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ABSTRACT

In Vertical Seismic Profiling tube waves are generated by compressional
waves impinging on subsurface fractures or permeable zones. The amplitude of
tUbe waves is dependent upon the formation permeability, the length of the
fracture, and on the source frequency. The generation of tube waves is
formulated theoretically and the relative effects of these parameters are
studied individually. Field examples are shown for open fractures in granite.
From tube wave amplitudes normalized to P-wave amplitudes, calculated
permeabilities are on the order of 400 millidarcys.

INTRODUCTION

In field experiments with compressional wave Vertical Seismic Profiling
(VSP) surveys, it has been observed that tube waves are generated at fractures
intersecting the borehole (Huang and Hunter, 1981a,b). Examples of tube waves
originating at fractures and propagating up and down the borehole are shown
in a VSP section in Figure 1. A possible mechanism for the generation of tUbe
waves is that the incident P-waves compress the fracture and inject a fluid
pulse into the borehole. Figure 2 schematically illustrates this efficient
mechanism for the generation of tube waves.

The fluid pulse mechanism for the generation of tube waves is formulated
mathematically. The geometrical model is that of a fracture intersecting a
borehole normal to the borehole axis. with a compressional plane wave
impinging normally on the fracture. First, the volume of fluid ejected from the
fracture into the borehole is calculated. Then, the tUbe wave amplitudes
generated in the borehole fluid and in the formation are evaluated. The in-situ
fracture permeability can then be estimated from the ratio of the tUbe wave
amplitude to the P-wave amplitude measured in the formation or in the fluid
using this model.

THEORY OF FRACTURE COMPRESSION AND FLUID FLOW

Consider the specific example of a parallel-walled, fluid-filled fracture
with low aspect ratio (Width to length ratio «10-3). The fracture is penetrated
normally by an uncased borehole. The fluid in the fracture is in hydrostatic
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equilibrium with the fluid in the borehole when there is no perturbation. A P­
wave impinges on the fracture at normal incidence. The wavelength of the P­
wave is much greater than the fracture width L(t). For very small strains, L(t)
is assumed to oscillate about the static shape La as:

L(t) = Lo + <:"0 cos(c.>t)

where 2<:"0 is the maximum fracture displacement (Figure 3) and <:"o«Lo.

(1)

for <:"0 «La.

To simplify the calculations of the fluid injection from the fracture into
the borehole, the following assumptions are taken: (1) One dimensionallarninar
flow (low Reynold's number) within the fracture, (2) the fluid compressibility is
small, (3) the fluid injected into the borehole does not significantly perturb the
borehole pressure Po, (4) low frequency approximation with frequency
dependence and (5) the fracture permeability, K, does not vary with time.

Two-dimensional Model

The two-dimensional problem, where the fracture is infinitely long in the
y direction, will be solved first. The fluid flow rate in the presence of a pressure
gradient ap (x ,t)/ ax is related to the fracture width L(t), the fluid viscosity j.J.,

and the fracture permeability K by Darcy's law:

q(x,t) = - KL(t) ap(x,t)/ax (2)
j.J.

The volume of fluid ejected from the fracture into the borehole during
the one-half cycle of the incident wave (see Appendix) is:

tJ. V;w(K) = -(0 [.JLf F(GJ,(ol Lo) (3)
rr-yJ.l.

where:
T/2

F(c.> ,<:"0/ La) '" 2c.> J (T/2-t)li sin(c.>t) dt
a

The effective length of the fracture, d, is defined as the radial distance
from the borehole wall to a point at which the pressure gradient (see Appendix,
equation A.4) falls to lie times the pressure gradient at the borehol.e wall over
a time interval of T/2. The effective fracture length is given by the expression:

d(K) = [2:/]* (4)
EXtension to Three Dimensions

The volume obtained in (3) is two dimensional. The actual borehole
geometry involves a three-dimensional configuration which can be
approximated by extrapolation of the two-dimensional solution assuming the
geometry is axisymmetric. This geometrical extrapolation is assumed to be
independent of the small fluid compressibility and of the low frequency of
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excitation.

The two-dimensional stationary problem consists of an incompressible
viscous fluid flow, in the ~ direction ( oriented away from the borehole),
enciosed between two parallei planes separated by a distance L. The boundary
conditions for pressure are: at ~=R, P =Po and at ~=R+d, P =PI (PI> Po). The
pressure distribution is:

(PI - Po)
P2D = (~-R) d + Po (5)

(6)

The 3D axisy=etric problem involves two discs separated by a distance
L with radial fluid flow into the center. The outer radius is r =R+d and inner
radius is r=R. The boundary conditions are: at r=R, p=Po and at
r =R+d, P =PI " The stationary solution for the pressure distribution is:

PSD = (PI -Po) In(r/R) +Po
In( (R;d))

The rate of fluid flow for these two problems is

KL dP2D
q2D= --­

f.J. d~ .

or explicitly

(7a)

(7b)

(8a)

(8b)

Use of Navier-Stokes equation and the continuity equation (Landau and
Lifchitz, 1971) with the assumptions stated in this paper indicate that the
permeability of two-disc radial fluid flow is the same as the permeability of two
parallel planes fluid flow. Combining the two results of (8) leads to

qSD = 211' R Xq2D (9)

where

X(K) = _---:~d_:_:_::_=_
R In( R+~(K))
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The X component is defined as the geometrical factor; d is the effective length
defined previously in (4) and R is the borehole radius. For any given time
interval the equation relating the two- and three-dimensional volumes is similar
to equation (9).

(10)

where b. V is the volume ejected from the circular fracture into the borehole
during a time interval of T/2.

TUBE WAVE GENERATION

Tube waves are low frequency Stoneley waves (White, 1965; Cheng and
Toksoz, 1981). These gUided waves reach their largest amplitudes at the solid­
fiuid· boundary and decay approximately exponentially away from it. The fiuid
pulse b. V forced from the fracture into the borehole by an incident
compressional wave generates tube waves which propagate up and down the
borehole.

To determine the relationship between the ejected fiuid volume and the
tube waves generated, the tube wave volumetric strain in the fiuid (eii) and
seismic potentials are used. Let us define z = 0 as the plane of symmetry of the
fracture. Further, the tube wave and the P-wave are assumed to have the same
frequency. The integrated tube wave volumetric strain in the borehole fiuid (at
z =0) in the time period T/2 can be equated to the fiuid volume ejected from
the fracture, b. V(K), over the same time period. In axisymmetric cylindrical
coordinates b. V(K) can be expressed as

T/2 R

~V(K) = 21TC J Jeii(r,t,z=O)rdr dt (11)
o 0

The volumetric strain and amplitude of the tube wave can be determined
using the seismic potential for the tube wave (Cheng and Toksoz, 1981). The
tube wave pressure amplitude in the borehole fiuid p T and its displacement
amplitude in the formation u[ are described by:

pT=p/0)2Clo(7tr) r:5.R- (12)

(

(

(

u[ = A [kKo(lr) + mGKo(mr)]

where

G =__2:;l;,::~:....2~K:..ll.:.:(l.:..r:..,)--:­
k (c2_2~2) K1(mr)

A = .,:C_7t..:....:1..:.,l(:.:,7t;.:.r..:..)..,:(;.:.2:;;.{32_-...:c_2:..,)
l c 2 K1(lr)

The factor C is calculated from equation (11), and is given by

10-4

(13)

(14)

(15)

(



C(K) = (16)

(17)

The amplitudes of the up and down going tube waves will be the same because
of symmetry.

The fracture permeability can be evaluated by considering the inverse
problem. The in situ fracture permeability can be determined from the tube
wave amplitude normalized to the direct P-wave amplitude in the ftuid (pressure
ratio) or in the formation (displacement ratio). The' ratio of fracture
displacement to incident P-wave displacement, <:01 u:, is a function of the
fracture shape (aspect ratio), the stiffness of the formation, and the fluid
compressibility. For a thin fracture with iarge surface area and small fluid
compressibility, <:0'" u:, and when there is no ftuid in the fracture,<:o '" 2 u: (ex:
a free surface). In the following caiculations <:0 will be assumed to be equal to
uzo.,

At low frequencies (>"»R) , the P-wave pressure in the borehole ftuid can
be written in terms of displacement in the formation (White, 1965):

a l·al_Pl02a,(1-2(32/a,2)
p I U z - (32(1 _ 02; a(2)

where Iuz
a I ='" U z

a
.

Using <:0 =u z
a and equations (12) to (17), the ratios of fracture induced

tube wave amplitudes to incident P-wave amplitudes can be determined. The
pressure ratio in the borehole (measured by a hydrophone) is:

Q(32 (1 - c 2/a2) Io(nR)
pT/pa = C(K) (18)

{'oc 2a (1 - 2(32/ a 2)

The vertical component of displacement ratio at the wall of the borehole
(measured by an anchored borehole geophone) is:

u!'luz
a = [kKo(lR) + mGKo(mRl] AI <:0 (19)

The factor A is related to C(K) by equation (15) and C(K) is related to
the volume of ftuid ejected in T12 by equation (16). The fluid volume is related
to the fracture permeability by combining equations (10) and (3). Equation
(18) or (19) can be solved to determine the fracture permeability K. Normally,
given the formation and ftuid properties, displacement or pressure ratios can
be determined as a function of frequency with permeability, K, as a parameter.
These values can then be compared with observations to determine K.

A simple relation exists between the fracture permeability (K) and the
fracture hydraulic conductivity (or coefficient of permeability) (K;,):

K;, = K PI g I j.1. , (20)

where g is the gravitational acceleration. The Sl units of K are m 2 , and the
common unit is the darcy (1 d = 10-12 m 2). The Sl units of K;, are m/sec, and
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the common unit is 10-3 a'T7Ll sea, which is sometimes called the darcy: to avoid
any confusion this nomenclature shall not be used. In these units the following
relation exists: ld '" 10-3 em/sec.

RESULTS AND DISCUSSION

In order to demonstrate the different efficiencies of tube wave
generation. we considered three separate formations: a granite, representing
a typical crystalline rock; a "hard" sediment that would represent relatively
dense carbonate and hard sandstones; and a "sediment" to represent the more
typical sedimentary rocks such as sandstones and shales. The properties of
these formations and other physical parameters used in this study are listed in
Table 1. The tube wave phase velocity a is calculated by solving the period
equation (Cheng and Toksoz. 1981) for the given formation and borehole
parameters as a function of frequency.

Pressure and Displacement Amplitude Ratios

The ratios of tube waVe amplitudes to P- wave amplitudes are shown in
Figures 4, 5 and 6. The first comparison made is that of the ratios of pressure
amplitudes inside the borehole fluid. This is useful for interpreting the
hydrophone data. The second comparison is that of the ratios of displacements
that may be measured by a borehole seismometer locked to the borehole wall,
Only the vertical (z) component of the displacement is considered. The tube
wave particle motion at the borehole interface is highly elliptical and it is
important to specify the component of displacement under consideration.
Figure 4 shows the frequency dependence of the tube wave amplitUde for the
two formations considered. Owing to the much larger amplitudes of tube waves
in the fluid it is preferable to use hydrophone data as opposed to geophone
data to detect highly permeable zones. The borehole essentially acts as an
amplifier. The tube wave pressure amplitudes in the fluid decrease with
increasing frequency. The displacement ratios in the formation increase with
frequency. The pressure ratios for granite. "hard" and "sediment" models are
shown in Figures 5a, band c. for different values of permeability. Higher
fracture permeability yields higher tube wave amplitudes. For a given fracture
permeability the "hard" formation gives a higher value of the tube wave
pressure amplitude in the fluid, and a lower value of the tube wave
displacement amplitude in the formation than the "sediment" (Figure 6).

Non-horizontal Fractures

For the two-dimensional case in which the fracture does not
perpendicularly intersect the borehole, the normal displacement of the
fracture wall, <:1' can be expressed in terms of the inclination,", of the fracture
with respect to a plane normal to the borehole. The fluid volume ejected is
found by replacing <:0 by <:, =<:0 cos("), where <:0 =u."'. Equation (16) becomes:

C = f (K) cos(") (21)

where
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The factor C is proportional to the tube wave amplitudes (equations 12
and 13). Therefore C is determined directly from the data. f (K) is a
monotonically increasing function of the permeability K. The fracture
inclination, 1>, in our problem is assumed to be zero; therefore K is calculated
by the following equation:

C = f(K) (22)

Given the tube wave amplitude (I.e., C), this model (1)=0) will yield a lower bound
of the in situ fracture permeability of a tilted fracture (equation (21),1>"0).

Field Example

Field examples of tube wave generation in a borehole that intersects
open fractures in granite are shown in Figures 1 and 7 (Huang and Hunter,
1981b). These examples are pressure measurements in the borehole fluid.
Comparison of data from the televiewer, core logs and the tube waves show a
good correlation between tube wave generation and open fractures. For open
fractures at several depths, the tube wave to P- wave amplitude ratios were
measured. These are listed in Table 2. The borehole radius is about 3.8 cm. The
generated tube wave amplitude is dependent on the borehole radius (roughly
inversely proportional to the borehole cross-sectional area). A granite model is
calculated with a borehole radius of 3.8 cm. The pressure ratios as a function of
permeability and frequency are shown in Figure 8. The mean frequency of tube
waves (and P- waves) is about 200 Hz. Using the observed amplitude ratios the
permeability for each fracture zone was determined using Figure 8. They are
listed in Table 2. and range from 18 to 67 millidarcys. These values are
consistent with other permeability calculations in fractured granite as
compiled by Brace (1980).

Conclusions

Tube waves can be used to detect open fractures intersecting a borehole
and to determine an equlvalent fracture permeability using tube wave to P­
wave amplitude ratios in the borehole fluid (pressure ratio). It should be noted
that the tube- to P- wave pressure ratio in the borehole fluid is approximately 3
orders of magnitude greater than the displacement ratio in the formation. For
this reason it is preferable to use hydrophone data, as compared to wall-locked
borehole geophone data, to locate these permeable zones. It is important to
mention that a number of assumptions were made in this study and complex
"eqUivalency" was established when going from the 2-dimensional cartesian
geometry to a circular crack model. Additional theoretical work is now in
progress to solve the 3-dimensional problem directly.
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Table 1. Physical parameters used in this study

Formation o.(m; s) ~(m;s) p(kg;mS)

granite 5500 3300 2700

"hard" 4500 2500 2300

"sediment" 3000 1200 2100

fl n; '" ,,,nn n 1?nn

fluid viscositv " =10 S Poiseuilles
fluid incomnressibilitv ",-I =2. 109 Pa

borehole radius R =0.1 m

Table 2.

Calculated fracture permeablity for a granite model from observed
p T; P a and for a frequency of 200 Hz .

.

Den th7 m\ 80 130 392 460
",T;",a 4.5 3 2 3.5
K(md) 67 35 18 45

NOMENCLATURE

(

(

(

c
d
f
f;(z), K;(z)
K
Xc
k
L(t)
La
l

m

n

p(x,t)
p~
p

tube wave phase velocity
effective length of fracture
P-wave or tube wave frequency
modified Bessel function of the i-th order
fracture permeability (1 darcy = 10-12 m 2 )

fracture hydraulic conductivity (10-s em; sec)
OJ; e. tube wave vertical wavenumber
fracture width
static fracture width
k(1-e 2; 0(

2 )*, tube wave radial wavenumber
from P-wave contribution
k(l-c S; (IS)*. tube wave radial wavenumber
from S-wave contribution
k(l-c S; 0.])*. tube wave radial wavenumber
from fluid P-wave contribution
fluid pressure distribution in the fracture
static borehole pressure at a given depth
generated tube wave pressure amplitude in borehole fluid in
the vicinity of the fracture
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q(x,t)
Q(t)
R
u z«

/;V
T
a
at
(3

r
E:'ii
((t)
(0
J.k
P
Pt
X
GJ

pressure amplitude in the borehole fluid of the first
P-wave arrivaL in the vicinity of the fracture
rate of fluid flow in the fracture
source function
borehole radius
vertical displacement amplitude in the formation
of the first P-wave arrival, in the vicinity of the fracture
generated tube wave vertical displacement amplitude in
the formation, in the vicinity of the fracture
two-dimensional volume of fluid ejected
by the fracture in T12
three-dimensional extrapolation of /; V2D
lIf, P-wave or tube wave period
compressional (P-) wave velocity of the formation
compressional (P-) wave velocity of the fluid
shear (S-) wave velocity of the formation
fluid compressibility
tube wave volumetric strain in the fluid
normal displacement of fracture wall
maximum (( t )
dynamic fluid viscosity
formation density
fluid density
geometrical factor
2trt, P-wave or tube wave angular frequency
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APPENDIX

The net change of fiuid dq in a volume element L (t )dx (Figure 3.) is due
to the volume of fluid ejected by the fracture closure and the compressibility of
the fluid (no mass is generated or lost in the element). During a time increment

_dt, this total change is:

dq dt =dL(t) dzdt + L(t)rap(x,t) dxdt (A.i)
dt at

where r is the fluid compressibility and dL(t)1 dt =-GJ(o sin(GJt), the velocity of
the fracture wall. The net storage given by (A.i) must equal the net volume of
fluid !aq (x ,t)1 ax l dxdt flOWing into the differential volume, giving

.£..- [K L(t) EP-.(x,t) ] = L(t) ap(x.t) + dL(t)
ax J.k ax r at dt

Setting a 2 = KI WI and Q(t) = -GJ(o sin(GJt)1 (rL(t», the following equation is
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obtained:

(A.2) (

with the boundary conditions for pressure

p(x,t=O) =Pa x~O

p(x=O,t) =Pa t~O

ap(x,t)lax =° x = =

This last condition states that there is no fluid flow in the fracture far (x »d)
from the borehole intersection.

Equation (A.2) is a one-dimensional inhomogeneous diffusion equation.
The heat conduction analogy corresponds to a semi-infinite half-space (x;;,O)
having ",2 as thermal diffusivity and a time varying heat source Q(t). The
solution to this partial differential equation (A.2) is

p(x,t) = Pa - j Q(t-7) erf [ x JZ] d7
o 2", 7

•
where erf (z) =_;.. Ie _,2 dt is the error function.

v 11" a
Note that

lim P (X,t)=PO -7-1in[ L(t) ]
,,~. La + ~a

(

(

c

The pressure gradient follows from (2)

ap(x,t) _ 1 I' Q(t) (_x 2
) -1/2 d- - --= -7 exp -- 7 7

ax "'V1l" O. 4",2 7
(A. 4)

The rate at which fluid flows is given by equation (2). By calcuiating the
volume ejected from the fracture for the maximum fracture displacement 2~0,

we can obtain the maximum volume ejected in a finite amount of time. This
maximum volume occurs dUring a time interval of t = T12. Therefore the
volume of fluid forced from the fracture into the borehole in T12 is:

T/2

AV2D = I q(x=O,t) dt
a

or explicitly,

where

(A.5)

T/2 ,

F(c.J,~al Lo) = c.J I I
a 0

1 - (rol Lo)cos (c.Jt) s"'n("7), "~ d7 dt
1 - (~ol La)cos (c.J7) (t - 7)JZ
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Computation shows that for increasing frequency, F(c;;J;ol Lo) decreases. As the
frequency increases less fluid is ejected into the borehole. For ~o« Lo, an
asymptotic expression for F can be found by interchanging the order of
integration in the (r,t) plane:

T/2

F(c;;,O) = 2c;; J (TI 2-t)* sin(c;;t) dt
o
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Figure 1. Example of fracture generated tube wave in a VSP (after Huang
and Hunter, 1981b).
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Figure 4. Ratios of tube to P- wave pressures and displacements in two
different formations as functions of frequency.
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Figure 5a. Tube to P- wave pressure ratios as functions of frequency and
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Figure 5b. Tube to P- wave pressure ratios as functions of frequency and
permeability in a "hard" formation.
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Figure 7. Further examples of tUbe waves generated by fractures in a VSP
(after Huang and Hunter, 1981b).

10-20



30

0-ro...
0)...
::l
rn
rn
0)...
0-

0)

> 15ro

==
I

C-

o-
I
0)
.0
::l
I-

"Granite"

= 100md

~_om_d j

200 Hz100

.Frequency

O,-~_-,--~~~-,-~~~-,-_~_......J

10

Figure 8. Tube to P- wave pressure ratios as functions of frequency and
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