cosd.

The two-dimensional problem, where the fracture is infinitely long in the ¥
direction, will be solved first. The fluid flow rate in the presence of a pressure
gradient 3p (s t)/ 8s is related to the fracture width L(f), the fluid viscosity u
and density p,. and the fracture intrinsic permeability X by Darcy's law (with
Assumption (25. see for example De Wiest, 1969)

a(e.t) = - B Smlst) (2)

The elevation gradient term (0, g 82/ 8s) is not present because the fracture is
plane and point-symmetric wit{1 respect to the z, crigin.

The fracture movement being T-pericdic and T/2 symmetriec, we shall
investigate the fracture dynamics in a time interval of T/R2 (from t=0 to
t=7/2). The volume of fluid ejected from the fracture into the borehole
(fracture closure) during the one-half cycle of the incident wave is (see
Appendix A)

Vep(K} = — & [-";K:‘_r Flw.$o/ Lo) (3)

where
T/

Floto/ L) 820 [ (T/2-tYsin(ot) dt  for &<,
1)

An effective length of the fracture, d, can be defined as the radial distance
(along §) from the borehole wall to a point at which the pressure gradient falls
to about ten percent the pressure gradient at the borehole wall over a time
interval of T/ 2. The effective fracture length is given by the expression

_[exr
a(K) -[ L r (@

This can be verified by substituting Eq. (4) in Eq. (A.4) in Appendix A,
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Fractures in YSP's 265

The volume used to derive Eq. (3) is two dimensional. The actual fracture
geometry involves a three-dimensicnal configuration which can be
approximated by extrapolation of the iwo-dimensional solution, assuming the
geometry is axisymmetric with respect to the A axis. This geometrical
extrapolation is based on the steady state solution, and is assumed to be
independent of the small fluid compressibility and of the low frequency of
excitation.

Use of Navier-Stokes equation in cylindrical coordinates and the continuity
equation (Landau and Lifchitz, 1971) with the assumptions (1), (2) and (5)
indicate that the permeability of two-disc radial fluid flow is the same as the
permeability of two parallel planes fluid flow. Comparing the steady state
solutions for the 2D and 30 problems, the respectively flow rates can be related
as follows:

qap =27 K X qap (8)

where

Xx(K) = LK)
R zncfﬂ’éﬁ)

The x¥ component is defined as the geometrical factor; d is the effective fracture
length defined previously in Eq. {4) and F is the borehole radius. For any given
time interval the equation relating the two- and three-dimensional volumes is
similar to Eq. (5), and in particular for a time interval of T/ 2

V(K) =27 R x(K) Vap(K) (8)

where V is the volume ejected from the circular fracture into the borehole
during a time interval of T/ 2.

Tube Wave Generation

Tube waves are low {requency Stoneley waves. These guided waves reach
their largest amplitudes at the sclid-fluid boundary and decay approximately
exponentially away from it. The fluid pulse ¥ forced from the fracture into the
berehole by an incident compressional wave generates tube waves which
propagate up and down the borehole.

To determine the relationship between the ejected fluid volume and the
tube waves generated, the tube wave volumetric strain (or dilatation) in the
fluid ( A}‘) is used. Further, the tube wave and the P wave are assurned to have
the same frequency. The integrated tube wave volumetric strain in the
borehole fluid (at 2,=0) in the time period T/2 can be equated to the fluid
volume injected into the borehole, —V(X), over the same time period. The minus
sign is necessary since the borehole system is different from the fracture
system; the algebraic volume ejected from the fracture is a negative volume for
the fracture but a positive volume for the borehole. In axisymmetric cylindrical
coordinates this volume is expressed as
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/2 R
-V(K) =2nc f [ AF(r.zy=0.t) rar dt {(7)
a0

The velumetric strain and amplitude of the tube wave can be determined
using the seismic potential for the tube wave {see Appendix B). The amplitudes
of the up and down going tube waves will be the same because of symmetry.

The fracture permeability can be evaluated by considering the inverse
problem. The in situ fracture permeability can be determined from the tube
wave amplitude normalized to the direct P wave amplitude in the fluid
(pressure ratio) or in the formation (displacement ratio). The P wave pressure
in the borehole fluid can be written in terms of the displacement in the
formation (White, 1965) with assumptions {5) and (8)

wpy c?a[l — (8 cos(p~8)/ a)?] cos(p—3)
A[(1 - (¢ cos{p—8)/ a)?]cosy

P/ = (8)

where ¢ —4d = cos™}(® - 2,) (oriented angles, see Figure 4.) is the angle between
the P wavenurnber vector and the borehole axis.

Using Eq. (B.2) to (B.B), the ratios of fracture induced tube wave
amplitudes to incident P wave amplitudes can be determined. The pressure
ratio in the borehole (measured by a hydrophone) is

w@® cosd[1 — {c cos(p—18)/ a)?] [x(nR)
¢o cos{g—8)c®a [1 — 2(8 cos{p—8)/ a)?]’
where C=C(K) is given in equation (B.8).

pT/p?=¢C (9)

The component along 2z, of the displacement ratio at the wall of the borehole
(measured by an anchored borehole geophone) is

ul/ (ucos(e—8)) = [Ich(l}i’) + mGKc(m.H)] A cosd/ (Lecos(p—8)). (10}

The factor A is related to € by Eq. (B.5), and C is related to the fracture
flow via Eq. (B.8). Eq. {9) or (10) can be solved to determine the fracture
permeability K. Normally, given the formation and Auid properties,
displacement or pressure ratios can be determined as a function of frequency
with permeability, X, as a parameter. These values can then be compared with
observations to determine K.

A simple relation exists between the fracture intrinsic permeability & and
the fracture hydraulie conductivity (or coeflicient of permeability) A

K =Kprg/p. (11)

The SI units of K are m? and the common unit is the darcy (1 d = 1073 m?),
The SI units of K, are m/sec, and the common unit is 1072 em/ sec, which is
sometimes called the darcy; to avoid any confusion this nomenclature shall not
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Fractures in VSP's 267

be used. However if the fluid is water a simple approximate relation exists:
1darcy ® 1079 cm / sec.

ELLIPTICAL FRACTURE MODEL

In order to study the model dependence of our results, we need to study
different models of fractures. One such model is the elliptic or penny-shaped
crack model of the fracture. In this model, the fracture is assumed to be
circular, with the fracture height very rmuch smaller than the fracture radius.
We also assume that the borehole is located at the center of the fracture, that
its radius is small compared to the fracture radius and that it acts as an infinite
drain for the fluid ejected from the fracture. In that sense, the fracture can be
treated to be under the ''drained” condition. Other assumptions are: the
wavelength of the incident wave is much longer than the size of the fracture;
the frequency of excitation is low enough for complete drainage from the
fracture during any stress cycle; and the incident strain is small enough that
the fracture ig never completely closed.

Under these conditions, the volumetric strain of the fracture is related to
the applied strain using the theory of Eshelby (1957). The volumetric strain of
the fracture can then be related to the volume of fluid ejected and compared
with that obtained using the previcus model. The applied strain can be related
to the incident displacermnent. In this way we can relate the incident P wave
displacement to the volume of fluid ejected from the fracture into the borehole
in a manner similar to that given in Eq. (8).

Theory

Without loss of generality, we can assume the fracture to be horizontal and
the borehole to be vertical. An incident P wave impinges on the fracture at an
angle ¥ with the normal to the fracture. Using the same coordinate system as
in Figure 4., the maximum dilatational strains of the incident P wave are
defilned as & and £f;. If the boundary conditions are written in terms of
maximum stresses, we can infer the maximum strains from the constitutive
relation of the medium. The incident strain vector {composed of the three
maximurm dilatational components of the strain tensor), # . can be related to
the strain vector of the fracture, £ by the matrix equation (Eshelby, 1957,
Anderson ef al., 1974; Cheng, 1978):

g=A% (12)

where 4 is the strain enhancement factor (Korringa et al., 1979). For low
aspect ratio (thin) fractures, results show that only &2, is important in the
calculation of the volumetric strain of the fracture. The maximum volumetric
strain A of the fracture is given by:

A=_d:§1_——g)2_ a

m6(1 —2g) 2

where ¢ is Poisson's ratic of the formation and 6 is the aspect ratio of the
fracture (width divided by diameter). From the notations of the parallel wall
model, we have § = Lo/ 27 and A = 2¢y/ Lg. Therefore, the elasticity effects of
the mediurm, ignored in the parallel wall mmodel, can be taken into account since

(13)
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equation (i3) links ¢ to the boundary conditions in the elastic medium. In the
“drained” case under consideration, the volume of fluid ejected can be assumed
to be the volumetric strain of the fracture multiplied by the (negative) fracture
volume. The velume of an ellipsoidal fracture with radius r and aspect ratio ¢ is
4mér3/ 3. Thus, the volume ejected into the borehole upon an incident P wave
at an angle 4 with the normal to the fracture is given by:

Vo= — 2l ¢ (14)

Identifying this volume, ¥,, with the volume V given by equation (6), an
expression for the ellipscidal fracture radius, r, is found:

- | =3V
- [ 8

Note that —V is a positive quantity (see Eq. 3).

Comparison. with. Parallel Wall Model

The parameters of comparison are the effective fracture distance, 4,
versus the ellipsoidal fracture radius, . The variables considered are the
frequency and the fracture permeability. The other physical parameters are
kept constant and their values are shown in Table 1. Results are shown in the
table below:

t=150 Hz, K=10d 0.52 G.41
=100 Hz, K=10d 0.63 0.48
f= 50 Hz, K=104d 0.89 G.64

f=150Hz, K=1d 0.18 Q.18
f=100Hz, K=1d 0.2C 0.21
f= 50 Hz, K=14d 0.28 0.29

These results compare favorably in the sense that they are of the same order of
magnitude, considering that the two models presented in this paper are based
on totally diferent approaches. The eflective fracture length is comparable to
the radius of the ellipsoidal fracture.

There is no dependence on formation properties in the parallel wall model.
The main interest was, that assuming the displacement field in the vicinity of
the fracture, to calculate the maximurm volurme of fluid ejected by the fracture,
the fluid properties being taken into account. Formatlion properties can be
approximately incorporated by specilying the boundary conditions of the
incident field and using Eq. (13).

There is no dependence on the fluid properties in the ellipsoidal crack

model. This is because we have used the "drained” assumption. Fluid
properties, both elastic and viscous, can be incorporated into the ellipsoidal
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Fractures in VSP's 269

crack model (Johnston et al., 1979). Furthermore, the borehole radius effect is
not present in the formulation since we have assumed the borehole radius to be
small compared tec r. However, when the borehole radius is decreased by a
factor of 10 {from C.1m to 0.01m), the fracture radius calculated using Eq. (15)
is decreased by approximately 30 percent. Therefore, the borehole effect does
not significantly change the results. Frequency dependence, as used in the
parallel wall fracture model, can also be introduced into the ellipsoidal model,
provided the long wavelength assumption still holds (Kuster and Toksoz, 1974).

It is clear that for both models, given the observed P wave to tube wave
pressure ratio, one can obtain only one parameter for the fracture. In the case
of the parallel wall fracture model, the parameter is the width of the fracture,
and by inference, the in sifu fracture permeability. On the other hand, in the
case of the ellipsoidal fracture model, the parameter one can obtain is the
radius of the fracture. Comparison of the two models brings additicnal
information. The two main consequences of this comparisen are : the parallel
wall model can be extended to include tormation properties in the calculation
of the volume V and the fracture effective distance is representative of the

fracture radius.

RESULTS AND DISCUSSION

In order to demonstrate the different efficiencies of tube wave generation,
three separate formations are considered: a granite, representing a typical
crystalline rock; a "hard” sediment that. would represent relatively dense
carbonate and hard sandstones; and a '‘sediment” to represent the rmore
typical sedimentary rocks such as sandstones and shales. The properties of
these formations and other physical parameters used in this study are listed in
Table 1. The tube wave phase velocity ¢ is calculated by solving the tube wave
period equation for the given formation and borehocle parameters as a function

of frequency.

Before we discuss specific nurnerical and fleld results, there are several
points of interest that are apparent from a close examination of the analytic
expressions for the fluid ejection and tube wave generation. These are
discussed briefly as follows:

For a given fracture permeability, formatlon and P wave angle of incidence
a smaller borehole radius gives a higher p7/p?® ratio. This is related to the x
factor in the extension from the two-dimensional model to three dimensions.

For the case where the borehole is vertical and the incident P wave is also
vertical, the fracture inclination being ¥, we can observe from Eq. (B. 8) that
C(K) is a monotically increasing function of the permeability X. ThenpT/p®
Eq. (9) is proportional to C(K)-cosd. Therefore if ¥ is unknown, and we wish to
have an estimate of K given p*/ p?, then setting 4=0 will yield a lower bound for
K.

The tube wave to P wave pressure ratio p7/p? is maximum for ¥ minimum

and minimum for ¥ maximum. Therefore by rotating the the socurce around the
borehole, one can estimate the inclination of the fracture plane.
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Pressure and Displacement Amplitude Ratios

The ratios of tube wave amplitudes to P wave amplitudes are shown in
Figures 5 - B for the simple case where ¥ = ¢ = 0. The first comparison made is
that of the ratios of pressure amplitudes inside the borehole fluid. This is
useful for interpreting the hydrophone data. The second cormmparison is that of
the ratios of displacements that may be measured by a borehoie seismometer
locked to the borehole wall. Only the component of the displacement along 2,
is considered. The tube wave particle motion at the borehole interface is highly
elliptical and it is important to specily the component of displacement under
consideration. Owing te the much larger amplitudes of tube waves in the fluid it
is preferable to use hydrophone data as opposed to gecphone data to detect
highly permeable zones. The borehole acts essentially as an amplifier. The
tube wave pressure amplitudes in the fluid diminish with increasing frequency.
The displacement ratios in the formation increase with frequency. Higher
fracture permeability yields higher tube wave amplitudes. For a given fracture
perrmeability, the "harder' the formation is, the higher the tube wave pressure
amplitude in the fluid (Figure 5a, 6a, and 7a), and the lower the tube wave
displacement amplitude in the formation (Figure 5b, 6b and 7b).

Figure B shows the effect of the borehole radius on the TW/PW pressure
ratic. When the radius decreases the fluid volume decreases and, for a constant
fracture permeability, the TW/PY ratio balances this decrease by increasing
(Eqs. 9, B.B and 8).

Field Examples

Field examples of tube wave generation in a borehole which intersects
open fractures in granite are shown in Figures 1. (Tyngsboro, Mass.) and 2.
(Hamilton, Mass.). These examples are pressure measurements in the borehole
fluid. Comparisen of data from the televiewer and the tube waves show a good
correlation between tube wave generation and open fractures.

For the Tyngsbore data, the tube wave to F wave amplitude ratios were
calculated as a function of frequency in well #3 for three fracture depths: 253',
290" and 471'. Due teo weak P wave signals these values have relatively large
error bars (in average about +3 in the TW/PW ratio). These values are super-
imposed on the theoretical iso-permeability curves of a granite model with a
borehole radius of 7.6 cm with 4 = ¢ =0 (Figure 8). The trend of the data
follows in some sense the theoretical curves. The permeability ranges between
aprroximately 0.1 and 0.5 Darcys. These values are consistent with other
permeability calculations in fractured granite as compiled by Brace (1980).

However, preliminary comparisons between the observed flow and the
estimated flow (calculated from the theoretical permeability, an estimated
fractured zone width and a pressure head) show that the the estimated flow is
lower than the observed one. This could be due {by order of importance) to (1)
an over-estimate of the effective fracture distance; which means that only a
part of the distance contributes to the volume ejected, therefore, a smaller
volume is ejected for an observed TW/PW ratio; (2) an ineclined fracture for
which, if the model is used with ¥4 = 0, would yield a lower bound of the
permeability, thus, a lower Bow; and (3) the perhaps inaccurate assumption of
linear laminar regime of flow; this would yield a lower volume ejected and a
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Fractures in VSP's 271

lower estimated fracture permeability. More field data are being processed at
the present time and the results will be further compared with those obtained
from the model. This will be the subject of an forthecoming paper.

CONCLUSIONS

Tube waves can be used to detect open fractures intersecting a borehole
and to determine an equivalent fracture permeability using tube wave to F
wave amplitude ratios in the borehole fluid (pressure ratic). It should be noted
that the tube to P wave pressure ratio in the borehole fluid is approximately 3
orders of magnitude greater than the displacement ratic in the formation. For
this reason it is preferabie to use hydrophone data instead of wall-locked
borehole geophone data, to locate these permeable zones. It is important to
mention that a number of assumptions were made in this study and a complex
“equivalency’ was established between the two-dimensional cartesian geometry
and the circular crack model. Another fracture model based on the static
compression of an thin ellipsoidal or penny-shaped crack was developed. The
comparison shows that the fracture effective distance is representative of the
fracture radius. The parallel wall fracture model was applied to VSP data from
Tyngsbore and Hamilton, Massachusetts. The results show a reasonable
agreement with data.

ACKNOWLEDGMENT
The authors would like to thank Ernest Hardin from MIT/ERL for the

processing and display of the data. This research was partially supported by
the Full Waveform Acoustic Logging Consortium at M.I.T.

REFERENCES

Beydoun, W.B., Cheng, C.H. and Toksdz, M.N., 1983, Detection of Subsurface
Fractures and Perrneable Zones by the Analysis of Tube Waves: Annual
Report FWAL consortium, MIT/ERL.

Brace, W.F., 1980, Permeability of crystalline and argillaceous rocks: Int. J. Rock
Mech. Min. Sci. & Geomech. Abstr., v.17, p.241-251.

Cheng, C.H., 1978, Seismic velocities in porous rocks direct and inverse
preblems: Se.D. thesis, M.I.T., Cambridge.

Cheng, C.H. and Tokssz, M.N, 1981, Elastic wave propagation in a fluid-filled
borehole and synthetic acoustic logs: Geophysics, v.46, p.1042-1053.

De Wiest, R.J .M., 1969, Flow Through Porous Media: Academic Press, New York,
Eshelby, J.D., 1857, The determination of the elastic fleld of an ellipscidal

inclusion, and related problems: Proc. Roy. Soc. Londeon, Ser. A, v.241,
p.376-396.

11-11



272 Beydoun et al.

Huang, C.F. and Hunter, J.A., 1981a, The correlation of "tube wave" events with
open fractures in fluid-filled boreholes: Current Research, Part A,
Geological Survey of Canada, Paper 81-14A, p.3681-376.

1981b, A seismic "Tube Wave” method for in-situ
estlmatmn of fracture permeabililty in boreholes: S.E.G. Preprint Series,
Sist Annual International Meeting, Los Angeles, v.1, E1.4 p.23-46.

Johnston, D.H., Toksoz, M.N. and Timur, A., 1979, Attenuation of seismic waves in
dry and saturated rocks, II. mechanisms: Geophysics, v.44, p.691-711.

Korringa, J., Brown, R.J.S., Thompsen, D.D. and Runge, R.J., 1979, Seilf-consistent
imbedding and the ellipsoidal model for porous rocks: J. Geophys. Res., v.84,
p.5591-5598.

Kuster, G.T. and Toksoz, M.N., 1974, Velocity and attenuation of seismic waves in
two-phase media: Part I. theoretical formulations: Geophysics, v.38, p.587-
808.

Landau, L. and Lifchitz, E., 1978, Mécanique des Fluides, MIR Publications,
Moscow,

White, J.E., 1985, Seismic Waves, Radiation, Transmission and  Attenuation;
MeGraw Hill Book Company.

Table 1. Physical parameters used in this study

Formation a{m/s) | B{im/ss) | plkg/m?)
granite 5500 3300 2700
*hard" 4500 2500 2300
“gediment”’ 3000 1200 2100
fluid 1500 0 1000
fluid viscosity m =10 Poiseuilles
fluid incompressibility 51 =2.10° Pa
borehole radius R = 0.1 m
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APPENDIX A: TWO-DIMENSIONAL SOLUTION OF FRACTURE FLOW

The volume of fluid ejected from the fracture into the borehole {fracture
closure) in T/ 2 is derived from the calculation of the injected fluid volume from
the borehole to the fracture {fracture opening) in 7/ 2. The net change of fluid
dg in a volume element L(¢#)ds is due to the volume of fluid injected into the
fracture (fracture opening) and the compressibility of the fluid (no mass is
generated or lost in the element). During a time increment dt, this total change

is
~dg dt = %ﬁl dsdt + L(t)ygﬂg-i'—tl dsdt (A1)
where 7 is the fluid compressibility and dL(t)/ df =wéy sin(wt), the velocity of

the fracture wall. The net storage given by (A.l) must equal the net volume of
fluid {dg(s.t)/ 8s) dsdt flowing into the differential volume, giving

81 K Ap(s.t) | _ ap(s.t) drL(t)
ds #L(t) 3s =L(t)y gt ¥ dt

Setting a® = K/ puy and Q(t) = wéy sin(wt )/ (7L(¢)), the following equation is
found

2 Bp(st) &L(ast.t) = 0(t) o (A.2)

8s*

with the boundary conditions for pressure (Assumption {(4))

p(s=Rt) =P, forallt=0
p(s,t=0) =Py foralls=R
Bp(s,t)/as =0 8§ - o

Eq. (A.2) is a one-dimensional inhomogeneous diffusion equation. The heat
conduction analogy corresponds to a semi-infinite half-space {(s2F) having a?
as thermal diffusivity and a time varying heat source &(¢). The second
condition assumes that the diffusion process is over before T/2, since the
process is reversed every T/2. The last condition states that there is no fluid
flow in the fracture far (s »R+d) from the borehole intersection.

The solution to this partial differential Eq. (A.2) is found by the standard
Laplace transform method

' ¢
p(s.t) =Py —_{ (1) erf[al(s(—;%]dr s=2FR (A.3)

F
where erf (2) = 72_;‘_--[' e~ d ¢ is the error function.
o
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Thus, the pressure gradient is

avr 4 4a? {(t-1)

@_éi._t_)_ - _ 1 .}' Q(T) exp[__.(ﬂ)a_] (t _T)—I/E dT s=FR (A4_.)

The rate at which fluid flows is given by Eq. (2). By calculating the volume
injected into the fracture for the maximum fracture displacement 2¢,, we can
obtain the maximum velume injected in a finite amount of time. This maximum
volume occurs during a time interval of £ = T/2. Therefore the volume of fluid
torced into the fracture from the borehole in 7/ 2 is

Ts2
Vep = [ q(s=R.t)dt
[}

or explicitly,

K
TYH

#
VaplK) = & [ ] Flw.¢o/ Lg) (A.5)

where
T2

Flwde/ L) = © _D[

¢ 1 - (é.l}/ LQ)COS(Qt) S’I:n(c.)‘r)
'{ 1 = (&o/ Lo)eos (wT) (¢ — 1) dT dt

Since L(t) is T-periodic and T/ 2-symmetric we can directly infer from
(A.5) the Aluid volume forced from the fracture into the borehole. The right
hand side of (A.5) is different in sign during the fracture closure, because the
fluid flows in the opposite direction. Therefore the volume of fluid injected into
the borehole in T/ 2 is given by Eq. (3).

Computation shows that for increasing frequency. F(w.fo/ Lq) decreases.
As the frequency increases less fluid is ejected inio the borehole. For & &« Ly
(Assumption (1)), an asymptotic expression for F can be found by
interchanging the order of integration in the (7.t) plane:

T/2
F{w.0) =2 f (T/ 2=t sin{wt) dt
0
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APPENDIX B: TUBE WAVE SOURCE

The borehole geometry is taken to be axi-symmetric with respect to the z,
axis. The generated tube wave potential in the fluid is chosen to be

8f(r.2y,t) = C Iy(nr) sinfwt ~kz, ] r< R (B.1)

where C is a parameter, depending on the medium and the fluid properties. In
this problem, C will depend also on the fracture parameters.

The tube wave pressure amplitude in the borehole fluid pT and its
displacerment amplitude in the formation along z,, u], are then given by,
ignoring the sinuscidal time dependence for the moment:

o’ =pp 0? C Ig(nr) r<R~ (B.2)

ul = A[kKy(lr) + mGKy{mr)] r=R* (B.3)
where
_ 218% K\(IR)
Tk (e2-28%) K (mR)

_ Cn [ (nR) (2F°%~c®)
- i I'.‘2 KI(IR)

A

Tube wave volumetric strain in the fluid is defined as
Al = oufsor + wl/r + duf./ 0z,

where uf, and u/; are the radial {perpendicular to z,) component and the
component aleng 2, of the tube wave particle displacement in the fluid.

The relations between the potential and the displacement components are
ul, = 3%/ ar and ul, = 8%}/ 0z,

Therefore a simple relation arises between the volumetric strain and the
potential

Al = VRE] (B.8)
where V¢ is the Laplacian operator. Calculation of Eq. (B.8) with {B.1) yields
Af(r.zy.t) = C(c%/ a} —2)k? Ig(nr) sin[wt — kz, ] (B.7)

The double integral in (7) is easily computed, since the variables are separated
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- V(K) = 4nR C(K) (2 —=c®/ad) )(nR) k/n

The parameter C depends on the fracture parameters and therefore couples
the fracture movement to the tube wave propagation. The tube wave pressure
in the fuild and displacement in the formation are now linked to the fracture
dynamics (Eq. (B.2) and (B.3)). Using Eq. (8) and (3) we finally obtain

(1 —c%/ fx?)}i
(R —c%/ af) h{nR)

C(K) = tox(K) [;7%]” Flodo/ Lo)3 (88)
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TYNGSBORO WELL No. 2

WEIGHT DROP SOURCE, OFFSET B3

BANDPASS FILTERED (60 - 200 Hz)

TRACE AMPLITUDE NORMALIZATION

TIME (MSEC)
0.00 0.04 0.08

00 "00%

00°0ch
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00 '0hE

0o o081

;
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Figure 1: Example of fracture generated tube wave in a VSP, in Tyngsboro, Mas-
sachusetts.
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BRITTON (HAMILTON) WELL No. 2
EXPLOSION SOURCE, OBSERVATION WELL
BANDPASS FILTERED (60 - 250 Hz)
TRACE AMPLITUDE NORMALIZATION

TIME (SEC)
.06

g.00 0.03 0.0S 0.12

o F————— — : —— s 1 &
[an] S L o
O pm A o
el R =

Hid30
00 *0S

(14)
00°0h

00°0¢E

bD"0e

01 %

gp- 0ol
D0°01

TIME (SEC)

Figure 2: Example of fracture generated tube wave in a VSP, in Hamilton, Mas-
sachusetts.
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Figure 3: Schematic diagram of the mechanism of generation of tube waves
(left) and an actual V3P section (from Huang & Hunter, 1981b) showing the
fracture generated tube waves.
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Figure 4: Fracture model used in this study
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GRANITE FORMATION

FORMATIGN PARANETERS

FLUID PRRAMETERS

VP (M/S) =5500. VP (M/S) =1500.
VS (#/9) =3300. RHO (KG/M3) =1000.
AHO (KG/M3) =2700. VISC. (PL}  =0.0010
INCOMP, (GPR)=2,00
BOREHOLE RADIUS (CM) =10.00
MIN-MAX TUBE WAVE VELOC. (M/S) =[4Y6. - 14UB.
BOT-TOP [SO-PERMEABILITIES (DRARCTI:

0.10 - 0.50 - t.00 -

1.50 - 2.00

25.00

SURE_RATIO
15,00 20.00

PRES
10. 60

130.00
FREGUENCY

170.00  210.00 2

(HZ)

50.00

281

Figure 5a: Tube to P wave pressure ratios as functions of frequency and per-

meability in a granite.
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GRANITE FQRMATION

FORMATION PARAMETERS FLUID PRRRMETERS

© VP (H/S) =3500. VP (H/5) =1500.
Vs (IN/S) =3300. RHO (KG/M3) =1000.
RHO 1KG/M3] =2700. VISC. {PL) =0.,0010

INCOMP. (GPR1=2.00

BOREHOLE RADIUS (CHM) =10.00
MIN-MAX TUBE WRYE YELOC, - [M/3) =144B, - 14us.
BOT~TOP ISO-PERMERBILITIES (DRRCTI:
0.10 - 98.50 - 1.00 - 1.50 - 2.00

0,15

x107?
0.12

0.09

0.06

TH/PGNU?E‘JISPLHCEMENT RATIAO

.00

30.00  130.00  170.00  210.00  250.00
FREQUENCY (HZ)

Figure 5b: Tube to P wave displacement ratios as functions of frequency and
permeability in a granite.
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HARD FORMATION

FORMATION PRRAMETEARS FLUID PARAMETERS

VP (M/S) =4500. VP {M/S) =1500.
VS IM/S! =2500. RHO {KG/M3) =1G80Q.
RHO (KG/M3) =2300. VISC. (PL)  =0.0010

INCOMP, (GPA)=2.00

BOREHALE RAOIUS (CM} =10.00
MIN-MAX TUBE WAVE VELOC., I[M/S5) =1395., - 1395.
BAT-TOP [SO-PEAMEABILITIES (DARCTY):
0.10 - 1.00 - 2.00 - 4.20 - 6.00

25.00

: 20.00

15.00

10.00

TW/PH PRESSURE RATIO

S.00

o

Q F o s ;

%50.00 90.00 130.00
FREQUENCY {HZ}

170.00  210.00  250.00

Figure 6a: Tube to P wave pressure ratios as functions of frequency and per-
meability in a "hard’ formation.
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HRRD FGORMATION

FORMATION PRRAMETERS FLUID PARAMETERS
VP (M/S) =450a0. VP (M/8) =1500.
VS M/S)  =2500. RHO (KG/H3) =1000.
RHG (KG/H3) =2300. VISC. (PL)  =0.6010

INCOMP, (GPR)=2.,00

BOREHOLE RADIUS (CH) =10.00
MIN-MAX TUBE WAVE VELOC. (M/S) =1385., - 13395,
BOT-TOP ISO-PERMERBILITIES (DARCY):
g.10 - 1.00 - 2.00 - 4.00 - 6.80

. 06
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0.0y
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TH/PH DISPLDH%EMENT RATIO

.00

a.00 90.00 130.00 170,00 210.00  250.00
FREQUENCY {HZ)

oA

Figure 6b: Tube to P wave displacement ratios as functions of frequency and
permeability in a "hard" formation.
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SEDIMENT FORMATION

FORMATION PARAMETERS FLUID PARAMETERS
VB (M/5) =3000. VP (M/5] 21500.
¥S (M/S5) =1200. AHB {XG/M3}  =1000.
RHO (KG/M3) =2100. VISC. (PL)  =0.0010

INCOMP. (GPA}=2,G0

BOREHOLE RADIUS (€M) =10.00
MIN-MAX TUBE WAVE VELGC. (M/S) =[136. - 1132,
BOT-TAP ISO-PERMEABILITIES I(DARCY) :
1.00 - 5.00 - 10,00 - 15.00 - 20.00
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|
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P00

Figure 7a: Tube to P wave pressure ratios as functions of frequency and per-
meability in a “sediment.”
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SEDIMENT FORMATION

FORMARTION PARAMETERS FLUID PARAMETERS
VP (M/S] =3000. VP (M/95) =1500.
VS [M/5) =1200. ARHO (KG/M3] =10Q0.
RHO (KG/M31 =2100. VISC, (PL} =0.0010

INCOMP. (GPR)=2.00

BOREHOLE RAOIUS (CM) «13.00
MIN-MRX TUBE WAVE VELOC. [M/S) =1136. - 1132.
BOT-TOP ISG-PERMEABILITIES (DARCY):
1.00 - 5.00 - 10.00 - 15.00 - 20.00

Figure 7b: Tube to P wave displacement ratios as functions of frequency and

permeability in a "sediment.”
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HARD FORMATION

FORMATION PARRMETERS FLUID PARAMETERS
YP [M/3) =4500. VP (M/S) =1500.
¥S [M/S) =2500. AHG (KG/HM3) =1000.
AHO (KG/M3] =2300. VISC. I(PL) =0.0018

INCOMP. (GPRI=2,00

FREG®UENCTY (HZ=150.
TUBE WAVE VELOCITY (M/S) =1385.
B0T-TAP ISO-PERMERBILITIES (DRRCY):
0.10 - 1.00 - 2.00 - 4.00 - 6.00

15.00

10.00

TW/PW PRESSURE RATIO

5.00
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y,u0 8.30 12.2 16.10 20.00

0
BORCHOLE RADIUS (CM)
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Figure 8: Tube to P wave pressure ratios as functions of borehole radius and
permeability in a "hard" formation.
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GRANITE FORMATION

FLUID PRRAMETERS
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Figure 9: Data versus theoretical tube to P wave pressure ratios as functions of

frequency and permeability in a granite.
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