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ABSTRACT

The dispersion relations and impulse response are calculated for a
gecmetry consisting of an arbitrary number of coaxial annuli surrounding a
central cylinder. The annuli may be either solid or fluid. The formulation
allows any number of sclid and fluid layers in any sequence. The only
restrictions are that the central cylinder is fluid and the outermost layer is
solid. A propagator matrix method is used to relate stresses and displacements
across layer boundaries. Fluid layers are handled by directly relating the
displacements and stresses across these layers.

A numbsr of examples of dispersion curves and synthetic waveforms are
given. The specific geometries used are those for a pipe not bonded to the
cement and for the pipe well bonded to the cement but with the cement not
bonded to the formation.

The addition of an intermediate fluid layer can have a large effect on the
calculated waveforms. More surprisingly, this additicnal layer may have only
minor eflects, indicating possible difficulties in establishing its presence. If the
fluid layer lies between the steel and the cement {free pipe situation), the first
arrival is from the steel. This is the case even for a very thin layer, or
micrecannulus. If the fluid layer is between the cement and the formation, the
thicknesses of the cement and fluid layers become important in determining
what will be the first arrival as well as the nature of the microseismogram.

An intermediate fluid layer is shown to have the additional effect of
introducing another Stoneley wave mode. This mode has only a small amount of
energy and so it does not contribute significantly to the calculated’
microseismograms.

INTRODUCTION

A number of studies have investigated wave propagation in radially layered
boreholes (Baker, 1981; Cheng ef al., 1981; Schoenberg et al., 1981; Chan and
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Tsang, 1983; Chang and Everhart, 1983; Tubman et al., 1984). While these
treatments are general, they all make the assumption that the annuli are all
golids. Thig restriction is lifted-in this study. There are no limitations on the
placement and number of fluid layers except that the central cylinder must be
a fluid and the outer formation must be solid. The inclusion of fluid layers has
applications in modeling the situation of unbonded pipe and cement in cased
boreholes. Chang and Everhart (1983) modeled the free pipe situation by
allowing discontinuities in the axial displacement at the steel-cement interface
and requiring zerc axial stress at this boundary. There was no additional fluid
layer in their formulation. The inclusion of a fluid layer allows the examination
of the eflects of the thickness of the layer, rather than only the limiting case of
zero thickness.

THEORETICAL DEVELOPMENT

The model consists of a fluid cylinder surrounded by an arbitrary number
of coaxial annuli (Figure 1). The annuli can be solid, such as the casing or
cement; or fluid, such as drilling mud. The outermest, infinite layer is a solid.
Each layer is homogeneous and isotropic. Complex layer parameters are used
to incorporate attenuation into the calculations (Aki and Richards, 1980; Cheng
et al,, 1982; Tubman et al., 1984).

In layer n, the radial and axial displacements, u, and v,, are given by:

- dpn  OYn
T ar T Bz (1a)
B )| (19

T 8z rar

and the normal and tangential stresses ¢, and 7, are given by:
- Vn 629"1; R, Y,
On -p"[l—u,.] PyE: +2 [ T " 3os (1)
Y, Pon 0%,

Tn =Pn 512 +2“‘"[araz T 322 (1d)

where p,, Vn, and u, are the density, Poisson's ratio, and shear modulus for
layer n..

The scalar potential, ¢,, and azimuthal component of the vector potential
¥n, are given by:

P = [ Kollar) + A Lo(lnr) e (=) (22)
Yo = [BuEs(mar) # B (e R <) (2b)

where Iy [, Ky and K, are modified Bessel functions of the first and second

[

P



Unbonded Cased Holes 29

kind. ¢ is the phase velocity and z the source-receiver separation. k is the
axial component of the wave number and l, and m, are the radial components
of the P and S wave numbers, 4,, 4 5, 8., and A, are constants {for layer n.

Equations (1) can be written:

U, (1) =Dp(re )(r)a, (3)

where:

and:

an =i (5)
iH,

D,{rn) is a 4r4 matrix whose terms are determined from substitution of
equations (2) into equations (1). The elements of D, (r, ) are given explicitly in
Tubrman et al. (1984).

It iz necessary to relate the stresses and displacements in the outermost,
infinite layer to those in the central fluid cylinder. In the case with all solid
layers this expression is found to be (Tubman ef al., 1984):

Uy (Ty-1) = Dy {ry— )DL {(Ty_2)Dya(ry ). Dat (7 Jug(r,) (6)

which can be re-written as
Gay = uy(r,) (7)

where:
G=Dy(ry—1)DF i (ry-1)Dy-1(Tr—2).. D (r2)Da(ry) (8)

The same formulation is used between the infinite formation and the
outermost fluid layer that is used when all the layers are solid. Equation (7)
cannot be extended to relate the displacement-stress vector across all the
layers because not all components of the displacement-stress vector are
continuous at a solid-fluid boundary. At the outermost fluid layer, the
boundary conditions change and so the displacements and stresses can not be
related across the boundaries in the same manner as before. The normal
displacernent, u, and normal stress, ¢, are continuous. The tangential stress,
7. vanishes at the boundary. The tangential displacement, v, is discontinuous
because the solid and fluid are free to slip along the interface.

The G matrix we have now can relate the displacement-stress vector inward
only until the outermost fuid layer (layer f). At that point the axial
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displacement is no longer continucus. So we now have

Gay =u; . (7)) (9)

where Ty is the outer radius of layer f and w,,, is the displacement-stress
vector in layer f +1.

Inside layer f. each boundary must be handled individually to allow for
general geornetries. Starting at the center and working out to layer f, the
constants for each layer n, {a,), are written in terms of a, {which is just 4',).
Fach layer may be elther solid or fluid. This requires checking at each
boundary to see if the next layer is a fluid or a solid. The type of boundary
determines which components of the displacement-stress vector are
continuous. This process yields the displacements and stresses in layer f in
terms of thoese in the central Auid layer. They are then matched to those in the
next layer out (layer f +1). This completes the relationship from the infinite
layer to the central cylinder.

Dispersion Relation

The displacements and stresses have been related from the central fluid
cylinder to the outermost fluid layer, (layer f). Application of the above results
ylelds Ay and A’y in terms of A4';. These are then used in equation {9) to
complete the relatmn of the displacements and stresses from the central fluid
cylinder to the outer, infinite formation.

Since there are no incoming waves in the outermost layer, 4 y=8y=0. In
addition, 4,=5,=0 so that the displacements and stresses remain finite at r=0.
F1=0 as well because there is no vector potential in a fluid. Equation (9) is thus
reduced to:

‘”'f(""f) ~Gy; ~Gya A
Uf('rf) ‘"GEI —Gg3{ |Ax|=0 (10)
N

This is the period equation for wave propagation in a borehole with a mixture of
solid and fluid radial layers. Values of & and ¢ for which this equation is
satisfied yield the phase velocity dispersicn relations.

Synthetic Microseismograms

In order to generate synthetic microseismograms it is necessary to include
a source into the calculations. This is accomplished by imposing a boundary
condition at r,, the interface between the central fluid layer and the first
annulus. The condition specified is an expression for a Ky(l,7) source in the
frequency-wavenumber domain {Cheng et al., 1982; Tubman et al., 1984). This
represents a peint isotropic socurce on the borehole axis. The above
calculations are then repeated in order to derive a relation similar to equation
(10). This relation is used to solve for A'; which is then substituted into the
form for the pressure response. In the time domain the pressure response, P,
inside the borehole is : (Tsang and Rader, 1979; Cheng ef al., 1982; Tubman
et al., 1984):

o

it

Fan



Unbonded Cased Holes 31

Plrzt)= fX(w)e"“‘dwa:IIn(llr)e""’dk (11)

P(r,z t) is the pressure response, z the source-receiver separation, £ time, and
X{w) the source spectrum. A’ is the only non-zero constant associated with
the potentials in the central fluid cylinder. The excitation resulting from the
Kp(l7) source is added to the response function to give the total pressure field.

NUMERICAL EXAMPLES

The geometries considered here have an intermediate fluid layer placed in
one of two cornrnonly occurring locations. The first is between the pipe and the
cement. This models the case of no pipe-cement bonding, or free pipe. The
cther geometiry represents the case of poor cerment-formation bonding. This is
represented through the inclusion of a fluid layer between the cement and the
formation.

Figure 2 shows a number of microseismograms for the free pipe situation.
All microseismograms are for the same source-receiver separation, 10 ft., and
source, centered at 13 kHz. The source is the same as that used by Tubman
gt al,, (1984). The formation velocities are 13.12 ft/ms for ¥, and 7.0 ft/ms for
¥;. The difference in the microseismograms of Figure 2 is the thickness of the
fluid layer between the steel and the cement. The distance between the steel
and the formation remains constant, so the cement thickness decreases as the
fAluid thickness increases. The fluid is replacing cement. The first
microseismogram in Figure 2 has no fiuid layer. This is the well bonded
situation. The last waveform has no cement layer. The layers are just ones of
fluid, steel, fluid, and the formation. Between these two extremes the thickness
of the fluid layer increases in .25 inch increments (and the thickness of the
cement layer decreases by this amount).

There is a large change in the character of the waveforms when the fluid
layer in introduced. The microseismogram for the well bonded situation
displays clear formation P wave and S wave arrivals. There is no distinct casing
arrival. The additional fluid layer frees the pipe so the casing arrival is very
obvious. The ringing from the steel completely obscures the formation arrival.
Little change occurs in the waveforms as the thickness of the fluid layer
increases. The casing arrival dominates throughout, although a slight increase
in the amplitude and duration of this pipe signal may be observed as the Auid
layer becomes larger.

Even a very thin fluid layer produces similar results. Tubman ef al. (this
report) show an example where the thickness of the fluid layer has been
reduced to .001 inches in order to model a microannulus. The first arrival is
from the casing despite the very srmall thickness of the Auid layer. Chang and
Everhart (1983) showed the same ringing even at the limit of zero fuid
thickness.

The important factor in determining the first arrival is whether or not the
pipe is bonded to the cement. The thickness of the fluid layer between the steel
and the cement has only a minor influence on the character of the observed
time series.
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Dispersion curves corresponding te some of the microseismograms of
Figure 2 are shown in Figures 3 to 8. The first one, Figure 3, gives the phase
velocity dispersion relations for the well bonded cased hole situation. There are
three distinct modes in the frequency range shown: the Stoneley and two for
the pseudo-Rayleigh waves. (Only a small portion of the second pseudo-
Rayleigh mode is seen.) The Stoneley wave is only slightly dispersive and is not
cut off at low frequencies. The pseudo-Rayleigh curves are much miore
dispersive and are cut off at the shear velocity of the formation.

A fluid layer of thickness .25 inches has been inserted between the steel
and the cement in Figure 4. As before, the thickness of the cement is .25
inches less. The pseudo-Rayleigh curves are shifted to lower frequencies than
in the well bonded situation. The extra fluid layer could be causing an effect
similar to that produced by an increase in the borehole effective radius {Cheng
and Tokssz, 1981). The Stoneley velocity is slightly lower at higher frequencies
but the curve has not changed substantially. The interesting thing to note in
Figure 4 is the presence of an additional Stoneley mode. This additional meode
is due to the presence of the intermediate fluid layer between the steel and the
cement. This mode has significantly lower velocity and is more dispersive than
the one which was also observed in the well bonded situation.

In Figure 5 the thickness of the fluid layer is increased to 1.5 inches. The
pseudo-Rayleigh curves have moved to still lower frequencies but the general
shape of the curves has not changed. The first Stoneley mode has lower
velocities in a small region about 20 kHz but the shift is not significant. The
second Stoneley mode has moved to rmuch higher velocities. The Stoneley
modes are now almost identical to those that observed in the case of no cement
layer (Figure 6.)

The fluid layer has been decreased in thickness in Figure 7. This is the
model of a microcannulus. The fluid layer has a thickness of only .0C1 inches.
The pseudo-Rayleigh velocities have shifted back slightly to higher frequencies.
The first Stoneley mode shows miner changes but the additional mode is now
gone. The fluid layer is now too thin to allow the propagation of the addition
mode.

It is important to note that this additional Stoneley mode has not been
observed in the microseismograms. This can be understood by looking at the
frequency-wavenumber information (Figure 8). The arrival in question is the
first encountered (counter-clockwise) from the kr axis. Clearly, there is very
little energy assoclated with this wave. The power is not sufficient to be
ocbservable in the time domain. The fastest iwo arrivals are casing modes which
were also observed by Chang and Everhart (1983).

Figure 9 is the same as Figure 2 except that the intermediate fluid layer is
now located between the cement and the formation. Th first microseismogram
has no intermediate fluid layer and the last has no cement layer. (These are
the same waveforms shown in Figure 2.) Here it is clear that the character of
the waveform changes as the thicknesses of the fluid and cement layers
change. With the thick cement layer and thin fluid layer the formation arrival
can still be distinguished. At the other extreme, with a thin cement layer and a
thick fluid layer, the waveform has basically the same appearance as that in the
free pipe situation. The first arrival varies as the amount of cement bonded to
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the steel varies. This first arrival appears to be a signal due to the combination
of the steel and the cement. A larger amount of cement damps out the ringing
of the pipe decreasing the amplitude and duration of the first arrival. This
same relationship between cement thickness and casing signal amplitude was
observed by Walker (1988) in data from test wells with controlled bonding
situations. The cement is also much slower than the steel, so increased
influence on the velocity of the first arrival {due to the greater thickness)
results in a lower velocity. It should be noted that while the change in velocity
of the first arrival is fairly clear in Figure 9, the cement velocity used is much
less than the velocity of the steel. If the cement was faster, the change in
velocity could be much less. The cement only influences the velocity of the first
arrival to be less than that of the steel. The steel veloceity still is the dominant
factor.

A thick cement layer bonded to the pipe is not sufficient to ensure that the
formation arrival will be clear and distinct. Figures 10 and 11 have the same
amount of cement (1.8875 inches) bonded to the pipe. The fluid layers are of
different thicknesses though. The hole radius is larger in Figure 11 so that the
fluid layer thickness iz 1.25 inches compared with .0825 inches in Figure 10.
While the formation signal is small in Figure 10, it is clear and able to be
distinguished. The first arrival in Figure 11 is more obscure and difficult to
identify.

Figures 12 to 14 show similar behavior for the dispersion curves as in the
free pipe situation. A thicker intermediate fAuid layer shifts the pseudo-
Rayleigh dispersion curves teo lower frequencies relative to the thin layer
(Figures 12 and 13). The primary Stoneley mode changes only slightly and the
additional Stoneley mode has significantly higher velocity with the thicker fluid
layer. Again, the second Stoneley mode disappears completely when the
thickness of the fluid layer is very small (Figure 14). A thick fluid layer yields
curves that are virtually the same as theose with no cement layer. Much more
study is warranted on the nature of this additicnal Stoneley meode.

CONCLUSIONS

A formulation has been developed for the phase velocity dispersion
relations and impulse response of radially layered cylindrical geometries
including intermediate fluid layers. Examples are given for a number of
situations encountered in poorly bonded cased boreholes. 1t is found that in
the case of a free pipe, (with a fluid layer between the steel and the cement),
the presence of the fluid layer is the most important factor in determining the
nature of the microseismograrm and what will be the first arrival. The thickness
of the layer has only minor eflects. If there is good pipe-cement bond but no
cement-formation bond the thickness of the fluid layer as well as that of the
cement layer become important. A thick layer of cement bonded toc the steel
can damp out the ringing of the casing arrival making it possible to identify the
formation arrivals. If the cement layer is thinner, the first arrival will be from a
combination of the steel and the cement.

A second Stoneley mode is shown to exist in the presence of an
intermediate fluid layer of sufficient thickness. The nature of this wave is most
dependent upon the parameters of the fluid layer. The additional Stoneley



34 Tubman et al

meode is found to have only a small amount of energy and so does not contribute
sipnificantly to observed microseismograms. More study is required to fully
understand the propagation of this additional mode.
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APPENDIX

This appendix gives the details of the calculations for each type of
interface. The constants 4,, 4,, B, and A, are found in terms of the
constants in the next layer inward (layer n —1). These are in turn expressed in
terms of 4'; and possibly 4, from an inner layer. These are the constants that
determine the potentials for the layers. The relationships between these terms
are expressed using two sets of constants: a; and ¢;. These constants have no
particular physical meaning. They are used only te keep the derived
expressions manageable. The results of each of the following sections can be
used ‘as the starting point for another section if further calculations are
required.

Fluid-Solid Boundary
Let layer » be the fluid layer and layer n+1 the scolid. The boundary is

then at r,. The boundary conditions are continuity of radial displacement and
stress and zero axial stress. The axial displacement can be discontinuous.

Up (Tn) =Up 41 (Tn) (Ala)
cr,,('r,,) =0ne1(mn) . (Alb)
Tn{Tn) = Tasn(rn) =0 (Ale)

In the fluid layer there are two constant terms, 4, and A,. 1t is assumed that
these are both expressed in terms of 4';. Shortly, it will be clear that this is
always the case. The solid has four constants: An,) A'asr, Bpyy and Bpyo.
There are three equations, then, and five constants to be determmed Al
Bn 1, and B, ., are found in terms of 4,,, and 4',.

The equation for continuity of normal stress {equation Ala) can be written
explicitly as:

Dn+1u—4n+1+Dn+1mA‘n+1+Dn+11; #1*Dns1, Bns1 =Dn 4n +D, 4 (A2)
where, 4, and A, are both in terms of 4: ‘
A, =agd
A, =a,4,
a; are constants. Substituting inte equation (AR) yields:
Driry Ane1+Dney A0 1+ Dni1, Bne1+ Do g Bns1 = (Dn,,@0+Dp 2 1)4)  (A3)

In a similar manner, the continuity of normal stress (equation Alb) can be
written:

D"+131A“+1+D"‘+132‘4.ﬂ+1+D"+133'Bﬂ+l+nn +134‘B'n +1= (Dnuﬂ'U‘!'Dnlaa A" (A4)
and zero tangential stress at the boundary {equation Alc) can be written as:
Dn+l41An+1+Dn+14gA‘n+1+DTI+1‘3'BII+1+DH+1“B-3+I =0 (A5)

2-10
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A sst of constants ¢; is defined to simplify notation. Let:

co=Dn, 80+Ds 0,

C1=D

nalaﬂ'I'Dn:ma 1

AL+ can be eliminated from equations {A3) and (A5). This yields:

C2An+1+0a8n 11 +C4 T ne1 = Cod
where:

Dns1,eDn+1,,
ta =Dn+1n-"—'“5“——“
b}

'{"142

Dﬂ‘i’llzDﬂ»'Pl‘s
3= Bnuygm—p —
42

Dn+liaDn+l“
Dn ot

Ce=Dpsy —

Similarly, A, +; can also be eliminated from equations (A4) and (A5) to give:

Cshn +1+C8Bn 11+C7 B ny = €14
where:

_ D +145Dn 41,
Cg= D"+131———I)—_——'
n

+l‘2

=D ])rl+laaDn+l43
T Tt TR,
42

.- Dn'!'lazDﬂ'{‘l“
07-Dn+1,,4"—"3n?——
42

37

(A6)

(A7)

B, ;, can now be eliminated from (A8) and (A7) to give and expression for B, .,

in terms of 4,,, and 4';:

B a1 =Cahnetcod’y
where:
C3Cs
- Ca e
e~ CgCy
C4——'c-6—

2-11
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C3C;
c —
0 Ce
tg=
CgCy
C4—
Cg

Substituting equation (A8) into equation (A7):
Cshn+1+CeBn11+C2(Cadns1+Ced'ne) =014
Solving for &, ., ylelds:

Bai1=C108n 1t 114 et (49)

where:

—Cs—Cqylg
Cppg=—""7T—""
Cg

C;—CyCqg
€y = ——]—
Cg

Substituting equation (AB) and equation (A9) into equation {AB) yields:
DoviyAn+1+Dn 1+ Dnsr g(Cr0dn s te 114" 1) +Dn 11, (Cednir+cgd 1) =0
Which can be solved to find and expression for A, ,, in terms of 4,,, and 4';:

A'n+1=Cradn 1 +6 134" {(A10)

where:

_Dni-lu_nn 15810 Dn+1,,C8

G1g=
Dﬂ+14z

D1 y€11-Das1, Co

Drory,

€13=

Equations (A10), (A9), and (AB) then give An+y. Bosr, and Bpey in terms of 4))
and Aﬂq.l.

Soclid-Fluid Boundary

The solid, layer n, has constants 4,, 4, B,, and B, all expressed interms
of A'; and 4, (or 4 from some inner solid layer). The fluid, layer n +1, has
constants 4p+; and A,s+;. The boundary conditions are the same as in the
previous case of a solid-fluid boundary. A, and A, are determined in terms of
A';. The continuity of radial displacement is written as:

Dps1, dn vty +11244'n+1=018An+ch'1 (A11)

where:

2-12
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€18 =D, C14+Dp C12+Dn (C10+Dn Ce

¢17=Dp, 015D ,C19+Dn ,©11+Dn Cq
The continuity of radial stress gives:
Dn+131An+l+Dn+lazA'n+I =C1gdn +C 1) {(A1R)

where:

C1a= Dng 0 14+Dp 0 12+Dn C10+Dn, O3

€19 = Dy, €15+ Dn ;0194 Dn 011+ D0 00

The condition that the axial stress must vanish at the interface is written
explicitly as:

= cchn"‘CglA.i (A.].B)

where:
€20 =Dy, C14+Dp ,C12+Dn C10+Dn o

021 = Dﬂ‘lc 15+Dﬂ‘2c 13+Dﬂ‘ac 11+Dﬂ44cg

An is eliminated from equation (Al1) and (A13). The result is:

Dot1y,4n+1+Dnsy A e = 0224 ' (A14)
where:
_ C18C 21
Cer=Ci1v~—¢
20
Similarly eliminating 4, from equations (A12) and (A13) yields:
Dn+131An+l+Dﬂ+133A'n +1=0z3d | (AL5)
where:
C18%2
Caa=¢ 19—1T—l
20

A'n 41 is then eliminated from equations (A14) and {A15). The result is:
Ag=agd] (A18)

where:

2-13
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C18C¢1 [c 5'18321] D"”xa
b L k2 R P

Cao €20 | Dnsig,
Qg =
D s1,,Dn 414,
Dﬂ+111 ])1“4-1:,|e

Substituting equation (A16) into equation (Al4) yields:
Aps1= a4 (A17)

where:
€22 Dh 41, 20
&= ——
D1y,

If this fluid layer is the outermost fluid layer, (layer f), the displacements and
stresses are now related across all the layers. Otherwise, the results of this
solid-fluid case can serve as input for the fluid-solid boundary conditions if the
next layer n+2 is a solid. (Recall that the constants ay and o, were used earlier
in the case of a fluid-solid boundary.)

Solid-Selid Boundary

In the inner solid n, there are four constants 4,, 4., B, and H,, all of
which are expressed in terms of 4, and 4';. The cuter solid has constants 4,,,,
A'ns1. Bavi, 2nd B4 The boundary conditions at 7, are the continuity of
radial and axial displacements and stresses:

Un (Tn ) =Un+1(Th) (A1Ba)
Un (Tn) =Un+1(7n) (A18b)
0 (Tn) = Opsi(Tn) (A18c)
Taltn) = Tne1(Ta) (A184)

An+i, Ansy Bayy, and B, will be found in terms of A', and A4,.

If there are several solid layers together in a group. this section is used
repeatedly, determining all constants in terms of A'; and 4;, where i is the
innermost layer of the group. All four components of the displacement-stress
vector are continuous across r,, the interface between the two solid layers n
and n+1. Thus:

uﬂ(rn) = Up +1{7n )

or

D, (rn)a, =Dp41(Tn)an

2-14
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Rearranging: _
8n4+1=Dni1{rn)Dn(ta)an (A19)

a, is known in terms of 4, and 4,. {or A from some inner solid layer) .
Equation {A19)} can thus be written:

Apu : Creln+0 154
A _ e +G 94
B = D ra) D () SRR T 54 (420)
Bns Cadn+Cod’;

Equation (A20) gives A,41, An+n Fasr. and Bn+1 in terms of 4, and 4';. The
results can be put into the form:

Ani1=Cridnto sl
Ay =Cradn+0 134
Boi1 =Crodn+ey A
Bpe1=Cahn+cgd’

where the constants c; do nof have the same values as in equation (AR0). They
are new values determined by the matrix multiplication. The reason for using

the same terms is that if the next layer {n +2) is also solid, these new values are
substituted directly into equation (A20) to continue through all solid layers.

Fluid-Fluid Boundary
The inner fluid, layer n, has constants 4, and A'n. both in terms of A';. The

outer fluid has constants A,,; and 4A’n.;. The boundary conditions are the
continuity of radial displacement and stress: ..

un(rn)=un+1(rn) (Aela)

On ('rn) =Gn+1(rn) (Azlb)

The inner fluid has constants 4, and A which are both known in terms of
. The outer fluid has constants 4,4+, and A n+l

. The continuity of radial displacement (equation A2la) can be written
explicitly as:
A.l(acnnu"]'alnnm) = Dn+1nAn+I+Dn+132A'n+1 (AEB)

The continuity of radial stress (eqliation AR1b)is:
A'1(achm+51Dnsa) = D”‘+1:11‘4"‘“+D““32A'"+1 (A23)

A'n 4+ is eliminated from equations {A22) and (A23) to yield:
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Ans1=a74) (A24)

where

Dnsiy,
tng,.qu 1Dn o~ Dﬂ*lsz (a.gD,,u+a. 1Dn,,g)

Drt1,3Pn+15,
Dﬂ"“lag

(A25)
Dniyy, -

A'h4y is determined by substituting equation (A24) into equation (A22). The
resuilt is:

App=a’4) (A26)
where:
ﬂ’“ﬂ‘"uq}'a'1])"12"'&"‘])“‘“11
Dyt

a,;= (AZ7)

e’y and a'; replace ag and e, if further caleulations are required.
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\

SOLID \\

AND/OR FLUID SOLID
FLUID | | SOLID
FLUID LAYER f | LAYERS |
| /
LAYERS

Fig. 1. Geometry of the model. The first layer, the central fluid cylinder, is fluid.
The outer, infinite layer is solid. The intermediate layers can be either solid or
fluid. The ocutermost fluid layer is labeled layer f.
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FLUID-STEEL-FLUID-CEMENT~-FORMRARTION

TIME (MS)
0.00 0,50 1.00 1.50 2,00

[} 1

2,50 3,00 3.50

0.000

G6.250

0.500 s

0.750

1.000

1.250

1.500

1.750 |

0.00 0.50 1.00 1.5 2.50 3.00 3.50

0 2,00
TIME (M%)

Fig. 2. Microseismograms for various thicknesses of the fluid layer between the
steel and the cement. This is the free pipe situation. The source-receiver
separation is 10 ft. The source center frequency is 13 kHz. The fluid layer
thickness increases in .25 inch increrments. The cement layer thickness de-
creases by this amount. The first microseismogram has no fluid layer {the well
bonded case) and the last has no cement layer. The P velocity of the formation
is 13.12 ft/ms and the 5 velocity is 7.0 ft/ms.
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r
9.1541687 8 1.200
0.187500 20.000 11.000 7.508
$.333333 . 5.079 1.828
8. i8.129 7.000 2.100
' ' N‘
1.908 - -
0.588 | -
.. L 1 [l
5.9 18.8 15.9 20.9 25.8

FREQUENCY Cdixd>

Fig. 3. Phase velocity dispersion curves {for the well bonded situation. The velo-
cities are normalized to the borehole fluid velocity. The Stoneley mode (dashed
line) and two modes of the pseudo-Rayleigh (solid lines) are present in this fre-
quency range.
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r V& Vs rho
9.154107 8. 8. 1.208 ¢
8.187508 20.008 i1.000 7.508
8.208333 5.508 8. 1.200
$.333333 9.250 5.678 1.828
8. 18.120 7.000 2.108

T,

’ ‘Kl\l |
1.009 - - ¢
€
9.508 |- .
a. B ] 1 i
5.0 19.8 15.9 20.0 2.9
FREQUENCY CdixD .

Fig. 4. Phase velocity dispersion curves for the free pipe situation where the
fluid layer between the steel and the cement is .25 inches.
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Unbonded Cased Holes
r Vs rho
0.154167 S. 8. 1.200
0. 187500 20.000 11.000 7.500
9.312509 5.500 9. 1.2080
. 9.250 5.6 1.020
8. 18.128 7.008 2.100

6.500 |- | -
9. 1 1 £
s.0 18.0 15.8 9.9 25.8
FREDUENCY CGdixz) :

Fig. 5. Phase velocity dispersion curves for the free pipe situation where the
fluid layer between the steel and the cement is 1.5 inches.
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r \'& Ve rho

0. 154167 5. 8. 1.2088

8. 1875090 20.080 11.009 7.500

9.333333 5.508 8. 1.208

8. 13.128 7.900 2.108
' \l\_
5 1.000 |- x

g
g 0.588 |- -
8. 1 ] ]
5.8 1.0 16.8 0.0 .9

FREQUENCY Cdted

Fig. 8. Phase velocity dispersion curves for the free pipe situation. There is no
cement layer between the steel and the formation.
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r | [ rho
0.154107 5. 8. ].200
9.187500 20.009 il1.008 7.508
9.187583 5.508 . 1.209
9.3583933 9.250 5.678 1.928
9. 18.120 7.000 2.108
’ —k\ ]
1.000 |- -
0.500 | -
‘. 1 1 | |
5.0 ia.0 18.9 2.9 5.8
FREQUENCY Cdix)

Fig. 7. Phase velocity dispersion curves for the case of a microannulus. The
thickness of the fluid layer between the steel and the cement is .001 inches.
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R vP ' RHO ap a3
(FT) (FT/MS) (FT/MS) (GM/CC)
0. 154187 5.5000 0. 1.2000 20.00 0.
0.187500 . 20.0000 11.0600 7.5000 1000.00 1000.00
0.228167 5.5000 0. 1.2000 20.00 0.
~ 0.333333 §.2530 5.6700 1.8200 40.00 30.00
- Oa 13.1200 7.00090 2. 1600 66.00 680.4G0
K X B
0,d0 1,80 3,20 4,80 6, 40 8,00 9,80 1320
1,Y]
oy Wt
] ]
n I}
&2 o
8 8
3 B
3
D ~a
me iy
Dg ) SD
v
= 1y =
e o =X
oo ] o]
a | =
[=] (=1
—
5 5
8 8
- L~
o o
o o
= 5
g e, o
5 =
[— @
0.00 1.60 3.20 §.80 5,40, 8.00 9.80 11.20

Fig. 8. Magnitude of the frequency-wavenumber spectrum for a free pipe situa-
tion. The spectrum has been multiplied by the source function. The fluid layer
between the steel and the cement has a thickness of .5 inches.
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FLUID-STEEL-CEMENT-FLUID-FORMATION

TIME (MS)
0,00 8,50 1.00 1.50 2,00

i

2.50 3.00 3,50

£.000 AN s

0.2s0

0.500

0.750

1.000

1.250

1.3500

1.750

0.00 0.50 1.00 1.5 2.50 32.00 3.50

0 2.00
TIME (MS)

Fig. 9. Microseisrnograms for various thicknesses of the fluid layer between the
cement and the formation. The fluid layer thickness increases in .25 inch in-
crements. The cerment layer thickness decreases by this amount. The first mi-
croseismograrn has no fluid layer (the well bonded case) and the last has no ce-
ment layer. The P velocity of the formation is 13.12 {t/ms and the S velocity is
7.0 ft/ms.
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R VP Vs RHO QP as
(FT) (FT/MS) (FT/MS) (GM/CC)
0.154187 5.5000 Q. 1.2000 20.00 0.
0.187500 20.0000 11.0000 7.5000 1000.00 1000.00
0.328125 9.2590 5.6700 1.8200 40,00 30,00
0.333333 5.5800 0. 1.2000 20,00 a.
0. 13.1200 7.0000 2. 1600 60.00 80.00
TIME ([MS)
0.00 0,50 1,00 1,50 2.00 2,50 3,00 3,50
=} ‘ l o
Q o
ata ¢
|
= ~ -' -
e f :
o g o
(=] [ =
- . I
-
1Y, s ro
o o
(=1 [ =]
- / -
(91 - w
o P
(o] o
= -~ =
P PN
[ =] o]
=] [ ]
=] [==]
0.00 0.50 1.00 1.50 .50 3.00 3,50

2.00 2.
TIME (MS)

z

(14}

Fig. 10. Microseismograms for a case of good steel-cement bond but no
cement-formation bond. The cement thickness is 1.868%5 inches and the fluid
thickness is.06825.
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Unbonded Cased Holes
R VP vs RHE ap Qs
(FT} (FT/MS} - (FT/M3) (GM/CC)
D.154167 5.5000 0. 1.2000 20.00 0.
0.187500 20.0000 11.0000 7.5000 1000.00 1000.00
0.328125 g.2580 5.6700 1.8200 40.00 30.00
0.432267 5.5000 0. 1.2000 20,00 0.
0. 13.1200 7.0000 2.1600 60.00 80,00
TIME (MS)
0.08 8,50 1,00 1,50 400 2,50 3,00 3.50
= l =
i=1 . o
I
ng ‘ :
-2 { e
=
-
e s o
o =
[ =] o
e W N
- I -
w ~ o
=] o
o o
e~ |
= ~ 5
(=] [ }
[ =1
Q (=]
[~ o
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50
TIME (MS)

Fig. 11, Microseismograms for a case of good steel-cement bond but no
cement-formation bond. The cement thickness is the same as in Figure 10, but
here the hole radius is larger so the fluid layer between the cement and the for-
mation has a thickness of 1.25 inches.

_-27



54

i

onne®
gﬂ
il

Tubman et al.

8 ] 1.208
29.008 11.000 7.508
9.258 5.078 1.928
5.500 8. 1.200
i3.120 7.0009 2.108

1 :\ T ‘\
1.908 -
0.508 [ .
e. L 1 1
5.9 18.9 5.8 28.0 25.0
FREQUENCY Qdixd

Fig. 12. Phase velocity dispersion curves for the case of good steel-cement bond

but no cement-formation bond. The Aluid layer thickness is .25 inches.
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Unbonded Cased Holes
r Vs rho
0. 154167 5. 0. 1.200
9.187500 28.009 1.008 7.508
$.208833 9.250 5.0M8 1.929
§.35533%3 5.500 9. 1.200
8. 13.129 7.0008 2.108
' \ ]
1.008 -
..m e -
.' | | ] ]
5.8 19.9 16.9 22.0 25.0

FREQUENCY CdHx)

Fig. 13. Phase velocity dispersion curves for the case of good steel-cement bond
but no cement-formation bond. The fluid layer thickness is 1.5 inches.
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h’

r Vh Ve rho

8.154107 5. 8. 1.200

8. 187500 20.090 11.008 7.508

8. 338258 2.258 5.670 1.920

9.33%3333 5.500 . 1.200

. 13.128 7.000 2.100

1 \ 3 '\
1.008 |-
0.500 |-
.. | B ¥ 1
5.0 1.8 is.9 2.0 25.0

FREQUENCY Cidix)

Fig. 14. Phase velocity dispersion curves for a very thin (.001 inch) fluid layer
between the cement and the formation.
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